大学物理第6章真空中的静电场课后习题及答案
大学物理第六章静电场中的导体习题课
.
1
一、静电场中的导体
1.静电平衡条件: 导体内部场强为0。
2.静电平衡时导体为等势体,导体表面为 等势面。
3.静电平衡时导体内无净电荷,所有电荷分 布于导体表面。
4.孤立导体电荷面密度与导体表面的曲率 有关,曲率越大,面密度越大.
5.静电平衡时,场强方向与导体表面垂直。
.
2
本章小结与习题课
6.静电平衡时,导体表面的场强大小为
E 0
7. 空腔内无电荷:空腔内表面无电荷全部
电荷分布于外表面,空腔内场强 E = 0。空腔
导体具有静电屏蔽的作用。
8. 空腔原带有电荷 Q:将 q 电荷放入空腔
内,内表面带有 -q 电荷,外表面带有 Q + q
电荷。接地可屏蔽内部电场变化对外部电
场的影响。
.
S
.
x 14
5(08)、一平行板电容器,两板相距d,对它充电后断开,然 后把两板间距增大到2d,如果电容器内电场边缘效应忽略不计, 则 (A)电容器的电容增大一倍 (B)电容器所带的电量增大一倍 (C)电容器两极间的电场强度增大一倍 (D)储存在电容器中的电场能量增大一倍
we1 2E2或 we1 20E2
(1)球壳内外表面上的电荷 (2)球心O处,由球壳内表面上电荷产生的电势 (3)球心O处的总电势
qO a r
Q
b
.
11
解: (1)由静电感应,金属球壳内表面有感应电荷-q,外 表面上带电荷q+Q
(2)无论球壳内表面上的感应电荷-q是如何分布的,因
为任一电荷元离O点距离都是a,所以由这些电荷在O
点产生的电势为:
3
本章小结与习题课
二、电介质中的场强 1.介质中的场强 EE0E'
大学物理第六章《真空中的静电场》
第六章 真空中的静电场一、 基本要求1.掌握静电场的电场强度和电势的概念以及电场强度的叠加原理和电势的叠加原理。
掌握电势与电场强度的积分关系。
能计算一些简单问题中的电场强度和电势。
2.理解静电场的规律:高斯定理和环路定理。
理解用高斯定理计算电场强度的条件和方法。
3.了解电偶极矩的概念。
能计算电偶极子在均匀电场中所受的力和力矩。
二、 基本内容1.点电荷当带电体的形状和大小与它们之间的距离相比可以忽略时,可以把带电体看作点电荷。
对点电荷模型应注意:(1)点电荷概念和大小具有相对意义,即它本身不一定是很小的带电体。
只要两个带电体的线度与它们之间距离相比可忽略,就可把它们简化为点电荷,另外,当场点到带电体的距离比带电体的线度大得多时也可以把带电体简化为点电荷。
(2)点电荷是由具体带电体(其形状没有限制)抽象出来的理想化模型,所以不能把点电荷当作带电小球。
(3)点电荷不同于微小带电体。
因带电体再小也有一定的形状和电荷分布,还可以绕通过自身的任意轴转动,点电荷则不同。
(4)一个带电体在一些问题中可简化为点电荷,在另一些问题中则不可以。
如讨论带电体表面附近的电性质时就不能把带电体简化为点电荷。
2.库仑定律02qq kr 0F r 其中,0r 由施力电荷指向受力电荷的单位矢量。
适用条件:真空中点电荷之间(相对观察者静止的电荷)的相互作用。
当空间有两个以上的点电荷同时存在时,作用在某一点电荷上的总静电力等于其它各点电荷单独存在时对该电荷所施静电力的矢量和——电场力的叠加原理。
3.电场强度矢量0q =E F ,电场中某点的电场强度等于单位电荷在该点所受的电场力。
0q 为正时,E 和电场力F 同方向,0q 为负时,E 的方向和F 方向相反。
(1)E 反映电场的客观性质,E 与试验电荷0q 的大小,电荷正负无关,也与0q 的存在与否无关。
(2)E 是一个矢量,一般地说,电场空间不同点处的场强不同,即()r =E E 。
大学物理(第四版)课后习题及答案 静电场
证2:如图所示,取无限长带电细线为微元,各微元在点P激发的电场强 度dE在Oxy平面内且对x轴对称,因此,电场在y轴和z轴方向上的分量之 和,即Ey、Ez均为零,则点P的电场强度应为
积分得 电场强度E的方向为带电平板外法线方向。 上述讨论表明,虽然微元割取的方法不同,但结果是相同的。
(2)由于正、负电荷分别对称分布在y轴两侧,我们设想在y轴上能 找到一对假想点,如果该带电环对外激发的电场可以被这一对假想点上 等量的点电荷所激发的电场代替,这对假想点就分别称作正、负等效电 荷中心。等效正负电荷中心一定在y轴上并对中心O对称。由电偶极矩p 可求得正、负等效电荷中心的间距,并由对称性求得正、负电荷中心。 解:(1)将圆环沿y轴方向分割为一组相互平行的元电偶极子,每一元 电偶极子带电
行,对电场强度通量贡献为零。整个高斯面的电场强度通量为 由于,圆柱体电荷均匀分布,电荷体密度,处于高斯面内的总电荷 由高斯定理可解得电场强度的分布, 解:取同轴柱面为高斯面,由上述分析得 题7.16:一个内外半径分别R1为R2和的均匀带电球壳,总电荷为Q1,球 壳外同心罩一个半径为 R3的均匀带电球面,球面带电荷为Q2。求电场 分布。电场强度是否是场点与球心的距离r的连续函数?试分析。
题7.16分析:以球心O为原点,球心至场点的距离r为半径,作同心球面 为高斯面。由于电荷呈球对称分布,电场强度也为球对称分布,高斯面 上电场强度沿径矢方向,且大小相等。因而,在确定高斯面内的电荷 后, 利用高斯定理 即可求的电场强度的分布 解:取半径为r的同心球面为高斯面,由上述分析 r < R1,该高斯面内无电荷,,故
E=0 在距离圆孔较远时x>>r,则 上述结果表明,在x>>r时。带电平板上小圆孔对电场分布的影响可以忽 略不计。 题7.15:一无限长、半径为R的圆柱体上电荷均匀分布。圆柱体单位长 度的电荷为,用高斯定理求圆柱体内距轴线距离为r处的电场强度。
大学物理第6章真空中的静电场课后习题与答案
第6章真空中的静电场习题及答案1.电荷为q 和2q 的两个点电荷分别置于x1m 和x1m 处。
一试验电荷置于x 轴上何处,它受到的合力等于零?解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷 q 位于点电荷 0q 的右侧,它受到的合力才可能为0,所以2qqqq00224(x 1)4(x1) ππ 00故x3222.电量都是q 的三个点电荷,分别放在正三角形的三个顶点。
试问:(1)在这三角形的中心放 一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都 为零)?(2)这种平衡与三角形的边长有无关系?解:(1)以A 处点电荷为研究对象,由力平衡知,q 为负电荷,所以2 4 1 π 0 q a 22 cos304 1 π 0 ( q 33qa 2 )3故qq3(2)与三角形边长无关。
3.如图所示,半径为R 、电荷线密度为1的一个均匀带电圆环,在其轴线上放一长为l 、电荷线密度为2的均匀带电直线段,该线段的一端处于圆环中心处。
求该直线段受到的电场力。
解:先求均匀带电圆环在其轴线上产生的场强。
在带电圆环上取dqdl 1,dq 在带电圆环轴 线上x 处产生的场强大小为 dE 4 dq20(xRy2 )根据电荷分布的对称性知,yE0E zdEdEcos x41xdq 1R 3 22 2O(xR) 02xl式中:为dq 到场点的连线与x 轴负向的夹角。
E x4x 220(xR) 3 2dqzx21R R 1 x4x 2R2()3 2 2xR 2( 02 )3 2下面求直线段受到的电场力。
在直线段上取dqdx2,dq受到的电场力大小为Rx12dFxdxEdq32222(xR)0方向沿x轴正方向。
直线段受到的电场力大小为Rlx12FdxdF3202220xR)(11R1121/22R22lR方向沿x轴正方向。
4.一个半径为R的均匀带电半圆环,电荷线密度为。
求:(1)圆心处O点的场强;(2)将此带电半圆环弯成一个整圆后,圆心处O点场强。
7.真空中的静电场 大学物理习题答案
l
xd x
2
k l a ( ln ) 4 0 a la
方向沿 x 轴正向。
7-4 一半径为 R 的绝缘半圆形细棒,其上半段均匀带电量+q,下半段均匀带电量-q,如图 7-4 所示,求半 圆中心处电场强度。 解:建立如图所示的坐标系,由对称性可知,+q 和-q 在 O 点电场强度沿 x 轴的分量之和为零。取长为 dl 的线元,其上所带电量为
大学物理练习册—真空中的静电场
库仑定律 7-1 把总电荷电量为 Q 的同一种电荷分成两部分, 一部分均匀分布在地球上, 另一部分均匀分布在月球上, 24 使它们之间的库仑力正好抵消万有引力, 已知地球的质量 M=5.98l0 kg, 月球的质量 m=7.34l022kg。 (1)求 Q 的最小值; (2)如果电荷分配与质量成正比,求 Q 的值。 解: (1)设 Q 分成 q1、q2 两部分,根据题意有 k
x
d 时 2
1 E d S 2 E1S 2 xS , E1 x 1 S 0 0
28
大学物理练习册—真空中的静电场
x
d 时 2
1 d d E d S S 2 2 E 2 S 0 2 2 S , E 2 0
r R sin , x R cos
x
d E
sin cos d 2 0
因为球面上所有环带在 O 处产生的电场强度方向相同, E 2 0
2 0
sin cos d i i 4 0
7-6 一无限大均匀带电薄平板,面电荷密度为 ,平板中部有一半径为 R 的圆孔, 如图 7-6 所示。求圆孔 中心轴线上的场强分布。 (提示:利用无穷大板和圆盘的电场及场强叠加原理) 解:利用补偿法,将圆孔看作由等量的正、负电荷重叠而成,即等效为一个 完整的带电无穷大平板和一个电荷面密度相反的圆盘叠加而成。 R 无穷大平板的电场为
大连理工大学大学物理作业6(静电场六)与答案详解
作业6静电场六1.真空中有一均匀带电球体和一均匀带电球面,如果它们的半径和所带的电量都相等,则 它们的静电能之间的关系是[]。
A.球体的静电能等于球面的静电能B.球体的静电能大于球面的静电能C.球体的静电能小于面的静电能D.球体内的静电能大于球面内的静电能,球体外的静电能小于球面外的静电能答案:【B 】解:设带电量为Q 、半径为R ,球体的电荷体密度为。
由高斯定理,可以求得两种电荷分布的电场强度分布S EdS2r 2EQ 0 0, E Q 0 2r 0 2对于球体电荷分布:43 r 2r 3 E0,(rR ); 122r300Q E ,(rR )。
222r对于球壳电荷分布:/ E0,(rR ); 1Q/ E ,(rR )。
222r可见,球外:两种电荷分布下,电场强度相等;球内:球体电荷分布,有电场,球壳电荷分 布无电场。
静电场能量密度1 2 E2 两球外面的场强相同,分布区域相同,故外面静电能相同;而球体(并不是导体)内部也有电 荷分布,也是场分布,故也有静电能。
所以球体电荷分布时,球内的静电场能量,大于球面 电荷分布时,球内的静电场能量;球体电荷分布时,球外的静电场能量,等于球面电荷分布 时,球外的静电场能量。
2. C 和C 2两空气电容器串联起来接上电源充电,然后将1电源断开,再把一电介质板插入 []。
C 中,如图6-1所示,则1A. C 两端电势差减少,C 2两端电势差增大1B. C 两端电势差减少,C 2两端电势差不变1C. C 两端电势差增大,C 2两端电势差减小1D. C 两端电势差增大,C 2两端电势差不变1答案:【B 】解:电源接通时,给两个串联的电容器充电。
充电量是相同的,是为Q 。
则两个电容器的 电压分别为Q U , 1 C 1U 2Q C 2电源断开后,C1插入电介质,两个电容器的电量不变,仍然都是Q。
但C1的电容增大,因此C1两端的电压降低;而C2不变,因此,C2两端的电压不变。
大学物理第六章静电场习题答案
第六章 静电场习题6-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。
试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系?解:(1)如图任选一点电荷为研究对象,分析其受力有1230F F F F =++=合 y 轴方向有()()21322002032cos 242433304q qQ F F F a a q q Q aθπεπεπε=+=+=+=合得 33Q q =-(2)这种平衡与三角形的边长无关。
6-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ,如图所示。
设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量。
解:对其中任一小球受力分析如图所示,有⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q = 6-3 在氯化铯晶体中,一价氯离子Cl -与其最邻近的八个一价铯离子Cs +构成如图所示的立方晶格结构。
(1)求氯离子所受的库仑力;(2)假设图中箭头所指处缺少一个铯离子(称作晶格缺陷),求此时氯离子所受的库仑力。
(1)由对称性可知 F 1= 0(2)291222200 1.9210N 43q q e F r aπεπε-===⨯ 方向如图所示6-4 长l =15.0 cm 的直导线AB 上均匀地分布着线密度95.010C m λ-=⨯的正电荷。
试求:(1)在导线的延长线上与导线B 端相距1 5.0cm a =处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2 5.0d cm =处Q 点的场强。
解:(1)如图所示,在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a xE P -=λε2220)(d π4d x a x E E llP P -==⎰⎰-ελ]2121[π40l a l a +--=ελ)4(π220l a l -=ελ 用15=l cm ,9100.5-⨯=λ1m C -⋅,5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)同理 2220d d π41d +=x xE Q λε 方向如图所示由于对称性可知⎰=l QxE 0d ,即Q E只有y 分量22222220dd d d π41d ++=x x xE Qyλε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d l l x x 2220d 4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅ 方向沿y 轴正向*6-5 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量。
大学物理第六章静电场习题答案
大学物理第六章静电场习题答案(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第六章静电场习题6-1 电量都是q的三个点电荷,分别放在正三角形的三个顶点。
试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)(2)这种平衡与三角形的边长有无关系?解:(1)如图任选一点电荷为研究对象,分析其受力有1230F F F F=++=合y轴方向有()()21322232cos242433304q qQF F Fa aqq Qaθπεπεπε=+=+=+=合得33Q q=-(2)这种平衡与三角形的边长无关。
6-2 两小球的质量都是m,都用长为l的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ,如图所示。
设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量。
解:对其中任一小球受力分析如图所示,有⎪⎩⎪⎨⎧===22)sin2(π41sincosθεθθlqFTmgTe解得θπεθtan4sin2mglq=6-3 在氯化铯晶体中,一价氯离子Cl-与其最邻近的八个一价铯离子Cs+构成如图所示的立方晶格结构。
(1)求氯离子所受的库仑力;(2)假设图中箭头所指处缺少一个铯离子(称作晶格缺陷),求此时氯离子所受的库仑力。
(1)由对称性可知F1= 0(2)2912222001.9210N43q q eFr aπεπε-===⨯方向如图所示6-4 长l= cm的直导线AB上均匀地分布着线密度95.010C mλ-=⨯的正电荷。
试求:(1)在导线的延长线上与导线B端相距15.0cma=处P点的场强;(2)在导线的垂直平分线上与导线中点相距25.0d cm=处Q点的场强。
解:(1)如图所示,在带电直线上取线元x d,其上电量q d在P点产生场强为20)(d π41d x a xE P -=λε2220)(d π4d x a x E E llP P -==⎰⎰-ελ]2121[π40l a l a +--=ελ)4(π220l a l -=ελ 用15=l cm ,9100.5-⨯=λ1m C -⋅,5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)同理 2220d d π41d +=x xE Q λε 方向如图所示由于对称性可知⎰=l Qx E 0d ,即Q E只有y 分量22222220dd d d π41d ++=x x x E Qyλε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d l l x x2220d 4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Q y Q E E 1C N -⋅ 方向沿y 轴正向*6-5 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量。
大学物理学 孙厚谦版 第6章 习题
习题 6-5 图
查看答案 6-5
106
6-6 如图一个细的带电塑料圆环,半径为 R ,所带荷线密度 y 圆心 O 处的场强。
0 sin 0 0 。试求
R
o
x
习题 6-6 图
查看答案 6-6
6-7 图中电场强度的分量为 Ex
b x , Ey Ez 0, 式中 b 800N/ Cm1 2 , 设
将
1 qq' F1 F2 4π 0 r 2 a 2
, cos
r r a2
2
,代入上式并化简
Fx 0
qq' r Fy 3 2 2π 0(r 2 a 2)
qq' r F j 3 2π 0(r 2 a 2)2
故
(2)若点电荷 q' 在 r 处受力最大,则
子,正方形的中心点为 O,P 点距 O 为 x(x>>a) ,求 P 点的电场强度。
o
a
习题 6-3 图
P
查看答案 6-3
6-4 如图一均匀带电直线长为 L ,线电荷密度为 。求直线的延长线上距 L 中点 O 为 r (r 处 P 点的场强。
L 2)
o
rPLຫໍສະໝຸດ 习题 6-4 图查看答案 6-4
6-5 如图, 两根平行长直导线间距为 2 R , 一端用半圆形线连起来。 设全线上均匀带电, 电荷面密度为 , 求圆心 O 处的电场强度。
返回 6-5
6-6 解 在如解用图所示的直角坐标系中,电荷元 dq dl 心处所产生的电场强度的大小为
Rd 0 sin Rd
y
在圆
sin d dE 0 4π 0 R
大学物理课后习题答案(高教版 共三册)
第六章 真空中的静电场1、电量为-5×10-9 C 的试验电荷放在电场中某点时,受到 20×10-9 N 的向下的力,求该点的电场强度大小和方向。
解:由q E F = 得C N q F E /4105/1020/99-=⨯-⨯==--方向向上2、一个带负电荷的质点,在电场力作用下从A 点 经C 点运动到B 点,其运动轨迹如图所示.已知质点运动的速率是递减的,试定性画出电场E的方向。
解:速率是递减→τa 为负→切向力与v相反做曲线运动→有n a →受合力方向如图→即电场E-的方向3、一均匀静电场,电场强度()j i E 600400+=V ·m -1,求点a (3,2)和点b (1,0)之间的电势差U ab .(点的坐标x ,y 以米计) 解:⎰⋅=baab l d E U)()600400(⎰+⋅+=baj dy i dx j i +=⎰13400dx ⎰2400dy=-2×103 V4、如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为λ=q / L ,在x 处取一电荷元d q = λd x = q d x / L ,它在P 点的场强: ()204d d x d L qE -+π=ε()204d x d L L xq -+π=ε 2分总场强为 ⎰+π=Lx d L xL q E 02)(d 4-ε()d L d q +π=04ε 3分方向沿x 轴,即杆的延长线方向.-qEO5、A 、B 为真空中两个平行的“无限大”均匀带电平面,已知两平面间的电场强度大小为E 0,两平面外侧电场强度大小都为E 0/3,方向如图.求A 、B 两平面上的电荷面密度σA , σB . 解:设电荷面密度为σA , σB由场强迭加原理,平面内、外侧电场强度由σA , σB 共同贡献: 外侧:32200E BA=+-εσεσ内侧:0022E BA=+εσεσ联立解得:3/200E Aεσ-= 3/400E Bεσ=6、半径为R 的半球面置于场强为E的均匀电场中,其对称轴与场强方向一致,如图所示.求通过该半球面的电场强度通量。
大学物理课后答案第六章真空中的静电场
⼤学物理课后答案第六章真空中的静电场习题66-1 解:以x 轴上的点电荷Q 作为研究对象,其受q 的作⽤⼒具有对称性,所受合⼒沿x 轴,即F=qx Q x F F F 2+=其中:202)2(4a Q F Q πε=;02045cos 4aqQ F qx πε=所以:02020245cos 42)2(4a qQ a Q F πεπε+=令上式为零可得:q Q 22-= 6-2 解:据分析,3E 只能取垂直⽅向,D 点的场强如图所⽰:xa1q q 3(1)D 点的合场强的垂直分量为零,0cos 32=+E E θ,即32co s E E -=θ带⼊点电荷场强关系式,得203220422)2(41aq a q πεπε-=?C q 9310*9.9--= (2)22201021?+=+=a q a q E E E πεπε =m v /10*79.16-6-3 长l =15.0cm 的直导线AB 上均匀地分布着线密度λ=5.0x10-9C ·m -1的正电荷.试求:(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 点的场强.解:如题6-3图所⽰(1)在带电直线上取线元x d ,其上电量q d 在P 点产⽣场强为20)(d π41d x a xE P -=λε 222)(d π4d x a xE E l l P P -==?-ελ]2121[π40l a l a +--=ελ)4(π220l a l-=ελ0.5-?=λ1m C -?, 5.12=a cm 代⼊得21074.6?=P E 1C N -? ⽅向⽔平向右(2)同理 2220d d π41d +=x xE Q λε⽅向如题8-6图所⽰由于对称性?=l Qx E 0d ,即Q E只有y 分量,∵ 22222220dd d d π41d ++=x x xE Qyλε22π4d d ελ?==lQyQy E E ?-+2223222)d (d l l x x2220d4π2+=l lελ0.5-?=λ1cm C -?, 15=l cm ,5d 2=cm 代⼊得21096.14?==Qy Q E E 1C N -?,⽅向沿y 轴正向6-4 ⼀个半径为R 的均匀带电半圆环,电荷线密度为λ,求环⼼处O 点的场强.解: 如6-4图在圆上取?Rd dl =题6-4图λλd d d R l q ==,它在O 点产⽣场强⼤⼩为 20π4d d R R E ε?λ=⽅向沿半径向外则 ??ελd sin π4sin d d 0RE E x ==ελπd cos π4)cos(d d 0RE E y -=-=积分RR E x 000π2d sin π4ελελπ==0d cos π400=-=?ελπRE y∴ RE E x 0π2ελ=6-5解:如图所⽰,将半球⾯分割成⽆数半径不等环⾯与X 轴垂直的细圆环,图中圆环所带电荷量θθπλλγd ds dq sin 22==,该带电细圆环在O 点产⽣的电场强度为E d =()i xdqy x o224123+επ由⼏何关系,θγcos =x θγs i n =yγ222=+yx有 E d=()i xdq y x o224123+επ = επo41i dθθπσθγγγsin 2cos 2=i d oθθθσεcos sin 2球⼼处的电场强度:i i d E d E o oεεσθθθσπ4cos sin 220===??6-6解:将球⾯沿垂直于X轴的⽅向分割成⽆数半径不等的细圆环,圆中阴影环的带电荷量为:ααπσσRd R ds dq sin 2==在P 点的场强为:θααπσπεθπεαcos sin 241cos 42020r Rd R r d dE ?==(1)⽅向沿X 轴正⽅向(设0>α)如图由余弦定理θc o s 2222xy r x R -+=得: xrR r x 2cos 222-+=θ(2)⼜由余弦定理得:(3)式两边微分得:ααd Rx rdr sin 22= 得:xr dd R =ααs i n(4)将(1)、(2)、(3)式代⼊(1)式得:dr rR x x R rx R r x xr Rrdr E d 2222022220142241-+=-+?=εσπσπε(1)球⾯外(R x >)任⼀点P 的场强值+-= ?-+==x R x R x qdr r R x x R dE E 2022220414πεεσ(2)球⾯内:(R x <)+-=?-+==x R x R dr r R x x R dE E 01422220εσ6-7均匀带电的细线弯成正⽅形,边长为l ,总电量为q .求这正⽅形轴线上离中⼼为r 处的场强E .解: 如6-7图⽰,正⽅形⼀条边上电荷4q在P 点产⽣物强P E d ⽅向如图,⼤⼩为()4π4cos cos d 22021l r E P +-=εθθλ∵ 22cos 221l r l +=π4d 22220l r l l r E P ++=ελP Ed 在垂直于平⾯上的分量βcos d d P E E =⊥∴ 424π4d 2222220l r rl r l r lE +++=⊥ελ题6-7图由于对称性,P 点场强沿OP ⽅向,⼤⼩为2)4(π44d 422220l r l r lrE E P ++==⊥ελE P ++=ε⽅向沿OP6-8如题6-8)图所⽰,在点电荷q 的电场中取半径为R 的圆平⾯.q 在该平⾯轴线上的A 点处,求:通过圆平⾯的电通量.解:题6-8图∵通过半径为R 的圆平⾯的电通量等于通过半径为22x R +的球冠⾯的电通量,球冠⾯积*]1)[(π22222xR x x R S +-+=∴ )(π42200x R Sq +=Φε02εq=[221xR x +-]*关于球冠⾯积的计算:见题8-9(c)图ααα)cos 1(π22α-=r6-9 解: ⾼斯定理0d ε∑?=?q S E s,02π4ε∑=q r E当5=r cm 时,0=∑q ,0=E15r =cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=3.98≈1C N -?,⽅向沿半径向外. 50r =cm 时,3π4∑=ρq -3(外r )内3r∴ ()33204π3 1.064πr r E r ρε-=≈外内 1C N -? 沿半径向外. 6-10 解:由⾼斯定理得:= dv s d E Sρε0球体内: E(r)? 4πr 2='rr k 041πεr d r ''2=4r k επ r e kr r E24)(ε= ,0球体外:4202414)(R R r d r r k r r E Rεππεπ=''?'=2044)(r rkR r Eε= (r>R ) 6-11 半径为1R 和2R (2R >1R )的两⽆限长同轴圆柱⾯,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: ⾼斯定理0d ε∑?=q S E s取同轴圆柱形⾼斯⾯,侧⾯积rl S π2=则 rl E S E Sπ2d =??对(1) 1R r <0,0==∑E q(2) 21R r R << λl q =∑∴ rE 0π2ελ=沿径向向外(3) 2R r >题6-12图6-12 两个⽆限⼤的平⾏平⾯都均匀带电,电荷的⾯密度分别为1σ和2σ,试求空间各处场强.解: 如题6-12图⽰,两带电平⾯均匀带电,电荷⾯密度分别为1σ与2σ,两⾯间, n E)(21210σσε-=1σ⾯外, n E)(21210σσε+-= 2σ⾯外, n E)(21210σσε+= n:垂直于两平⾯由1σ⾯指为2σ⾯.6-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去⼀块半径为r <R 的⼩球体,如题8-13图所⽰.试求:两球⼼O 与O '点的场强,并证明⼩球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀⼩球的组合,见题6-13图(a).(1) ρ+球在O 点产⽣电场010=E,ρ- 球在O 点产⽣电场'dπ4π3430320OO r E ερ=∴ O 点电场'd33030OO r E ερ= ; (2) ρ+在O '产⽣电场'd π4d 3430301OO E ερπ=' ρ-球在O '产⽣电场002='E∴ O ' 点电场 003ερ='E'OO题6-13图(a) 题6-13图(b)(3)设空腔任⼀点P 相对O '的位⽮为r',相对O 点位⽮为r (如题6-13(b)图)E PO =,3ερr E O P '-=' ,∴ 0003'3)(3ερερερdOO r r E E E O P PO P=='-=+=' ∴腔内场强是均匀的.6-15解:将这⼀平⾯看作是由⼀系列环带所组成,取以O 为圆⼼,半径为r, 宽度为dr 的环带作为⾯元,该⾯元所带电量为rdrds dq πσσ2=?=rdr dq πσ2=该带电圆环在其轴线上P 点处的电场强度E d的⽅向沿X 轴正向,其⼤⼩为2322023220)(2)(41r x rdrx r x xdqdE +??=+?=εσπε做积分可得轴线上P 点的总场强:+2122023220)(2)(2x R xr x rdr x E R +?=+?=?∞εσεσ6-16解:① aqa q a q a q U 0002334πεπεπεπε-=-+-+=② aqQQ U U A 0023)(πε-=?-=∞题6-17图6-17 如题6-17图所⽰,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另⼀正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场⼒作的功.解: 如题6-17图⽰0π41ε=O U 0)(=-RqR q0π41ε=O U )3(R qR q -Rq 0π6ε-= ∴ Rqq U U q A o C O 00π6)(ε=-=6-18 如题6-18图所⽰的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中⼼O 点处的场强和电势.解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产⽣的场强互相抵消,取θd d R l =则θλd d R q =产⽣O 点Ed 如图,由于对称性,O 点场强沿y 轴负⽅向题6-18图θεθλππcos π4d d 222R E E y R 0π4ελ=[)2sin(π-2sin π-]R0π2ελ-=(2) AB 电荷在O 点产⽣电势,以0=∞U===AB200012ln π4π4d π4d R R x x x x U ελελελ同理CD 产⽣ 2ln π40 2ελ=U半圆环产⽣ 0034π4πελελ==R R U ∴ 0032142ln π2ελελ+=++=U U U U O 6-19解:⑴如图所⽰,建⽴坐标V ala x dx U la ap 300105.2ln 44?=+==?+πελπελV x b dxU l l Q 32220103.44?=+=?-πελ6—22解:⑴在板状圆环上取半径为为1r ,宽为dr 的环带作为⾯元,该⾯元的带电量为:rdr rdr ds dq πσπσσ22=?==该带电圆环在轴线上P 点的电势为21)(2)(42221220r x rdr r x dq dU +?=+=πσπε积分可得点P 的总电势+-+=+=+=212222022021222|2)(22121R x R x r x r x rdr U R R R R P εσεσεσ⑵⼩球在下落过程中,电场⼒和重⼒都在对⼩球做功,我们对⼩球应⽤质点动能定理,则有221mv A A =+电重下落过程中重⼒的做功为:mgx A =重电场⼒能做的功为:)(00U U q l d E q A p p--=?-=?电由第⼀问得的结果可知,环⼼处的电势为:)(21200R R U -=εσ由此可知,)(2)(2121221200R x R x R R q U U q A p +++--=--=εσ电将上述结果带⼊动能定理中得由此可得⼩球到环⼼O 处的速度为()121222212022??+++--+=R x R x R R gx v εσ6—23解:参考6—19题i xa ar x U E x z dzU p p aap 220220244+?=??-=+=?-πελπεσ。
《大学物理》静电场练习题及答案
《大学物理》静电场练习题及答案一、简答题1、为什么在无电荷的空间里电场线不能相交?答案:由实验和理论知道,静电场中任一给定点上,场强是唯一确定的,即其大小和方向都是确定的.用电场线形象描述静电场的空间分布时,电场线上任一点的切线方向表示该点的场强方向.如果在无电荷的空间里某一点上有几条电场线相交的话,则过此交点对应于每一条电场线都可作出一条切线,这意味着交点处的场强有好几个方向,这与静电场中任一给定点场强具有唯一确定方向相矛盾,故无电荷的空间里电场线不能相交.2、简述静电场中高斯定理的文字内容和数学表达式。
答案:在真空中的静电场内,通过任意封闭曲面的电通量等于该封闭曲面所包围的所有电荷电量的代数和的01ε倍。
0ε∑⎰=⋅内S SqS d E3、写出静电场的环路定理,并分别说明其物理意义。
答案:静电场中,电场强度的环流总是等于零(或0l=⋅⎰l d E),静电场是保守场。
4、感生电场与静电场有哪些区别和联系?5、在电场中某一点的电场强度定义为0q F E=.若该点没有试验电荷,那么该点的电场强度又如何? 为什么?答案: 电场中某一点的电场强度是由该电场自身性质所决定,与这一点有无试验电荷没有任何关系。
6、在点电荷的电场强度公式中,如果0→r ,则电场强度E 将趋于无限大。
对此,你有什么看法? 答案: 这表明,点电荷只是我们抽象出来的一个物理模型,当带电体较小而作用距离较大时使用点电荷模型较为方便、精确。
但当作用距离r 很小时,点电荷模型的误差会变大,这时我们不能再用点电荷的电场强度公式而要采用更精确的模型。
二、选择题1、如图所示,两个同心均匀带电球面,内球面半径为1R 、带有电荷1Q ,外球面半径为2R 、带有电荷2Q ,则在外球面外面、距离球心为r 处的P 点的场强大小E 为 ( A ) A 、20214r Q Q επ+B 、()()2202210144R r Q R r Q -π+-πεε C 、()2120214R R Q Q -+επ D 、2024r Q επ2、A 和B 为两个均匀带电球体,A 带电荷q +,B 带电荷q -,作一与A 同心的球面S 为高斯面,如图所示。
大学物理第六章课后习题答案
第六章 静电场中的导体与电介质 6 -1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( )(A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 分析与解 不带电的导体B 相对无穷远处为零电势。
由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。
6 -2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。
若将导体N 的左端接地(如图所示),则( )(A ) N 上的负电荷入地 (B )N 上的正电荷入地(C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关。
因而正确答案为(A )。
6 -3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图。
设无穷远处为零电势,则在导体球球心O 点有( )(A )d εq V E 0π4,0== (B )dεq V d εq E 020π4,π4== (C )0,0==V E(D )R εq V d εq E 020π4,π4==分析与解 达到静电平衡时导体内处处各点电场强度为零。
点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势。
因而正确答案为(A )。
6 -4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。
下列推论正确的是( )(A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷(B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零(C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷(D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关。
大学物理静电场习题答案
[ B ]
a
b
4.(1076) 点电荷-q位于圆心O处,A、B、C、D为同一圆周上的四点,如图所示.现将一 试验电荷从A点分别移动到B、C、D各点,则 (A) 从A到B,电场力作功最大. (B) 从A到C,电场力作功最大. (C) 从A到D,电场力作功最大. -q (D) 从A到各点,电场力作功相等. [D ] A B O
R dEx
dq
d
x
dE
O dEy
dEx dE cos, dEy dE sin
对各分量分别求和
0 Ex sin cos d 0 4 0 R
0 0 2 Ey sin d 0 4 0 R 8 0 R
所以
0 E Ex i E y j j 8 0 R
O
a aBiblioteka xa 4.(1025) 电荷面密度分别为+δ和-δ的两块“无限大”均匀带电平行平面,分别与x x 轴垂直相交于x1=a,x2=-a 两点.设坐标原点O处电势为零,试求空间 - 的电势分布表示式并画出其曲线.
z
a
+
解:由高斯定理可得场强分布为: E =-δ/ ε0 (-a<x<a) E=0 (-∞<x<-a ,a<x<+∞) 由此可求电势分布:在-∞<x≤-a区间
Rb Rc Ra A BC
E1=λ1 / 2πε0r,方向由B指向A
B、C间场强分布为 B、A 间电势差
E2=λ2 / 2πε0r,方向由B指向C
1 U BA E1 d r Rb 2 0
Ra
Rb dr 1 Rb r 2 0 ln Ra
Ra
C
B A
E2 E1
《大学物理》真空中的静电场练习题及答案解析
《大学物理》真空中的静电场练习题及答案解析一 选择题1. 下列几个说法中哪一个是正确的 (B )(A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向(B )电场中某点的场强大小与试验电荷无关。
(C )场强大小由 E =F /q 可知,某点的场强大小与试验电荷受力成正比,与电量成反比。
(D )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同2. 如图所示为一沿 x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ、-λ,则 oxy坐标平面上点(0,a )处的场强E 的方向为( A )( A )x 正方向 (B ) x 负方向 (C )y 正方向(D )y 负方向3.如图所示,一个带电量为q 的点电荷位于正立方体的中心上,则通过其中一侧面的电场强度通量等于:( B )(A)04εq (B)06εq (C) 024εq (D) 027εq第2题图 第3题图 4.关于高斯定理0ε∑⎰⎰=⋅=Φi s e q s d E ,下列说法中正确的是( C )(A )如果高斯面无电荷,则高斯面上的电场强度处处为零(B )如果高斯面上的电场强度处处为零,则高斯面内无电荷(C )如果高斯面上的电场强度处处为零,则通过高斯面的电通量为零(D )若通过高斯面的电通量为零,则高斯面上的电场强度处处为零5.如图所示,闭合曲面S 内有一点电荷q ,P 为S 面上一点,在S 面外A 点有一点电荷,q ,将其移到B 点,则( B )(A )通过S 面的电通量不变,P 点的电场强度不变。
(B )通过S 面的电通量不变,P 点的电场强度变化。
(C )通过S 面的电通量改变,P 点的电场强度不变。
(D )通过S 面的电通量改变,P 点的电场强度变化。
6.下列说法中正确的是( D )(A )场强为0的点电势也为0 (B )场强不为0的点电势也不为0(C )电势为0的点,则电场强度也一定为0(D )电势在某一区域为常数,则电场强度在该区域必定为01.B2.A3.B4.C5.D 、6D二 填空题1、在点电荷的q +,q -电场中,作如图所示的三个高斯面,求通过321S S 、、S ,球面的电通量分别为________________、_______________、______________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6章 真空中的静电场 习题及答案1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。
一试验电荷置于x 轴上何处,它受到的合力等于零解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合力才可能为0,所以200200)1(π4)1(π42-=+x qq x qq εε 故 223+=x2. 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。
试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)(2)这种平衡与三角形的边长有无关系解:(1) 以A 处点电荷为研究对象,由力平衡知,q '为负电荷,所以2220)33(π4130cos π412a q q a q '=︒εε故 q q 33-=' (2)与三角形边长无关。
3. 如图所示,半径为R 、电荷线密度为1λ的一个均匀带电圆环,在其轴线上放一长为l 、电荷线密度为2λ的均匀带电直线段,该线段的一端处于圆环中心处。
求该直线段受到的电场力。
解:先求均匀带电圆环在其轴线上产生的场强。
在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产生的场强大小为)(4220R x dqdE +=πε根据电荷分布的对称性知,0==z y E E23220)(41 cos R x xdqdE dE x +==πεθ式中:θ为dq 到场点的连线与x 轴负向的夹角。
⎰+=23220)(4dq R x xE x πε 232210)(24R x R x +⋅=πλπε232201)(2R x xR +=ελ 下面求直线段受到的电场力。
在直线段上取dx dq 2λ=,dq 受到的电场力大小为dq E dF x =dx R x xR 2322021)(2+=ελλ方向沿x 轴正方向。
直线段受到的电场力大小为⎰=dF F dx R x xR l ⎰+=02322021)(ελλ2R Oλ1λ2lxyz()⎥⎦⎤⎢⎣⎡+-=2/12202111R l R R ελλ2 方向沿x 轴正方向。
4. 一个半径为R 的均匀带电半圆环,电荷线密度为λ。
求: (1)圆心处O 点的场强;(2)将此带电半圆环弯成一个整圆后,圆心处O 点场强。
解:(1)在半圆环上取ϕλλRd l dq ==d ,它在O 点产生场强大小为20π4R dq dE ε=ϕελd R0π4= ,方向沿半径向外根据电荷分布的对称性知,0=y Eϕϕελϕd RdE dE x sin π4sin 0==R d R E x 000π2sin π4ελϕϕελπ==⎰故 RE E x 0π2ελ==,方向沿x 轴正向。
(2)当将此带电半圆环弯成一个整圆后,由电荷分布的对称性可知,圆心处电场强度为零。
5.如图所示,真空中一长为L 的均匀带电细直杆,总电量为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度。
解:建立图示坐标系。
在均匀带电细直杆上取dx Lqdx dq ==λ,dq 在P 点产生的场强大小为 202044xdxx dq dE πελπε==,方向沿x 轴负方向。
故 P 点场强大小为 ⎰⎰+==Ld dP xdxdE E 204πελ ()L d d q+π=04ε方向沿x 轴负方向。
6. 一半径为R 的均匀带电半球面,其电荷面密度为σ,求球心处电场强度的大小。
解:建立图示坐标系。
将均匀带电半球面看成许多均匀带电细圆环,应用场强叠加原理求解。
在半球面上取宽度为dl 的细圆环,其带电量rdl dS dq πσσ2⋅=⋅=θθπσd R sin 22⋅=, dq 在O 点产生场强大小为(参见教材中均匀带电圆环轴线上的场强公式)23220)(4r x xdqdE +=πε ,方向沿x 轴负方向利用几何关系,θcos R x =,θsin R r =统一积分变量,得23220)(4r x xdqdE +=πε θθπσθπεd R RR sin 2cos 41230⋅=Lθθθεσd cos sin 20=因为所有的细圆环在在O 点产生的场强方向均沿为x 轴负方向,所以球心处电场强度的大小为⎰=dE E θθθεσπd cos sin 22/00⎰=04εσ= 方向沿x 轴负方向。
7. 一“无限大”平面,中部有一半径为R 的圆孔,设平面上均匀带电,电荷面密度为σ,如图所示。
试求通过小孔中心O 并与平面垂直的直线上各点的场强。
解:应用补偿法和场强叠加原理求解。
若把半径为R 的圆孔看作由等量的正、负电荷重叠而成,挖去圆孔的带电平面等效为一个完整的“无限大”带电平面和一个电荷面密度为σσ-='的半径为R 的带电圆盘,由场强叠加原理知,P 点的场强等效于“无限大”带电平面和带电圆盘在该处产生的场强的矢量和。
“无限大”带电平面在P 点产生的场强大小为12εσ=E ,方向沿x 轴正方向 半径为R 、电荷面密度σσ-='的圆盘在P 点产生的场强大小为(参见教材中均匀带电圆盘轴线上的场强公式)022εσ=E )1(22xR x +-,方向沿x 轴负方向故 P 点的场强大小为220212x R xE E E +=-=εσ方向沿x 轴正方向。
8. (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电场强度通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电场强度通量是多少解:(1)由高斯定理0d εqS E s⎰=⋅ 求解。
立方体六个面,当q 在立方体中心时,每个面上电通量相等,所以通过各面电通量为6εqe =Φ (2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则通过边长a 2的正方形各面的电通量06εq e =Φ 对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe =Φ,如果它包含q 所在顶点,则0=Φe 。
9. 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强。
解:如图所示,电荷面密度为1σ的平面产生的场强大小为12εσ=E ,方向垂直于该平面指向外侧 电荷面密度为2σ的平面产生的场强大小为2σ1σ22εσ=E ,方向垂直于该平面指向外侧 由场强叠加原理得两面之间,)(2121021σσε-=-=E E E ,方向垂直于平面向右 1σ面左侧,)(2121021σσε+=+=E E E ,方向垂直于平面向左 2σ面右侧,)(2121021σσε+=+=E E E ,方向垂直于平面向右 10. 如图所示,一球壳体的内外半径分别为1R 和2R ,电荷均匀地分布在壳体内,电荷体密度为ρ(0>ρ)。
试求各区域的电场强度分布。
解:电场具有球对称分布,以r 为半径作同心球面为高斯面。
由高斯定理∑⎰=⋅iSqS d E 01ε得i q r E ∑=⋅0214επ当1R r <时,0=∑i q ,所以 0=E当21R r R <<时,)3434(313R r q i ππρ-=∑,所以203133)(r R r E ερ-=当2R r >时,)3434(3132R R q i ππρ-=∑,所以2031323)(rR R E ερ-= 11. 有两个均匀带电的同心带电球面,半径分别为1R 和2R (12R R >),若大球面的面电荷密度为σ,且大球面外的电场强度为零。
求:(1)小球面上的面电荷密度;(2)大球面内各点的电场强度。
解:(1)电场具有球对称分布,以r 为半径作同心球面为高斯面。
由高斯定理∑⎰=⋅iSqS d E 01ε 得i q r E ∑=⋅0214επ当2R r >时,0=E ,0442122=⋅'+⋅=∑R R q i πσπσ,所以σσ212)R R (-=' (2)当1R r <时,0=∑i q ,所以0=E当21R r R <<时,222144R R q i πσπσ-=⋅'=∑,所以22)εσr R E (-=负号表示场强方向沿径向指向球心。
12. 一厚度为d 的无限大的带电平板,平板内均匀带电,其体电荷密度为ρ,求板内外的场强。
解:电场分布具有面对称性,取同轴闭合圆柱面为高斯面,圆柱面与平板垂直,设两底面圆到平板中心的距离均为x ,底面圆的面积为S ∆。
由高斯定理∑⎰=⋅iSqS d E 01ε 得=⋅⎰SS d E i q S E S E ∑=+∆⋅+∆⋅010ε 当2dx <时(平板内部),S x q i ∆⋅⋅=∑2ρ,所以 0ερx E =当2dx >(平板外部),S d q i ∆⋅⋅=∑ρ,所以2ερd E =13. 半径为R 的无限长直圆柱体均匀带电,体电荷密度为ρ,求其场强分布。
解:电场分布具有轴对称性,取同轴闭合圆柱面为高斯面,圆柱面高为l ,底面圆半径为r ,应用高斯定理求解。
i Sq rl E S E ∑=⋅=⋅⎰1π2d ε(1) 当R r <时,l r qi2πρ⋅=∑,所以 02ερr E =(2) 当R r >时,l R qi2πρ⋅=∑,所以rR E 022ερ=14.一半径为R 的均匀带电圆盘,电荷面密度为σ,设无穷远处为电势零点,求圆盘中心O 点的电势。
解:取半径为r 、dr 的细圆环rdr dS dq πσσ2⋅==,则dq 在O 点产生的电势为024εσπεdrrdq dV ==圆盘中心O 点的电势为dr dV V R⎰⎰==002εσ02εσR = 15. 真空中两个半径都为R 的共轴圆环,相距为l 。
两圆环均匀带电,电荷线密度分别是λ+和λ-。
取两环的轴线为x 轴,坐标原点O 离两环中心的距离均为2l,如图所示。
求x 轴上任一点的电势。
设无穷远处为电势零点。
解:在右边带电圆环上取dq ,它在x 轴上任一点P 产生的的电势为220)2/(4Rl x dqdV +-=πε右边带电圆环在P 产生的的电势为⎰⎰+-==+dq R l x dV V 220)2/(41πε220)2/(2Rl x R+-=ελ同理,左边带电圆环在P 产生的电势为220)2/(2Rl x RV ++-=-ελ由电势叠加原理知,P 的电势为02ελR V V V =+=-+-+-22)2/(1(R l x ))2/(122Rl x ++16. 真空中一半径为R 的球形区域内均匀分布着体电荷密度为ρ的正电荷,该区域内a 点离球心的距离为R 31,b 点离球心的距离为R 32。
求a 、b 两点间的电势差ab U解:电场分布具有轴对称性,以O 为球心、作半径为r 的同心球面为高斯面。