全概率公式与贝叶斯公式解题归纳
全概率公式贝叶斯公式推导过程
全概率公式贝叶斯公式推导过程条件概率是指在一些事件发生的条件下,另一个事件发生的概率。
设A和B是两个事件,且P(A)>0,条件概率P(B,A)定义为:P(B,A)=P(A∩B)/P(A)其中,P(A∩B)表示事件A和事件B同时发生的概率。
首先,我们来推导全概率公式。
全概率公式是用来计算一个事件的概率的,当我们无法直接计算这个事件发生的概率时,可以通过计算其与多个不同事件的交集的概率来间接计算。
假设有一组互斥的事件B1,B2,...,Bn,它们加起来构成了样本空间,即B1∪B2∪...∪Bn=S,其中S表示样本空间。
同时,假设事件A是一个我们感兴趣的事件。
那么,全概率公式可以表示为:P(A)=P(A,B1)P(B1)+P(A,B2)P(B2)+...+P(A,Bn)P(Bn)这个公式的意义是,我们可以将事件A的概率表示为事件A在每个不同事件Bi上发生的概率乘以事件Bi发生的概率的和。
接下来,我们来推导贝叶斯公式。
贝叶斯公式是一种在已知事件B发生的条件下,计算事件A发生的概率的方法。
假设我们需要计算事件A的概率,但是只能通过事件B发生的条件下计算。
贝叶斯公式可以表示为:P(A,B)=P(B,A)P(A)/P(B)在这个公式中,P(A,B)表示在事件B发生的条件下事件A发生的概率,P(B,A)表示在事件A发生的条件下事件B发生的概率,P(A)表示事件A发生的概率,P(B)表示事件B发生的概率。
贝叶斯公式的推导过程如下:根据条件概率的定义,我们有P(A∩B)=P(A,B)P(B),同样地,P(B∩A)=P(B,A)P(A)因为P(A∩B)=P(B∩A),所以P(A,B)P(B)=P(B,A)P(A)将上式转化为等式P(A,B)=P(B,A)P(A)/P(B),即得到贝叶斯公式。
总结起来,全概率公式和贝叶斯公式是概率论中经常使用的两个公式。
全概率公式可以帮助我们计算一个事件的概率,通过将该事件与多个不同事件的交集的概率相加来间接计算。
1-5全概率公式贝叶斯公式
= 0.087.
即平均1000个具有阳性反应的人中大约只有 人 个具有阳性反应的人中大约只有87人 即平均 个具有阳性反应的人中大约只有 患有癌症. 患有癌症
课堂练习
社会调查把居民按收入分为高、 低三类, 社会调查把居民按收入分为高、中、低三类 调查结果是这三类居民分别占总户数的10%, 调查结果是这三类居民分别占总户数的 , 60%,30%,而银行存款在一万元以上的户数 , , 在这三类居民中分别为100 %,60%, 在这三类居民中分别为100 %,60%,5%. 1. 求存款在一万元以上的户数在全体居民中 的比率. 2. 若已知某户的存款在一万元以上,求该户 若已知某户的存款在一万元以上, 属中等收入家庭的概率. 属中等收入家庭的概率
= P( A B0 ) P( B0 ) + P( A B1 ) P( B1 ) + P( A B2 ) P( B2 )
≈ 0.94
P( AB1 ) P( A B1 ) P ( B1 ) = P( B1 A) = P( A) P ( A)
≈ 0.0848
i =1 n
全概率公式
证明 B = BΩ = B I ( A U A U L A ) 1 2 n
= BA1 U BA2 U L U BAn .
由 Ai A j = ∅ ⇒ ( BAi )( BA j ) = ∅
⇒ P ( B ) = P ( BA1 ) + P ( BA2 ) + L + P ( BAn ) ⇒ P ( B ) = P ( A1 ) P ( B | A1 ) + P ( A2 ) P ( B | A2 ) + L + P ( An ) P ( B | An )
A2
全概率公式贝叶斯公式推导过程
全概率公式贝叶斯公式推导过程Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#全概率公式、贝叶斯公式推导过程(1)条件概率公式设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为:P(A|B)=P(AB)/P(B)(2)乘法公式1.由条件概率公式得:P(AB)=P(A|B)P(B)=P(B|A)P(A)上式即为乘法公式;2.乘法公式的推广:对于任何正整数n≥(1)条件概率公式设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为:P(A|B)=P(AB)/P(B)(2)乘法公式1.由条件概率公式得:P(AB)=P(A|B)P(B)=P(B|A)P(A)上式即为乘法公式;2.乘法公式的推广:对于任何正整数n≥2,当P(A1A2...An-1) > 0 时,有:P(A1A2...An-1An)=P(A1)P(A2|A1)P(A3|A1A2)...P(An|A1A2...An-1)(3)全概率公式1. 如果事件组B1,B2,.... 满足,B2....两两互斥,即 Bi∩ Bj= ,i≠j , i,j=1,2,....,且P(Bi)>0,i=1,2,....;∪B2∪....=Ω,则称事件组 B1,B2,...是样本空间Ω的一个划分设B1,B2,...是样本空间Ω的一个划分,A为任一事件,则:上式即为全概率公式(formula of total probability)2.全概率公式的意义在于,当直接计算P(A)较为困难,而P(Bi ),P(A|Bi)(i=1,2,...)的计算较为简单时,可以利用全概率公式计算P(A)。
思想就是,将事件A分解成几个小事件,通过求小事件的概率,然后相加从而求得事件A 的概率,而将事件A进行分割的时候,不是直接对A进行分割,而是先找到样本空间Ω的一个个划分B1,B2,...Bn,这样事件A就被事件AB1,AB2,...ABn分解成了n部分,即A=AB1+AB2+...+ABn, 每一Bi发生都可能导致A发生相应的概率是P(A|Bi),由加法公式得P(A)=P(AB1)+P(AB2)+....+P(ABn)=P(A|B1)P(B1)+P(A|B2)P(B2)+...+P(A|Bn)P(PBn)3.实例:某车间用甲、乙、丙三台机床进行生产,各台机床次品率分别为5%,4%,2%,它们各自的产品分别占总量的25%,35%,40%,将它们的产品混在一起,求任取一个产品是次品的概率。
第7节 全概率公式和贝叶斯公式
0.4825.
练习1 有朋自远方来,乘火车、船、汽车、飞机来的概率分别 为0.3,0.2,0.1,0.4,迟到的概率分别为0.25,0.3,0.1,0;求 他迟到的概率.
解 设A1=他乘火车来,A2=他乘船来,A3=他乘汽车来, A4=他乘飞机来,B=他迟到。
易见:A1, A2, A3, A4构成一个完备事件组,由全概率公式得
1. 引例 设甲盒有3个白球,2个红球,乙盒有4个白球,1个红 球,现从甲盒任取2球放入乙盒,再从乙盒任取两球,求
(1)从乙盒取出2个红球的概率; (2)已知从乙盒取出2个红球,求从甲盒取出两个红球的概率。
解 (1)设A1=从甲盒取出2个红球,A2=从甲盒取出2个白球; A3=从甲盒取出1个白球1个红球 ;B=从乙盒取出2个红球; 则A1, A2, A3 两两互斥,且A1+A2+A3=Ω, 所以
i 1
i 1
i 1
3. 全概率公式的应用
如果试验E有两个相关的试验E1,E2复合而成, E1有若干种可能的结果,E2在E1的基础上也有若干种 可能的结果,如果求与E2的结果有关事件的概率,可 以用全概率公式.试验E1的几种可能的结果就构成了 完备事件组.
例1 播种用的一等小麦种子中混有2%的二等种子,1.5%的三 等种子, 1%的四等种子, 用一等、二等、三等、四等种子长出的 穗含50颗以上麦粒的概率分别为0.5,0.15,0.1、0.05,求这批种子所 结的穗含有50颗以上麦粒的概率。
P(B)= P(A1)P(B|A1 )+P(A2)P(B|A2)+P(A3)P(B|A3)
C22 C52
C32 C72
C32 C52
0 C72
C31C21 C22 C52 C72
全概率公式与贝叶斯公式
, i = 1,2,, n.
例1 某电子设备制造厂所用的元件是由三家元
件制造厂提供的.根据以往的记录有以下的数据 : 元件制造厂 1 2 3 无区别的标志. (1) 在仓库中随机地取一只元件 , 求它是次品的 概率; 次品率 0.02 0.01 0.03 提供元件的份额 0.15 0.80 0.05
= P ( A B1 ) P ( B1 ) P ( A B2 ) P ( B2 ) P ( A Bn ) P ( Bn ).
图示
B2
B1
A
B3
Bn1
化整为零 各个击破
Bn
2. 全概率公式
定理 设试验 E 的样本空间为 S , A 为 E 的事件 , B1 , B2 , , Bn为 S 的一个划分 , 且 P ( Bi ) > 0( i = 1, 2, , n ), 则
例2 设有一箱同类型的产品是由三家工厂生产的. 已知其中有50%的产品是第一家工厂生产的, 其他 二厂各生产25%. 又知第一、第二家工厂生产的有 2%是次品, 第三家工厂生产的有4%是次品. 现从此 箱中任取一个产品, 求拿到的是次品的概率.
例3
例4 甲、乙、丙三人同时对飞机进行射 击, 三人击中的概率分别为0.4、0.5、0.7. 飞机被一人击中而击落的概率为0.2,被两人击 中而击落的概率为0.6, 若三人都击中, 飞机 必定被击落, 求飞机被击落的概率。
§1.6 全概率公式和贝叶斯公式
一、全概率公式 二、贝叶斯公式
三、小结
一. 全概率公式
1. 样本空间的划分
定义 设 S 为试验 E的样本空间, B1 , B2 ,, Bn 为 E 的一组事件 , 若 (i ) Bi B j = , i j , i , j = 1, 2,, n ; (ii ) B1 U B2 U U Bn = S . 则称 B1 , B2 ,, Bn 为样本空间 S 的一个划分 .
全概率公式和贝叶斯公式
全概率公式和贝叶斯公式全概率公式(Law of Total Probability)和贝叶斯公式(Bayes' theorem)是概率论中的两个重要公式,用于计算复杂概率问题的解法。
在本文中,我们将详细介绍这两个公式的含义、推导过程和应用。
一、全概率公式(Law of Total Probability)设A是样本空间S的一个非空子集,B1,B2,...,Bn是样本空间的一个划分,即B1,B2,...,Bn两两互不相交,且它们的并集是整个样本空间S。
则对任何事件A,有如下公式成立:P(A)=P(A,B1)P(B1)+P(A,B2)P(B2)+…+P(A,Bn)P(Bn)其中,P(A,Bi)是条件概率,表示在事件Bi发生的条件下事件A发生的概率;P(Bi)是事件Bi的概率。
由概率的加法公式可知,P(A)=P(A∩B1)+P(A∩B2)+…+P(A∩Bn)利用条件概率的定义,P(A,Bi)=P(A∩Bi)/P(Bi),将其带入上式中,有P(A)=P(A∩B1)/P(B1)P(B1)+P(A∩B2)/P(B2)P(B2)+…+P(A∩Bn)/P(B n)P(Bn)全概率公式的应用非常广泛。
例如,在医学诊断中,假设其中一种疾病的发病率与其中一种基因的突变有关,而该基因的突变状态是未知的。
根据现有的数据,可以计算出在其中一种突变状态下患病的概率。
全概率公式可以用来计算该疾病的总发病率,从而为医学诊断提供帮助。
二、贝叶斯公式(Bayes’ theorem)贝叶斯公式是概率论中的另一个重要公式,是在已知条件下计算事件的条件概率的一种方法。
该公式基于贝叶斯理论,可以通过已知的事实来更新假设的概率。
设A是样本空间S的一个非空子集,B1,B2,...,Bn是样本空间的一个划分。
则根据贝叶斯公式,对任何事件A和事件Bi有如下公式成立:P(Bi,A)=P(A,Bi)P(Bi)/[P(A,B1)P(B1)+P(A,B2)P(B2)+…+P(A,Bn)P(Bn)]其中,P(Bi,A)是在事件A发生的条件下事件Bi发生的概率,称为后验概率;P(A,Bi)是在事件Bi发生的条件下事件A发生的概率,称为似然函数;P(Bi)是事件Bi的概率,称为先验概率。
全概率公式、贝叶斯公式推导过程
全概率公式、贝叶斯公式推导过程(1)条件概率公式设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为:P(A|B)=P(AB)/P(B)(2)乘法公式1.由条件概率公式得:P(AB)=P(A|B)P(B)=P(B|A)P(A)上式即为乘法公式;2.乘法公式的推广:对于任何正整数n≥全概率公式、贝叶斯公式推导过程(1)条件概率公式设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为:P(A|B)=P(AB)/P(B)(2)乘法公式1.由条件概率公式得:P(AB)=P(A|B)P(B)=P(B|A)P(A)上式即为乘法公式;2.乘法公式的推广:对于任何正整数n≥2,当P(A1A2...A n-1) > 0 时,有:P(A1A2...A n-1A n)=P(A1)P(A2|A1)P(A3|A1A2)...P(A n|A1A2...A n-1)(3)全概率公式1. 如果事件组B1,B2,.... 满足1.B1,B2....两两互斥,即B i ∩ B j = ∅,i≠j ,i,j=1,2,....,且P(B i)>0,i=1,2,....;2.B1∪B2∪....=Ω ,则称事件组B1,B2,...是样本空间Ω的一个划分设 B1,B2,...是样本空间Ω的一个划分,A为任一事件,则:上式即为全概率公式(formula of total probability)2.全概率公式的意义在于,当直接计算P(A)较为困难,而P(B i),P(A|B i) (i=1,2,...)的计算较为简单时,可以利用全概率公式计算P(A)。
思想就是,将事件A分解成几个小事件,通过求小事件的概率,然后相加从而求得事件A的概率,而将事件A进行分割的时候,不是直接对A进行分割,而是先找到样本空间Ω的一个个划分B1,B2,...B n,这样事件A就被事件AB1,AB2,...AB n分解成了n部分,即A=AB1+AB2+...+AB n, 每一B i发生都可能导致A发生相应的概率是P(A|B i),由加法公式得P(A)=P(AB1)+P(AB2)+....+P(AB n)=P(A|B1)P(B1)+P(A|B2)P(B2)+...+P(A|B n)P(PB n)3.实例:某车间用甲、乙、丙三台机床进行生产,各台机床次品率分别为5%,4%,2%,它们各自的产品分别占总量的25%,35%,40%,将它们的产品混在一起,求任取一个产品是次品的概率。
【整理版】全概率公式与贝叶斯公式的运用举例8
贝叶斯公式公式在数学模型中的应用第一章 贝叶斯公式及全概率公式的推广概述1.1 贝叶斯公式与证明设12,...,n B B B 为Ω 的一个分割,即12,...,n B B B 互不相容,且1ni i B ==Ω ,如果P( A ) >0 ,()0i P B = (1,2,...,)i n = ,则1()(/)(/),1,2,...,()(/)i i i n j jj P B P A B P B A i n P B P A B ===∑。
证明 由条件概率的定义(所谓条件概率,它是指在某事件B 发生的条件下,求另一事件A 的概率,记为(/)P A B ) ()(/)()i i P AB P B A P A = 对上式的分子用乘法公式、分母用全概率公式,()()(/)i i i P AB P B P A B =1()()(/)ni i j P A P B P A B ==∑1()(/)(/),1,2,...,()(/)i i i n j jj P B P A B P B A i n P B P A B ===∑结论的证。
1.2 贝叶斯公式及其与全概率公式的联系在介绍了贝叶斯公式以后还得介绍下全概率公式,因为全概率公式和贝叶斯公式是一组互逆公式接下来先来看下全概率公式的概念。
设n B B B ,,21为样本空间Ω的一个分割,即n B B B ,,21互不相容,且Ω==i n i BU 1,如果n i B P i .,2,1.0)( =>,则对任一事件A 有∑==ni i i B A P B P A P 1)|()()( 证明:因为)()(11i ni i n i AB B A A A U U ====Ω=且n AB AB AB ,,2,1 互不相容,所以由可加性得∑====n i i i n i AB P AB P A P U 11)())(()(再将n i B A P B P AB P i i i ,,2,1),|()()( ==代入上式即得∑==ni i i B A P B P A P 1)|()()(由证明可以知道全概率公式其实就是贝叶斯公式的一种变形,它与贝叶斯公式是互逆应用的。
全概率公式与贝叶斯公式
P( A1) P(H1H2H3 H1H2H3 H1H2H3 ) P( A2 ) P(H1H2H3 H1H2H3 H1H2H3 ) P( A3 ) P(H1H2H3 )
将数据代入计算得:
P(A1)=0.36;P(A2)=0.41;P(A3)=0.14.
10
于是
P(B)=P(A1)P(B |A1)+ P(A2)P(B|A2)+ P(A3)P(B |A3)
已知 C
P(C)=0.005,P( )=0C.995,
求 P(C|PA()A.|
P(A|C)=0.95,
)=0.04
20
由贝叶斯公式,可得
P(C | A)
P(C)P( A | C)
P(C)P( A | C) P(C )P( A | C )
代入数据计算得 0.1066
P(C|A)=
现在来分析一下结果的意义.
=0.36×0.2+0.41 ×0.6+0.14 ×1 =0.458 即飞机被击落的概率为0.458.
11
【例5】设甲袋中有n只白球,m只红球,乙袋中有N只 白球,M只红球。现从甲袋中任取一球放入乙袋,然后 再从乙袋中取出一只,问取到白球的概率?
解:设B=“从甲袋中取一只白球放入乙袋”,则
B =“从甲袋中取出一红球放入乙袋”;B、
7
【例3】市场上某种商品由三个厂家同时供获,其供应 量为:甲厂家是乙厂家的2倍,乙.丙两个厂家相等,且各 厂产品的次品率为2%,2%,4%,
(1)求市场上该种商品的次品率.
解:设Ai表示取到第i 个工厂产品,i=1,2,3,B表示取 到次品, 由题意 得:P(A1)=0.5,P(A2)=P(A3)=0.25, P(B|A1)=0.02,P(B|A2)=0.02,P(B|A3)=0.04
全概率公式与贝叶斯公式
P( A1 )P( A2 A1 )P( A3 A1 A2 )
231 321 322 2, 543 543 543 5
依此类推
P( A4 )
P( A5 )
2 5
.
故抓阄与次序无关.
二、全概率公式与贝叶斯公式
1. 样本空间的划分
定义 设 为试验E的样本空间, A1, A2 ,, An
为 E 的一组事件,若
全概率公式与贝叶斯公式
一、条件概率 二、全概率公式与贝叶斯公式 三、小结
一、条件概率
1. 定义1.8
设 A, B 是 两 个 事 件,且 P(B) 0, 称 P( A | B) P( AB) P(B)
为 在 事 件B 发 生 的 条 件 下 事 件A发 生 的条 件 概 率.
A AB B
2. 性质
n
P( Ai )P(B | Ai ) i 1
全概率公式
证明 B B B ( A1 A2 An )
BA1 BA2 BAn.
由 Ai Aj (BAi )( BAj )
P(B) P(BA1) P(BA2 ) P(BAn ) P(B) P(A1)P(B | A1) P(A2 )P(B | A2 )
(1)有界性 : 0 P( A B) 1;
(2)规 范 性 P( B) 1, P( | B) 0
(3) P( A1 A2 B) P( A1 B) P( A2 B) P( A1A2 B);
(4) P( A B) 1 P( A B).
(5)可 加可列性: 设 A1, A2 ,,是两两不相容的事 件,则有
P
Ai
i1
B
P(Ai
i1
B).
例1 掷两颗均匀骰子,已知第一颗掷出6点,问 “掷出点数之和不小于10”的概率是多少?
全概论公式和贝叶斯公式
全概论公式和贝叶斯公式
全概论公式和贝叶斯公式都是概率论中的基本公式,但它们的应用场景和计算方式不同。
全概论公式(也称为全概率公式)用于计算在已知条件下某个事件发生的概率。
它的形式为:
P(A) = P(A|B) * P(B) + P(A|非B) * P(非B)
其中,A表示事件,B表示另一个已知的事件。
P(A|B)表示在事件B发生的条件下,事件A发生的概率;P(A|非B)表示在事件B未发生的条件下,事件A发生的概率;P(B)和P(非B)分别表示事件B发生和不发生的概率。
全概论公式可以用于计算在已知某个条件下某个事件发生的概率,或者在已知多个事件发生的条件下某个事件发生的概率。
贝叶斯公式(也称为贝叶斯定理)用于计算在已知某个事件发生的条件下另一个事件发生的概率。
它的形式为:P(B|A) = P(A|B) * P(B) / P(A)
其中,A和B分别表示事件,P(B|A)表示在事件A发生的条件下,事件B发生的概率;P(A|B)表示在事件B发生的条件下,事件A发生的概率;P(B)表示事件B发生的概率;P(A)表示事件A发生的概率。
贝叶斯公式可以用于计算在已知某个事件发生的条件
下另一个事件发生的概率,以及根据已知事件的概率更新后的另一个事件的概率。
总之,全概论公式和贝叶斯公式都是概率论中的基本公式,它们的应用场景和计算方式不同,但都是概率论中非常重要的工具。
概率 全概公式和贝叶斯定理
P(B1)=0.35, P(B2)=0.40, P(B3)=0.25, )=0.01。 P(A|B1)=0.03,P(A|B2)=0.02,P(A|B3)=0.01。 由贝叶斯公式, 由贝叶斯公式,得
P(B1 | A) P( A | B1 )P(B1 ) = P( A | B1 )P(B1 ) + P( A | B2 )P(B2 ) + P( A | B3 )P(B3 )
对于A也一定独立, 若A对于B独立,则B对于A也一定独立,? 对于B独立,
称事件A与事件B相互独立。 称事件A与事件B相互独立。
定义1.5 如果n(n>2)个事件A1,A2,…,An中任 何一个事件发生的可能性都不受其他一个 或几个事件发生与否的影响,则称 A1,A2,…,An相互独立
若P(A i ) f 0
个乒乓球都是新球, 例6 :12个乒乓球都是新球,每次比赛时取出 个乒乓球都是新球 每次比赛时取出3 个用完后放回去,求第3次比赛时取到的 次比赛时取到的3个球 个用完后放回去,求第 次比赛时取到的 个球 都是新球的概率。 都是新球的概率。 分别表示第一、 解:设事件Ai、Bi、Ci分别表示第一、二、 设事件 三次比赛时取到i个新球 = 、 、 、 ) 个新球( 三次比赛时取到 个新球(i=0、1、2、3) A 3 =Ω 则 A 0 =A1 =A 2 =φ 且B0、B1、B2、B3构成一个完备事件组
则称事件A、B、C相互独立 相互独立。 相互独立
关于独立性的几个结论如下: 关于独立性的几个结论如下: 1.事件A与B相互独立的充分必要条件是 P(AB)=P(A)P(B)
0.35× 0.03 1 = = ; 0.35× 0.03 + 0.40× 0.02 + 0.25× 0.01 2
全概率公式与贝叶斯公式
9
(1)事件A与B独立的充分必要条件是P(AB)=P(A)P(B) 证:必要性 若A与B中有一个事件概率为零,结论成立。 设A与B的概率都不为零,由独立性 P(B|A)=P(B) 而由乘法法则可得 P(AB)=P(A)P(B|A) =P(A)P(B) 充分性 设P(B)>0,则
P(AB) P( A)P( B) = =P(A) P(B) P( B) 即A与B独立。 P(A | B) =
5
(1)P( D) = P( A)P(D | A) + P( B)P( D | B) + P(C)P( D | C) 1 1 1 1 1 5 = × + × + × 3 5 3 2 3 8 53 = ≈ 0.442 120 P( B)P(D | B) ( 2)P(B | D) = P( A)P( D | A) + P( B)P( D | B) + P(C)P( D | C) 1 1 × 3 2 = 1 1 1 1 1 5 × + × + × 3 5 3 2 3 8 20 ≈ 0.378 = 53
a
b
c
解:令A、B、C分别表示开关a、b、c关闭,D表示灯亮 P(D)=P(AB+C)=P(AB)+P(C)-P(ABC) =P(A)P(B)+P(C)-P(A)P(B)P(C) =0.5×0.5+0.5-0.5×0.5×0.5 =0.625 由于AB ⊂ D, ABD=AB
第4讲全概率公式与贝叶斯公式
P A2 A3 P A2 P A3 P A1 A3 P A1 P A3 P A1 A2 A3 P A1 P A2 P A3
则称事件A1 , A2 , A3相互独立。
利用数学归 纳法,可把 定理1推广 至有限多个 事件的情形
解 记
A { 顾客买下该箱玻璃杯 }
Bi { 箱中恰有 i 件残次品 }
( i 0,1, 2 )
显然, B0 , B1 , B2为的的一个完备事件组。由题意
P( B0 ) 0.8 P( B1 ) 0.1 P( B2 ) 0.1 P( A B0 ) 1 4 4 C19 4 C18 12 P( A B1 ) 4 P ( A B2 ) 4 5 C 20 C 20 19
0 P AB P A 0
可知P AB 0,这时(1)式自然成立。
定义1
设A, B是二事件,如果满足等式P AB P APB 则称事件A, B相互独立,简称A, B独立。
由前面的讨论可知,若P A 0
PB | A PB
若 P A 0或P( A) 1,
(1)由全概率公式
4 12 a P( A) P( A Bi ) P( Bi ) 0.8 1 0.1 +0.1 0.94 5 19 i 0
2
(2)
b P( B0 A)
P( A B0 ) P( B0 ) P( A) 0.8 0.85 0.94
二、贝叶斯公式
解 设B1 , B2 分别表示“利率下调”和“利率不变”
这两个事件, A表示“该支股票上涨”,B1 , B2 是导致A发生的原因,且
B1 B2
故由全概率公式
13条件概率全概公式贝叶斯公式
打破的概率是 7 ,若前两次未打破 , 第三次落下打
破的概率是
9
10 ,试求透镜落下三次未打破的概率 .
10
解 设 Ai 透镜第 i 次落下打破,i 1,2,3 ,
B 透镜落下三次未打破 ,则 B A1A2 A3 .
PB PA1A2 A3 PA1 PA2 | A1 PA3 | A1A2
1
1 2
1
7 10
1
9 10
3 200
.
本题也可以先求 PB ,再由 PB 1 PB 求得 PB .
由于 B A1 A1 A2 A1 A2 A3 并 , 且 A1, A1A2 , A1A2 A3 为两两不相容事件, 故有
PB PA1 A1A2 A1A2 A3
PA1 PA1A2 PA1A2 A3
PB1 PA | B1 PBn PA | Bn n
PBi PA | Bi
i 1
n
PA PBi PA | Bi
i 1
全概率公式 .
全概率公式的基本思想是把一个未知的复杂事件 分解为若干个已知的简单事件再求解 , 而这些简单 事件组成一个互不相容事件组 ,使得某个未知事件 A 与这组互不相容事件中至少一个同时发生 ,故在 应用此全概率公式时 ,关键是要找到一个合适的 S 的一个划分.
我们还可以从另一个角度去理解 全概率公式.
某一事件A的发生有各种可能的原因 ,如果A 是由原因Bi (i=1,2,…,n) 所引起,则A发生的概率是
P(ABi)=P(Bi)P(A |Bi)
每一原因都可能导致A发生,故A发 生的概率是各原因引起A发生概率的总和, 即全概率公式.
由此可以形象地把全概率公式看成为“由原 因推结果”,每个原因对结果的发生有一定的“ 作用”,即结果发生的可能性与各种原因的“作 用”大小有关. 全概率公式表达了它们之间的关系
全概率公式与贝叶斯公式
P(A|B0)1
P(A|B1)4/5 P(A|B2)12/19
得P( B0 A) 0.851
k 0
目录
上一页
下一页
返回
结束
二、贝叶斯公式
定理2 设 为试验 E 的样本空间,B1 , B2 , Bn
P(Bi ) 0, i 1,2, , n ;
为 的一个划分,且
则对任意事件A (P(A)>0),
P( Bi A)
P( Bi ) P( A Bi )
P( B ) P( A B )
i 1 i i
n
(i 1, 2,, n)
则有
P A P Bk P A Bk .
k 1
n
AB1
AB2
…...
目录
上一页
下一页
返回
结束
P( A) P( ABi ) P( Bi ) P( A |Bi )
i 1 i 1
n
n
注 (1)A的 “全”部概率P(A)被分解成了许多 部分概率P(ABi)(i=1,2,…,n)之和.
目录
上一页
下一页
返回
结束
[例5] 设患肺结核病的患者通过胸透被诊断出的概率 为0.95,而未患肺结核病的人通过胸透被误诊为有病 的概率为0.002,据统计吸烟者患肺结核的概率为0.01. 若从该城市烟民中随机地选出一人,通过胸透被诊断 为肺结核,求这个人确实患有肺结核的概率。
解: 设A表示“胸透诊断为肺结核” ,C表示“检查者患有肺结核” 由题意得:
全概率公式与贝叶斯公式
全概率公式与贝叶斯公式在概率论中,全概率公式和贝叶斯公式是两个十分重要且常用的公式。
它们可以帮助我们在面对不确定性情况下做出准确的推断和决策。
本文将详细介绍全概率公式和贝叶斯公式的概念、用法以及实际应用。
一、全概率公式全概率公式(Law of Total Probability)是一种计算复合事件概率的方法。
当我们面对多个事件并且这些事件能够划分全集时,可以利用全概率公式来计算某个事件的概率。
假设有事件A1、A2、A3...An,且它们构成了一个完备事件组,即这些事件能够覆盖所有可能发生的情况,并且两两互斥(即任意两个事件的交集为空集)。
此时,对于任意事件B,可以使用如下公式计算其概率:P(B) = P(B|A1)P(A1) + P(B|A2)P(A2) + P(B|A3)P(A3) + ... +P(B|An)P(An)其中,P(B|Ai)表示在事件Ai发生的条件下事件B发生的概率,P(Ai)表示事件Ai的概率。
举个例子来说明全概率公式的用法。
假设有两个工厂A和B生产同一种产品,分别占总生产量的60%和40%。
其中,A工厂的产品合格率为80%,而B工厂的合格率为90%。
现在我们要计算选择一个合格产品的概率。
定义事件G表示选择一个合格产品,事件A表示选择A工厂的产品。
根据全概率公式,可以得到:P(G) = P(G|A)P(A) + P(G|B)P(B) = 0.8 * 0.6 + 0.9 * 0.4 = 0.84因此,选择一个合格产品的概率为0.84。
二、贝叶斯公式贝叶斯公式(Bayes' Theorem)是概率论中的另一个重要公式,它用于在已知一些先验信息的情况下,根据新的观测结果来更新我们对事件的概率估计。
假设有事件A和B,我们已经知道事件B发生的条件下事件A发生的概率P(A|B),以及事件A发生的概率P(A),我们希望计算在已经观测到事件B的情况下,事件A发生的概率P(A|B)。
根据贝叶斯公式,可以得到:P(A|B) = P(B|A)P(A) / P(B)其中,P(B|A)表示在事件A发生的条件下事件B发生的概率。
全概率公式和贝叶斯公式
显然A0,AP1,( AA0 )2是 0完.8备, P事( A件1 ) 组 0..1, P( A2 ) 0.1
P由(题B A意0 )知
C240 C240
1,
P
(
B
A1
)
C149 C240
4 5
,
P(
B
A2
)
C148 C240
12 19
由 全P概(B率) 公式得
P( A0)P(B A0 ) P( A1)P(B A1) P( A2)P(B A2) 0.94
C132
220
P(B1)
C91C
2
3
C132
27 220
[从9新3旧中取3旧] [从9新3旧中取1新2旧]
P(B2 )
C92C
1
3
C132
108 220
[从9新3旧中取2新1旧]
P(B3)
C93 C132
84 220
[从9新3旧中取3新]
注意:第二次取球时12只球的新旧组成是随第一
次取出的3球组成的变化而变化,易得:
A2
A1
A3
An1 An
证明 B B B ( A1 A2 An )
BA1 BA2 BAn.
由 Ai Aj (BAi )( BAj )
P(B) P(BA1) P(BA2 ) P(BAn ) P(B) P(A1)P(B | A1) P(A2 )P(B | A2 )
1.5.2 贝叶斯公式
定理1.3 设试验E的样本空间为 ,B为E的事件,
A1,A2,…,An为完备事件组,且P(B) > 0, P(Ai) > 0,i = 1,2,…,n,则
PP(( AAii BB))
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全概率公式与贝叶斯公式解题归纳
来源:文都教育
在数学一、数学三的概率论与数理统计部分,需要用到全概率公式及其贝叶斯公式来解题. 这类题目首先要区分清楚是“由因导果”,还是“由果索因”,因为全概率公式是计算由若干“原因”引起的复杂事件概率的公式,而贝叶斯公式是用来计算复杂事件已发生的条件下,某一“原因”发生的条件概率.
它们的定义如下:
全概率公式:设n B B B ,,,21 为样本空间Ω的一个划分,如果()0,i P B > 1,2,,i n =,则对任一事件A 有
)|()()(1
i n
i i B A P B P A P ∑==.
贝叶斯公式 :设n ,B ,,B B 21 是样本空间Ω的一个划分,则
.,,2,1,)|()()
|()()|(1n i B A P B P B A P B P A B P n j j
j i i i ==∑=
例1 从数字1, 2, 3, 4中任取一个数,记为X ,再从1,…,X 中任取一个数,记为Y ,则(2)P Y == .
解 由离散型随机变量的概率分布有:
(1)(2)(3)(4)14P X P X P X P X ========.
由题意,得
(21)0,(22)12,P Y X P Y X ======
(23)13,(24)14P Y X P Y X ======,则根据全概率公式得到
(2)(1)(21)(2)(22)P Y P X P Y X P X P Y X =====+===
(3)(23)(4)(24)P X P Y X P X P Y X +===+===
111113(0).423448
=⨯+++= 例2 12件产品中有4件次品,在先取1件的情况下,任取2件产品皆为正品,求先取1件为次品的概率.
解 令A={先取的1件为次品},则,A A 为完备事件组,12(),(),33
P A P A =
=令B={后取的2件皆为正品},则2821128(),55C P B A C ==2721121(),55C P B A C == 由贝叶斯公式得
128()()()2355().128221()()()()()5
355355
P A P B A P AB P A B P B P A P B A P A P B A ⨯====+⨯+⨯ 若随机试验可以看成分两个阶段进行,且第一阶段的各试验结果具体结果怎样未知,那么:(1)如果要求的是第二阶段某一个结果发生的概率,则用全概率公式;(2)如果第二个阶段的某一个结果是已知的,要求的是此结果为第一阶段某一个结果所引起的概率,一般用贝叶斯公式,类似于求条件概率. 熟记这个特征,在遇到相关的题目时,可以准确地选择方法进行计算,保证解题的正确高效.。