复变函数与积分变(北京邮电大学)课后的习题答案
复变函数与积分变量课后习题答4(全).doc
(1)% =解 (1)当刀f 8⑵I …殍(3卜=M / _ J|2”=cos 2n0 + i sin 2月们贫-► 8时,cos 2sin 2H0的极限都不存在,故z n=$土发散.故急捉+)发散.习题四1.下列序列是否有极限?如果有极限,求出其极限.+ 土 (2)% =吗气(3)礼=(号). n n \z ) 时,衫不存在极限,故%的极限不存在.0 (n — 8),故[血z n — 0. ir —8 令m 二厂普r 2n.=信)"无极限.2. 下列级数是否收敛?是否绝对收敛?⑴§(螺+ :);⑵名首;(3疙(l+i )". 解(1)因无上A 】n⑵»1彳=史吉收敛:故(2)绝对收敛.91-1 M • I Al n•(3) lini (l + i )rt= lim (再)%孕,*0,故发散.庶—8 ”一>8 3. 试证级数£ (2之尸当J I <号时绝对收敛.当危\(2z)n\= 2” •\(2z)n\ = (2r)n < 1. S(2r)rt收敛,故S(2z)n绝对收敛.M a 1 It « 1解⑴击4. 试确定下列慕级数的收敛半径. ⑴、狎(2)£(1 +』)心气(3)S解 (1) lim 勺为 | — lim "-— 1,故 R 二 1, n —^8| >1—8 Tl(2) lim V \C n \ = lim J (1 + —) = lim(l + —)n= e,l|f 8A Y \Tl f ”—8 fl故R =』・ e(3) lim I 1 = lim y~~“ = lim —= 0,Wf 8 I C n I 闻f 8 ( Tl + I / ! JI —8 ?1 + 1故 R = 8.5. 将下列各函数展开为z 的幕级数,并指出其收敛区域.⑴ 7~~~~j ; (2) 7 ----- K ---- (a 工 0,& 会 0);1 + z \z - a)\z - b)fl N〈3) ~ ; (4)ch z; (5)sir?z ; (6)6*-1. (1 + z )]1- (- z') 8 8、(-/)”=云(-I)”』,原点到所有奇点的距离最小值为1 ,故I Z | < 1.(2)1 .(a = b )4- a -Z-an oc=z -=an 0原式收敛区域:2.(a h b )1 ( 1a -b z - a原式)2 尊一=、(- 1)1 次”-2,力=1(4)ch ze[+e" ―2—z2n一2(:〃!二 n!S(2”)!,1 一cos2z< 8.-[1 V (2z)H • (- 1)”2 一 2 2 乙_ JL 小(一1)2 •一2:(2Q!(5)sin2in =0(2n)!< 8.E)=广•六(。
复变函数与积分变换第四章习题解答
2!
3!
2!
3!
3!
5!
2
4
而收敛半径 R=扛'fJ •
而收敛半径 R=+oo;
(7)
z
而收敛半径 R=l 。
cos 土 ==1- 上 (z+z2 + z3 + .. 一上 (z+z2 +z3 + ...r +... =1-2. z2 - z 3 +...' I zI< 1 I 1-z 2 4! 2
'
In n
1
n
1
4)因 cos in= cbn,
( 1)每一个幕级数在它的收敛圆周上处处收敛 ;
4. 下列说法是否正确?为什么?
而lim—-=1=0,
II�")
chn
2"
故
cosm 2 — " 发散。 11=2 2
00
(2)每一个幕级数的和函数在收敛圆内可能有奇点;
解 (1)不对。如Iz"在收敛圆lzl < 1内收敛, 但在收敛圆周日=l上井不收敛; (3)不对。如八 z) 三在全平面上连续, 但它在任何点的邻域内均不能展开成 Taylor 级 5幕级数LC11 (z-2)" 能否在z=0收敛而在z=3发散?
=
=早-(于)2 f ()
11=]
一I
干是收敛半径 R=2 。 (2)因
(-1t z-1 "' "
2
+ ... + ( -1 y,-1
(早厂
lz-11<2
l
及
飞(z�2 一言) = z�2 一士 2 = = 1-'� 厂; J- J [ =』 z�2 4 +(:-2i ± + � 2 �
复变函数与积分变化答案北京邮电大学第九章
1. 求下列信号的离散傅里叶变换。
()()(01).n x n a u n a a =<<为实数,解:1()()()(),1jwjwnjwnjw n jwn n n X e x n ea n eae ae ∞∞∞----=-∞=-∞=-∞====-∑∑∑幅度谱为21/21(),(12cos )jw X e a a w =+- 相位谱为sin ()arg ()arctan.1cos jw a ww X e a wφ==--2.求1, 1;().0, 1.n n x n Z n ≥⎧=⎨<⎩ 的变换解:该序列是一个右边序列,由定义得11().n n X z z n∞-==∑因为11211d ()11()(), 1.d n n n n X z n z z z z n z z ∞∞----===-=-=>-∑∑ 则()ln ln(1)ln.1z X z z z z=--=-3.求长度为N 的有限长序列00()(), 0x n n n n N δ=-<<的DFT.解:由定义得21()()()N jnk NN n X k x n eR k π--==∑2100()()N jnk NN n n n eR k πδ--==-∑02(),jn k NN eR k π-=其中()N R k 为矩形序列.4. 已知x(n )是N 点有限长序列,X(k)=DFT[x(n)].现将长度变为rN 点的有限长序列y(n),(), 01;()0, 1.x n n N y n N n rN ≤≤-⎧=⎨≤≤-⎩ 试求rN 点的DFT[y(n)]与X(k)的关系. 解:由21()[()](),01,N jnk Nn X k DFT x n x n ek N π--===≤≤-∑可得(1)1()[()]()()r N N nk nkrNrN n n Y k DFT y n y n Wx nW --=====∑∑ 210(),,0,1,, 1.k N j n N rn k x n eX k lr l N ar π--=⎛⎫====- ⎪⎝⎭∑所以在一个周期内,()Y k 的抽样点数是()X k 的r 倍,相当于在()X k 的每两个之间插入1r -个其他的数值(比一定为零),而当k 为r 的整数l 倍时,()Y k 与k X r ⎛⎫⎪⎝⎭相等.5.已知X(k),Y(k )是两个N 点的实序列x(n),y(n)的DFT 值,今需要从X(k),Y(k)求x(n),y(n)的值,为了提高运算效率,试用一个N 点IFFT 运算一次完成. 解:依据题意()(),()(),x n X k y n Y k ⇔⇔取序列()()(),Z k X k jY k =+对()Z k 作N 点IFFT 可得序列()z n .又根据DFT 的性质[][][]IDFT ()()IDFT ()IDFT ()()().X k jY k X k j Y k x n jy n =+=+=+由原题可知,(),()x n y n 都是实序列.再根据()()()z n x n jy n =+,可得[]()Re ()x n z n =以及[]()Im ().y n z n =6.如果一台计算机的速度为平均每次复乘5 μs ,每次复加0.5 μs ,用它来计算512点的DFT[x(n)],问:直接计算需要多长时间?用FFT 需要多长时间?解:(1)直接计算 复乘所需时间62621510510512 1.31072();T N s --=⨯⨯=⨯⨯=复加所需时间6620.510(1)0.510512(5121)0.130816().T N N s --=⨯⨯⨯-=⨯⨯⨯-=所以12 1.441536().T T T s =+=(2)用FFT 计算 复乘所需时间66122512510log 510log 5120.01152();22N T N s --=⨯⨯=⨯⨯= 复加所需时间662220.510log 0.510512log 5120.002304().T N N s --=⨯⨯=⨯⨯=所以120.013824().T T T s =+=。
复变函数与积分变换习题答案
第一章 复数与复变函数1.1计算下列各式: (1) (1)(32);i i +--解: (1)(32)(1)322 3.i i i i i +--=+-+=-+ (2);(1)(2)ii i --解:2(13)3.(1)(2)2213101010i i i i i ii i i i i i +-====+----+-(3)1(1);1z z x iy z -=+≠-+ 解: 2222222211(1)(1)12.11(1)(1)(1)z x iy x iy x iy x y yi z x iy x y x y x y-+--++-+-===++++++++++ 1.3 将圆周方程22()0(0)a x y bx cy d a ++++=≠写成复数形式(即可z 与z 表示,其中z x iy =+).解: 把22,,22z z z z x y x y z z i+-==+=⋅代入圆周方程得: ()()0,222()()20,0.b caz z z z z z d iaz z b ic z b ic z d Az z Bz Bz C ⋅+++-+=⋅+-+++=⋅+++=故其中2,,2.A a B b ic C d ==+= 1.5 将下列各复数写成三角形式.(1) sin cos ;i αα+ 解: sin cos 1,i αα+= 故sin cos cos()sin().22i i ππαααα+=-+- (2) sincos.66i ππ--解: 2arg(sincos )arctan(cot ),666263i ππππππππ--=-=--=-s i n c o s 66i ππ--=2222cos()sin()cos()sin.3333i i ππππ-+-=- 1.7 指出满足下列各式的点z 的轨迹是什么曲线?(1) 1;z i +=解: 以(0,1)-为圆心,1为半径的圆周.(2) 0,zz az az b +++=其中a 为复数,为b 实常数;解: 由题设可知 2()()||0,z a z a b a +++-=即22||||,z a a b +=- 若2||,a b =则z 的轨迹为一点;a -若2||,a b >则z 的轨迹为圆,圆心在a -,若2||,a b <无意义.第二章 解析函数1.用导数定义,求下列函数的导数: (1) ()Re .f x z z = 解: 因0()()lim z f z z f z z∆→+∆-∆0()Re()Re lim z z z z z z zz∆→+∆+∆-=∆ 0Re Re Re limz z z z z z z z∆→∆+∆+∆∆=∆0Re lim(Re Re )z zz z z z∆→∆=+∆+∆ 000Re lim(Re )lim(Re ),z x y z xz zz z z x i y ∆→∆→∆→∆∆=+=+∆∆+∆ 当0z ≠时,上述极限不存在,故导数不存在;当0z =时,上述极限为0,故导数为0.3.确定下列函数的解析区域和奇点,并求出导数.(1)(,).az bc d cz d++至少有一不为零 解: 当0c ≠时,()az b f z cz d +=+除d z c =-外在复平面上处处解析, dz c=-为奇点,222()()()()()()()()().()()az bf z cz daz b cz d cz d az b cz d a cz d c az b ad cb cz d cz d +''=+''++-++=++-+-==++当0c =时,显然有0d ≠,故()az b f z d +=在复平面上处处解析,且()af z d'=. 5.设()f z 在区域D 内解析,试证: 222222()|()|4|()|.f z f z x y ∂∂'+=∂∂证: 设 222(),|()|,f z u i v f z u v =+=+ 222(),|()|()().u uu u f z i f z x y x y∂∂∂∂''=-=+∂∂∂∂ 而2222222222222222222222222()|()|()()2()()()(),f z u v u v x y x y u u v v u u v v u v uv xx x x y y y y∂∂∂∂+=+++∂∂∂∂⎡⎤∂∂∂∂∂∂∂∂=+++++++⎢⎥∂∂∂∂∂∂∂∂⎣⎦又()f z 解析,则实部u 及虚部v 均为调和函数.故222222220,0.u u v vu v x yx y∂∂∂∂=+==+=∂∂∂∂则22222222()|()|4(()())4|()|.u uf z f z x y x y∂∂∂∂'+=+=∂∂∂∂ 7.设sin ,px v e y =求p 的值使v 为调和函数,并求出解析函数().f z u iv =+ 解: 要使(,)v x y 为调和函数,则有0.xx yy v v v ∆=+=即2sin sin 0,px px p e y e y -=所以1p =±时,v 为调和函数,要使()f z 解析,则有,.x y y x u v u v ==-1(,)cos cos (),1sin ()sin .px pxx pxpx y u x y u dx e ydx e y y pu e y y pe y pφφ===+'=-+=-⎰⎰所以11()()sin ,()()cos .px px y p e y y p e y C p pφφ'=-=-+即(,)cos ,px u x y pe y C =+故(cos sin ),1,()(cos sin ),1.x z xze y i y C e C pf z e y i y C e C p -⎧++=+=⎪⎨--+=-+=-⎪⎩9.求下列各式的值。
复变函数与积分变换习题解答
练 习 一1.求下列各复数的实部、虚部、模与幅角。
(1)i ii i 524321----; 解:i iii 524321---- =i 2582516+zk k Argz z z z ∈+====π221arctan 2558258Im 2516Re(2)3)231(i + 解: 3)231(i +zk k Argz z z z e i i∈+===-=-==+=πππππ210Im 1Re 1][)3sin3(cos3332.将下列复数写成三角表示式。
1)i 31- 解:i 31-)35sin 35(cos2ππi +=(2)i i +12 解:i i +12 )4sin4(cos21ππi i +=+=3.利用复数的三角表示计算下列各式。
(1)i i2332++- 解:i i 2332++- 2sin2cosππi i +==(2)422i +-解:422i +-41)]43sin 43(cos 22[ππi +=3,2,1,0]1683sin 1683[cos 2]424/3sin ]424/3[cos 28383=+++=+++=k k i k k i k ππππππ4..设321,,z z z 三点适合条件:321z z z ++=0,,1321===z z z 321,,z z z 是内接于单位圆z =1的一个正三角形的项点。
证:因,1321===z z z 所以321,,z z z 都在圆周32z z ++=0则,321z z z -=+1321=-=+z z z ,所以21z z +也在圆周1=z 上,又,12121==-+z z z z 所以以0,211,z z z +为顶点的三角形是正三角形,所以向量211z z z +与之间的张角是3π,同理212z z z +与之间的张角也是3π,于是21z z 与之间的张角是32π,同理1z 与3z ,2z 与3z 之间的张角都是32π,所以321,,z z z 是一个正三角形的三个顶点。
高等教育出版社《复变函数》与《积分变换》第四版课后习题参考答案
26 7
−
π
+
2kπ
= arctan 26 + (2k −1)π ,
7
k = 0,±1,±2," .
( ) ( ) (4) i8 − 4i21 + i = i2 4 − 4 i2 10i + i = (−1)4 − 4(− )1 10i + i
所以
= 1 − 4i + i = 1 − 3i
{ } { } Re i8 − 4i21 + i = 1, Im i8 − 4i21 + i = −3
习题一解答
1.求下列复数的实部与虚部、共轭复数、模与辐角。
(1) 1 ; (2)1 − 3i ; (3) (3 + 4i)(2 − 5i) ;
3 + 2i
i 1−i
2i
解
(1)
1 3 + 2i
=
(3
+
3 − 2i
2i)(3 −
2i)
=
1 13
(3
−
2i)
所以
(4)i8 − 4i 21 + i
Re⎨⎧ ⎩3
2)如果 R(z) 为 1)中的有理分式函数,但具有实系数,那么 R(z ) = X − iY ;
3)如果复数 a + ib 是实系数方程
a0 zn + a1zn−1 +" + an−1z + an = 0
的根,那么 a − ib 也是它的根。
证 1) R(z) = P(z) = P(z)Q(z) = Re(P(z)Q(z)) + Im(P(z)Q(z)) ;
3i 1−
复变函数与积分变换课后习题答案详解
…复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)/——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππ2222e cos isin i i 442222-⎛⎫⎛⎫⎛⎫=-+-=+-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ②解: ()()()()35i 17i 35i 1613i7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解:()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 3331313;;;.22n i i z i ⎛⎫⎛⎫-+-- ⎪ ⎪⎝⎭⎝⎭① :∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y-++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xy z a x a y-⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy ∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解: ∵()()()()(){}332321i 31i 3113133133288-+⎛⎫-+⎡⎤⎡⎤==--⋅-⋅+⋅-⋅-⎪ ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴1i 3Re 12⎛⎫-+= ⎪ ⎪⎝⎭, 1i 3Im 02⎛⎫-+= ⎪ ⎪⎝⎭. ④解:∵()()()()()2332313133133i 1i 328⎡⎤--⋅-⋅-+⋅-⋅-⎛⎫⎢⎥-+⎣⎦= ⎪ ⎪⎝⎭()180i 18=+=∴1i 3Re 12⎛⎫-+= ⎪ ⎪⎝⎭, 1i 3Im 02⎛⎫-+= ⎪ ⎪⎝⎭. ⑤解: ∵()()1,2i 211i,knkn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩.∴当2n k =时,()()Re i 1k n =-,()Im i 0n =; 当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++ ①解:2i 415-+=+=.2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i 51365++=++=⋅=.()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 2222++== ()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈,则z x x ==.∴z z =.命题成立.5、设z ,w ∈,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z wz w ++≤.6、设z ,w ∈,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式 3352π2π;;1;8π(13);.cos sin 7199i i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i 17e 5025i θ⋅--==其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e i i =③解:ππi i 1e e -==④解:()28π13i 16ππ3θ-==-.∴()2πi 38π13i 16πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3) 33i的平方根.⑴i 的三次根. 解:()133ππ2π2πππ22i cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ31cosisin i 662=+=+z .25531cos πisin πi 662=+=z39931cos πisin πi 662=+=-z⑵-1的三次根 解:()()1332π+π2ππ1cos πisin πcosisin 0,1,233k k k +-+=+=∴1ππ13cos isin 332=+=z2cos πisin π1=+=-z35513cos πisin π332=+=-z33i 的平方根.解: πi 42233i=6i 6e 22⎛⎫+⋅+=⋅ ⎪ ⎪⎝⎭∴()()1π12i44ππ2π2π4433i 6e 6cos isin 0,122k k k ⎛⎫++ ⎪+=⋅=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬ ⎪⎝⎭⎩⎭,其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。
复变函数与积分变换课后习题答案详解
复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ②解: ()()()()35i 17i 35i 1613i7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 333;;;.n z i ① :∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y-++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xy z a x a y-⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy ∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ⑤解: ∵()()1,2i 211i,kn kn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩.∴当2n k =时,()()Re i 1k n =-,()Im i 0n =;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+=2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z wz w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--===其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e ii =③解:ππi i 1e e -==④解:()28π116ππ3θ-==-.∴()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3)的平方根.⑴i 的三次根. 解:()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cosisin i 662=+=+z .2551cos πisin πi 662=+=+z3991cos πisin πi 662=+=-z⑵-1的三次根 解:()()132π+π2ππcos πisin πcosisin 0,1,233k k k ++=+=∴1ππ1cos isin 332=+=z35513cos πisin πi 3322=+=--z⑶33i +的平方根.解: πi 42233i=6i 6e 22⎛⎫+⋅+=⋅ ⎪ ⎪⎝⎭∴()()1π12i 44ππ2π2π4433i 6e6cos isin 0,122k k k ⎛⎫++ ⎪+=⋅=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬ ⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2 解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。
复变函数与积分变换习题册(含答案)
第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。
2、k 为任意整数,则34+k 的值为 。
3、复数i i (1)-的指数形式为 。
4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。
(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。
复变函数与积分变(北京邮电大学)课后的习题答案
1 i 1 i 1 i 2 2 2
4、证明:当且仅当 z z 时,z 才是实数.
3
1 1 3 1 8
3 1 3
2
2
3
3
3
证明:若 z z ,设 z x iy ,
3 2 2 2 2 x x 2 y 2 2 xy 2 y x y 2x y i
③解: 2 i 3 2i 2 i 3 2i 5 13 65 .
2 i 3 2i 2 i 3 2i 2 i 3 2i 4 7i
za 因为 L ={z: Im =0}表示通过点 a 且方 b
向与 b 同向的直线,要使得直线在 a 处与圆相切, 则 CA⊥ L .过 C 作直线平行 L ,则有∠BCD=β, ∠ACB=90° 故 α-β=90° 所以 L 在 α 处切于圆周 T 的关于 β 的充要条件
习题二xy所以4i的一段即平面上扇形域即是以原点为焦点张口向右抛物线如图所示limlimlimlim的极限不同所以极限不存在limlimlimlim00lim00lim00lim所以fz在整个为正整数所以fz在整个xyxy时才满足cr方程
复变函数与积分变换课后答案(北京邮电大学出版社)
复变函数与积分变换 (修订版)
1 i 3 ∴ Re 1, 2
④解: ∵
3
1 i 3 Im 0. 2
2 2 2 2 π π cos isin i i 2 4 4 2 2 2
(完整版)复变函数与积分变换习题答案
一、将下列复数用代数式、三角式、指数式表示出来。
(1) i 解:2cossin22ii e i πππ==+(2) -1解:1cos sin i e i πππ-==+ (3)1+解:()/3122cos /3sin /3i e i πππ+==+ (4) 1cos sin i αα-+ 解:2221cos sin 2sin 2sincos2sin(sincos )2222222sincos()sin()2sin 222222i i i i i e πααααααααααπαπαα⎛⎫- ⎪⎝⎭-+=+=+⎛⎫=-+-= ⎪⎝⎭(5) 3z解:()3333cos3sin3i z r e r i θθθ==+ (6) 1i e +解:()1cos1sin1i i e ee e i +==+(7)11ii-+ 解:3/411cos3/4sin 3/411i i i i e i i i πππ--==-==+++二、计算下列数值(1) 解:1ar 21ar 21ar 2 b i ctg k a bi ctg abi ctgaπ⎛⎫+ ⎪⎝⎭==⎧⎪=⎨⎪⎩(2)解:6226363463222i k i i i i e i ee e iπππππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎛⎫+ ⎪⎝⎭⎧=+⎪⎪⎪⎨====-+⎪⎪⎪=-⎩(3) i i 解:()2222ii k k i i e eππππ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭==(4)解:()1/2222ii k k eeππππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭==(5) cos5α解:由于:()()552cos5i i e e ααα-+=,而:()()()()()()()()5555555555cos sin cos sin cos sin cos sin nni nn nni n n e i C i e i C i αααααααααα-=--==+==-=-∑∑所以:()()()()()()()()()()()555505555043253543251cos5cos sin cos sin 21 cos sin 112 5cos sin cos sin cos 5cos sin 10cos sin cos n n n nn n n n nn n C i i C i i C i ααααααααααααααααα--=--=⎡⎤=+-⎣⎦⎡⎤=+-⎣⎦=++=-+∑∑(6) sin5α解:由于:()()552sin 5i i ee ααα--=,所以:()()()()()()()()()()()()55550555505234245552341sin 5cos sin cos sin 21 cos sin 1121 sin cos sin sin cos sin 10cos sin 5sin cos n n n nn n n n nn n C i i i C i i i C i C i iααααααααααααααααα--=--=⎡⎤=--⎣⎦⎡⎤=--⎣⎦=++=-+∑∑ (7) cos cos2cos n ααα+++L L 解:()()221cos cos 2cos ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e e e e e e e e e e e e e e e ααααααααααααααααααααααα----------⎡⎤+++=+++++++⎣⎦⎡⎤--+--⎡⎤--⎢⎥=+=⎢⎥---⎢⎥⎣⎦⎣⎦+=L L L L L L (1)(1)22(1cos )12cos 22cos(1)2cos cos 1cos(1)cos 22(1cos )2(1cos )1sin()sin22 2sin2i i n i n in in e e e e n n n n n ααααααααααααααααα+-+-⎡⎤---++⎢⎥-⎣⎦⎡⎤--++--++==⎢⎥--⎣⎦+-=(8) sin sin 2sin n ααα+++L L 解:()()221sin sin 2sin ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e i e e e e e e e e e e i e e i e i αααααααααααααααααααααα---------⎡⎤+++=+++-+++⎣⎦⎡⎤-----⎡⎤--⎢⎥=-=⎢⎥---⎢⎥⎣⎦⎣⎦=L L L L L L (1)(1)112(1cos )12sin 2sin(1)2sin sin sin(1)sin 22(1cos )2(1cos )1cos()cos22 2sin2i n in i i n in e e e e e i i n i n n n i n αααααααααααααααααα+--+-⎡⎤--+-++-⎢⎥-⎣⎦⎡⎤-++-++==⎢⎥--⎣⎦-++=1.2 复变函数1、试证明函数f (z )=Arg(z ) (-π<Arg(z) ≤π),在负实轴上(包括原点)不连续。
北京邮电大学复变函数第五章
(2) 如果 z0 为函数 f ( z ) 的极点 , 则
lim f ( z ) .
3z 2 , 例5 有理分式函数 f ( z ) 2 z ( z 2)
z z0
一阶极点又 称简单极点
z 0 是二阶极点, z 2 是一阶极点.
2)极点的判定方法
(3) 由有界性判断:
z0为f ( z)的可去奇点 f ( z)在z0的一个邻域内有界.
例3
sin z 1 2 1 4 1 z z 中不含负幂项, z 3! 5!
sin z z0 是 的可去奇点 . z
如果补充定义:
z 0 时,
sin z 1, z
sin z 那末 在 z 0 解析. z
那么孤立奇点 z0 称为 f ( z ) 的可去奇点.
说明: (1) z0若是f ( z )的孤立奇点 ,
f ( z ) c0 c1 ( z z0 ) cn ( z z0 )n .
( 0 z z0 )
其和函数 F ( z ) 为在 z0 解析的函数. (2) 无论 f ( z ) 在 z0 是否有定义,
f ( z ) 判断 . (3) 利用极限 lim z z
0
课堂练习
1 求 3 的奇点, 如果是极点, 指出它的 级数. 2 z z z 1
答案
1 1 由于 3 2, 2 z z z 1 ( z 1)( z 1)
所以 : z 1是函数的一级极点 , z 1是函数的二级极点 .
不存在 且不为
二、函数的零点与极点的关系
1.零点的定义
不恒等于零的解析函数 f ( z ) 如果
北京邮电大学复变函数第六章.
w f ( z ) f ( z0 ) lim , 因为 f ( z0 ) lim z 0 z z z0 z z0
令 z z e , w w e i .
y (z)
w f (z)
i
y (w) . w x
. z0
0
z
z C
x
0
.
w0
w
i w w0 i ( ) w e w e , i z z e z z0
w w0 w lim lim 所以 f ( z0 ) z 0 z z z0 z z 0
为曲线C 在 z0 的伸缩率
结论: f ( z0 ) 是经过映射w f ( z ) 后通过点z0 的
问题:
关于实轴对称的映射 w z 是第一类保角映射吗? 答案: 否. y(v)
将 z 平面与 w 平面重合观察,
(z) (w)
z.
0
z.
C1 C2 2
夹角的绝对值相同 x(u) 而方向相反.
1
例 试求映射w f ( z ) z 2 2 z 在 z 1 2i 处的 旋转角,并说明它将 z平面的哪一部分放大? 哪一 部分缩小?
方向不变的性质, 此性质称为保角性. 注意 f ( z0 ) 0 是必要的,否则保角性将不成 立.
综上所述, 有
定理一
设函数 w f ( z ) 在区域 D内解析, z0 为 D内一点,
且 f ( z ) 0 , 那末映射 w f ( z ) 在 z0 具有两个性
质: (1)伸缩率不变性; (2)保角性.
思考题答案
π argf (1 2i ) arg 4i , . 2
复变函数及积分变换习题答案
一、将下列复数用代数式、三角式、指数式表示出来。
(1)i 解:2cossin22ii e i πππ==+(2)-1解:1cos sin i e i πππ-==+(3)1+解:()/3122cos /3sin /3i e i πππ+==+ (4)1cos sin i αα-+ 解:2221cos sin 2sin 2sincos2sin(sincos )2222222sincos()sin()2sin 222222i i i i i e πααααααααααπαπαα⎛⎫- ⎪⎝⎭-+=+=+⎛⎫=-+-= ⎪⎝⎭(5)3z解:()3333cos3sin3i z r e r i θθθ==+ (6)1i e +解:()1cos1sin1i i e ee e i +==+(7)11ii-+ 解:3/411cos3/4sin 3/411i i i i e i i i πππ--==-==+++二、计算下列数值(1) 解:1ar21ar21ar2bi ctg kabi ctgabi ctgaπ⎛⎫+⎪⎝⎭==⎧⎪=⎨⎪⎩(2)解:6226363463222iki iiieie ee iπππππππ⎛⎫⎛⎫++⎪ ⎪⎝⎭⎝⎭⎛⎫+⎪⎝⎭⎧=+⎪⎪⎪⎨====+⎪⎪⎪=-⎩(3) i i解:()2222ii k ki i e eππππ⎛⎫⎛⎫+-+⎪ ⎪⎝⎭⎝⎭==(4)解:()1/2222ii k ke eππππ⎛⎫⎛⎫++⎪ ⎪⎝⎭⎝⎭==(5) cos5α解:由于:()()552cos5i ie eααα-+=,而:()()()()()()()()5555555555cos sin cos sincos sin cos sinn ni nnn ni nne i C ie i C iαααααααααα-=--==+==-=-∑∑所以:()()()()()()()()()()()5555555543253543251cos5cos sin cos sin21cos sin1125cos sin cos sin cos5cos sin10cos sin cosn n n nnnn n nnnC i iC ii C iααααααααααααααααα--=--=⎡⎤=+-⎣⎦⎡⎤=+-⎣⎦=++=-+∑∑(6) sin5α解:由于:()()552sin5i ie eααα--=,所以:()()()()()()()()()()()()55550555505234245552341sin 5cos sin cos sin 21 cos sin 1121 sin cos sin sin cos sin 10cos sin 5sin cos n n n nn n n n nn n C i i i C i i i C i C i iααααααααααααααααα--=--=⎡⎤=--⎣⎦⎡⎤=--⎣⎦=++=-+∑∑ (7) cos cos2cos n ααα+++L L 解:()()221cos cos 2cos ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e e e e e e e e e e e e e e e ααααααααααααααααααααααα----------⎡⎤+++=+++++++⎣⎦⎡⎤--+--⎡⎤--⎢⎥=+=⎢⎥---⎢⎥⎣⎦⎣⎦+=L L L L L L (1)(1)22(1cos )12cos 22cos(1)2cos cos 1cos(1)cos 22(1cos )2(1cos )1sin()sin22 2sin2i i n i n in in e e e e n n n n n ααααααααααααααααα+-+-⎡⎤---++⎢⎥-⎣⎦⎡⎤--++--++==⎢⎥--⎣⎦+-=(8) sin sin 2sin n ααα+++L L 解:()()221sin sin 2sin ()()2(1)1(1)11(1)(1)1 21122(1cos )1 2i i in i i in i in i i in i i in i in i i i n e e e e e e ie e e e e e e e e e i e e i e i αααααααααααααααααααααα---------⎡⎤+++=+++-+++⎣⎦⎡⎤-----⎡⎤--⎢⎥=-=⎢⎥---⎢⎥⎣⎦⎣⎦=L L L L L L (1)(1)112(1cos )12sin 2sin(1)2sin sin sin(1)sin 22(1cos )2(1cos )1cos()cos22 2sin2i n in i i n in e e e e e i i n i n n n i n αααααααααααααααααα+--+-⎡⎤--+-++-⎢⎥-⎣⎦⎡⎤-++-++==⎢⎥--⎣⎦-++=1.2 复变函数1、试证明函数f (z )=Arg(z ) (-π<Arg(z) ≤π),在负实轴上(包括原点)不连续。
复变函数与积分变换 第二章课后答案
e z sin z e z sin z 则 dz z 2i dz 2 z 2i z 4 z 3 z 2 i 1
2i
e 2i sin 2i e 2i sin 2i e 2i sin 2i e 2i sin( 2i ) 2i 2i 2i 2i 2i 2 2 sin 2i e 2i e 2i sin 2i cosh 2i . 2
i
i
i i
= 2 cos i .
7. 沿指定曲线的正向计算下列各积分: (1)
C
ez dz , C : z 2 1 ; z2 dz (a 0) , C : z a a ; z a2
2
(2)
C
(3)
C
eiz 3 dz , C : z 2i ; 2 z 1 2 f ( z) dz , C : z 1 ; f ( z ) 在 z 1 上解析, z0 1 ; z z0
z 0
0.
4
(8) f ( z ) 有四个奇点, 其中 z i在c 内,作互不相交互不包含且 在 C 内的小圆周 c1和c2 包含 i 与-i,则
c1
(z
2
1 dz 1 dz 2 4)( z i ) z i c2 ( z 4)( z i ) z i
(2) 由于被积函数在全平面上解析,利用柯西积分定理得
求积分
C
3 z 2 dz 0 .
2. 设 C 是由点 0 到点 3 的直线段与点 3 到点 3 i 的直线段组成的折线,
C
Re zdz .
解 将 C 分为两段,从 z=0 到 z=3, c1 的方程为 z 3 x, 0 x 1,
(含答案)复变函数与积分变换习题解析2
(含答案)复变函数与积分变换习题解析2习题2.11. 判断下列命题的真假,若真,给出证明;若假,请举例说明.(1)如果()f z 在0z 连续,那么0()f z '存在.(2)如果0()f z '存在,那么)(z f 在0z 解析.(3)如果0z 是()f z 的奇点,那么()f z 在0z 不可导.(4)如果0z 是()f z和()g z 的⼀个奇点,那么0z 也是()()f z g z +和()()f z g z ?的奇点.(5)如果(,)u x y 和(,)v x y 可导,那么()(,)(,)f z u x y iv x y =+亦可导.2.应⽤导数定义讨论函数)Re()(z z f =的可导性,并说明其解析性.3.证明函数在0z =处不可导.习题2.21. 设试证)(z f 在原点满⾜柯西-黎曼⽅程,但却不可导.(提⽰:沿抛物线x y =2趋向于原点)2. 判断下列函数在何处可导,何处解析,并在可导处求出其导数.(1)y ix xy z f222)(+=;(2)i y x y x z f 22332)(+-=;(3)=)(z f232z z -+;(4)22()2(1(2)f z x y i x y y =-+-+). 3.(1 (2 (3)iy x z f 2)(+=;(4 4. (1)iz z z f 2)(3+=;(25. 讨论下列各函数的解析性.(1)3223()33f z x x yi xy y i =+--;(2 (0)z ≠;(3)1(33)x iy ω-=-;(4习题2.31. 证明下列u 或v 为某区域的调和函数,并求解析函数()f z u iv =+.(1)2(1)u x y =-;(2)3223u x x xy =-+;(3)323u x xy =-;(4)23v xy x =+;(5)x y x v 222+-=;(62. 求k 值使22ky x u +=为调和函数,并求满⾜1)(-=i f 的解析函数iv u z f +=)(.3. 设函数iv u z f +=)(是⼀个解析函数,且y x xy y x y x v u 22332233---+-=+,求iv u z f +=)(.4. 证明:如果函数iv u z f +=)(在区域D 内解析,并满⾜下列条件之⼀,则)(z f 是常数.(1(2(3(4(5.5.(1(2)u -是v 的共轭调和函数.6. 如果iv u z f +=)(是z 的解析函数,证明:(1(2习题2.41.(2 (3(4(5(6)()i Ln e ;(7)i 3;(8)i i )1(+;(9)1(34)i i ++;(10))1sin(i +;(11)cos(5)i π+;(12)i ei cos 1++π.2(1 (2)0cos sin =+z z .3. (1 (2 (34.证明:(1)121212sin()sin cos cos sin z z z z z z +=+,212121sin sin cos cos )cos(z z z z z z -=+;2)1cos sin 22=+z z ;(3(4 (55.证明:(1)122=-z sh z ch ;(2)z ch z sh z ch 222=+;(3)cos sin shz shx y ichx y =+,cos sin chz chx y ishx y =+;(4)212121)(shz chz chz shz z z sh +=+,212121)(shz shz chz chz z z ch +=+.复习题⼆⼀、单项选择题1.D2.C3.B4.A5.C6.C7.A8.A9.D 10.C 11.C 12.B⼀、单项选择题1. ). D.z sin2. 下列说法正确的是().A.函数的连续点⼀定不是奇点B.可微的点⼀定不是奇点C.)(z f 在区域D 内解析,则)(z f 在D 内⽆奇点D.不存在处处不可导的函数3. 下列说法错误的是(). A.如果)(z f 在点0z 解析,则)(z f 在点0z 可导B.如果0z 是)(z f 的奇点,则)(0z f '不存在C.如果)(z f 在区域D 内可导,则)(z f 在D 内解析D.如果)(z f 在点0z 可导,则)(z f 在点0z 连续 4. 下列说法正确的是().A.iv u z f +=)(在区域D内解析,则v u ,都是调和函数B.如果v u ,都是区域D 内的调和函数,则iv u +是D 内的解析函数C.如果v u ,满⾜C-R ⽅程,则v u ,都是调和函数D.iv u +是解析函数的充要条件是v u ,都是调和函数5. 设函数iv u z f +=)(解析,则下列命题中错误的是().A.v u ,均为调和函数B.v 是u 的共轭调和函数C.u 是v 的共轭调和函数D.u -是v 的共轭调和函数6. 设函数iv u z f +=)(在区域D 内解析,下列等式中错误的是().7. 设在区域D 内v 为u 的共轭调和函数,则下列函数中为D 内解析函数的是(). A.iu v - B.iu v + C.iv u - D.x x iv u -8. 函数z z z f Im )(2=在0=z 处的导数(). A. 等于0 B. 等于1 C. 等于 -1 D. 不存在9. 下列数中为实数的是().A. 3)1(i -B. i sinC. LniD. i e π-310. 下列函数中是解析函数的是().A.xyi y x 222--B.xyi x +2 C. )2()1(222x x y i y x +-+- D. 33iy x + 11. 设z z f cos )(=,则下列命题中,不正确的是(). A. )(z f 在复平⾯上处处解析 B. )(z f 以π2为周期12. 设Lnz =ω是对数函数,则下列命题正确的是().A. nLnz Lnz n =B. 2121Lnz Lnz z Lnz +=因为x z =是实常数,所以x Lnx Lnz ln ==⼆、填空题在区域D 内三、计算题1. 指出下列函数的解析区域和奇点,并求出其导数.(1)zzezf z sincos)(+-=;(2(3(4(5(62..(1(3(53. 试证下列函数为调和函数,并求出相应的解析函数ivu)(.(1)xu=;(2)xy u=;(3)3223236yxyyxxu+--=;(4(5)yev x sin2=;(64. 已知22y=-,试确定解析函数ivuzf+=)(.5. 函数yxv+=是yxu+=的共轭调和函数吗?为什么?6.(1(2)ie43+;(3)Lni;(4(5(6)i-13;(7(8四、证明题1. 若函数xu和),(yxv都具有⼆阶连续偏导数,且满⾜拉普拉斯⽅程,现令x yvus-=,yxvut+=,则2. 设)(zf与)(zg都在,0()0g z'≠,证明第⼆章习题、复习题参考答案习题2.11.(1)假(2)假(3)假(4)假(5)假2. 函数)zf=处处不可导,处处不解析.习题2.22.(1)在0z =处可导,处处不解析,导数(0)0f '=;(2)在点)0,0(和处可导,处处不解析,导数0)0(='f ,(3)处处可导,(44.(1(25.(1(3.习题2.31.(1)ci iz z z f ++=22)(;(2)ci z z z f +-=32)(;(3)=)(z f 3z ci +;(4)=)(z f 23z iz c ++;(5)c iz iz z f ++=2)(2;(62.1k =-;2()f z z =.3.c y y x y v c x xy x u --+-=+--=23,232323,c i z z z f )1(2)(3-+-=. 习题2.41.(1 (2 (3)k )1(-)(Z k ∈;((5(6(7)3ln 2i k e e π-)(Zk ∈;(9 ((2.(1 (23.(1)正确;(2)正确;(3)正确.复习题⼆⼆、填空题2.0;3.c uv +2(c 为实常数);4.3,1,3-==-=n m l ;5.i +1;6.常数;8.ic ixy y x ++-222或ic z +2(c 为常数);9.i -; 10.πk e 2-),2,1,0(Λ±±=k .三、计算题1.(1(2(3(4(5(6z z z f cot csc )(-='.2.(1)在复平⾯内处处不可导,处处不解析;(2)在0=z 处可导,但在复平⾯内处处不解析,0)0(='f ;(3)在复平⾯内处处不可导,处处不解析;6.(1)4e -;(2))4sin 4(cos 3i e +;(3(4(6 (7。
复变函数与积分变换课后习题答案详解
复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ②解: ()()()()35i 17i 35i 1613i7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解:()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 333;;;.n z i ① :∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y-++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xy z a x a y-⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy ∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ⑤解: ∵()()1,2i 211i,knkn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩.∴当2n k =时,()()Re i 1k n =-,()Im i 0n =; 当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+=2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++== ()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈ ,则z x x ==.∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z wz w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--==其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e ii =③解:ππi i 1e e -==④解:()28π116ππ3θ-==-.∴()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3)的平方根.⑴i 的三次根. 解:()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cosisin i 662=+=+z .2551cos πisin πi 662=+=+z3991cos πisin πi 662=+=-z⑵-1的三次根 解:()()132π+π2ππcos πisin πcosisin 0,1,233k k k ++=+=∴1ππ1cos isin 332=+=z2cos πisin π1=+=-z3551cos πisin π332=+=-z的平方根.解: πi 42233i=6i 6e 22⎛⎫+⋅+=⋅ ⎪ ⎪⎝⎭∴()()1π12i 44ππ2π2π4433i 6e6cos isin 0,122k k k ⎛⎫++ ⎪+=⋅=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬ ⎪⎝⎭⎩⎭,其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2 解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ②解: ()()()()35i 17i 35i 1613i7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 333;;;.n z i ① :∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y-++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xy z a x a y-⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy ∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭.⑤解: ∵()()1,2i 211i,kn kn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩. ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+==2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z wz w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--==其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e ii =③解:ππi i 1e e -==④解:()28π116ππ3θ-==-.∴()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3)的平方根.⑴i 的三次根. 解:()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cosisin i 662=+=+z .2551cos πisin πi 662=+=+z3991cos πisin πi 662=+=-z⑵-1的三次根 解:()()132π+π2ππcos πisin πcosisin 0,1,233k k k ++=+=∴1ππ1cos isin 332=+=z2cos πisin π1=+=-z35513cos πisin πi 3322=+=--z⑶33i +的平方根.解: πi 42233i=6i 6e 22⎛⎫+⋅+=⋅ ⎪ ⎪⎝⎭∴()()1π12i 44ππ2π2π4433i 6e6cos isin 0,122k k k ⎛⎫++ ⎪+=⋅=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2 解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。
(4)、Re(z )>Im z .解:表示直线y =x 的右下半平面5、Im z >1,且|z |<2.解:表示圆盘内的一弓形域。
习题二 1. 求映射1w z z =+下圆周||2z =的像. 解:设i ,i z x y w u v =+=+则2222221i i i i i()i x y x yu v x y x y x y x y x y x y x y -+=++=++=++-++++因为224x y +=,所以53i 44u iv x y +=+所以 54u x =,34v y=+5344,u v x y == 所以()()2253442uv+=即()()222253221u v +=,表示椭圆.2. 在映射2w z =下,下列z 平面上的图形映射为w 平面上的什么图形,设e i w ϕρ=或i w u v =+. (1)π02,4r θ<<=; (2)π02,04r θ<<<<;(3) x=a, y=b.(a, b 为实数)解:设222i ()2i w u v x iy x y xy =+=+=-+所以22,2.u x y v xy =-= (1) 记e i w ϕρ=,则π02,4r θ<<=映射成w 平面内虚轴上从O 到4i 的一段,即 π04,.2ρϕ<<=(2) 记e i w ϕρ=,则π0,024r θ<<<<映成了w 平面上扇形域,即π04,0.2ρϕ<<<<(3) 记w u iv =+,则将直线x=a 映成了22,2.u a y v ay =-=即2224().v a a u =-是以原点为焦点,张口向左的抛物线将y=b 映成了22,2.u x b v xb =-=即2224()v b b u =+是以原点为焦点,张口向右抛物线如图所示.3. 求下列极限.解:令1z t =,则,0z t →∞→.于是22201lim lim 011z t t z t →∞→==++.(2) 0Re()limz z z →;解:设z=x+yi ,则Re()i z xz x y =+有 000Re()1limlim i 1i z x y kx z x z x kx k →→=→==++显然当取不同的值时f(z)的极限不同 所以极限不存在. (3) 2lim(1)z i z i z z →-+;解:2lim(1)z iz iz z →-+=11lim lim ()()()2z i z i z i z i z z i z i z →→-==-+-+. (4) 2122lim1z zz z z z →+---.解:因为222(2)(1)2,1(1)(1)1zz z z z z z z z z z +--+-+==-+-+所以2112223limlim 112z z zz z z z z z →→+--+==-+.4. 讨论下列函数的连续性: (1)22,0,()0,0;xyz x y f z z ⎧≠⎪+=⎨⎪=⎩解:因为22(,)(0,0)lim ()limz x y xyf z x y →→=+,若令y=kx,则222(,)(0,0)lim 1x y xy kx y k →=++, 因为当k 取不同值时,f(z)的取值不同,所以f(z)在z=0处极限不存在.从而f(z)在z=0处不连续,除z=0外连续. (2)342,0,()0,0.x yz f z x y z ⎧≠⎪=+⎨⎪=⎩解:因为33422022x y x x yx y x y ≤≤=+,所以342(,)(0,0)lim 0(0)x y x yf x y →==+所以f(z)在整个z 平面连续.5. 下列函数在何处求导?并求其导数.(1) 1()(1)n f z z -=- (n 为正整数);解:因为n 为正整数,所以f(z)在整个z 平面上可导.1()(1)n f z n z -'=-.(2)22()(1)(1)z f z z z +=++.解:因为f(z)为有理函数,所以f(z)在2(1)(1)0z z ++=处不可导.从而f(z)除1,i z z =-=±外可导.2222232222(2)(1)(1)(1)[(1)(1)]()(1)(1)2543(1)(1)z z z z z z f z z z z z z z z ''+++-+++'=++-+++=++(3)38()57z f z z +=-.解:f(z)除7=5z 外处处可导,且223(57)(38)561()(57)(57)z z f z z z --+'==---.(4) 2222()i x y x yf z x y x y +-=+++.解:因为2222222i()i i(i )(i )(1i)(1i)1i()x y x y x y x y x y z f z x y x y x y z z++--+--+++=====+++.所以f(z)除z=0外处处可导,且2(1i)()f z z +'=-.6. 试判断下列函数的可导性与解析性.(1) 22()i f z xy x y =+;解:22(,),(,)u x y xy v x y x y ==在全平面上可微. 22,2,2,yuvv y xy xy x x y xy ∂∂∂∂====∂∂∂∂所以要使得u v x y ∂∂=∂∂, u vy x ∂∂=-∂∂,只有当z=0时,从而f(z)在z=0处可导,在全平面上不解析.(2) 22()i f z x y =+.解:22(,),(,)u x y x v x y y ==在全平面上可微.2,0,0,2uu v vx y x y xy ∂∂∂∂====∂∂∂∂只有当z=0时,即(0,0)处有u v x y ∂∂=∂∂,u vyy ∂∂=-∂∂. 所以f(z)在z=0处可导,在全平面上不解析.(3) 33()23i f z x y =+;解:33(,)2,(,)3u x y x v x y y ==在全平面上可微.226,0,9,0uu vv x y x y xy ∂∂∂∂====∂∂∂∂=时,才满足C-R 方程. 从而f(z)0±=处可导,在全平面不解析. (4)2()f z z z =⋅.解:设i z x y =+,则23232()(i )(i )i()f z x y x y x xy y x y =-⋅+=+++ 3232(,),(,)u x y x xy v x y y x y =+=+22223,2,2,3uuvvx y xy xy y x xyxy ∂∂∂∂=+===+∂∂∂∂所以只有当z=0时才满足C-R 方程.从而f(z)在z=0处可导,处处不解析.7. 证明区域D 内满足下列条件之一的解析函数必为常数. (1) ()0f z '=;证明:因为()0f z '=,所以0u u x y ∂∂==∂∂,0v vx y ∂∂==∂∂.所以u,v 为常数,于是f(z)为常数. (2) ()f z 解析.证明:设()i f z u v =-在D 内解析,则 ()u v u vx y x y ∂∂-∂∂=⇒=-∂∂∂∂ ()u v v y x y ∂-∂-∂==+∂∂∂ ,u v u vx yy x ∂∂∂∂=-=∂∂∂∂而f(z)为解析函数,所以,u uu v x yy x ∂∂∂∂==-∂∂∂∂所以,,v v v v xx y y ∂∂∂∂=-=-∂∂∂∂即0u u v vx y x y ∂∂∂∂====∂∂∂∂从而v 为常数,u 为常数,即f(z)为常数.(3) Ref(z)=常数.证明:因为Ref(z)为常数,即u=C1, 0u u x y ∂∂==∂∂ 因为f(z)解析,C-R 条件成立。