平面四杆机构的基础知识

合集下载

16-平面四杆机构特点及应用

16-平面四杆机构特点及应用

课题:平面连杆机构应用及特点教材分析:本课题选自李世维主编、高等教育出版社出版的中等职业教育国家规划教材《机械基础》(机械类)第6章“常用机构”中“§6-1 平面连杆机构”的内容。

本节课内容主要介绍的铰链四杆机构的实际应用及特点。

学情分析:中职生文化基础差、学习能力较弱、学习的主动性不强,这是一个不争的事实,也是一个普遍的现实问题,但他们对新事物有较强的好奇心,善于联想,从这一现状出发,教学中应以调动学生学习积极性为出发点,以生活中的实例为教学模型,扩散思维,归纳总结来组织教学,让学生在发现问题,解释问题的思索中提高对本课程的学习兴趣,不断积累专业知识,并能活学活用,理论联系实践。

教学目标:1. 知识目标(1)掌握铰链四杆机构的特点和应用实例;(2)了解铰链四杆机构的急回特性及应用实例;(3)掌握铰链四杆机构的死点位置及应用实例。

2. 能力目标培养学生理论联系实际的能力,从生活中,从身边去挖掘教学模型,学以致用。

3. 情感目标培养学生口头表达能力,如何去欣赏别人的优点,如何去肯定别人,从而培养团队意识,合作意识。

教学重点:1.铰链四杆机构的急回特性2.铰链四杆机构的死点位置。

教学难点:极位夹角和摆角的画法。

课时安排:2课时教学手段:利用多媒体辅助教学教学方法:情景教学、启发引导、讲练结合学法指导:教法与学法室相辅相成的,教法直接影响学生对知识点掌握和能力的提高,而学法指导是学生智力发展目标得以实现的重要途径。

教学过程:(一)新课导入教学模型实物展示,多媒体展示汽车雨刮器动画,雷达天线俯仰机构动画,引出新课(二)新课讲授:一、铰链四杆机构的应用1、曲柄摇杆机构两连架杆中一为曲柄、一为摇杆的铰链四杆机构称为曲柄摇杆机构,如图所示,曲柄AB为主动件,并作等速运动。

从动摇杆CD将在弧C1C2范围内作变速往复摆动,C1、C2两个位置是摇杆摇摆的两个极限位置。

(1)曲柄摇杆机构能将曲柄的整周回转运动转换成摇杆的往复摆动。

机械原理 第三章 平面连杆机构及其设计

机械原理 第三章 平面连杆机构及其设计

2
二、连杆机构的特点 优点:
• 承受载荷大,便于润滑
• 制造方便,易获得较高的精度 • 两构件之间的接触靠几何封闭实现 • 实现多种运动规律和轨迹要求
y B a A Φ b β c ψ ψ0 C B φ A D M3
3
连杆曲线
M
M1
M2
连杆
φ0
d
D
x
缺点:
• 不易精确实现各种运动规律和轨迹要求;
27
55
20
40
70
80 (b)
例2:若要求该机构为曲 柄摇杆机构,问AB杆尺寸 应为多少?
解:1.设AB为最短杆
即 LAB+110≤60+70 2.设AB为最长杆 即 LAB+60≤110+70 3.设AB为中间杆 即 110+60≤LAB+70 100≤LAB LAB≤120 A
70
C
60
B
110
FB
D
36
2、最小传动角出现的位置

C b

F VC
B

c

A
d
D
当 为锐角时,传动角 = 当为钝角时,传动角 = 180º - 在三角形ABD中:BD² =a² +d² -2adcos 在三角形BCD中:BD² =b² +c² -2bccos (1) (2)
37
由(1)=(2)得:
b2 c 2 a 2 d 2 2ad cos cos 2bc
1)当 = 0º 时,即曲柄与机架重叠共线,cos =+1, 取最小值。
min
b c (d a ) arccos 2bc

机械设计基础-平面机构分析

机械设计基础-平面机构分析

平面机构分析
图2-10 闭式运动链及开式运动链
平面机构分析
4.一般机构中的构件的分类 一般机构中的构件可分为三类: (1)固定件(机架):用来支 承活动构件的构件。例如图1-1中的气缸体就是固定件, 用以支承活塞和曲轴等。在研究机构中活动构件的运动 时,常以固定件作为参考坐标系。 (2)原动件:运动规律已知的活动构件,它的运动规律是由 外界给定的。比如内燃机 中的活塞就是原动件。
平面机构分析
这样,该机构共有活动构件数n=5,低副数pL =7(其中滑块 5与机架构成移 动副,其余均为回转副),高副数pH =0。所以, 由式(2-1)得该机构自由度为
平面机构分析
图2-17 钢板剪切机构及其复合铰链
平面机构分析
2.局部自由度 机构中某些构件所具有的自由度仅与其自身的局部运动 有关,并不影响其他构件的运 动。计算自由度时,应除去局部 自由度,即设想把滚子与安装滚子的构件固结在一起视为 一 个构件。
平面机构分析 对于图2-16所示的构件组合,其自由度为
平面机构分析
三、 计算平面机构自由度时应注意的一些问题 1.复合铰链 复合铰链是由两个以上的构件通过回转副并联在一起所
构成的铰链。图2-17(a)为一 钢板剪切机的机构运动简图,B 处是由2、3和4三个构件通过两个轴线相重合的回转副并 联 在一起的复合铰链,其具体结构如图2-17(b)所示。因此,在统 计回转副数目时应根据 运动副的定义按两个回转副计算。 同理,当用 K 个构件组成复合铰链时,其回转副数应为 (K-1) 个。
平面机构分析
图2-1 平面机构
平面机构分析
任务实施 一、 平面机构的组成
平面机构是所有构件都在同一平面或相互平行的平面内 运动的机构。机构中的构件只 有通过一定的方式相互联接 起来,并且满足一定的条件才能传递确定的运动和动力,如图 2-1所示。

机械基础第4章

机械基础第4章
杆机构的一种演化形式。
上一页 下一页 返回
4.1 平面四杆机构
• 2.导杆机构 • 导杆机构可以看成是通过改变曲柄滑动机构中固定件的位置演化而来
的。当曲柄滑块机构选取不同构件作为机架时,会得到不同的导杆机 构类型,见表4-4。
上一页
返回
4.2 凸轮机构
• 4.2.1 凸轮机构的类型及特点
• 如图4-18所示,凸轮机构是由凸轮、从动件和机架组成的高副机构。 其中,凸轮是一个具有曲线轮廓或凹槽的构件,主动件凸轮通常作等 速转动或移动,凸轮机构是通过高副接触使从动件移动得到所预期的 运动规律。
第4章 常用机构
• 4.1 平面四杆机构 • 4.2 凸轮机构 • 4.3 间歇机构
返回
4.1 平面四杆机构
• 4.1.1 平面机构概述
• 在同一平面或相互平行平面内运动的机构称为平面连杆机构。平面连 杆机构是由一些刚性构件,用转动副或移动副相互连接而组成,并在 同一平面或相互平行平面内运动的机构。平面连杆机构的构件形状多 种多样,不一定为杆状,但从运动原理看,均可用等效的杆状构件替 代。
运动特点来工作的。
上一页 下一页 返回
4.3 间歇机构
• 4.3.3 不完全齿轮机构
• 不完全齿轮机构是由普通渐开线齿轮演变而成的一种间歇运动机构。 如图4-30所示,将主动轮的轮齿切去一部分,当主动轮连续转动时, 从动轮作间歇转动;从动轮停歇时,主动轮外凸圆弧和从动轮内凹圆 弧相配,将从动轮锁住,使之停止在预定位置上,以保证下次啮合。
4.3 间歇机构
• 4.3.2 槽轮机构
• 1.槽轮机构的组成和工作原理 • 图4-27所示为单圆销外啮合槽轮机构,它由带圆柱销的拨盘、具有径
向槽的槽轮和支撑它们的机架组成。在槽轮机构中,由主动拨盘利用 圆柱销带动从动槽轮转动,完成间歇转动。主动销轮顺时针作等速连 续转动,当圆销未进入径向槽时,槽轮因内凹的锁止弧被销轮外凸的 锁止弧锁住而静止;圆销进入径向槽时,两弧脱开,槽轮在圆销的驱 动下转动;当圆销再次脱离径向槽时,槽轮另一圆弧又被锁住,从而 实现了槽轮的单向间歇运动。

2汽车常见四杆机构

2汽车常见四杆机构
曲柄滑块机构演化为具有两个移动副的四杆机 构,称为双滑块机构。
在图示的曲柄滑块机构中,将转动副B扩大,则 图a所示的曲柄滑块机构,可等效为图b所示的机构。
将圆弧槽mm的半径逐渐增至无穷大,则图2b 所示机构就演化为图示的机构。此时连杆2转化为沿 直线mm移动的滑块2;转动副c则变成为移动副,滑 块3转化为移动导杆。
其连架杆2和4均为曲柄 C
B
A
a
D
(3)最短杆的对边(杆3)为机架 (最短杆为连杆)
C
2
r
B
3
1
o
A
4
D
两连架杆2和4都不能整周转动
故图所示为双摇杆机构。
铰链四杆机构存在曲柄的必要条件
最短杆和最长杆长度之和小于或等于其余两杆长 度之和。
满足这个条件的机构究竟有一个曲柄、两个曲柄 或没有曲柄,还需根据取何杆为机架来判断。
max=900时,=0 →Ft=F 太小易自锁, 限制min,以 保证机构正常工作。
3)最小传动角的位置
曲柄与机架共线的两位置出现最小传动角。
F Ft vC
3)最小传动角的位置 曲柄与机架共线的两位置出现最小传动角。
平面四杆机构的最小传动角位置:
3.死点
在曲柄摇杆机构,如以摇杆3 为原动件,而曲 柄1 为从动件,连杆2与曲柄1共线,这种位置称为死 点。机构处于压力角=90(传力角=0)的位置时, 驱动力的有效力为0。此力对A点不产生力矩,因此 不能使曲柄转动。
➢死点
B
2
C
1
5
A
3
N
P D
利用死点夹紧工件的夹具

树立质量法制观念、提高全员质量意 识。21. 1.1821. 1.18Mo nday , January 18, 2021

《机械设计基础》复习重点、要点总结

《机械设计基础》复习重点、要点总结

《机械设计基础》复习重点、要点总结《机械设计基础》第1章机械设计概论复习重点1. 机械零件常见的失效形式2. 机械设计中,主要的设计准则习题1-1 机械零件常见的失效形式有哪些?1-2 在机械设计中,主要的设计准则有哪些?1-3 在机械设计中,选⽤材料的依据是什么?第2章润滑与密封概述复习重点1. 摩擦的四种状态2. 常⽤润滑剂的性能习题2-1 摩擦可分哪⼏类?各有何特点?2-2 润滑剂的作⽤是什麽?常⽤润滑剂有⼏类?第3章平⾯机构的结构分析复习重点1、机构及运动副的概念2、⾃由度计算平⾯机构:各运动构件均在同⼀平⾯内或相互平⾏平⾯内运动的机构,称为平⾯机构。

3.1 运动副及其分类运动副:构件间的可动联接。

(既保持直接接触,⼜能产⽣⼀定的相对运动)按照接触情况和两构件接触后的相对运动形式的不同,通常把平⾯运动副分为低副和⾼副两类。

3.2 平⾯机构⾃由度的计算⼀个作平⾯运动的⾃由构件具有三个⾃由度,若机构中有n个活动构件(即不包括机架),在未通过运动副连接前共有3n个⾃由度。

当⽤P L个低副和P H个⾼副连接组成机构后,每个低副引⼊两个约束,每个⾼副引⼊⼀个约束,共引⼊2P L+P H个约束,因此整个机构相对机架的⾃由度数,即机构的⾃由度为F=3n-2P L-P H (1-1)下⾯举例说明此式的应⽤。

例1-1 试计算下图所⽰颚式破碎机机构的⾃由度。

解由其机构运动简图不难看出,该机构有3个活动构件,n=3;包含4个转动副,P L=4;没有⾼副,P H=0。

因此,由式(1-1)得该机构⾃由度为F=3n-2P L-P H =3×3-2×4-0=13. 2.1 计算平⾯机构⾃由度的注意事项应⽤式(1-1)计算平⾯机构⾃由度时,还必须注意以下⼀些特殊情况。

1. 复合铰链2. 局部⾃由度3. 虚约束例3-2 试计算图3-9所⽰⼤筛机构的⾃由度。

解机构中的滚⼦有⼀个局部⾃由度。

顶杆与机架在E和E′组成两个导路平⾏的移动副,其中之⼀为虚约束。

(完整版)平面四杆机构的基本类型及其演化

(完整版)平面四杆机构的基本类型及其演化

第三讲课题:§3-1 平面四杆机构的基本类型及其演化教学目的:理解平面四杆机构的各种类型及其应用。

教学重点: 铰链四杆机构类型及其演化,理解曲柄存在条件。

教学难点:导杆机构教学方法:课堂演示、多媒体教学互动:每个知识点后提问或讨论。

教学安排:§3-1 平面四杆机构的基本类型及其演化复习旧课:机构组成,运动副,运动简图等。

平面连杆机构是常用的低副机构,其中以由四个构件组成的四杆机构应用最广泛,而且是组成多杆机构的基础。

因此本章着重讨论四杆机构的基本类型、性质及常用设计方法。

一、四杆机构的类型1.曲柄摇杆机构两连架杆一为曲柄,一为摇杆。

功能:将等速转动转换为变速摆动或将摆动转换为连续转动。

应用:雷达天线机构、缝纫机踏板机构。

2.双曲柄机构两连架杆都为曲柄功能:将等速转动转换为等速同向、不等速同向、不等速反向转动。

应用:惯性筛机构若两曲柄的长度相等,连杆与机架的长度也相等,则该机构称为平行双曲柄机构。

如铲斗机构还有反平行四边形机构,例:公共汽车车门启闭机构3.双摇杆机构两连架杆都为摇杆功能:一种摆动转换为另一种摆动。

应用:鹤式起重机、飞机起落架二、铰链四杆机构的曲柄存在条件证明:结论:铰链四杆机构存在一个曲柄的条件是:1.最短杆与最长杆长度之和小于或等于其余两杆长度之和2.曲柄为最短杆。

铰链四杆机构存在曲柄的条件是:1.最短杆与最长杆长度之和小于或等于其余两杆长度之和2.机架或连架杆为最短杆。

三、四杆机构类型判别否Lmax+Lmin< L' +L"是不可能有曲柄可能有曲柄最短杆对边最短杆最短杆邻边双摇杆机构曲柄摇杆机构双曲柄机构四、铰链四杆机构的演化1.曲柄滑块机构2.偏心轮机构3.导杆机构①摆动导杆机构(牛头刨床)②转动导杆机构③移动导杆机构4.摇块机构小结:本次课主要熟悉四杆机构的各种类型,了解它们的应用作业:预习下次课内容。

机械基础(第5单元)

机械基础(第5单元)

a)机构结构图
b)机构运动简图
1—曲柄 2—连杆 3—摇杆 4—机架
第二节 平面四杆机构
• 1.铰链四杆机构的类型 • 在铰链四杆机构中,根据两连架杆的运动形式进行分类,可分为曲柄
摇杆机构、双曲柄机构和双摇杆机构三种基本形式,如下图所示。
图5-14 铰链四杆机构的三种基本形式

第二节 平面四杆机构
第一节 平面机构的组成
• 如果构件中转动副的间距较大时,通常将构件制成杆状,而且杆状构 件应尽量制成直杆;如果要求构件与机械的其他部分在运动时不发生 干涉(如碰撞),可将构件制成特殊的形状。如下图所示是具有转动 副的不同形状和横截面的杆状构件。
第一节 平面机构的组成
• 对于绕定轴转动的构件,常将构件制成盘状。有时在盘状构件上安装 轴销,以便与其他构件组成另一转动副。如果两个转动副间距很小时 ,难以设置相距很近的轴销(或轴孔),可将另一转动副尺寸扩大而 制成偏心轮,如图a所示。如果构件承受较大载荷时,采用偏心轮结 构庞大,则可以采用曲轴结构,如图b所示。偏心轮和曲轴常用于回 转运动与直线运动相互变换的机构中。
图a 电风扇摇头机构运动简图 图b 鹤式起重机机构运动简图
第二节 平面四杆机构
• 2.铰链四杆机构的类型判定
• 在铰链四杆机构中是否存在曲柄,取决于机构中各构件长度之间的关 系。
• 1)如果铰链四杆机构中最长杆与最短杆长度之和,小于或等于其余 两杆长度之和(杆长和条件),则该机构可能存在曲柄,但还要看选 取哪一个杆件作为机架,才能确定是否存在曲柄。如果以最短杆作为 连架杆,以最短杆的相邻杆为机架,则该机构一定是曲柄摇杆机构, 而且最短杆为曲柄,如图a所示;如果以最短杆作为机架,则相邻两 杆均为曲柄,该机构一定是双曲柄机构,如图b所示;如果以最短杆 作连杆,最短杆的对面杆作为机架,则该机构为双摇杆机构,如图c 所示。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面四杆机构的基础知识
曲柄
杆长条件:最短杆与最长杆这和小于其他两杆长度之和
最短杆为机架时----双曲柄
最短杆为连架杆-----曲柄摇杆机构
最短杆为连杆-------双摇杆机构
行程速比系数=180+A/180-A A位极位夹角
K值越大,机构的急回特性越显著。

曲柄与机架共线时曲柄摇杆机构中传动角最小
压力角和传动角
存在曲柄的必要条件:满足感长条件最短杆为机架或连架杆死点压力角=90度
存在死点的条件是
尖顶实际轮廓=理论轮廓
滚子互为法向等距曲线
基圆:中心到理论轮廓的最小距离
压力角:从动件受力方向与速度方向的夹角
压力角越小越好
基圆半径越小,压力角越大
凸轮机构中等速运动规律(刚性冲击)
等加速运动等减速运动(柔性冲击)
余弦加速运动(柔性冲击)
凸轮轮廓曲线设计:1、基圆
2、偏心圆
3、做偏心圆的切线
4、在切线自基圆量取从动件的位移量
看压力角的标注从动件受力方向与速度方向的夹角
斜齿轮正确啮合的条件、模数压力角螺旋角匹配标准参数取在法面上几何尺寸计算在端面
渐开线齿轮切制分为仿形法和展成法
齿形系数YFa只与齿数有关与修正系数P89
小齿轮的弯曲应力大于大齿轮的弯曲应力
大齿轮的弯曲强度大于小齿轮的弯曲强度
一对齿轮的接触应力是相等的(作用力与反作用力),小齿轮的分度圆直径和中心距决定齿面接触疲劳强度
不发生跟切得最少齿数p81
渐开线曲率半径(渐开线离基圆越近,曲率半径越小,渐开线月弯曲
渐开线离基圆越近,压力角越小
轮齿折断一般发生在齿根
疲劳点蚀首先出现在节线附近的齿根面上(闭式软齿面齿轮传动中)齿面磨损是开式齿轮传动的主要失效形式
齿面胶合出现在高速重仔的闭式齿轮传动中
齿面塑性变形出现在低速重载或濒繁起动的软齿面齿轮传动中
斜齿轮弯曲强度计算应按当量齿数查修正系数和齿形系数
分度圆和节圆半径在标准圆柱齿轮中相等
啮合角就是齿轮在节圆处的压力角
避免因装配误差使齿轮产生轴向错位导致实际齿宽减小。

相关文档
最新文档