解三角形的必备知识和典型例题及习题

合集下载

解三角形的必备知识和典型例题及习题

解三角形的必备知识和典型例题及习题

解三角形的必备知识和典型例题及习题一、知识必备:1.直角三角形中各元素间的关系:在△ABC中,C=90°,AB=c,AC=b,BC=a。

2 2 2 (1)三边之间的关系:a +b =c。

(勾股定理)(2)锐角之间的关系:A+B=90°;(3)边角之间的关系:(锐角三角函数定义)sin A=cos B=ac,cos A=sin B=bc,tan A=ab。

2.斜三角形中各元素间的关系:在△ABC中,A、B、C为其内角,a、b、c 分别表示A、B、C的对边。

(1)三角形内角和:A+B+C=π。

(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等a sin Absin Bcsin C2R(R为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍2 2 2 2 2 2 2 2 2a =b +c -2bc cos A; b =c +a -2ca cos B; c =a +b -2ab cos C。

3 .三角形的面积公式:(1)S =12ah a=12bh b=12ch c(h a、h b、h c 分别表示a、b、c 上的高);(2)S =12ab sin C=12bc sin A=12ac sin B;4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型:(1)两类正弦定理解三角形的问题:第1、已知两角和任意一边,求其他的两边及一角.第2、已知两角和其中一边的对角,求其他边角.(2)两类余弦定理解三角形的问题:第1、已知三边求三角.第2、已知两边和他们的夹角,求第三边和其他两角.5.三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。

解三角形知识点总结及典型例题

解三角形知识点总结及典型例题

课前复习两角和与差的正弦、余弦、正切公式 1两角和与差的正弦公式,sin(α+β)=sinαcosβ+cosαsinβ,sin(α-β)=sinαcosβ-cosαsinβ.2两角和与差的余弦公式,cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcos+sinαsinβ3两角和、差的正切公式 tan(α+β)=,tan tan 1tan tan βαβα-+ (()()tan tan tan 1tan tan αβαβαβ-=-+); tan(α-β)=.tan tan 1tan tan βαβα+-(()()tan tan tan 1tan tan αβαβαβ+=+-).简单的三角恒等变换二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒ ⑵2222cos2cossin 2cos 112sin ααααα=-=-=-⇒升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-= ⑶22tan tan 21tan ααα=-解三角形知识点总结及典型例题一、 知识点复习 1、正弦定理及其变形2(sin sin sin a b cR R A B C===为三角形外接圆半径)12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式)2sin ,sin ,sin 222a b cA B C R R R===()(角化边公式) 3::sin :sin :sin a b c A B C =()sin sin sin (4),,sin sin sin a A a A b Bb Bc C c C=== 2、正弦定理适用情况: (1)已知两角及任一边(2)已知两边和一边的对角(需要判断三角形解的情况) 已知a ,b 和A ,求B 时的解的情况:如果B A sin sin ≥,则B 有唯一解;如果1sin sin <<B A ,则B 有两解; 如果1sin =B ,则B 有唯一解;如果1sin >B ,则B 无解. 3、余弦定理及其推论2222222222cos 2cos 2cos a b c bc Ab ac ac B c a b ab C =+-=+-=+- 222222222cos 2cos 2cos 2b c a A bc a c b B aca b c C ab+-=+-=+-=4、余弦定理适用情况:(1)已知两边及夹角;(2)已知三边. 5、常用的三角形面积公式 (1)高底⨯⨯=∆21ABC S ; (2)B ca A bc C ab S ABCsin 21sin 21sin 21===∆(两边夹一角). 6、三角形中常用结论(1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边);(2)sin sin (ABC A B a b A B ∆>⇔>⇔>在中,即大边对大角,大角对大边).(3)在△ABC 中,π=++C B A ,所以C B A sin )sin(=+;C B A cos )cos(-=+;C B A tan )tan(-=+. 2sin 2cos ,2cos 2sin CB AC B A =+=+.二、典型例题 题型1 边角互化[例1 ]在ABC ∆中,若7:5:3sin :sin :sin =C B A ,则角C 的度数为【解析】由正弦定理可得7:5:3::=c b a ,,令c b a 、、依次为753、、, 则C cos =2222a b c ab +-=222357235+-⨯⨯=12-因为π<<C 0,所以=C 23π [例2 ] 若a 、b 、c 是ABC ∆的三边,222222)()(c x a c b x b x f +-++=,则函数)(x f 的图象与x 轴( ) A 、有两个交点 B 、有一个交点 C 、没有交点 D 、至少有一个交点 【解析】由余弦定理得2222cos b c a bc A +-=,所以222()2cos f x b x bc A x c =++=2222(cos )cos bx c A c c A ++-,因为2cos A <1,所以222cos c c A ->0,因此()f x >0恒成立,所以其图像与x 轴没有交点。

解三角形知识点汇总和典型例题

解三角形知识点汇总和典型例题

文成教育学科辅导教案讲义授课对象授课教师徐老师 授课时间 3月11日 授课题目 解三角形复习总结 课 型 复习课使用教具人教版教材教学目标 熟练掌握三角形六元素之间的关系,会解三角形教学重点和难点 灵活解斜三角形 参考教材人教版必修5第一章教学流程及授课详案解三角形的必备知识和典型例题及详解一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。

(1)三边之间的关系:a 2+b 2=c 2。

(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =ba。

2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。

(1)三角形内角和:A +B +C =π。

(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等R Cc B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。

3.三角形的面积公式: (1)∆S =21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高);根据正弦定理, 0sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,0sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A(2)根据正弦定理, 0sin 28sin40sin 0.8999.20==≈b A B a 因为00<B <0180,所以064≈B ,或0116.≈B①当064≈B 时, 00000180()180(4064)76=-+≈-+=C A B ,②当0116≈B 时,180()180(40116)24=-+≈-+=C A B ,0sin 20sin2413().sin sin40==≈a C c cm A 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形;(2)对于解三角形中的复杂运算可使用计算器 题型2:三角形面积例2.在∆ABC 中,sin cos A A +=22,AC =2,3=AB ,求A tan 的值和∆ABC 的面积。

高中数学-解三角形知识点汇总情况及典型例题1.docx

高中数学-解三角形知识点汇总情况及典型例题1.docx

实用标准解三角形的必备知识和典型例题及详解一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中, C=90°,AB= c, AC= b , BC= a。

(1)三边之间的关系:a2+b2=c2。

(勾股定理)(2)锐角之间的关系:A+B= 90 °;(3)边角之间的关系:(锐角三角函数定义)sin A= cos B=a, cos A=sin=b, tan A=a。

c bc2.斜三角形中各元素间的关系:在△ABC 中, A、 B、 C 为其内角, a、b、 c 分别表示 A、 B、C 的对边。

(1)三角形内角和:A+B+C=π。

(2 )正弦定理:在一个三角形中,各边和它所对角的正弦的比相等a b c2R (R为外接圆半径)sin A sin B sin C( 3 )余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2 =b2+2- 2bccosA;b2 = 2 +a2- 2cacosB;c2= 2 +b2-2abcos。

c c a C3.三角形的面积公式:1ah a=11(1)S=bh b=ch c( h a、 h b、 h c分别表示 a、b、 c 上的高);22211bc sin A=1(2)S=ab sin C=ac sin B;222求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型:(1 )两类正弦定理解三角形的问题:第 1、已知两角和任意一边,求其他的两边及一角.第 2、已知两角和其中一边的对角,求其他边角.(2 )两类余弦定理解三角形的问题:第 1、已知三边求三角 .第 2、已知两边和他们的夹角,求第三边和其他两角.5.三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。

( 1)角的变换因为在△ABC 中, A+B+C=π,所以sin(A+B)=sinC;cos(A+B)=-cosC;tan(A+B)=-tanC。

解三角形经典例题

解三角形经典例题

解三角形一、知识点归纳(★☆注重细节,熟记考点☆★) 1.正弦定理及其变形2(sin sin sin a b cR R A B C===为三角形外接圆半径)变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式)2sin ,sin ,sin 222a b cA B C R R R===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b Bb Bc C c C===2.正弦定理适用情况: (1)已知两角及任一边;(2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论2222222222cos 2cos 2cos a b c bc Ab ac ac B c a b ab C=+-=+-=+- 222222222cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab+-=+-=+-=4.余弦定理适用情况:(1)已知两边及夹角; (2)已知三边.注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式(1)高底⨯⨯=∆21ABC S ; (2)()111=sin sin sin 2224abcS ab C ac B bc A R ABC R ===∆为外接圆半径 (两边夹一角);6.三角形中常用结论(1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ∆>⇔>⇔>在中,即大边对大角,大角对大边) (3)在ABC ∆中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-;③()tan tan A B C +=-;④sincos ,22A B C +=⑤cos sin 22A B C+= 7.实际问题中的常用角 (1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下文的叫俯角(如图①)(2)方位角从指北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图②) 注:仰角、俯角、方位角的区别是:三者的参照不同。

高中数学-解三角形知识点汇总情况及典型例题1

高中数学-解三角形知识点汇总情况及典型例题1

实用标准解三角形的必备知识和典型例题及详解一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。

(1)三边之间的关系:a 2+b 2=c 2。

(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =ba。

2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。

(1)三角形内角和:A +B +C =π。

(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等R Cc B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。

3.三角形的面积公式:(1)∆S =21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)∆S =21ab sin C =21bc sin A =21ac sin B ;4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)例1.(1)在∆ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形;(2)在∆ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )。

解:(1)根据三角形内角和定理,0180()=-+C A B 000180(32.081.8)=-+066.2=;根据正弦定理, 0sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,0sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A(2)根据正弦定理, 0sin 28sin40sin 0.8999.20==≈b A B a 因为00<B <0180,所以064≈B ,或0116.≈B①当064≈B 时,00000180()180(4064)76=-+≈-+=C A B ,sin 20sin7630().sin sin40==≈a C c cm A ②当0116≈B 时,180()180(40116)24=-+≈-+=C A B ,0sin 20sin2413().sin sin40==≈a C c cm A 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形;(2)对于解三角形中的复杂运算可使用计算器 题型2:三角形面积例2.在∆ABC 中,sin cos A A +=22,AC =2,3=AB ,求A tan 的值和∆ABC 的面积。

解三角形知识点总结及典型例题

解三角形知识点总结及典型例题

解三角形知识点总结及典型例题三角形作为几何学的基础概念之一,是学习几何学不可或缺的部分。

在解三角形的过程中,我们需要掌握一些基本的知识点和技巧。

本文将对解三角形的相关知识点进行总结,并配以典型例题进行说明。

一、三角形的基本概念三角形由三条边和三个角组成。

根据边的长度,三角形可以分为等边三角形、等腰三角形和普通三角形。

根据角的大小,三角形可以分为钝角三角形、直角三角形和锐角三角形。

二、重要的定理1. 三角形内角和定理:三角形的内角和等于180°。

利用这个定理,我们可以求解一些已知角的三角形问题。

2. 角平分线定理:角平分线将一个角分为两个大小相等的角。

利用这个定理,我们可以求解一些已知角平分线的三角形问题。

3. 直角三角形的性质:直角三角形的两个直角边平方和等于斜边的平方。

这个定理被广泛应用于解决直角三角形的各类问题。

三、解三角形的方法1. 已知两边和夹角如果我们已知三角形的两边和夹角,我们可以利用余弦定理求解第三边的长度。

余弦定理的数学表达式如下:c² = a² + b² - 2abcosC其中,c为第三边的长度,a和b为已知边的长度,C为已知夹角的度数。

2. 已知两边和对应的角如果我们已知三角形的两边和对应的角,我们可以利用正弦定理求解第三角的长度。

正弦定理的数学表达式如下:a/sinA = b/sinB = c/sinC其中,a、b、c为三角形的边长,A、B、C为对应的角度。

3. 已知三边如果我们已知三角形的三边,我们可以利用余弦定理或正弦定理求解其中一个角的大小。

然后,再利用三角形的内角和定理求解其他角的大小。

四、典型例题1. 已知三角形ABC,AB = 8 cm,BC = 6 cm,AC = 10 cm。

求角A、角B和角C的度数。

解:根据余弦定理,cosA = (8² + 10² - 6²) / (2 × 8 × 10) = 0.6cosB = (6² + 10² - 8²) / (2 × 6 × 10) = 0.8cosC = (8² + 6² - 10²) / (2 × 8 × 6) = 0.7通过查表或使用计算器,我们可以得到:角A ≈ 53.13°,角B ≈ 36.87°,角C ≈ 90°2. 在直角三角形ABC中,∠B = 90°,AB = 5 cm,BC = 12 cm。

解三角形经典例题及解答

解三角形经典例题及解答

正弦、余弦定理知识回忆:1、直角三角形中,角与边的等式关系:在Rt ∆ABC 中,设BC =a ,AC =b ,AB =c , 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1c C c==,从而在直角三角形ABC 中,sin sin sin a b cA B C==. 2、当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义, 有CD =sin sin a B b A =,则sin sin a b A B =,同理可得sin sin c bC B=, 从而sin sin a bA B =sin c C=. 3、正弦定理:在一个三角形中,各边和它所对角的 的比相等,即sin sin a bA B =sin c C=. 4、理解定理〔1〕正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =, ,sin c k C =; 〔2〕sin sin a b A B =sin c C =等价于 ,sin sin c bC B=,sin a A =sin c C . 〔3〕正弦定理的基本作用为:①已知三角形的任意两角及其一边可以求其他边,如sin sin b Aa B=;b = .②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值, 如sin sin a A B b=;sin C = .〔4〕一般地,已知三角形的某些边和角,求其它的边和角的过程叫作解三角形. 5、知识拓展sin sin a b A B =2sin cR C==,其中2R 为外接圆直径. 6、勾股定理:7、余弦定理:三角形中 平方等于 减去 的两倍,即=2a ;=2b ;=2c 。

8、余弦定理的推论:=A cos ;=B cos ; =C cos 。

9、在,反之成立;则中,若,222c b a ABC +<∆ ,反之成立;则中,若,222c b a ABC +=∆,反之成立;则中,若,222c b a ABC +>∆ 典型例题:例1、在ABC ∆中,已知45A =,60B =,42a =cm ,解三角形.例2、〔1〕在△ABC 中,已知1 求cosB.〔2〕在△ABC 中,已知a=、B=1500求b.〔3〕在△ABC 中,已知a=8, b=B=300求c.例3、在C A a c B b ABC ,,1,60,30和求中,===∆解:∵21360sin 1sin sin ,sin sin 0=⨯==∴=b B c C C c B b00090,30,,60,==∴<∴=>B C C B C B c b 为锐角, ∴222=+=c b a例4、C B b a A c ABC ,,2,45,60和求中,===∆解:23245sin 6sin sin ,sin sin 0=⨯==∴=a A c C C c A a0012060,sin 或=∴<<C c a A c1360sin 75sin 6sin sin ,75600+=====∴C B c b B C 时,当,1360sin 15sin 6sin sin ,151200-=====∴C B c b B C 时,当 或0060,75,13==+=∴C B b 00120,15,13==-=C B b例5、 在△ABC 中,求证:)cos cos (aA bB c a b b a -=- 证明:将ac b c a B 2cos 222-+=,bca cb A 2cos 222-+=代入右边得右边2222222222()222a c b b c a a b c abc abc ab+-+--=-=22a b a bab b a-==-=左边,∴)cos cos (aA bB c a b b a -=- 例6、 在锐角△ABC 中,求证:C B A C B A cos cos cos sin sin sin ++>++证明:∵△ABC 是锐角三角形,∴,2A B π+>即022A B ππ>>->∴sin sin()2A B π>-,即sin cos A B >;同理sin cos B C >;sin cos C A >∴C B A C B A cos cos cos sin sin sin ++>++例7、 在△ABC 中,求证:2cos 2cos 2cos 4sin sin sin CB AC B A =++。

高中数学解三角形精选题目(附答案)

高中数学解三角形精选题目(附答案)

高中数学解三角形精选题目(附答案)一、解三角解三角形的常见类型及方法(1)已知三边:先由余弦定理求出两个角,再由A+B+C=π,求第三个角.(2)已知两边及其中一边的对角:先用正弦定理求出另一边的对角,再由A +B+C=π,求第三个角,最后利用正弦定理或余弦定理求第三边.(3)已知两边及夹角:先用余弦定理求出第三边,然后再利用正弦定理或余弦定理求另两角.(4)已知两角及一边:先利用内角和求出第三个角,再利用正弦定理求另两边.1.设锐角△ABC的内角A,B,C的对边分别为a,b,c,且有a=2b sin A.(1)求B的大小;(2)若a=33,c=5,求b.1.解:(1)由a=2b sin A,根据正弦定理得sin A=2sin B sin A,所以sin B=1 2,由于△ABC是锐角三角形,所以B=π6.(2)根据余弦定理,得b2=a2+c2-2ac cos B=27+25-45=7,所以b=7.注:利用正、余弦定理来研究三角形问题时,一般要综合应用三角形的性质及三角函数关系式,正弦定理可以用来将边的比和对应角正弦值的比互化,而余弦定理多用来将余弦值转化为边的关系.2.在△ABC中,内角A,B,C的对边分别是a,b,c,若a2-b2=3bc,sin C=23sin B,则A=()A.30°B.60°C.120°D.150°解析:选A 由正弦定理可知c =23b ,则cos A =b 2+c 2-a 22bc =-3bc +c 22bc =-3bc +23bc 2bc =32,所以A =30°,故选A.3.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( )A .3B.932C.332 D .33解析:选C ∵c 2=(a -b )2+6,∴c 2=a 2+b 2-2ab +6.①∵C =π3,∴c 2=a 2+b 2-2ab cos π3=a 2+b 2-ab .②由①②得-ab +6=0,即ab =6. ∴S △ABC =12ab sin C =12×6×32=332.4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知A =π6,a =1,b =3,则B =________.解析:依题意得,由正弦定理知:1sin π6=3sin B ,sin B =32,又0<B <π,b >a ,可得B =π3或2π3.答案:π3或2π35.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .(1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C );(2)若a ,b ,c 成等比数列,求cos B 的最小值.解:(1)证明:∵a ,b ,c 成等差数列,∴a +c =2b .由正弦定理得sin A +sin C =2sin B .∵sin B =sin[π-(A +C )]=sin(A +C ),∴sin A +sin C =2sin(A +C ).(2)∵a ,b ,c 成等比数列,∴b 2=ac .由余弦定理得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac≥2ac -ac 2ac =12, 当且仅当a =c 时等号成立.∴cos B 的最小值为12.二、三角形的形状判定三角形中的常用结论(1)A +B =π-C ,A +B 2=π2-C 2. (2)在三角形中大边对大角,反之亦然.(3)任意两边之和大于第三边,任意两边之差小于第三边.6.在△ABC 中,a ,b ,c 分别表示三个内角A ,B ,C 的对边,如果(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),试判断该三角形的形状.[解] ∵(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),∴a 2[sin(A -B )-sin(A +B )]=b 2[-sin(A +B )-sin(A -B )],∴2a 2cos A sin B =2b 2sin A cos B .法一:(化边为角)由正弦定理得2sin 2A cos A sin B =2sin 2B sin A cos B , 即sin 2A ·sin A sin B =sin 2B ·sin A sin B .∵0<A <π,0<B <π,∴sin 2A =sin 2B ,∴2A =2B 或2A =π-2B ,即A =B 或A +B =π2.∴△ABC 是等腰三角形或直角三角形.法二:(化角为边)2a 2cos A sin B =2b 2cos B sin A ,由正弦、余弦定理得a 2b ·b 2+c 2-a 22bc =b 2a ·a 2+c 2-b 22ac ,∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2),即(a 2-b 2)(c 2-a 2-b 2)=0.∴a =b 或c 2=a 2+b 2,∴△ABC 为等腰三角形或直角三角形.注:根据所给条件判断三角形的形状的途径(1)化边为角.(2)化角为边,转化的手段主要有:①通过正弦定理实现边角转化;②通过余弦定理实现边角转化;③通过三角变换找出角之间的关系;④通过对三角函数值符号的判断以及正、余弦函数的有界性来确定三角形的形状.7.在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c .若c -a cos B =(2a -b )cos A ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形解析:选D ∵c -a cos B =(2a -b )cos A ,C =π-(A +B ),∴由正弦定理得sin C -sin A cos B =2sin A cos A -sin B cos A ,∴sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A ,∴cos A (sin B -sin A )=0,∴cos A =0或sin B =sin A ,∴A =π2或B =A 或B =π-A (舍去).故△ABC 为直角三角形或等腰三角形.8.在△ABC 中,已知3b =23a sin B ,且A ,B ,C 成等差数列,则△ABC 的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形解析:选C ∵A ,B ,C 成等差数列,∴A +C =2B ,即3B =π,解得B =π3.∵3b =23a sin B ,∴根据正弦定理得3sin B =23sin A sin B .∵sin B ≠0,∴3=23sin A ,即sin A =32,即A =π3或2π3,当A =2π3时,A +B =π不满足条件.∴A =π3,C =π3.故A =B =C ,即△ABC 的形状为等边三角形.9.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.解:(1)由已知,根据正弦定理得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc .由余弦定理,a 2=b 2+c 2-2bc cos A ,∴bc =-2bc cos A ,cos A =-12. 又0<A <π,∴A =2π3.(2)由(1)知sin 2A =sin 2B +sin 2C +sin B sin C ,∴sin 2A =(sin B +sin C )2-sin B sin C .又sin B +sin C =1,且sin A =32,∴sin B sin C =14,因此sin B =sin C =12.又B ,C ∈⎝ ⎛⎭⎪⎫0,π2,故B =C . 所以△ABC 是等腰的钝角三角形.三、实际应用(1)仰角与俯角是相对水平线而言的,而方位角是相对于正北方向而言的.(2)利用方位角或方向角和目标与观测点的距离即可唯一确定一点的位置.10.如图,渔船甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/小时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求sin α的值.[解] (1)依题意,∠BAC =120°,AB =12海里,AC =10×2=20(海里),∠BCA =α.在△ABC 中,由余弦定理,得BC 2=AB 2+AC 2-2AB ×AC ×cos ∠BAC =122+202-2×12×20×cos 120°=784.解得BC =28海里.∴渔船甲的速度为BC 2=14(海里/小时).(2)在△ABC 中,AB =12海里,∠BAC =120°,BC =28海里,∠BCA =α,由正弦定理,得AB sin α=BC sin 120°.即sin α=AB sin 120°BC=12×3228=3314.故sin α的值为33 14.注:应用解三角形知识解决实际问题的步骤(1)读题.分析题意,准确理解题意,分清已知与所求,尤其要理解题中的有关名词、术语,如坡度、仰角、俯角、方位角等;(2)图解.根据题意画出示意图,并将已知条件在图形中标出;(3)建模.将所求解的问题归结到一个或几个三角形中,通过合理运用正弦定理、余弦定理等有关知识正确求解;(4)验证.检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案.11.要测量底部不能到达的电视塔AB的高度,如图,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD=40 m,则电视塔的高度为()A.10 2 m B.20 mC.20 3 m D.40 m解析:选D设电视塔的高度为x m,则BC=x,BD=3x.在△BCD中,根据余弦定理得3x2=x2+402-2×40x×cos 120°,即x2-20x-800=0,解得x =40或x=-20(舍去).故电视塔的高度为40 m.12.北京国庆阅兵式上举行升旗仪式,如图,在坡度为15°的观礼台上,某一列座位与旗杆在同一个垂直于地面的平面上,在该列的第一排和最后一排测得旗杆顶端的仰角分别为60°和30°,且第一排和最后一排的距离为10 6 m,则旗杆的高度为________m.解析:设旗杆高为h m,最后一排为点A,第一排为点B,旗杆顶端为点C,则BC=hsin 60°=233h.在△ABC中,AB=106,∠CAB=45°,∠ABC=105°,所以∠ACB=30°,由正弦定理,得106sin 30°=233hsin 45°,故h=30(m).答案:3013.某高速公路旁边B处有一栋楼房,某人在距地面100米的32楼阳台A处,用望远镜观测路上的车辆,上午11时测得一客车位于楼房北偏东15°方向上,且俯角为30°的C处,10秒后测得该客车位于楼房北偏西75°方向上,且俯角为45°的D处.(假设客车匀速行驶)(1)如果此高速路段限速80千米/小时,试问该客车是否超速?(2)又经过一段时间后,客车到达楼房的正西方向E处,问此时客车距离楼房多远?解:(1)在Rt△ABC中,∠BAC=60°,AB=100米,则BC=1003米.在Rt△ABD中,∠BAD=45°,AB=100米,则BD=100米.在△BCD中,∠DBC=75°+15°=90°,则DC=BD2+BC2=200米,所以客车的速度v=CD10=20米/秒=72千米/小时,所以该客车没有超速.(2)在Rt△BCD中,∠BCD=30°,又因为∠DBE=15°,所以∠CBE=105°,所以∠CEB=45°.在△BCE中,由正弦定理可知EBsin 30°=BCsin 45°,所以EB=BC sin 30°sin 45°=506米,即此时客车距楼房506米.巩固练习:1.在△ABC中,若a=7,b=3,c=8,则其面积等于()A.12 B.21 2C.28D.63解析:选D由余弦定理得cos A=b2+c2-a22bc=32+82-722×3×8=12,所以sin A=32,则S△ABC=12bc sin A=12×3×8×32=6 3.2.在△ABC中,内角A,B,C所对的边分别为a,b,c.若3a=2b,则2sin2B-sin2Asin2A的值为()A.19 B.13C.1 D.7 2解析:选D由正弦定理可得2sin2B-sin2Asin2A=2b2-a2a2=2·⎝ ⎛⎭⎪⎫32a2-a2a2=72.3.在△ABC中,已知AB=2,BC=5,△ABC的面积为4,若∠ABC=θ,则cos θ等于()A.35B.-35C.±35D.±45解析:选C∵S△ABC =12AB·BC sin∠ABC=12×2×5×sin θ=4.∴sin θ=45.又θ∈(0,π),∴cos θ=±1-sin2θ=±3 5.4.某人从出发点A向正东走x m后到B,向左转150°再向前走3 m到C,测得△ABC的面积为334m2,则此人这时离开出发点的距离为()A.3 m B. 2 mC.2 3 m D. 3 m解析:选D在△ABC中,S=12AB×BC sin B,∴334=12×x×3×sin 30°,∴x= 3.由余弦定理,得AC=AB2+BC2-2AB×BC×cos B=3+9-9=3(m).5.在△ABC中,A=60°,AB=2,且△ABC的面积S△ABC=32,则边BC的边长为()A.3B.3C.7D.7解析:选A∵S△ABC =12AB·AC sin A=32,∴AC=1,由余弦定理可得BC2=AB2+AC2-2AB·AC cos A=4+1-2×2×1×cos 60°=3,即BC= 3.6.设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B =a sin A,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定解析:选B∵b cos C+c cos B=b·b2+a2-c22ab+c·c2+a2-b22ac=b2+a2-c2+c2+a2-b22a=2a22a=a=a sin A,∴sin A=1.∵A∈(0,π),∴A=π2,即△ABC是直角三角形.7.在△ABC中,B=60°,b2=ac,则△ABC的形状为____________.解析:由余弦定理得b2=a2+c2-2ac cos B,即ac=a2+c2-ac,∴(a-c)2=0,∴a=c.又∵B=60°,∴△ABC为等边三角形.答案:等边三角形8.在△ABC中,a=b+2,b=c+2,又知最大角的正弦等于32,则三边长为________.解析:由题意知a边最大,sin A=32,∴A=120°,∴a2=b2+c2-2bc cos A.∴a2=(a-2)2+(a-4)2+(a-2)(a-4).∴a2-9a+14=0,解得a=2(舍去)或a=7.∴b=a-2=5,c=b-2=3.答案:a=7,b=5,c=39.已知三角形ABC的三边为a,b,c和面积S=a2-(b-c)2,则cos A=________.解析:由已知得S=a2-(b-c)2=a2-b2-c2+2bc=-2bc cos A+2bc.又S=12bc sin A,∴12bc sin A=2bc-2bc cos A.∴4-4cos A=sin A,平方得17cos2A-32cos A+15=0.∴(17cos A-15)(cos A-1)=0.∴cos A=1(舍去)或cos A=15 17.答案:15 1710.在△ABC中,内角A,B,C的对边分别为a,b,c.已知cos A=23,sin B=5cos C.(1)求tan C的值;(2)若a=2,求△ABC的面积.解:(1)因为0<A<π,cos A=2 3,所以sin A=1-cos2A=5 3,又5cos C=sin B=sin(A+C)=sin A cos C+cos A sin C=53cos C+23sin C,所以253cos C=23sin C,tan C= 5.(2)由tan C=5得sin C=56,cos C=16,于是sin B =5cos C =56. 由a =2及正弦定理a sin A =c sin C 得c =3,所以△ABC 的面积S △ABC =12ac sinB =12×2×3×56=52. 11.如图,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =17.(1)求sin ∠BAD ;(2)求BD ,AC 的长.解:(1)在△ADC 中,因为cos ∠ADC =17,所以sin ∠ADC =437.所以sin ∠BAD =sin(∠ADC -∠B )=sin ∠ADC cos B -cos ∠ADC sin B=437×12-17×32=3314.(2)在△ABD 中,由正弦定理得BD =AB ·sin ∠BAD sin ∠ADB =8×3314437=3. 在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos B=82+52-2×8×5×12=49. 所以AC =7.12.已知△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,设向量m =(a ,b ),n =(sin B ,sin A ),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,c =2,C =π3,求△ABC 的面积.解:(1)证明:∵m∥n,∴a sin A=b sin B,∴a·a=b·b,即a2=b2,a=b,∴△ABC为等腰三角形.(2)由m⊥p,得m·p=0,∴a(b-2)+b(a-2)=0,∴a+b=ab.由余弦定理c2=a2+b2-2ab cos C,得4=a2+b2-ab=(a+b)2-3ab,即(ab)2-3ab-4=0,解得ab=4(ab=-1舍去),∴S△ABC =12ab sin C=12×4×sinπ3= 3.。

高一数学解三角形知识点总结及习题练习

高一数学解三角形知识点总结及习题练习

解三角形一、基础知识梳理1正弦定理:A a sin =B bsin =Cc sin =2R (R 为△ABC 外接圆半径),了解正弦定理以下变形:CB A cb a Cc B b A a C B A c b a RcC R b B R a A CR c B R b A R a sin sin sin sin sin sin sin :sin :sin ::2sin ,2sin ,2sin sin 2,sin 2,sin 2++++==========最常用三角形面积公式:A bc B ac C ab ah SaABCsin 21sin 21sin 2121====∆ 2正弦定理可解决两类问题:1.两角和任意一边,求其它两边和一角; (唯一解)2.两边和其中一边对角,求另一边的对角,进而可求其它的边和角(解可能不唯一) 了解:已知a, b 和A, 用正弦定理求B 时的各种情况:3.余弦定理 :A bc c b a cos 2222-+=⇔bc a c b A 2cos 222-+=B ac a c b cos 2222-+=⇔cab ac B 2cos 222-+=C ab b a c cos 2222-+=⇔abcb a C 2cos 222-+=4.余弦定理可以解决的问题: (1)已知三边,求三个角;(解唯一)(2)已知两边和它们的夹角,求第三边和其他两个角(解唯一):(3)两边和其中一边对角,求另一边,进而可求其它的边和角(解 可能不唯一)2[课前热身]1.(教材习题改编)已知△ABC 中,a =2,b =3,B =60°,那么角A 等于( ) A .135° B .90° C .45° D .30°2.在△ABC 中,222a b c bc =++,则A 等于( )A .60°B .45°C .120°D .30°3.在△ABC 中,若A =120°,AB =5,BC =7,则△ABC 的面积是( ) A.334 B.1532 C.1534 D.15384.(2010年高考广东卷)已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b =3,A +C =2B ,则sin A =________. 5.5.在△ABC 中,如果A =60°,c =2,a =6,则△ABC 的形状是________. 3[考点突破]考点一 正弦定理的应用利用正弦定理可解决以下两类三角形:一是已知两角和一角的对边,求其他边角;二是已知两边和一边的对角,求其他边角.例1、(1)(2010年高考山东卷)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.若a =2,b =2,sin B +cos B =2,则角A 的大小为________. (2)满足A =45°,a =2,c =6的△ABC 的个数为________.考点二 余弦定理的应用利用余弦定理可解两类三角形:一是已知两边和它们的夹角,求其他边角;二是已知三边求其他边角.由于这两种情况下的三角形是惟一确定的,所以其解也是惟一的.例2、在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b 的值; (2)若sin B =2sin A ,求△ABC 的面积.考点三 三角形形状的判定判断三角形的形状,应围绕三角形的边角关系进行思考,主要看其是否是正三角形、等腰三角形、直角三角形、钝角三角形或锐角三角形,要特别注意“等腰直角三角形”与“等腰三角形或直角三角形”的区别.例3、(2010年高考辽宁卷)在△ABC中,a,b,c分别为内角A,B,C的对边,且2asin A=(2b+c)sin B+(2c+b)sin C.(1)求A的大小;(2)若sinB+sinC=1,试判断△ABC的形状.互动探究1 若本例条件变为:sinC=2sin(B+C)cosB,试判断三角形的形状..方法感悟:方法技巧解三角形常见题型及求解方法(1)已知两角A、B与一边a,由A+B+C=180°及asin A=bsin B=csin C,可求出角C,再求出b,c.(2)已知两边b,c与其夹角A,由a2=b2+c2-2bc cos A, 求出a,再由正弦定理,求出角B,C.(3)已知三边a、b、c,由余弦定理可求出角A、B、C.(4)已知两边a、b及其中一边的对角A,由正弦定理asin A=bsin B求出另一边b的对角B,由C=π-(A+B),求出C,再由asin A=csin C,求出c,而通过asin A=bsin B求B时,可能出现一解,两解或无解的情况,其判断方法如下表:失误防范1.用正弦定理解三角形时,要注意解题的完整性,谨防丢解.2.要熟记一些常见结论,如三内角成等差数列,则必有一角为60°;若三内角的正弦值成等差数列,则三边也成等差数列;三角形的内角和定理与诱导公式结合产生的结论:sin A=sin(B+C),cos A=-cos(B+C),sin A2=cosB+C2,sin2A=-sin2(B+C),cos2A=cos2(B+C)等.3.对三角形中的不等式,要注意利用正弦、余弦的有界性进行适当“放缩”.五、规范解答(本题满分12分)(2010年高考大纲全国卷Ⅱ)在△ABC 中,D 为边BC 上的一点,BD =33,sin B =513,cos ∠ADC =35,求AD 的长. 【解】 由cos ∠ADC =35>0知∠B <π2,由已知得cos B =1213,sin ∠ADC =45,4分从而sin ∠BAD =sin(∠ADC -∠B ) =sin ∠ADC cos B -cos ∠ADC sin B =45×1213-35×513=3365.9分 由正弦定理得AD sin B =BDsin ∠BAD ,所以AD =BD ·sin Bsin ∠BAD=33×5133365=25.12分【名师点评】 本题主要考查正弦定理、三角恒等变换在解三角形中的应用,同时,对逻辑推理能力及运算求解能力进行了考查.本题从所处位置及解答过程来看,难度在中档以下,只要能分析清各量的关系,此题一般不失分.出错的原因主要是计算问题. 名师预测1.在△ABC 中,a =15,b =10,A =60°,则cos B =( )A .-223 B.223C .-63D.632.已知△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且S △ABC =a 2+b 2-c 24,那么角C =________.3.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且满足(2b -c )·cos A -a cos C =0. (1)求角A 的大小;(2)若a =3,S △ABC =334,试判断△ABC 的形状,并说明理由. 解:(1)法一:∵(2b -c )cos A -a cos C =0, 由正弦定理得,(2sin B -sin C )cos A -sin A cos C =0, ∴2sin B cos A -sin(A +C )=0, 即sin B (2cos A -1)=0. ∵0<B <π,∴sin B ≠0,∴cos A =12.∵0<A <π,∴A =π3.法二:∵(2b -c )cos A -a cos C =0, 由余弦定理得,(2b -c )·b 2+c 2-a 22bc -a ·a 2+b 2-c 22ab=0,整理得b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =12.∵0<A <π,∴A =π3. (2)∵S △ABC =12bc sin A =334,即bc sin π3=332,∴bc =3,① ∵a 2=b 2+c 2-2bc cos A , ∴b 2+c 2=6,② 由①②得b =c =3,∴△ABC 为等边三角形.课后作业1 在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( ) A. 直角三角形 B. 锐角三角形 C. 钝角三角形 D. 等腰三角形2 边长为5,7,8的三角形的最大角与最小角的和是( ) A. 090 B. 0120 C. 0135 D. 01503 在Rt △ABC 中,090C =,则B A sin sin 的最大值是_______________. 4 在△ABC 中,若=++=A c bc b a 则,222_________.5 已知△ABC 的三个内角分别为A ,B ,C ,向量)0,2()cos 1,(sin =-=n B B m 与向量 夹角的余弦角为.21(Ⅰ)求角B 的大小;(Ⅱ)求C A sin sin +的取值范围.6 △ABC 中,角A 、B 、C 的对边分别为a ,b ,c .(Ⅰ)若bc a c b 21222=-+,求cosA 的值; (Ⅱ)若A ∈[2π,23π],求A C B 2cos 2sin 2++的取值范围.7 在△ABC 中,求证:)cos cos (a A b B c a b b a -=-8 在锐角△ABC 中,求证:C B A C B A cos cos cos sin sin sin ++>++.。

高中数学-解三角形知识点汇总及典型例题

高中数学-解三角形知识点汇总及典型例题

解三角形的必备知识和典型例题及详解一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。

(1)三边之间的关系:a 2+b2=c 2。

(勾股定理) (2)锐角之间的关系:A +B=90°; (3)边角之间的关系:(锐角三角函数定义) s inA =cos B =c a ,cos A =sin B =c b ,tan A=ba。

2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C为其内角,a 、b 、c 分别表示A 、B 、C的对边。

(1)三角形内角和:A+B +C =π。

(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等R CcB b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a2=b 2+c 2-2bccos A; b 2=c2+a 2-2c acos B ; c 2=a 2+b2-2ab c osC 。

3.三角形的面积公式:(1)∆S =21ah a=21bh b =21ch c (ha、h b 、h c 分别表示a、b 、c 上的高); (2)∆S =21ab s inC =21bc si nA =21ac s inB;4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型: (1)两类正弦定理解三角形的问题:第1、已知两角和任意一边,求其他的两边及一角. 第2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题:第1、已知三边求三角.②当0116≈B 时,180()180(40116)24=-+≈-+=C A B ,0sin 20sin2413().sin sin40==≈a C c cm A 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形;(2)对于解三角形中的复杂运算可使用计算器 题型2:三角形面积例2.在∆ABC 中,sin cos A A +=22,AC =2,3=AB ,求A tan 的值和∆ABC 的面积。

必修5解三角形知识点和练习题(含答案)

必修5解三角形知识点和练习题(含答案)

解三角形1复习要点 1.正弦定理:2sin sin sin a b c R ABC===或变形:::sin :sin :sin a b c A B C =.2.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩ 或 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a cC ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩.3.(1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角. 2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题:1、已知三边求三角.2、已知两边和他们的夹角,求第三边和其他两角. 4.判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.5.解题中利用ABC ∆中A B C π++=,以及由此推得的一些基本关系式进行三角变换的运算,如:s in ()s in ,A B C +=c o s ()c o s ,A B C +=-ta n ()ta n ,A B C +=- sincos,cossin,tancot222222A B C A B C A B C +++===.高一数学测试题———正弦、余弦定理与解三角形一、选择题: 1、ΔABC 中,a=1,b=3, ∠A=30°,则∠B 等于( )A .60°B .60°或120°C .30°或150°D .120°2、符合下列条件的三角形有且只有一个的是 ( )A .a=1,b=2 ,c=3B .a=1,b=2 ,∠A=30°C .a=1,b=2,∠A=100°C .b=c=1, ∠B=45°3、在锐角三角形ABC 中,有 ( )A .cosA>sinB 且cosB>sinA B .cosA<sinB 且cosB<sinAC .cosA>sinB 且cosB<sinAD .cosA<sinB 且cosB>sinA4、若(a+b+c)(b+c -a)=3abc,且sinA=2sinBcosC, 那么ΔABC 是 ( )A .直角三角形B .等边三角形C .等腰三角形D .等腰直角三角形5、设A 、B 、C 为三角形的三内角,且方程(sinB -sinA)x 2+(sinA -sinC)x +(sinC -sinB)=0有等根,那么角B ( )A .B>60°B .B ≥60°C .B<60°D .B ≤60°6、满足A=45°,c=6 ,a=2的△ABC 的个数记为m,则a m 的值为( )A .4B .2C .1D .不定8、两灯塔A,B 与海洋观察站C 的距离都等于a(km), 灯塔A 在C 北偏东30°,B 在C 南偏东60°,则A,B 之间的相距 ( )A .a (km)B .3a(km) C .2a(km) D .2a (km)二、填空题:9、A 为ΔABC 的一个内角,且sinA+cosA=127, 则ΔABC 是______三角形.10、在ΔABC 中,A=60°, c:b=8:5,内切圆的面积为12π,则外接圆的半径为_____. 11、在ΔABC 中,若S ΔABC =41 (a 2+b 2-c 2),那么角∠C=______.12、在ΔABC 中,a =5,b = 4,cos(A -B)=3231,则cosC=_______.三、解答题:13、在ΔABC 中,求分别满足下列条件的三角形形状: ①B=60°,b 2=ac ;②b 2tanA=a 2tanB ; ③sinC=BA B A cos cos sin sin ++1、在A B C △中,已知内角A π=3,边23BC =.设内角B x =,周长为y .(1)求函数()y f x =的解析式和定义域;(2)求y 的最大值.2、在A B C 中,角,,A B C 对应的边分别是,,a b c ,若1sin ,2A =3sin 2B =,求::a b c3、在A B C 中,,a b c 分别为,,A B C ∠∠∠的对边,若2sin (cos cos )3(sin sin )A B C B C +=+, (1)求A 的大小;(2)若61,9a b c =+=,求b 和c 的值。

解三角形经典例题及解答

解三角形经典例题及解答

例 3、在 ABC中,b 3, B 600 , c 1,求a和A,C
解:∵ b c , sin C c sin B 1 sin 600 1
sin B sin C
b
3
2
b c, B 600 ,C B,C为锐角,C 300 , B 900
∴a b2 c2 2 例 4、 ABC中,c 6, A 450 , a 2,求b和B,C
正弦、余弦定理
知识回顾:
1、直角三角形中,角与边的等式关系:在 Rt ABC 中,设 BC=a,AC=b,AB=c,
根据锐角三角函数中正弦函数的定义,有 a sin A , b sin B ,又 sin C 1 c ,从
c
c
c
而在直角三角形 ABC 中, a b c .
sin A sin B sin C
2、当 ABC 是锐角三角形时,设边 AB 上的高是 CD,根据任意角三角函数的定义,
有 CD= a sin B bsin A ,则 a b ,同理可得 c b ,
sin A sin B
sin C sin B
从而 a b c .
sin A sin B sin C
3、正弦定理:在一个三角形中,各边和它所对角的 c.
2
22
证明:∵ a cos2 C c cos2 A 3b
2
22
∴ sin A1 cos C sin C 1 cos A 3sin B
2
2
2
即 sin A sin Acos C sin C sin C cos A 3sin B
sin C sin B sin A sin C
(3)正弦定理的基本作用为:
① 已 知 三 角 形 的 任 意 两 角 及 其 一 边 可 以 求 其 他 边 , 如 a bsin A ;

解三角形(总结+题+解析)

解三角形(总结+题+解析)

解三角形一.正弦定理:A a sin =B b sin =C csin =2R ,其中R 是三角形外接圆半径.正弦定理的如下变形常在解题中用到1.(1) a=2RsinA(2) b=2RsinB(3) c=2RsinC2.(1) sinA=a/2R(2) sinB=b/2R(3) sinC=c/2R3.a :b :c=sinA :sinB:sinC适用类型(1)AAS(2)SSA二.余弦定理:1. a^2 = b^2 + c^2 - 2·b ·c ·cosA2. b^2 = a^2 + c^2 - 2·a ·c ·cosB3. c^2 = a^2 + b^2 - 2·a ·b ·cosC余弦定理的如下变形常在解题中用到1. cosC = (a^2 + b^2 - c^2) / (2·a ·b)2. cosB = (a^2 + c^2 - b^2) / (2·a ·c)3. cosA = (c^2 + b^2 - a^2) / (2·b ·c )适用类型1.SSA2.SAS3.SSS三.余弦定理和正弦定理的面积公式S △ABC =21absinC=21bcsinA=21acsinB(常用类型:已知三角形两边及其夹角)判断解的个数判断三角形的形状有两种途径:(1)将已知的条件统一化成边的关系,用代数求和法求解(2)将已知的条件统一化成角的关系,用三角函数法求解三.解三角形的实际应用测量中相关的名称术语仰角:视线在水平线以上时,在视线所在的垂直平面内,视线与水平线所成的角叫做仰角。

俯角:视线在水平线以下时,在视线所在的垂直平面内,视线与水平线所成的角叫俯角方向角:从指定方向线到目标方向的水平角测距离的应用测高的应用(一)已知两角及一边解三角形例1已知在△ABC中,c=10,A=45°,C=30°,求a、b和B.∠B=180°-30°-45°=105°a=10sin45°/sin30°=10√2sin105°=sin(60+45)=√2/2(√3/2+1/2)=(√6+√2)/41/sin105=√6-√2b=10sin45°/sin105°=5√2(√6-√2)=10(√3-1)(二)已知两边和其中一边对角解三角形例2在△ABC中,已知角A,B,C所对的边分别为a,b,C,若a=2√3,b =√6,A=45°,求边长C由余弦定理,得b²+c²-2bccosA-a²=06+c²-2√3c-12=0c²-2√3c-6=0根据求根公式,得c=√3±3又c>0所以c=3+√3(三)已知两边及夹角,解三角形例3△ABC中,已知b=3,c=33,B=30°,求角A,角C和边a.解:由余弦定理得∴a2-9a+18=0,得a=3或6当a=3时,A=30°,∴C=120°当a=6时,由正弦定理∴A=90°∴C=60°。

解三角形的知识总结和题型归纳

解三角形的知识总结和题型归纳

解三角形的知识总结和题型归纳一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。

(1)三边之间的关系:a 2+b 2=c 2。

(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =ba。

2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。

(1)三角形内角和:A +B +C =π。

(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等R CcB b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。

3.三角形的面积公式:(1)∆S =21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)∆S =21ab sin C =21bc sin A =21ac sin B ;4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型:(1)两类正弦定理解三角形的问题:第1、已知两角和任意一边,求其他的两边及一角. 第2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题:第1、已知三边求三角.第2、已知两边和他们的夹角,求第三边和其他两角. 5.三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。

高考数学解三角形中的要素基础知识与典型例题讲解

高考数学解三角形中的要素基础知识与典型例题讲解

高考数学解三角形中的要素基础知识与典型例题讲解一、基础知识: 1、正弦定理:2sin sin sin a b cR A B C===,其中R 为ABC 外接圆的半径 正弦定理的主要作用是方程和分式中的边角互化。

其原则为关于边,或是角的正弦值是否具备齐次的特征。

如果齐次则可直接进行边化角或是角化边,否则不可行 例如:(1)222222sin sin sin sin sin A B A B C a b ab c +−=⇔+−= (2)cos cos sin cos sin cos sin b C c B a B C C B A +=⇒+=(恒等式) (3)22sin sin sin bc B Ca A= 2、余弦定理:2222cos a b c bc A =+−变式:(1)222cos 2b c a A bc+−=① 此公式通过边的大小(角两边与对边)可以判断出A 是钝角还是锐角 当222b c a +>时,cos 0A >,即A 为锐角;当222b c a +=(勾股定理)时,cos 0A =,即A 为直角; 当222b c a +<时,cos 0A <,即A 为钝角② 观察到分式为齐二次分式,所以已知,,a b c 的值或者::a b c 均可求出cos A(2)()()2221cos a b c bc A =+−+ 此公式在已知b c +和bc 时不需要计算出,b c 的值,进行整体代入即可3、三角形面积公式:(1)12S a h =⋅ (a 为三角形的底,h 为对应的高) (2)111sin sin sin 222S ab C bc A ac B ===(3)()12S a b c r =++⋅ (r 为三角形内切圆半径,此公式也可用于求内切圆半径)(4)海伦公式:()12S p a b c ==++(5)向量方法:()()22S a ba b=⋅−⋅ (其中,a b 为边,a b 所构成的向量,方向任意)证明:()2222222111sin sin 1cos 244S ab C S a b C a b C =⇒==−S ∴=cos a b ab C ⋅=∴ ()()22S a b a b =⋅−⋅坐标表示:()()1122,,,a x y b x y =,则122112S x y x y =− 4、三角形内角和A B C π++=(两角可表示另一角)。

解三角形的知识总结和题型归纳

解三角形的知识总结和题型归纳

解三角形的知识总结和题型归纳一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。

(1)三边之间的关系:a 2+b 2=c 2。

(勾股定理)(2)锐角之间的关系:A +B =90°;(3)边角之间的关系:(锐角三角函数定义)sin A =cos B =c a ,cos A =sin B =c b ,tan A =ba。

2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。

(1)三角形内角和:A +B +C =π。

(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等R CcB b A a 2sin sin sin ===(R 为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C 。

3.三角形的面积公式:(1)∆S =21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高);(2)∆S =21ab sin C =21bc sin A =21ac sin B ;4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型:(1)两类正弦定理解三角形的问题:第1、已知两角和任意一边,求其他的两边及一角.第2、已知两角和其中一边的对角,求其他边角.(2)两类余弦定理解三角形的问题:第1、已知三边求三角.第2、已知两边和他们的夹角,求第三边和其他两角.5.三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。

解三角形知识点与大题20道专练(基础题)(解析版)

解三角形知识点与大题20道专练(基础题)(解析版)

专题1解三角形知识点与大题20道专练(基础题)(解析版) 一,三角函数sin y x =cos y x =tan y x =图象定义域 RR,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π 2ππ 奇偶性奇函数偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+ ⎪⎝⎭()k ∈Z 上是增函数.对称性 对称中心()(),0k k π∈Z对称轴()2x k k ππ=+∈Z对称中心(),02k k ππ⎛⎫+∈Z ⎪⎝⎭ 对称轴()x k k π=∈Z 对称中心(),02k k π⎛⎫∈Z ⎪⎝⎭ 无对称轴1. 两角和与差的正弦、余弦、正切公式: (1)βαβαβαcos sin cos sin )sin(+=+函数性 质(2)βαβαβαcos sin cos sin )sin(-=- (3)βαβαβαsin sin cos cos )cos(-=+ (4)βαβαβαsin sin cos cos )cos(+=- (5)βαβαβαtan tan 1tan tan )tan(-+=+ ⇒ ()()tan tan tan 1tan tan αβαβαβ+=+-(6)βαβαβαtan tan 1tan tan )tan(+-=- ⇒ ()()tan tan tan 1tan tan αβαβαβ-=-+(7) sin cos a b αα+=)αϕ+(其中,辅助角ϕ所在象限由点(,)a b 所在的象限决定,sin tan baϕϕϕ===,该法也叫合一变形). (8))4tan(tan 1tan 1θπθθ+=-+ )4tan(tan 1tan 1θπθθ-=+-2. 二倍角公式(1)a a a cos sin 22sin =(2)1cos 2sin 21sin cos 2cos 2222-=-=-=a a a a a(3)aaa 2tan 1tan 22tan -=3. 降幂公式:(1)22cos 1cos 2a a +=(2) 22cos 1sin 2a a -=4. 升幂公式(1)2cos 2cos 12αα=+ (2)2sin2cos 12αα=-(3)2)2cos 2(sin sin 1ααα±=± (4)αα22cos sin 1+= (5)2cos2sin2sin ααα=5,辅角公式)sin(cos sin 22ϕθθθ++=+b a b a 其中2222sin ,cos ba b ba a +=+=ϕϕ三,平面向量1平面向量的坐标运算(1)向量加法、减法、数乘及向量的模设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21. (2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=x 2-x 12+y 2-y 12.6.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a ∥b ⇔x 1y 2-x 2y 1=0.2.平面向量的数量积已知两个非零向量a 与b ,它们的夹角为θ,则数量|a ||b |cos θ叫做a 与b 的数量积(或内积),记作a ·b =|a ||b |cos θ.规定:零向量与任一向量的数量积为__0__.两个非零向量a 与b 垂直的充要条件是 a ·b =0,两个非零向量a 与b 平行的充要条件是 a ·b =±|a||b|.3.平面向量数量积的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 4.平面向量数量积的重要性质(1)e ·a =a ·e =|a |cos θ; (2)非零向量a ,b ,a ⊥b ⇔a ·b =0;(3)当a 与b 同向时,a ·b =|a||b|;当a 与b 反向时,a ·b =-|a||b|,a ·a =|a |2,|a |=a ·a ; (4)cos θ=a ·b|a||b|; (5)|a ·b |__≤__|a||b|.5.平面向量数量积满足的运算律(1)a ·b =b ·a (交换律); (2)(λa )·b =λ(a ·b )=a ·(λb )(λ为实数); (3)(a +b )·c =a ·c +b ·c .6.平面向量数量积有关性质的坐标表示设向量a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2,由此得到 (1)若a =(x ,y ),则|a |2=x 2+y 2或|a |=x 2+y 2.(2)设A (x 1,y 1),B (x 2,y 2),则A 、B 两点间的距离|AB |=|AB →|=x 2-x 12+y 2-y 12.(3)设两个非零向量a ,b ,a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0.四,解三角形 1正弦定理:1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即R C cB b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 2.变形:1)sin sin sin sin sin sin a b c a b cC C ++===A +B +A B .2)化边为角:C B A c b a sin :sin :sin ::=;;sin sin B A b a = ;sin sin C B c b = ;sin sin C A c a =3)化边为角:C R c B R b A R a sin 2,sin 2,sin 2===4)化角为边: ;sin sin b a B A =;sin sin c b C B =;sin sin c aC A = 5)化角为边: RcC R b B R a A 2sin ,2sin ,2sin ===三角形面积1.B ac A bcC ab S ABC sin 21sin 21sin 21===∆余弦定理1.余弦定理:三角形中任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的2倍,即A bc c b a cos 2222-+= B ac c a b cos 2222-+= C ab b a c cos 2222-+=2.变形:bc a c b A 2cos 222-+=ac b c a B 2cos 222-+=ab c b a C 2cos 222-+=注意整体代入,如:21cos 222=⇒=-+B ac b c a利用余弦定理判断三角形形状:设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若,,所以为锐角②若为直角A a b c ⇔=+222③若, 所以为钝角,则是钝角三角形三角形中常见的结论三角形三角关系:A+B+C=180°;C=180°—(A+B); 三角形三边关系:两边之和大于第三边:,,;两边之差小于第三边:,,;在同一个三角形中大边对大角:B A b a B A sin sin >⇔>⇔> 4) 三角形内的诱导公式:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-)2sin()2cos()22cos()22sin()22tan(2tan C C C C C B A =--=-=+πππ7) 三角形的五心:垂心——三角形的三边上的高相交于一点 重心——三角形三条中线的相交于一点 外心——三角形三边垂直平分线相交于一点 内心——三角形三内角的平分线相交于一点旁心——三角形的一条内角平分线与其他两个角的外角平分线交于一点一、解答题1.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos cos 2cos a C c A b B +=. (1)求B ;(2)若23b =ABC 的面积为53,求ABC 的周长. 【答案】(1)3B π=;(2)6223【分析】(1)根据正弦定理以及两角和的正弦公式即可求出1cos 2B =,进而求出B ; (2)根据余弦定理可得到()2312a b ab +-=,再根据三角形面积公式得到20ab =,即可求出62a b +=ABC 的周长.【详解】解:(1)cos cos 2cos a C c A b B +=,由正弦定理得:sin cos sin cos 2sin cos A C C A B B +=, 整理得:()sin 2sin cos sin A C B B B +==, ∵在ABC 中,0B π<<, ∴sin 0B ≠,即2cos 1B =, ∴1cos 2B =, 即3B π=;(2)由余弦定理得:(222122a c ac =+-⋅,∴()2312a c ac +-=,∵1sin 2S ac B ===, ∴20ac =,∴()26012a c +-=,∴a c +=∴ABC 的周长为2.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c cos sin B b A = (1)求角B 的大小;(2)若cos 3A =,求sin(2)A B -的值; (3)若2b =,2c a =,求边a 的值.【答案】(1)3B π=;(2(3.【分析】(1sin B B =,结合三角形内角性质即可求角B . (2)由两角差、倍角公式展开sin(2)A B -,根据已知条件及(1)的结论即可求值. (3)根据余弦定理列方程即可求a 的值. 【详解】(1cos sin sin A B B A =,而A 为ABC 的内角,sin B B =,即tan B =0B π<<,可得3B π=,(2)2sin(2)sin 2cos cos 2sin 2sin cos cos (2cos 1)sin A B A B A B A A B A B -=-=--,∵cos 3A =,0A π<<,可得sin 3A =,而1cos ,sin 22B B ==,∴sin(2)91818A B -=+=, (3)由余弦定理知:2222cos a c ac B b +-=,又2b =,2c a =,1cos 2B =,∴234a =,可得3a =.3.已知()2cos 2cos 1f x x x x =+-. (1)求()f x 的最大值及该函数取得最大值时x 的值;(2)在ABC 中,,,a b c 分别是角,,A B C 所对的边,1a =,S 是ABC 的面积,22A f ⎛⎫=⎪⎝⎭,比较33b c +的大小.【答案】(1)当,6x k k Z ππ=+∈时,()f x 有最大值2;(2)33b c +≥【分析】(1)先化简函数()f x ,再根据正弦函数的性质即可求出答案;(2)先代入求出角A ,再根据立方和公式与面积公式化简代数式,再根据基本不等式即可比较大小. 【详解】解:(1)∵()2cos 2cos 1f x x x x =+-2cos2x x =+2sin 26x π⎛⎫=+ ⎪⎝⎭,∴当22,62x k k Z πππ+=+∈,即,6x k k Z ππ=+∈时,()f x 有最大值2;(2)由题意可得2sin 226A f A π⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭, ∴sin 16A π⎛⎫+= ⎪⎝⎭,∴62A ππ+=,∴3A π=,由余弦定理2222cos a b c bc A =+-,代入数据得221b c bc +-=,又∵116sin1622 33bcASbc⋅==,∴()()33221623Sb c b c b c bc bc+-=++--()2b c bc=+-220bc bc≥-=,当且仅当b c=时取等号,∴33163Sb c+≥.【点睛】关键点点睛:本题考查三角函数与解三角形,第一问的解题关键在于化简函数解析式,第二问的关键在于熟记立方和公式与基本不等式求最值,考查了学生的运算求解能力,属于中档题.4.如图所示,△ABC中,AB=AC=2,BC=23.(1)求内角B的大小;(2)设函数f(x)=2sin(x+B),求f(x)的最大值,并指出此时x的值.【答案】(1)6Bπ=,(2)f(x)的最大值为2,此时2,3x k k Zππ=+∈【分析】(1)利用余弦定理求解即可;(2)利用正弦函数的性质直接求其最大值【详解】解:(1)因为△ABC中,AB=AC=2,BC3所以2222222(23)23cos22223AB BC ACBAB BC+-+-===⋅⨯⨯因为(0,)Bπ∈,所以6Bπ=,(2)由(1)可知()2sin()6f x xπ=+,所以当2,62x k k Z πππ+=+∈时,()f x 取最大值2,即2,3x k k Z ππ=+∈【点睛】此题考查余弦定理的应用,考查正弦函数的性质的应用,属于基础题5.在△ABC cos B =b sin A . (1)求∠B ;(2)若b =2,c =2a ,求△ABC 的面积.【答案】(1)3π;(2)3. 【分析】(1)由已知结合正弦定理及和差角公式进行化简即可求解tan B ,进而可求B ; (2)由余弦定理及已知条件可求a ,c 的值,然后结合三角形的面积公式可求. 【详解】解:(1)在△ABC 中,由正弦定理,cos sin B b A =,cos sin sin A B B A =, 因为sin A ≠0,sin B B =,所以tan B = 因为0<B <π, 所以3B π=,(2)因为b =2,c =2a ,由余弦定理b 2=a 2+c 2﹣2ac cos B , 可得22144222a a a a =+-⨯⨯,所以a 3=,c 3=,所以11223323ABCSacsinB ==⨯⨯=. 【点睛】此题考查正、余定理的应用,考查三角恒等变换有应用,考查三角形面积公式的应用,属于中档题 6.在ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且22(2)(2)a b c b c b c =-+-.(Ⅰ)求角A 的大小;(Ⅱ)若2cos b c A =,试判断ABC 的形状. 【答案】(Ⅰ)60A =︒;(Ⅱ)等边三角形. 【分析】(1)由已知三边关系,结合余弦定理即可求角A ;(2)由正弦定理的边角互化,应用两角和正弦公式可得sin()0A C -=,结合(1)的结论即可知ABC 的形状. 【详解】(Ⅰ)∵22(2)(2)a b c b c b c =-+-,整理得222bc b c a =+-,∴2221cos 22b c a A bc +-==, ∴60A =︒.(Ⅱ)由正弦定理,得sin 2sin cos B C A =,而()B A C π=-+,∴sin()2sin cos sin cos cos sin A C C A A C A C +==+,即sin cos cos sin 0A C A C -=, ∴sin()0,A C A C -==, ∴60A B C ===︒, ∴ABC 为等边三角形. 【点睛】本题考查了正余弦定理,根据三边关系应用余弦定理求角,由正弦定理的边角互化、两角和正弦公式判断三角形形状,属于基础题.7.在ABC ∆中,已知sin()sin sin()A B B A B +=+-. (1)求角A ;(2)若7BC =,·20AB AC =,求||AB AC +.【答案】(1)3A π=;(2【分析】(1)将已知等式移项变形并利用两角和与差的正弦函数公式化简,整理后根据sin B 不为0,得出cos A 的值,由A 为三角形的内角,利用特殊角的三角函数值即可求出A 的度数;(2)利用余弦定理列出关系式222||||2?·cos BC AB AC AB AC A =+-,将已知条件利用平面向量的数量积运算法则化简后代入求出22||AB AC +的值,把所求式子平方并利用完全平方公式展开,将各自的值代入开方即可求出值. 【详解】(1)原式可化为:sin sin()sin()B A B A B =+--sin cos cos sin sin cos cos sin 2cos sin A B A B A B A B A B =+-+=,(0,)B π∈,sin 0B ∴>,1cos 2A ∴=, 又(0,)A π∈,3A π∴=;(2)由余弦定理,得222||||2cos BC AB AC AB AC A =-⋅+,7BC =,···cos 20AB AC AB AC A ==, 22||89AB AC ∴+=,222||||28940129AB AC AB AC AB AC +=++=⋅+=, 129AB AC ∴+=.【点睛】此题考查了两角和与差的正弦函数公式,考查了平面向量的数量积运算法则,以及向量模的计算,熟练掌握计算公式及法则是解本题的关键,属于基础题. 8.若ABC 的面积为22,1,6b c ==A ∠为锐角. (1) 求cos A 的值; (2) 求sin 2sin AC的值. 【答案】(1)6cos A =(2)sin 223sin A C =【分析】(1)根据面积公式求出sinA,再求出cosA, (2)先用余弦定理求出边a ,再将式子化简sin22sin cos 2cos sin sin A A A aA C C c⋅==⋅,求解即可. 【详解】(1)因为ABC 2所以 11sin 1sin 222ABCSbc A A ==⨯=,所以sin 3A = . 因为 ABC 中,A ∠为锐角,所以cos A ==. (2)在ABC 中,由余弦定理,222222cos 1213a b c bc A =+-=+-⨯=,所以a = 由正弦定理=sin sin a c A C , 所以sin =sin A a C c.所以sin22sin cos 2cossin sin 33A A A a A C C c ⋅==⋅==. 【点睛】本题考查了三角形的面积以及正余弦定理,公式的熟练运用是解题的关键,属于基础题.9. 已知0ϕπ≤<,函数2()cos(2)sin 2f x x x ϕ=++. (Ⅰ)若6π=ϕ,求()f x 的单调递增区间; (Ⅱ)若()f x 的最大值是32,求ϕ的值.【答案】(Ⅰ)2[,]36k k ππππ--,k Z ∈;(Ⅱ)2ϕπ=. 【解析】(Ⅰ)由6π=ϕ,可先由两角和差正弦公式、二倍角公式将函数解析式化简为()11cos 2232f x x π⎛⎫=++ ⎪⎝⎭,再根据余弦函数cos y x =的单调递增区间[]()2,2k k k π-ππ∈Z ,求出函数()f x 的单调递增区间;(Ⅱ)利用两角和余弦公式、二倍角公式整理得()11cos2sin222f x x x ϕϕ⎫=-+⎪⎪⎝⎭,由函数最大值为32,且对于sin cos y a x b x =+0ϕπ≤<,从而问题可得解.试题解析:(Ⅰ)由题意()11cos2sin2442f x x x =-+ 11cos 2232x π⎛⎫=++ ⎪⎝⎭由2223k x k ππππ-≤+≤,得236k x k ππππ-≤≤-. 所以单调()f x 的单调递增区间为2,36k k ππππ⎡⎤--⎢⎥⎣⎦,k Z ∈. (Ⅱ)由题意()11cos2sin222f x x x ϕϕ⎫=-+⎪⎪⎝⎭,由于函数()f x 的最大值为32,即221cos 1222ϕϕ⎛⎫⎛⎫-+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 从而cos 0ϕ=,又0ϕπ≤<, 故2πϕ=.10.在ABC 中,角,,A B C 的对边分别为,,a b c ,且满足1cos 2a b c B +=⋅. (1)求角C ;(2)若2,3a b ==,求ABC 外接圆的半径.【答案】(1)23C π=;(2)3. 【分析】(1)利用正弦定理边化角公式可得sin si c 1n sin os 2A B C B +=,再将()sin sin A C B =+ 整理可得1cos 2C =-2,3C π= (2)根据余弦定理可得c =再根据正弦定理求出2sin cR C=,即可得R 【详解】解:(1)由正弦定理知sin si c 1n sin os 2A B C B += 有sin cos cos s i 1in sin s n cos 2B C B C B C B ++=,且sin 0,(0,)B C π≠∈所以1cos 2C =-2,3C π=(2)2222cos 19,c a b ab C c ==+=-所以2sin c R R C ====【点睛】本题考查正弦定理和余弦定理的应用,属于基础题.11.设ABC中,()cos cos cos 0C A A B +=,内角A 、B 、C 对应的对边长分别为a 、b 、c .(1)求角B 的大小;(2)若2248a c +=,求ABC 面积S 的最大值,并求出S 取得最大值时b 的值.【答案】(1)π3B =(2)面积S b =【分析】(1)在三角形中,()cos cos cos cos sin sin C A B A B A B =-+=-+,结合条件可得π2sin sin 03A B ⎛⎫-= ⎪⎝⎭,由此可求出答案;(2)由2248a c +=可得2ac ≤,则11sin 222S ac B =≤⋅=,此时2a =,1c =,再由余弦定理即可求出答案. 【详解】解:(1)∵()cos cos cos cos sin sin C A B A B A B =-+=-+,∴()cos cos cos sin cos cos C A A B A B A B +=π2sin sin 03A B ⎛⎫=-= ⎪⎝⎭, ∵sin 0A >,0πB <<,∴πsin 03B ⎛⎫-= ⎪⎝⎭,则π3B =;(2)因a ,0c >,2248a c +=,2244a c ac +≥,故2ac ≤,于是,11sin 22222S ac B =≤⋅⋅=,∴ABC 面积S 且当S 取得最大值时,2ac =,2a c =,可得2a =,1c =,由余弦定理,2222cos 3b a c ac B =+-=,即得b =【点睛】本题主要考查余弦定理的应用,考查三角形的面积公式,考查重要不等式的应用,属于基础题.12.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若sin 8sin a B A =,π4C =,22265a cb ac +-=. (1)求c 的长;(2)求πcos()6A-的值.【答案】(1)52;(2)72+6.【分析】(1)先由正弦定理得8b=,再结合余弦定理求出4sin5B=,然后结合sin sinc bC B=求解即可;(2)由两角和、差的余弦公式求解即可.【详解】(1)由sin8sina B A=,结合正弦定理,得8ab a=,所以8b=,因为22265a cb ac+-=,所以222635cos225aca c bBac ac+-===.因为0πB<<,所以2234sin1cos1()55B B=-=-=,由正弦定理sin sinc bC B=,可得28sin25 2.4sin5b CcB⨯⋅===(2)在ABC中,πA B C++=,所以π()A B C=-+,于是πππcos cos()cos()cos cos sin sin444A B C B B B=-+=-+=-+,又3cos5B=,4sin5B=,故32422cos55A=-⨯+⨯=,因为0πA<<,所以272sin1cosA A=-=.因此πππ2372172+6cos()cos cos sin sin6662A A A-=+=⨯+⨯=.【点睛】本题考查了正弦定理及余弦定理,重点考查了两角和、差的余弦公式,属中档题.13.如图,在ABC中,2,23AB AC BC===,点D在BC边上,45ADC∠=︒(1)求BAC∠的度数;(2)求AD的长度.【答案】(1)120BAC︒∠=(2)2AD=【分析】(1)ABC ∆中直接由余弦定理可得cos BAC ∠,然后得到BAC ∠的度数; (2)由(1)知30ACB ∠=︒,在ADC ∆中,由正弦定理可直接得到AD 的值. 【详解】解:(1)在ABC ∆中,2AB AC ==,BC =∴由余弦定理,有2221cos 2?2AB AC BC BAC AB AC +-∠==-,∴在ABC ∆中,120BAC ∠=︒;(2)由(1)知30ACB ∠=︒, 在ADC ∆中,由正弦定理,有sin30sin 45AD AC=︒︒,∴sin30sin 45AC AD ︒==︒【点睛】本题主要考查正弦定理和余弦定理的应用,考查了计算能力,属于基础题. 14.在ABC 中,角,,A B C 的对边分别为,,a b c ,已知274sin cos 222A B C +-=. (1)求角C 的大小;(2)若三角形的外接圆半径为2,求+a b 最大值.【答案】(1)3π;(2)【分析】(1)由三角形的内角和公式及二倍角公式整理可得21cos 742cos 122CC ,解方程可求cos C ,进而求角C .(2)由(1)得23A B π+=,代入化简可得sin sin 6A A B π⎛++=⎫ ⎪⎝⎭,利用正弦函数的性质可求出sin sin A B +的最大值,最后利用正弦定理求得+a b 最大值.【详解】 解: (1),,A B C 为三角形的内角.A B C π∴++=,274sin cos222A BC , 274cos cos222CC 21cos 742cos 122CC 即212cos 2cos 02C C ,1cos 2C ∴=,0C π<<, 3C π∴=(2)由(1)得23A B π+=, 又因为三角形的外接圆半径为2R =, 所以()2sin sin a b R A B +=+,2sin si in 3s n n si A A B A π⎛⎫+-= ⎝+⎪⎭33sin cos 3sin 226A A A π⎛⎫=+=+ ⎪⎝⎭ 当62A ππ+=,时即3A π=,sin sin A B +取得最大值3.此时223a b +=⨯⨯, 所以+a b 的最大值为43. 【点睛】本题主要考查了利用二倍角公式对三角函数式进行化简、求值还考查了辅助角公式的应用及正弦函数的性质、正弦定理的应用,属于基础知识的简单综合运用,属于中档试题.15.如图,在平面四边形ABCD 中,2AB =,3BC =,点E 在线段AC 上,且2AE EC =,43BE =.(1)求AC 的长;(2)若ADC 60∠=,3AD =,求ACD ∠的大小.【答案】(1)3;(2)30.ACD ︒∠=.【分析】(1)在ABE △中,使用正弦定理,在CBE △中,使用余弦定理可求AC. (2) 在ADC ∆中,由正弦定理可得sin ACD ∠,进而可求角ACD ∠. 【详解】解:()1设3AC z =,在ABE △中,由余弦定理可得()21624cos 3z BEA +-∠=在CBE △中,由余弦定理可得2169cos 3z BEC +-∠=由于180BEA BEC ︒∠+∠=,所以cos cos BEA BEC ∠=-∠()221616249z z +-+-=整理可得21664180z +--= 解得z=1(负值舍去),所以 3.AC =()2在ADC ∆中,由正弦定理可得sin sin AC AD ADC ACD=∠∠sin 2ACD =∠,所以1sin 2ACD ∠=. 因为AD<AC ,所以60,ACD ︒∠<所以30.ACD ︒∠=【点睛】本题主要考查正弦定理,余弦定理的应用,考查数学运算能力.16.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知ABC ∆的面积2224b c aS +-=.(Ⅰ)求A ;(Ⅱ)作角B 的平分线交边AC 于点O ,记AOB ∆和BOC ∆的面积分别为1S ,2S ,求12S S 的取值范围. 【答案】(Ⅰ)4A π=;(Ⅱ).【分析】(Ⅰ)由1sin 2S bc A =结合2224b c a S +-=整理可得sin cos A A =,问题得解.(Ⅱ)整理12S S 可得:12Sc S a =,结合正弦定理得:c C a=,问题得解.【详解】解:(Ⅰ)2221sin 24b c a S bc A +-== 222sin cos 2b c a A A bc+-⇒==.因此tan 1A =,又()0,A π∈,所以4A π=.(Ⅱ)121sin 21sin 2c BO ABO S c S aa BO CBO ⋅∠==⋅∠,由正弦定理,知sin sin c CC a A==. 因为(]30,sin 0,14C C π⎛⎫∈⇒∈ ⎪⎝⎭,所以(12S C S =∈. 【点睛】本题主要考查了三角形面积公式及正、余弦定理,考查方程思想及转化思想,考查计算能力,属于基础题.17.在△ABC 中,A 为锐角,且sinA =35. (1)若AC =5,BC =3,求AB 的长; (2)若tan(A ﹣B)=12-,求tanC 的值. 【答案】(1)AB 的长为4;(2)tanC 的值为112. 【分析】(1)由A 为锐角,且sinA =35,得cos A ,利用AC =5,BC =3,及余弦定理,求出AB 的长;(2)tan(A ﹣B)=12-,求出tan B ,利用三角形内角关系,求tan C 【详解】(1)由A 为锐角,且sinA =35,得4cos 5A =,又因为AC =5,BC =3,由余弦定理得:2222cos BC AB AC AB AC A =+-⋅,即28160AB AB -+=,所以4AB =;(2)由(1),3tan 4A =,又tan tan 1tan()1tan tan 2A B A B A B --==-+⋅,得tan 2B =,所以32114tan tan[()]32124C A B π+=-+=-=-⨯【点睛】本题考查利用余弦定理解三角形,在已知两边和其中一边的对角时,正弦定理余弦定理都可以解三角形;三角形内角的三角函数问题要注意三角形内角的几何性质18.如图,在梯形ABCD 中,90A D ∠=∠=,M 为AD 上一点,22AM MD ==,60BMC =∠.(1)若60AMB ∠=,求BC ;(2)设DCM θ∠=,若4MB MC =,求tan θ. 【答案】(1)23BC =2)3tan θ= 【分析】(1)先由题中条件求出MC MB ,,再由余弦定理即可求解;(2)先由DCM θ∠=,表示出ABM ∠,进而可用θ表示出MC ,MB ,再由4MB MC =,即可求解. 【详解】解:(1)由60BMC ∠=,60AMB ∠=,得60CMD ∠=. 在Rt ABM 中,24MB AM ==;在Rt CDM 中,22MC MD ==. 在MBC 中,由余弦定理得,2222cos 12BC BM MC BM MC BMC =+-⋅⋅∠=,23BC =(2)因为DCM θ∠=,所以60ABM θ∠=-,060θ<<. 在Rt MCD 中,1sin MC θ=; 在Rt MAB 中,()2sin 60MB θ=-,由4MB MC =得,()260sin sin θθ-=, 3cos θsin θsin θ-=,即2sin θ3cos θ=,整理可得3tan 2θ=.【点睛】本题主要考查解三角形的问题,常用余弦定理和正弦定理等来处理,属于基础题型.19.在ABC ∆中,tan 3tan A B =-,cos cos b C c B +=.(1)求角C 的大小;(2)设2()sin()cos ()2x B f x x A +=++,其中5[0,]6x π∈,求()f x 取值范围.【答案】(1)6π;(2)⎡-⎢⎣⎦. 【分析】(1)由tan 3tan A B =-,得2222c a b =-,因为cos cos b C c B +=,所以a =解得c b ==,由余弦定理,得cos C ,得C ;(2)由(1)6B C π==,12A π=,()31cos 262f x x π⎛⎫=++ ⎪⎝⎭,因为50,6x π⎡⎤∈⎢⎥⎣⎦,得()f x 取值范围 【详解】 (1)因为tan 3tan A B =-,所以sin cos 3sin cos A B B A =-,所以2222c a b =- ,又因为cos cos b C c B +=,所以a = ,解得3c b a ==,由余弦定理得cos C =,因为()0,C π∈,所以6C π=.(2)()31sin 42f x x x =-+ 31cos 262x π⎛⎫=++ ⎪⎝⎭, 因为50,6x π⎡⎤∈⎢⎥⎣⎦,所以,66x πππ⎡⎤+∈⎢⎥⎣⎦,所以()f x 取值范围为21,4⎡⎤-⎢⎥⎣⎦. 【点睛】本题考查了正弦定理,余弦定理,及三角恒等变换,三角函数求值域,要根据题设条件判断选择正弦定理还是余弦定理解决三角形中的边角关系,三角恒等变换时一看“角”,二看三角函数名,三看式子的形式,三角函数求值域要将函数用一个自变量表示,再根据定义域求值域20.已知在ABC ∆中,D 为BC中点,cos ,cos 510BAD CAD ∠=∠=, (Ⅰ)求BAC ∠的值; (Ⅱ)求AC AD的值. 【答案】(Ⅰ)4π;【解析】 试题分析:(1)先根据题意可得sin BAD CAD ∠=∠=,再由BAC ∠=BAD CAD ∠+∠两边同时取余弦即可求解(1)根据三角形正弦定理可得sin sin 4BCAC B π=,sin sin BD AD BAD B=∠,两式相比即可得sin 4sin BCAC BD ADBAD π=∠,再根据2BC BD =化简求解即可 试题解析:(Ⅰ)cos ,cos ,510BAD CAD ∠=∠= ∴在ABC ∆中,,BAD CAD ∠∠为锐角,sin 510BAD CAD ∴∠=∠= ()cos cos 2BAC BAD CAD ∠=∠+∠== 0,BAC π<∠<.4BAC π∴∠=(Ⅱ)在ABC ∆中sin sin 4BCAC B π=,在ABD ∆中sin sin BD AD BAD B=∠ sin 4sin BCAC BD ADBAD π=∠,又2BC BD =,AC AD ∴=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解三角形的必备知识和典型例题及习题解三角形的必备知识和典型例题及习题一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。

(1)三边之间的关系:a 2+b 2=c 2。

(勾股定理)(2)锐角之间的关系:A +B =90°;(3)边角之间的关系:(锐角三角函数定义)sin A =cos B =c a ,cos A =sin B =c b ,tan A =b a 。

2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。

(1)三角形内角和:A +B +C =π。

(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等R C c B b A a 2sin sin sin ===(R 为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。

3.三角形的面积公式:(1)∆S =21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、(2)判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.6.求解三角形应用题的一般步骤:(1)分析:分析题意,弄清已知和所求;(2)建模:将实际问题转化为数学问题,写出已知与所求,并画出示意图;(3)求解:正确运用正、余弦定理求解;(4)检验:检验上述所求是否符合实际意义。

二、典例解析题型1:正、余弦定理题型2:三角形面积例2.在∆ABC中,sin cosA A+=22,AC=2,3=AB,求Atan的值和∆ABC的面积。

点评:本小题主要考查三角恒等变形、三角形面积公式等基本知识,着重数学考查运算能力,是一道三角的基础试题。

两种解法比较起来,你认为哪一种解法比较简单呢?题型3:三角形中的三角恒等变换问题例3.在△ABC中,a、b、c分别是∠A、∠B、∠C 的对边长,已知a、b、c成等比数列,且a2-c2=ac-bc,求∠A的大小及c Bb sin的值。

分析:因给出的是a 、b 、c 之间的等量关系,要求∠A ,需找∠A 与三边的关系,故可用余弦定理。

由b 2=ac 可变形为c b 2=a ,再用正弦定理可求c B b sin 的值。

解法一:∵a 、b 、c 成等比数列,∴b 2=ac 。

又a 2-c 2=ac -bc ,∴b 2+c 2-a 2=bc 。

在△ABC 中,由余弦定理得:cos A =bc a c b 2222-+=bc bc 2=21,∴∠A =60°。

在△ABC 中,由正弦定理得sin B =a A b sin ,∵b 2=ac ,∠A =60°, ∴ac b c B b ︒=60sin sin 2=sin60°=23。

解法二:在△ABC 中, 由面积公式得21bc sin A =21ac sin B 。

∵b 2=ac ,∠A =60°,∴bc sin A =b 2sin B 。

∴cB b sin =sin A =23。

评述:解三角形时,找三边一角之间的关系常用余弦定理,找两边两角之间的关系常用正弦定理。

题型4:正、余弦定理判断三角形形状例4.在△ABC 中,若2cos B sin A =sinC ,则△ABC 的形状一定是( )A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形答案:C解析:2sin A cos B =sin C =sin (A +B )=sinAcosB+cosAsinB∴sin (A -B )=0,∴A =B 另解:角化边点评:本题考查了三角形的基本性质,要求通过观察、分析、判断明确解题思路和变形方向,通畅解题途径题型5:三角形中求值问题例5.ABC ∆的三个内角为A B C 、、,求当A 为何值时,cos 2cos 2B CA ++取得最大值,并求出这个最大值。

解析:由A+B+C=π,得B+C 2=π2 -A 2,所以有cos B+C 2=sin A 2。

cosA+2cos B+C 2 =cosA+2sin A 2 =1-2sin 2A 2 + 2sin A 2=-2(sin A 2 - 12)2+ 32; 当sin A 2 = 12,即A=π3 时, cosA+2cos B+C 2取得最大值为32。

点评:运用三角恒等式简化三角因式最终转化为关于一个角的三角函数的形式,通过三角函数的性质求得结果。

题型6:正余弦定理的实际应用三、思维总结1.解斜三角形的常规思维方法是:(1)已知两角和一边(如A、B、C),由A+B+C= π求C,由正弦定理求a、b;(2)已知两边和夹角(如a、b、c),应用余弦定理求c边;再应用正弦定理先求较短边所对的角,然后利用A+B+C = π,求另一角;(3)已知两边和其中一边的对角(如a、b、A),应用正弦定理求B,由A+B+C = π求C,再由正弦定理或余弦定理求c边,要注意解可能有多种情况;(4)已知三边a、b、c,应余弦定理求A、B,再由A+B+C = π,求角C。

2.三角学中的射影定理:在△ABC 中,AcCab coscos⋅+⋅=,…3.两内角与其正弦值:在△ABC 中,BABA sinsin<⇔<,…4.解三角形问题可能出现一解、两解或无解的情况,这时应结合“三角形中大边对大角定理及几何作图来帮助理解”。

正余弦定理应用一、正弦已知△ABC中,a=2,b=3,B=60°,那么角A等于______已知△ABC中,a=x,b=2,B=45°,若该三角形有两个解,则x的取值范围是_______在ABC中,a=15,b=10,A=60°,则cos B=________△ABC的三内角A、B、C的对边边长分别为a、b、c.若a=52b,A=2B,则cos B=_____在△ABC中,角A、B、C所对的边分别为a、b、c.若(3b-c)cos A=a cos C,则cos A=_______在锐角△ABC中,a、b、c分别是三内角A、B、C的对边,且B=2A,则ba的取值范围是___二、余弦已知ABC ∆中,︒=∠==60,3,4BAC AC AB ,则=BC ————在ABC ∆中,A 、B 、C 所对的边分别是a 、b 、c ,已知2222a b c ab +=,则C =———若ABC ∆的三个内角满足sin :sin :sin 5:11:13A B C =,则ABC ∆是______ 若△ABC 的内角A 、B 、C 所对的边a 、b 、c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为____在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为_________在△ABC 中,sin 2A ≤sin 2B +sin 2C -sin B sin C ,则A 的取值范围是__________在△ABC 中,a, b, c 分别为内角A, B, C 的对边,且2sin (2)sin (2)sin .a A a c B c b C =+++ (Ⅰ)求A 的大小;(Ⅱ)若sin sin 1B C +=,试判断ABC ∆的形状.(3)求sin sin B C +的最大值.三、综合在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若,,a b c 成等差数列,030B =,ABC ∆的面积为32,则b = 在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .若a 2-b 2=3bc ,sin C =23sin B ,则A =________在ABC ∆中,角A 、B 、C 所对应的边分别为a 、b 、c ,若角A 、B 、C 依次成等差数列,且1,3,ABC a b S ∆==则=__________在△ABC 中,内角A 、B 、C 对边的边长分别是a 、b 、c .已知c =2,C =π3. (1)若△ABC 的面积等于3,求a 、b 的值;(2)若sin C +sin(B -A )=2sin2A ,求△ABC 的面积.在ABC ∆中,内角A 、B 、C 的对边长分别为a 、b 、c ,已知222a c b -=,且sin cos 3cos sin ,A C A C = 求b判断三角形形状在△ABC 中,已知sinC=2sinAcosB ,那么△ABC 一定是________在△ABC 中,若9,10,15,a b c ===则△ABC 的形状是________若ABC ∆的三个内角满足sin :sin :sin 5:11:13A B C =,则ABC ∆是_________已知△ABC 的内角A 、B 及其对边a ,b 满足a +b =a cot A +b cot B ,求内角C四、实际应用在△ABC 中,已知B=45°,D 是BC 边上的一点,AD=10,AC=14,DC=6,求AB 的长.。

相关文档
最新文档