DFB可调激光器模块讲解

合集下载

DFB可调激光器模块讲解

DFB可调激光器模块讲解

可调谐分布反馈式半导体激光器模块使用说明1.基本构成本模块以NEC 四波可调谐半导体激光器(NX8570系列)为核心,配以可调恒流源电路、可调谐自动温度控制电路以及相应的保护电路组成。

功率与波长调节方式采用电位器调整方式,全量程范围内模拟连续可调。

对应的工作状态指示灯标识当前温度与功率工作状态是否正常(常亮正常)。

光纤输出口与电源线引出口未做固化处理,预留四方向可调节口可供客户使用时根据需要进行相应地调整。

2.技术指标(NEC NX8570)3.波长与功率标定(出厂设置)Table.A 四波长标定值参数最小值典型值最大值单位输出光功率20--mW 峰值波长1530ITU-T 1609nm 波长稳定性-20-+20pm 光谱线宽-12MHz 边模抑制比3545dB 相对强度噪声---150dB/Hz输出隔离度30--dB 偏振消光比20--dB 校准波长1547.72/1549.32/1550.92/1552.52nm 校准功率偏差--0.01dB 功率调节范围0-20mW 波长调节范围@1547.72nm-0.4-+0.4nm 波长调节范围@1549.32nm-0.4-+0.4nm 波长调节范围@1550.92nm-0.2-+0.2nm 波长调节范围@1552.52nm-0.4-+0.4nm 输出光纤准直方式慢轴准直输出尾纤Fujikura PMF 9/125Panda 外层900um 套管保护输出连接器FC/PC慢轴对准电源供电DC +5VGND 双绞线工作温度0-+50℃储存温度-20-+70℃散热方式壳体顶面传导散热安装方式4角均布4mm 机械固定通孔型号波长(nm波长范围(nm光功率(dBm最大功率(dBmLSM-DFB-15471547.7190 >+/-0.413.02>13LSM-DFB-15491549.3210>+/-0.413.02>13*其中激光器由于其工作在低温状态下,启动时间略长约为1-2s ,室温启动下启动电流约为1.3-1.5A 。

超窄线宽DFB激光器

超窄线宽DFB激光器

D. 技术指标
参数指标 工作波长(ITU间隔) 输出功率
功率稳定性
光谱线宽 波长稳定性 边模抑制比(SMSR) 输出端隔离度 工作温度 存储温度 相对湿度 电源功耗 外形尺寸 电源 电气接口 光纤类型 接头类型
符号 λC Po PSS PSL BW λS
SMSR ISO TOP TS RH PS
L×W×H
如果有特殊需求可随时与我们联系,为您定制设计、加工个性化产品。 技术支持信箱:support@
B. 产品特点
外腔式(ECL)式半导体激光器 超窄线宽(典型值 30KHz) 光纤光栅稳频 高功率输出 单模尾纤输出 优异的光功率稳定性与波长稳定性 结构尺寸紧凑
C. 应用领域
光纤激光器 相干光通讯 光纤传感系统
F. 封装尺寸
CAUTION LASER RADIATION DO NOT STARE INTO BEAM OR
VIEW DIRECTLY WITH
OPTICAL INSTRUMENTS
ESD Protection The laser diodes and photodiodes in the module can be easily destroyed by electrostatic discharge. Use wrist straps, grounded work surfaces, and anti-static techniques when operating this module. When not in use, the module shall be kept in a static-free environment.
Product specifications and descriptions in this document subject to change without notice. Copyright to COSC Optical Sense and Communication Technology Co., Ltd. June 2008.

热可调谐DFB激光器阵列结构与原理

热可调谐DFB激光器阵列结构与原理

热可调谐DFB激光器阵列结构与原理阅读了古河(FURUKAWA )公司网站上发布的一篇技术回顾之后,发现我们公司所购买的热可调谐DFB激光器模块的性能参数和指标与文章中描述的热可调谐DFB激光器模块基本一样,故可认为两者具有同样或相似的内部结构,仔细的学习这篇文章对我们的认知与实验具有重要的参考意义。

一、功率控制与波长检测原理与结构文章中描述的激光器是:带波长监视器的、高可靠性的、最大40mW输出功率、25GHz频率间隔、20个通道的热可调谐激光器模块。

而我们公司使用的激光器是:带波长监视器的、带功率监视器的、最大10mW~20 mW输出功率、50GHz频率间隔、88个通道的热可调谐激光器模块。

文中给出的结构和原理图如下图(Figure 1)所示:Prism DFB-LDE talari i Lens LensPMFPDFigure 1 Schematic view of tunable DFB laser modulewith integrated wavelength monitor.每一个DFB后面腔镜会输出一部分的激光,可能为1%或更少。

这部分光通过一个瞄准仪(即图中的透镜lens)将其变成平行光。

平行光再通过一个三角棱镜(Prism)分成两部分,一部分进入功率探测器,形成光电流送到外界进行监测;另一部分通过一个法布里-波罗标准具(即F-P标准具,在这里也叫滤波器),然后送到波长监视器中,产生光电流送到外面进行监测。

F-P标准具是如何对波长进行监测的呢?实际上F-P标准具是由两个严格平行的玻璃平板组成,一束光进入里面后,多次来回反射并形成等倾干涉条纹。

只有满足一定条件的光波才能从标准具中透射或反射出来。

这些条件包括:标准具两玻璃板的反射率, 玻璃板间的折射率,玻璃板间的距离以及入射光波的波长。

一旦我们选择了标准具的参 数并保持所有参数恒定不变,则标准具的输出波长仅与入射波长相关, 所以标准具能够 精确地选择输出的波长。

dfb激光器原理

dfb激光器原理

dfb激光器原理DFB激光器原理。

DFB激光器是一种具有单模、窄线宽和高功率输出的激光器,其原理基于光栅的衍射效应。

DFB激光器在光通信、光纤传感、光谱分析等领域有着广泛的应用。

本文将介绍DFB激光器的原理及其工作过程。

DFB激光器的结构主要由光栅和半导体材料组成。

光栅是一种具有周期性折射率变化的光学元件,它能够选择性地增强或抑制特定波长的光。

半导体材料则是激光器的发光介质,通过注入电流使其产生光子。

在DFB激光器中,光栅的周期性折射率变化导致了光的衍射效应,从而实现了单模输出和窄线宽的特性。

DFB激光器的工作原理可以简单地描述为,在激发条件下,半导体材料中的电子和空穴复合产生光子。

这些光子在激光腔中来回反射,其中部分光子被光栅的衍射效应选择性地增强,形成了单模输出。

同时,光栅的周期性结构也限制了激光波长的选择,使得DFB激光器具有非常窄的线宽。

DFB激光器的工作过程中,光栅的周期性结构起到了关键作用。

光栅的周期决定了输出激光的波长,而光栅的折射率变化则决定了衍射效应的强度。

通过精确设计光栅的周期和折射率变化,可以实现对DFB激光器输出波长的精确控制,从而满足不同应用场景对波长的要求。

除了波长的精确控制,DFB激光器还具有高功率输出的特点。

这得益于激光腔中的光增益和光栅的衍射效应,使得DFB激光器能够实现高效的光放大和窄线宽的输出。

这使得DFB激光器在光通信和光纤传感等领域有着广泛的应用前景。

总结来说,DFB激光器是一种基于光栅衍射效应的激光器,其原理基于光栅的周期性折射率变化和半导体材料的光放大效应。

通过精确设计光栅的结构和半导体材料的特性,可以实现对波长和功率的精确控制,从而满足不同应用场景的需求。

DFB激光器在光通信、光纤传感和光谱分析等领域有着广泛的应用前景,对于推动光电子技术的发展具有重要意义。

DFB简介剖析

DFB简介剖析
F-P腔激光器: 多纵模工作,也就是说该激光器只能用于
短距离传输。
DFB激光器 DFB激光器在高速调制时也能保持单模
特性,这是F-P激光器无法比较的。尽管 DFB激光器在高速调制时存在啁啾,谱线有 确定展宽,但比F-P激光器的动态谱线的展 宽要改善一个数量级左右。
FP-LD与DFB-LD的比较
光谱特性
.
激光器光谱特性包括峰值(或中心)波长、光谱宽度、边模抑制比;
边模抑制比 Side Mode Suppression Ratio
在最坏反射条件时、全调制条件下,激光器光谱中 主纵模光功率峰值强度〔Pm0〕与最大边模光功率 峰值强度(P m1)之比的对数,即:
SMSR =10 lg (Pm0/P m1) SMSR示意图
1. 一次外延生长 2. 光栅制作 3. 二次外延生长 4. 脊波导制作 5. 欧姆接触、减薄 6. 解理成条 7. 端面镀膜 8. 解理成管芯 9. TO-CAN
光栅制作
1.全息曝光 2.干法或湿法 刻蚀
二次外延生长
生长: 1.低折射率层 2.腐蚀停顿层 3.包层 4.帽层:接触 层
激光器的纵模
DFB激光器的进展
DFB激光器的进展方向是,更宽的谐调范围和更窄的线宽, 在一个DFB激光器集成两个独立的光栅,实现更宽的波长谐调 范围,比方到达100nm谐调范围,以及更窄的光谱线宽。
尽管DFB激光器有很多优点,但并非尽善尽 美。例如,为了制作光栅, DFB激光器需 要简洁的二次外延生长工艺,在制造出光 栅沟槽之后由于二次外延的回熔,可能吃 掉已形成的光栅,致使光栅变得残缺不全, 导致谐振腔内的散射损耗增加,从而使激 光器的内量子效率降低。此外, DFB激光 器的震荡频率偏离Bragg频率,故其阈值增 益较高。

DFB激光器

DFB激光器

工艺结构
DFB激光器制造工艺 DFB芯片的制作工艺非常复杂,体现了半导体产品在生产制造上的最复杂程度,下表是 DFB激光器的主要生产工艺流程(从材料生长到封装的整个过程):
图1DFB芯片结构设计 DFB芯片大小:如图1,芯片大小可以在成人大拇指上形象地看出来。
DFB芯片设计:芯片分为P极和N极,当注入p-n结的电流较低时,只有自发辐射产生,随电流值的增大增益也 增大,达阈值电流时,p-n结产生激光。其注入电流方向和激光发射示意图如下:
DFB激光器
分布式反馈激光器
01 工艺结构
03 应用案例 05 发展
目录
02 应用原理 04 厂商现状
DFB( Distributed Feedback Laser)激光器,即分布式反馈激光器,其不同之处是内置了布拉格光栅 (Bragg Grating),属于侧面发射的半导体激光器。DFB激光器主要以半导体材料为介质,包括锑化镓(GaSb)、 砷化镓(GaAs)、磷化铟(InP)、硫化锌(ZnS)等。DFB激光器最大特点是具有非常好的单色性(即光谱纯度), 它的线宽普遍可以做到1MHz以内,以及具有非常高的边模抑制比(SMSR),可高达40-50dB以上。
感谢观看
示意图
应用原理
一、光纤通讯 通讯是DFB的主要应用,如1310nm,1550nm DFB激光器的应用,这里主要介绍非通讯波段DFB激光器的应用。 二、可调谐半导体激光吸收光谱技术(TDLAS) a)过程控制 (HCl, O2 …) b)火灾预警 (CO/CO2 ratio) c)成分检测 (moisture in natural gas) d)医疗应用 (blood sugar, breath gas, helicobacter) e)大气测量 (isotope composition of H2O, O2, CO) f)泄漏检查 (Methane) g)安全 (H2S, HF) h)环境测量 (Ozone, Methane)

DFB可调激光器模块讲解

DFB可调激光器模块讲解

可调谐分布反馈式半导体激光器模块使用说明1 •基本构成本模块以NEC四波可调谐半导体激光器(NX8570系列)为核心,配以可调恒流源电路、可调谐自动温度控制电路以及相应的保护电路组成。

功率与波长调节方式采用电位器调整方式,全量程范围内模拟连续可调。

对应的工作状态指示灯标识当前温度与功率工作状态是否正常(常亮正常)。

光纤输出口与电源线引出口未做固化处理,预留四方向可调节口可供客户使用时根据需要进行相应地调整。

2 •技术指标(NEC NX8570)3 •波长与功率标定(出厂设置)Table.A四波长标定值参数最小值典型值最大值单位输出光功率20--mW峰值波长1530ITU-T 1609nm波长稳定性-20-+20pm光谱线宽-12MHz边模抑制比3545dB相对强度噪声---150dB/Hz输出隔离度30--dB偏振消光比20--dB校准波长1547.72/1549.32/1550.92/1552.52nm校准功率偏差--O.OIdB功率调节范围0-20mW波长调节范围@1547.72nm-0.4-+0.4nm 波长调节范围@1549.32nm-0.4-+0.4nm 波长调节范围@1550.92nm-0.2-+0.2nm 波长调节范围@1552.52nm-0.4-+0.4nm输出光纤准直方式慢轴准直输出尾纤Fujikura PMF 9/125Panda外层900um套管保护输出连接器FC/PC慢轴对准电源供电DC +5VGND双绞线工作温度0-+50C储存温度-20-+70C散热方式壳体顶面传导散热安装方式4角均布4mm机械固定通孔型号波长(nm波长范围(nm光功率(dBm最大功率(dBmLSM-DFB-15471547.7190 >+/-0.413.02>13LSM-DFB-15491549.3210>+/-0.413.02>13*其中激光器由于其工作在低温状态下,启动时间略长约为1-2s,室温启动下启动电流约为1.3-1.5A。

DFB 激光器

DFB 激光器

DFB 激光器性能参数2005/3/7/11:54DFB激光器是在FP激光器的基础上采用光栅虑光器件使器件只有一个纵模输出,此类器件的特点:输出光功率大、发散角较小、光谱极窄、调制速率高,适合于长距离通信。

多用在1550nm波长上,速率为2.5G以上。

DFB激光器有以下性能参数:工作波长:激光器发出光谱的中心波长。

边模抑制比:激光器工作主模与最大边模的功率比。

-20dB光谱宽度:由激光器输出光谱的最高点降低20dB处光谱宽度。

阈值电流:当器件的工作电流超过阈值电流时激光器发出相干性很好的激光。

输出光功率:激光器输出端口发出的光功率。

其典型参数见下表所示:普通结构的分布反馈半导体激光器(DFB-LD),在高速调制状态下会发生多模工作现象,从而限制了传输速率。

因此,设计和制作在高速调制下仍能保持单纵模工作的激光器是十分重要的,这类激光器统称为动态单模(DSM)半导体激光器。

实现动态单纵模工作的最有效的方法之一,就是在半导体激光器内部建立一个布拉格光栅,依靠光栅的选频原理来实现纵模选择。

分布反馈半导体激光器的特点在于光栅分布在整个谐振腔中,光波在反馈的同时获得增益。

因为DFB-LD的谐振腔具有明显的波长选择性,从而决定了它们的单色性优于一般的FP-LD。

在DFB-LD中存在两种基本的反馈方式,一种是折射率周期性变化引起的布拉格反射,即折射率耦合(Index-Coupling),另一种为增益周期性变化引起的分布反馈,即增益耦合(Gain-Coupling)。

与依靠两个反射端面来形成谐振腔的FP-LD相比,DFB-LD可能激射的波长所对应的谐振腔损耗是不同的,也就是说DFB-LD的谐振腔本身具有选择模式的能力。

在端面反射为零的理想情况下,理论分析指出:折射率耦合DFB-LD在与布拉格波长相对称的位置上存在两个谐振腔损耗相同且最低的模式,而增益耦合DFB-LD恰好在布拉格波长上存在着一个谐振腔损耗最低的模式。

dfb光纤激光器原理

dfb光纤激光器原理

dfb光纤激光器原理
DFB光纤激光器原理
DFB光纤激光器(Distributed Feedback Fiber Laser),是一种基于光纤的激光器。

与传统的光纤激光器相比,DFB光纤激光器具有更高的输出功率、更窄的光谱线宽和更稳定的输出特性。

它在通信、光纤传感、激光雷达等领域具有广泛的应用。

DFB光纤激光器的原理主要包括光纤光栅耦合机制、光纤光栅增益耦合机制和光纤反馈机制。

光纤光栅耦合机制是DFB光纤激光器实现单模输出的关键。

光纤光栅是通过在光纤中形成周期性折射率变化的结构,使得只有特定波长的光能够在光纤中传输。

光纤光栅的周期和折射率变化的幅度决定了传输的波长。

通过调整光纤光栅的参数,可以实现激光器的单模输出。

光纤光栅增益耦合机制是DFB光纤激光器实现高增益的关键。

在DFB光纤激光器中,光纤光栅不仅起到耦合作用,还能够增强光纤中激光的增益。

光纤光栅的周期和折射率变化的幅度可以调节激光的增益特性,从而实现高增益的输出。

光纤反馈机制是DFB光纤激光器实现稳定输出的关键。

光纤激光器在工作过程中,会自发辐射出一部分光,这部分光会被光纤光栅反
馈回激光器中,形成光纤激光器的输出。

通过调整光纤光栅的参数,可以实现激光器的稳定输出。

DFB光纤激光器是利用光纤光栅耦合机制、光纤光栅增益耦合机制和光纤反馈机制实现高效、稳定的激光输出的激光器。

它具有窄的光谱线宽、高的输出功率和稳定的输出特性,广泛应用于通信、光纤传感和激光雷达等领域。

未来,随着光纤技术的不断发展,DFB 光纤激光器有望在更多领域展现出更大的应用潜力。

DFB简介剖析

DFB简介剖析
激光器分类

法布里-珀罗型激光器(FP) 分布反馈激光器(DFB)

垂直腔面发射激光器(VCSEL)
FP激光器
FP激光器的谐振腔由镀膜的自然解理面形成的 ,只能实 现静态单模工作。在高速调制或温度和电流变化时,会出现 模式跳跃和谱线展宽。
DFB激光器

DFB( Distributed Feedback Laser),即 分布式反馈激光器,其不同之处是内置了 布拉格光栅(Bragg Grating),属于侧面 发射的半导体激光器。 DFB激光器将布拉 格光栅集成到激光器内部的有源层中(也 就是增益介质中),在谐振腔内即形成选 模结构,可以实现完全单模工作。

尽管DFB激光器有很多优点,但并非尽善尽 美。例如,为了制作光栅, DFB激光器需 要复杂的二次外延生长工艺,在制造出光 栅沟槽之后由于二次外延的回熔,可能吃 掉已形成的光栅,致使光栅变得残缺不全, 导致谐振腔内的散射损耗增加,从而使激 光器的内量子效率降低。此外, DFB激光 器的震荡频率偏离Bragg频率,故其阈值增 益较高。
目前,DFB激光器主要以半导体材料为介质,包括锑化镓 (GaSb)、砷化镓(GaAs)、磷化铟(InP)、硫化锌(ZnS)等。 DFB激光器最大特点是具有非常好的单色性(即光谱纯度), 它的线宽普遍可以做到1MHz以内,以及具有非常高的边摸抑 制比(SMSR),目前可高达40-50dB以上。
DFB-LD芯片制造

DFB激光器 DFB激光器在高速调制时也能保持单模 特性,这是F-P激光器无法比拟的。尽管 DFB激光器在高速调制时存在啁啾,谱线有 一定展宽,但比F-P激光器的动态谱线的展 宽要改善一个数量级左右。Leabharlann FP-LD与DFB-LD的比较

FBGDFBFP三类激光器的比较分析

FBGDFBFP三类激光器的比较分析

FBGDFBFP三类激光器的比较分析FBG(Fiber Bragg Grating)激光器、DFB(Distributed Feedback)激光器和FP(Fabry-Perot)激光器是三种常见的光纤激光器。

它们在结构、工作原理、性能等方面有很大的差异。

下面,我将对它们进行比较分析。

首先,从结构上看,FBG激光器和DFB激光器都采用了光纤光栅,而FP激光器则是基于Fabry-Perot腔。

光纤光栅可以通过改变光纤的折射率分布来实现波长选择性反射,而FP激光器中的Fabry-Perot腔则是由两面反射镜构成的。

其次,从工作原理上看,FBG激光器和DFB激光器都是基于布拉格散射原理工作的,利用光栅的回波特性产生激光输出。

而FP激光器则是基于共振腔效应工作的,激光通过腔内的反射镜来得到增强。

再次,从性能上看,FBG激光器和DFB激光器具有较窄的光谱宽度和较高的光谱纯度,可以实现单纵模输出。

它们还具有较好的频率稳定性和较低的噪声水平,适用于需要精确频率输出的应用场景。

而FP激光器的光谱宽度较宽,有时候会出现多模输出,频率稳定性和噪声水平相对较差。

此外,FBG激光器和DFB激光器可以通过改变光栅的周期和折射率分布来实现波长调谐。

而FP激光器则需要调整腔内反射镜之间的距离来实现波长调谐。

最后,从应用领域上看,由于FBG激光器和DFB激光器具有较好的频率稳定性和光谱纯度,它们适用于光纤通信、光纤传感和光谱分析等领域。

而FP激光器则适用于光纤传感、光纤传输和光纤惯性导航等应用。

综上所述,FBG激光器、DFB激光器和FP激光器在结构、工作原理、性能和应用领域上存在差异。

选择合适的激光器要根据具体需求和应用场景来进行综合考虑。

FBG 、DFB 、FP三类激光器的比较分析

FBG 、DFB 、FP三类激光器的比较分析

FBG、DFB、FP三类激光器的比较分析FP:Fabry-perot法布里-珀罗,就是说LD内有法布里-珀罗谐振腔;fp是F-P 腔的,多纵模。

DFB:DistributeFeedback分布反馈式.DFBLD与FPLD的主要区别在于它没有集总反射的谐振腔反射镜,它的反射机构是由有源区波导上的Bragg光栅提供的。

DFB是分布式负反馈的,单纵模。

FBG:Fiber Bragg Grating即光纤布拉格光栅。

DFB激光器性能参数DFB激光器是在FP激光器的基础上采用光栅虑光器件使器件只有一个纵模输出,此类器件的特点:输出光功率大、发散角较小、光谱极窄、调制速率高,适合于长距离通信。

多用在1550nm波长上,速率为2.5G以上。

DFB激光器有以下性能参数:工作波长:激光器发出光谱的中心波长。

边模抑制比:激光器工作主模与最大边模的功率比。

-20dB光谱宽度:由激光器输出光谱的最高点降低20dB处光谱宽度。

阈值电流:当器件的工作电流超过阈值电流时激光器发出相干性很好的激光。

输出光功率:激光器输出端口发出的光功率。

其典型参数见下表所示:FP激光器FP激光器是以FP腔为谐振腔,发出多纵模相干光的半导体发光器件。

这类器件的特点;输出光功率大、发散角较小、光谱较窄、调制速率高,适合于较长距离通信。

FP激光器有以下性能参数:工作波长:激光器发出光谱的中心波长。

光谱宽度:多纵模激光器的均方根谱宽。

阈值电流:当器件的工作电流超过阈值电流时激光器发出相干性很好的激光。

输出光功率:激光器输出端口发出的光功率。

典型参数见下表所示:FBG激光器在纤芯内形成的空间相位周期性分布的光栅,其作用的实质就是在纤芯内形成一个窄带的(透射或反射)滤波器或反射镜。

利用这一特性可制造出许多性能独特的光纤器件。

这些器件具有反射带宽范围大、附加损耗小、体积小,易与光纤耦合,可与其它光器件兼容成一体,不受环境尘埃影响等一系列优异性能。

目前应用主要集中在光纤通信领域(光纤激光器、光纤滤波器)和光纤传感器领域(位移、速度、加速度、温度的测量)。

DFB简介

DFB简介

边模抑制比 Side Mode Suppression Ratio
在最坏反射条件时、全调制条件下,激光器光谱中主纵模光 功率峰值强度(Pm0)与最大边模光功率峰值强度(P m1)之比的 对数,即: SMSR =10 lg (Pm0/P m1) SMSR示意图
DFB激光器的发展
DFB激光器的发展方向是,更宽的谐调范围和更窄的线宽, 在一个DFB激光器集成两个独立的光栅,实现更宽的波长谐调 范围,比如达到100nm谐调范围,以及更窄的光谱线宽。
目前,DFB激光器主要以半导体材料为介质,包括锑化镓 (GaSb)、砷化镓(GaAs)、磷化铟(InP)、硫化锌(ZnS)等。 DFB激光器最大特点是具有非常好的单色性(即光谱纯度), 它的线宽普遍可以做到1MHz以内,以及具有非常高的边摸抑 制比(SMSR),目前可高达40-50dB以上。
DFB-LD芯片制造
1. 2. 3. 4. 5. 6. 7. 8. 9.
一次外延生长 光栅制作 二次外延生长 脊波导制作 欧姆接触、减薄 解理成条 端面镀膜 解理成管芯 TO-CAN

光栅制作
1.全息曝光 2.干法或湿法 刻蚀
二次外延生长
生长:
1.低折射率层 2.腐蚀停止层 3.包层 4.帽层:接触层
激光器的纵模
F-P腔激光器: 多纵模工作,也就是说该激光器只能用于 短距离传输。

DFB激光器 DFB激光器在高速调制时也能保持单模 特性,这是F-P激光器无法比拟的。尽管 DFB激光器在高速调制时存在啁啾,谱线有 一定展宽,但比F-P激光器的动态谱线的展 宽要改善一个数量级左右。

FP-LD与DFB-LD的比较
光谱特性 . 激光器光谱特性包括峰值(或中心)波长、光谱宽度、边模抑制比;

dfb激光器原理

dfb激光器原理

dfb激光器原理DFB(Distributed Feedback)激光器是一种具有独特结构和特性的半导体激光器。

它基于同轴叠层结构的半导体波导,通过有效的光子反馈机制实现单频谐振和波长稳定输出。

DFB激光器在通信、传感、医疗和科学研究等领域都有广泛应用。

DFB激光器的原理可通过以下几个关键步骤来解释。

首先,DFB激光器的基本结构包括电流注入层、有源波导层、光栅反射层和电极层。

有源波导层由P型和N型半导体材料构成,形成结构稳定的光导通道。

光栅反射层位于有源波导层上,通过周期性的折射率调制来实现反馈。

电流注入层用于提供激活激光器的激发电流。

其次,DFB激光器利用光栅反射层的周期性结构来实现光子反馈。

这种周期性结构导致波导中形成了布里渊散射(Brillouin scattering)的光栅准晶体结构。

光子在波导中传播时,会与光栅发生相互作用,同时返射回激光器内部,形成同一波长的光的反馈。

第三,由于DFB激光器的光栅结构引入的光场分布周期性变化,光波模式与光场的周期性变化量之间存在相位匹配条件。

当光波模式波导内的相位与光栅周期相匹配时,光场的能量会受到增强。

同时,光栅结构在波导中引起衍射,根据布拉格衍射的原理,当入射光的波长满足布拉格条件时,正好反射出入射波长的光,其他波长则被衍射至其他方向。

最后,DFB激光器通过调节激发电流和光栅参数来实现单频谐振和波长稳定输出。

通过控制激发电流的大小,可以调节激光器工作在临界或超临界状态,以实现单频输出。

而通过调节光栅的折射率调制规律和周期长度,可以调整激光器的输出波长。

这种自然折射率调制和周期性结构的组合使得DFB激光器能够实现高度单频、高纵模品质因子和波长稳定的输出。

总结起来,DFB激光器的原理基于同轴叠层结构的波导和光栅反射层的周期性结构。

通过光子反馈机制和布拉格衍射原理,实现单频谐振和波长稳定输出。

DFB激光器具有高纵模品质因子、窄线宽和波长可调等特点,广泛应用于光通信、光纤传感、光谱分析和光子学研究等领域。

可调谐DFB 激光器

可调谐DFB 激光器

OPEAK OptoElectronics Technology Co., Ltd. Laser center 437, No.6, Keyanxi Road, Nankai District, Tianjin City, 300192 Peoples Republic of China Tel: +8622-87899303/87898266 Fax: +8622-87898266
Laser Safety The module contains class 3B laser source per CDRH, 21CFR 1040.10 Laser Safety requirements. The module is Class IIIb laser products per IEC 60825-1:1993.
TLS-DFB-xxx 型可调谐激光器模块是为光纤无源器件测试、光 谱分析检验、光纤传感等应用设计的低成本可调谐分布反馈式 (DFB)半导体激光模块。模块工作在连续发光(CW)模式下, 通过电位器可实现激光器工作温度与驱动的电流的模拟调节, 可实现输出光功率与输出光波长的精密调节。模块内置高精度 温度控制电路与自动功率 APC(或恒流源 ACC)驱动电路,波 长锁定线路(依据激光器规格可选配) ,使得模块具有高波长稳 定性与功率稳定性。内置静电(ESD)防护、过流/过压保护等 完善的安全使用设计,严格的工艺控制与测试流程保证了产品 可长期可靠运行。
OPEAK
可调谐 DFB 激光器
TLS-DFBxxx 系列
产品特点
分布反馈(DFB)式半导体激光器 输出波长模拟连续调谐 输出光功率可调 窄光谱线宽 优异的光功率稳定性与波长稳定性 结构尺寸紧凑

FBG 、DFB 、FP三类激光器的比较分析

FBG 、DFB 、FP三类激光器的比较分析

FBG、DFB、FP三类激光器的比较分析FP:Fabry-perot法布里-珀罗,就是说LD内有法布里-珀罗谐振腔;fp是F-P 腔的,多纵模。

DFB:DistributeFeedback分布反馈式.DFBLD与FPLD的主要区别在于它没有集总反射的谐振腔反射镜,它的反射机构是由有源区波导上的Bragg光栅提供的。

DFB是分布式负反馈的,单纵模。

FBG:Fiber Bragg Grating即光纤布拉格光栅。

DFB激光器性能参数DFB激光器是在FP激光器的基础上采用光栅虑光器件使器件只有一个纵模输出,此类器件的特点:输出光功率大、发散角较小、光谱极窄、调制速率高,适合于长距离通信。

多用在1550nm波长上,速率为2.5G以上。

DFB激光器有以下性能参数:工作波长:激光器发出光谱的中心波长。

边模抑制比:激光器工作主模与最大边模的功率比。

-20dB光谱宽度:由激光器输出光谱的最高点降低20dB处光谱宽度。

阈值电流:当器件的工作电流超过阈值电流时激光器发出相干性很好的激光。

输出光功率:激光器输出端口发出的光功率。

其典型参数见下表所示:FP激光器FP激光器是以FP腔为谐振腔,发出多纵模相干光的半导体发光器件。

这类器件的特点;输出光功率大、发散角较小、光谱较窄、调制速率高,适合于较长距离通信。

FP激光器有以下性能参数:工作波长:激光器发出光谱的中心波长。

光谱宽度:多纵模激光器的均方根谱宽。

阈值电流:当器件的工作电流超过阈值电流时激光器发出相干性很好的激光。

输出光功率:激光器输出端口发出的光功率。

典型参数见下表所示:FBG激光器在纤芯内形成的空间相位周期性分布的光栅,其作用的实质就是在纤芯内形成一个窄带的(透射或反射)滤波器或反射镜。

利用这一特性可制造出许多性能独特的光纤器件。

这些器件具有反射带宽范围大、附加损耗小、体积小,易与光纤耦合,可与其它光器件兼容成一体,不受环境尘埃影响等一系列优异性能。

目前应用主要集中在光纤通信领域(光纤激光器、光纤滤波器)和光纤传感器领域(位移、速度、加速度、温度的测量)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可调谐分布反馈式半导体激光器模块使用说明
1.基本构成
本模块以NEC 四波可调谐半导体激光器(NX8570系列)为核心,配以可调恒流源电路、可调谐自动温度控制电路以及相应的保护电路组成。

功率与波长调节方式采用电位器调整方式,全量程范围内模拟连续可调。

对应的工作状态指示灯标识当前温度与功率工作状态是否正常(常亮正常)。

光纤输出口与电源线引出口未做固化处理,预留四方向可调节口可供客户使用时根据需要进行相应地调整。

2.技术指标(NEC NX8570)
3.波长与功率标定(出厂设置)Table.A 四波长标定值
参数
最小值典型值最大值单位输出光功率
20--mW 峰值波长
1530ITU-T 1609nm 波长稳定性
-20-+20pm 光谱线宽
-12MHz 边模抑制比
3545dB 相对强度噪声
---150dB/Hz输出隔离度
30--dB 偏振消光比
20--dB 校准波长
1547.72/1549.32/1550.92/1552.52nm 校准功率偏差
--0.01dB 功率调节范围
0-20mW 波长调节范围@1547.72nm
-0.4-+0.4nm 波长调节范围@1549.32nm
-0.4-+0.4nm 波长调节范围@1550.92nm
-0.2-+0.2nm 波长调节范围@1552.52nm
-0.4-+0.4nm 输出光纤准直方式
慢轴准直输出尾纤
Fujikura PMF 9/125Panda 外层900um 套管保护输出连接器
FC/PC慢轴对准电源供电
DC +5VGND 双绞线工作温度
0-+50℃储存温度
-20-+70℃散热方式
壳体顶面传导散热安装方式4角均布4mm 机械固定通孔
型号波长(nm
波长范围(nm光功率(dBm最大功率(dBmLSM-DFB-15471547.7190 >+/-0.413.02>13LSM-DFB-1549
1549.3210>+/-0.413.02>13
*其中激光器由于其工作在低温状态下,启动时间略长约为1-2s ,室温启动下启动电流约为1.3-1.5A 。

Figure.A 四波长标定图谱
4.调整方法
模块侧面板预留波长与功率调整端,出厂时以调整至最佳工作状态,实际使用中可以进行微调。

操作方法为,
①功率调节:
绿色指示灯相邻的电位器调节旋钮为功率调节旋钮。

顺时针调节电位器光功率减小,逆时针调节电位器功率增加。

②波长调节:
红色指示灯相邻的电位器调节旋钮为波长调节旋钮。

顺时针调节电位器波长向短波方向移动,逆时针调节电位器波长向长波方向移动。

红灯常亮表示波长锁定在
设定工作点,闪烁或灭则波长未锁定或锁定状态不稳定,此时往往会伴随电流跳动或电流过大,应及时检查故障原因。

LSM-DFB-1550
1550.9190>+/-0.213.01>13LSM-DFB-15521552.5220>+/-0.413.02>13
*实际操作中建议配合光谱仪与功率计进行调整,操作前后记录下当前设定的测量值。

5. 外形轮廓
6. 注意事项
5.1激光器为静电敏感器件,操作模块时请务必采取必要的静电保护装置,静电保护装置需良好接地,避免静电损坏器件
5.2本产品需外接直流电源,外接电源需有浪涌保护、瞬态过压与过流保护措施。

5.3激光器长期工作时,需外部提供良好的散热通道,若条件不具备的情况下,需仔细考虑安装方式与散热面的接触面积等因素,尽量为激光器提供一个良好的热工作环境。

5.4本产品为红外高功率辐射产品,使用中切勿目视激光器输出,且操作过程中不要对准裸露皮肤以免造成灼伤!!
!。

相关文档
最新文档