高中数学:排列与组合练习

合集下载

高三数学练习题:排列与组合

高三数学练习题:排列与组合

高三数学练习题:排列与组合一、排列题目1:某公司有10名员工,其中3名员工将被选为董事会成员。

问有多少种不同的选举结果?题目2:有7本不同的数学书和5本不同的英语书,现从中选取3本书,问有多少种选取方式?题目3:某班有20名学生,其中5名学生将被安排在舞台上演出。

问有多少种不同的安排方式?题目4:由字母A、B、C、D、E组成的5位字母密码,如果不允许重复字母,问有多少种不同的密码?二、组合题目5:从10个人中选取4个人组成一个团队,问有多少种不同的组合方式?题目6:有8个不同的球员参加篮球比赛,现从中选取5名球员组成一支队伍,问有多少种不同的选取方式?题目7:某班有30名学生,其中要从中选取6名学生组成一个小组。

问有多少种不同的组合方式?题目8:某购物网站推出12种不同的优惠券,现用户每次购物可以选择其中3种优惠券使用,问有多少种不同的选择方式?请在白纸上作答后再对照答案进行检查,加强对排列和组合概念的理解和应用。

题目1:答案为 C(10, 3) = 120 种不同选举结果。

此处使用组合公式 C(n, k) = n! / (k! × (n-k)!) 计算。

题目2:答案为 C(7, 3) × C(5, 0) = 35 种不同选取方式。

此处使用组合公式 C(n, k)= n! / (k! × (n-k)!) 计算。

题目3:答案为 A(20, 5) = 15,504 种不同安排方式。

此处使用排列公式 A(n, k) = n! / (n-k)! 计算。

题目4:答案为 P(5, 5) = 5! = 120 种不同密码。

此处使用排列公式 A(n, n) = n! 计算。

题目5:答案为 C(10, 4) = 210 种不同组合方式。

此处使用组合公式 C(n, k) = n! / (k! × (n-k)!) 计算。

题目6:答案为 C(8, 5) = 56 种不同选取方式。

高中数学顿悟排列组合80题

高中数学顿悟排列组合80题

高中数学2018顿悟排列组合80题1、8本不同的书,按照以下要求分配,各有多少种不同的分法?(1)一堆1本,一堆2本,一堆5本;(2)甲得1本,乙得2本,丙得5本;(3)三人,一人1本,一人2本,一人5本;(4)平均分给甲、乙、丙、丁四人;(5)平均分成四堆;(6)分成三堆,一堆4本,一堆2本,一堆2本;⑺给三人一人4本,一人2本,一人2本.2、3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法种数共有______3、6名旅客安排在3个房间,每个房间至少安排一名旅客,则安排方法种数共多少种?4、把A、B、C、D四个小球平均分成两组,有______种分法5、七个人参加义务劳动,按下列方法分组有种不同的分法(1)分成三组,分别为1人、2人、4人;(2)选出5个人再分成两组,一组2人,另一组3人.6、四个不同的小球放入编号为1,2, 3, 4的四个盒子中,恰有一个空盒的放法有种.7、5本不同的书全部分给4个学生,每个学生至少一本,不同的分法种数为(A)480 (B)240 (C)120 (D)96 (E)808、将9个(含甲、乙)平均分成三组,甲、乙分在同一组,则不同分组方法的种数为A. 70B. 140C. 280D. 840E. 809、将9个(含甲、乙)平均分成三组,甲、乙分在不同组,则不同分组方法的种数为A. 220B. 240C. 420D. 210E. 18010、从6人中选出4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有A. 300 B. 240 C. 144 D. 96 E. 28011、某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案共有种.(A)480 (B)600 (C)430 (D)500 (E)48012、将9本不同的书分成3堆,问:(1)每堆3本,有多少种不同的分法?若分给三人,每人3本,又有多少种不同分法?(2)一堆5本,其余两堆各2本,有多少种不同的分法?若分给甲,乙,丙3人,①每人拿一堆,有多少种不同的分法?②若甲得5本,乙与丙各得2本,又有多少种分法?(3)如果一堆4本,一堆3本,一堆2本,又有多少种的分法?【排队、排座位(元素--位置):相邻捆绑与相间插空】13、6人排成一排照相,甲不排在左端,乙不排在右端,共有____ 种不同的排法.14、6个人围圆桌而坐,一共有_______ 种不同的排法.15、7人照相,要求排成一排,甲乙两人相邻但不排在两端,不同的排法共有____ 种.A. 1440B. 960C. 720D. 480E. 28016、某人射击8枪,命中4枪,其中恰有3枪连中的不同种数有种A.72B.24C.20D.19E. 2817、3个男生和4个女生站成一排,男生不能相邻,有 ________ 种不同的排法18、现有8个人排成一排照相,其中甲、乙、丙三人不相邻的排法有一种.(A)36 3! 5! C (B)8! 6! 3! (C)35 3! 3! C (D)46 8! 4! C(E)46 8! 4! C19、,,, , A BCDE五人并排站成一排,如果,A B必须相邻且B在A的右边,那么不同的排法种数有A、60 种B、48 种C、36 种D、24 种E、2820、1名老师和4名同学排成一排照相留念,若老师不站两端则有不同的排法有一种21、有两排座位,前排11个座位,后排12个座位,现安排2个人就座,规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是(A) 234 (B) 346 (C)350 (D) 363 (E)28022、电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公益广告,则共有________ 种不同的播放方式.23、不同的五种商品在货架上排成一排,其中甲、乙两种必须排在一起,丙、丁两种不能排在一起,则不同的排法种数共有A、12B、20C、24D、48E、2824、有6个座位连成一排,安排3人就座,恰有两个空位相邻的不同坐法有A、36B、48C、72D、96E、3825、5人站成一排,其中A不在左端也不和B相邻的排法种数为A、48B、54C、60D、66E、3826、由数字0,1,2, 3, 4, 5可以组成无重复数字且奇偶数字相间的六位数的个数有A、72B、60C、48D、52E、3827、用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1和2相邻,3与4相邻,5与6相邻,而7与8不.相邻,这样的八位数共有个.A、182B、146C、196D、576E、38028、有8个不同元素排成两排,每排4个元素,其中a、b不可以相邻和相对,有多少种排法?29、标号为1,2,3,4的红球与标号为1,2的白球排成一排,要求每个白球的两边都有红球,且要求2号白球与4号红球排在一起,一共有种不同的排法.30、有红,黄,蓝三种颜色的球各7个,每种颜色的7个球分别标有数字123,4,5,6,7, 从中任取3个标号不同的球,这3个球颜色互不相同且所标数字互不相邻的取法种数是多少?【隔板法-相同元素分配】31、方程10 abcd 的正整数解有多少组?32、现有30块相同的糖,分给6个小朋友,(1)每人至少分1块,有多少种分法?(2)每人至少分2块,有多少种分法?33、将20个相同的小球放入编号分别为1, 2, 3, 4的四个盒子中,要求每个盒子中的球数不少于它的编号数,求放法总数.【可重复问题---人房模型】34、将三封信投入4个信箱,问在下列两种情形下各有______ 种投法?(1)每个信箱至多只许投入一封信;(2)每个信箱允许投入的信的数量不受限制.35、运动会上有四项比赛的冠军在甲、乙、丙三人中产生,不同的夺冠情况共有一种.(A) 34 3! C (B) 34 (C) 43 (D) 34 C (E)4!【定序问题-无区别元素问题】36、书架上某层有6本书,新买了3本书放进该层,要保持原来6本书原有顺序,有― 种不同插法.37、信号兵把红旗与白旗从上到下挂在旗杆上表示信号,现有3面红旗、2面白旗,把5面旗都挂上去,可表示不同信号的种数是_____38、文艺团体下基层宣传演出,准备的节目表中原有4个歌舞节目,如果保持这些节目的相对顺序不变,拟再添2个小品节目,则不同的排列方法有39、有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有种不同的方法.(A)1800 (B)1600 (C)1320 (D)1260 (E) 188040、某工程队有6项工程需要先后单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,又工程丁必须在工程丙完成后立即进行,那么安排这6项工程的不同排法种数是(A)18 (B)36 (C)20 (D)50 (E) 80【对号与不对号-元素对应问题】41、将数字1, 2, 3, 4填入标号为1, 2, 3, 4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有A、6 种B、9 种C、11 种D、23 种E、842、设有编号为1, 2, 3, 4, 5的五个球和编号为1, 2, 3, 4, 5的盒子现将这5个球投入5个盒子要求每个盒子放一个球,并且恰好有两个球的号码与盒子号码相同,问有种不同的方法.43、将标号为1, 2,-10的10个放入标号为1, 2,-10的10个盒子内,每个盒内放一个球,则恰好有3个球的标号与其所在盒子的标号不一致的放入的方法共有种.(A)120 (B)240 (C)260 (D)220 (E) 80【特殊要求元素选取(多元素、多要求):合理分类与准确分步】44、某书店有11种杂志,2元1本的8种,1元1本的3种.小张用10元钱买杂志(每种至多买一本,10元钱刚好用完),则不同买法的种数是 _____45、从6台甲机器和5台乙机器中任意选取5台,其中至少有甲机器与乙机器各两台,则不同的取法有种.46、4位同学参加某种形式的竞赛,竞赛规则规定:每位同学必须从甲、乙两道题中任选一道作答,选甲题答对得10分,答错得-10分;选乙题答对得9分,答错得-9分.若4位同学的总分为零,则这4位同学不同得分的种数为(A) 48 (B) 36 (C) 24 (D) 18 (E) 8047、完成某项工作需4个步骤,每一步方法数相等,完成这项工作共有81种方法.改革后完成这项工作减少了一个步骤,则改革后完成该项工作有种方法.48、由1到30个数,挑三个相加使它们的和必须被3整除,有多少种方法?49、平面上有10个点,有且只有4点在一直线上,其他任何3点不共线,问能组成多少个不同的三角形?50、假设在200件产品中,有3件次品,现在从中任意抽出5件,其中至少有2件次品的抽法有种.51、有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是A、1260 种B、2025 种C、2520 种D、5040 种E、288052、用1、2、3、4、5、6这六个数字可组成个无重复数字且不能被5整除的五位数.53、从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有种.54、某交通岗共有3人,从周一到周日的七天中,每天安排一人值班,每人至少值2天,其不同的排法共有种.(A)5040 (B)1260 (C)210 (D)630 (E)480 55、已知0 2 b ax是关于x的一元二次方程,其中a、} 4,3,2,1 { b,则解不同的一元二次方程的个数___________________56、现有1角、2角、5角、1元、2元、5元、10元、20元、50元人民币各一张,100元人民币2张,从中至少取一张,共可组成不同的币值种数是(A)1024 种(B)1023 种(C)1536 种(D)1535 种(E)108057、高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践,其中甲工厂必须有班级去,其他可自由选择,则不同的分配方案有(A)16 (B)18 (C)37 (D)48 (E)8058、从1,3, 5, 7中任取2个数字,从0,2, 4, 6, 8中任取2个数字,组成没有重复数字的四位数,其中能被5整除的四位数共有个.59、某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加西部开发建设,其中甲同学不到第一个城市,乙不到第二个城市,共有 __________ 种不同派遣方案.60、6个身高不同的人分成2排,每排3人,每排从左到右,由低到高,且后排的人比他身前的人高,问有多少种排法?61、甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有(A)48 (B)12 (C)24 (D)30 (E)8062、甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有(A)150 (B)180 (C)300 (D)345 (E)38063、从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有(A)70 (B)80 (C)100 (D)140 (E)8064、从5名志愿者中选派4人在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有一人参加,星期六有两人参加,星期日有一人参加,则不同的选派方法A.120B.96C.60D.48E. 8065、政府召集5家企业的负责人开会,其中甲企业有2人到会,其余4家企业各有1人到会,会上有3人发言,则这3人来自3家不同企业的可能情况的种数为A. 14B. 16C. 20D. 12E. 1866、从10名大学生毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为A 85B 56C 49D 28E 8067、移动公司推出一组手机卡号码,卡号的前七位数字固定,从“XXXXXXX0000”到“XXXXXXX9999”共10000个号码.公司规定:凡卡号的后四位带有数字“4”或“7” 的一律作为“优惠卡”,则这组号码中“优惠卡”的个数为A. 200B. 4096C. 5904D. 8320E. 688068、在一块并排10垄的田地中,选择2垄分别种植A、B两种作物,每种作物种植一垄为有利于生长,要求A、B两种作物的间隔不小于6垄,则不同的选垄方法共有一种. 69、从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有A. 36B. 12C. 18D. 48E. 2870、有11名翻译人员,其中5名英语翻译员,4名日语翻译员,另2人英语、日语都精通.从中找出8人,使他们组成两个翻译小组,其中4人翻译英文,另4人翻译日文,这两个小组能同时工作.问这样的分配名单共可开出一张.71、某外语组有9人,每人至少会英语和日语中的一门,其中7人会英语,3人会日语,从中选出会英语和日语各1人,有种不同的选法.72、从编号1,2,3,4,5,6的六个小球中任取4个,放在标号为ABCD的四个盒子中,每盒一球,且2号球不能放在B中,4号球不能放在D中,则不同放法的种数A、96B、180C、252D、280E、29073、一个口袋内装有4个不同的红球,6个不同的白球,若取出一个红球记2分,取出一个白球记1分,从口袋中取5个球,使总分不小于7分的取法有多少种?A、180B、186C、196D、20674、把同一排6张座位编号为1, 2, 3, 4, 5, 6的电影票全部分给4个人,每人至少1张,至多2张,且这两张票具有连续的编号,那么不同的分法种数是A. 168B. 96C. 72D. 144E.18875、5名乒乓球队员中,有2名老队员和3名新队员,现从中选出3名队员排成1, 2, 3号参加团体比赛,则入选的3名队员中至少有1名老队员,且1, 2号中至少有1名新队员的排法有种.(A)48 (B)36 (C)43 (D)50 (E) 8076、在由数字1、2、3、4、5组成的所有没有重复数字的五位数中,大于23145且小于43521的数共有(A)56 (B)57 (C)58 (D)60 (E)8077、球队的10名队员中有3名主力队员,派5名参加比赛.3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,不同的出场安排共有种.(A)256 (B)252 (C) 118 (D) 238 (E) 280【涂色问题】78、如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有种.79、四种不同的颜色涂在如图所示的6个区域,且相邻两个区域不能同色的方法有80、将3种作物种植在一排的5块试验田里,每块种植一种作物且相邻的试验田不能种植同一作物,不同的种植方法共有 ___ 种.A. 42B. 48C. 52 D . 66 E、38。

排列组合练习题及答案

排列组合练习题及答案

排列组合习题精选一、纯排列与组合问题:1.从9人中选派2人参加某一活动,有多少种不同选法?2.从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法?3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的方案,那么男、女同学的人数是( )A.男同学2人,女同学6人B.男同学3人,女同学5人C. 男同学5人,女同学3人D. 男同学6人,女同学2人4.一条铁路原有m个车站,为了适应客运需要新增加n个车站(n>1),则客运车票增加了58种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有 ( )A.12个B.13个C.14个D.15个、、设男生人,则有。

4、选C.二、相邻问题:1. A、B、C、D、E五个人并排站成一列,若A、B必相邻,则有多少种不同排法?2. 有8本不同的书, 其中3本不同的科技书,2本不同的文艺书,3本不同的体育书,将这些书竖排在书架上,则科技书连在一起,文艺书也连在一起的不同排法种数为( )A.720B.1440C.2880D.36001. (2) B三、不相邻问题:1.要排一个有4个歌唱节目和3个舞蹈节目的演出节目单,任何两个舞蹈节目都不相邻,有多少种不同排法?2、1到7七个自然数组成一个没有重复数字的七位数,其中奇数不相邻的有多少个?3.4名男生和4名女生站成一排,若要求男女相间,则不同的排法数有( )A.2880B.1152C.48D.1444.排成一排的8个空位上,坐3人,使每人两边都有空位,有多少种不同坐法?5.8张椅子放成一排,4人就坐,恰有连续三个空位的坐法有多少种?6. 排成一排的9个空位上,坐3人,使三处有连续二个空位,有多少种不同坐法?7. 排成一排的9个空位上,坐3人,使三处空位中有一处一个空位、有一处连续二个空位、有一处连续三个空位,有多少种不同坐法?8. 在一次文艺演出中,需给舞台上方安装一排彩灯共15只,以不同的点灯方式增加舞台效果,要求设计者按照每次点亮时,必须有6只灯是熄灭的,且相邻的灯不能同时熄灭,两端的灯必须点亮的要求进行设计,那么不同的点亮方式是 ( )A.28种B.84种C.180种D.360种1.) ( B () (() () ( A四、定序问题:1. 有4名男生,3名女生。

高中数学排列与组合综合测试卷

高中数学排列与组合综合测试卷

高中数学排列与组合综合测试卷(含解析)选修2-3 1.2.2第三课时排列与组合习题课一、选择题1.(2021山东潍坊)6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为()A.40B.50C.60D.70[答案]B[解析]先分组再排列,一组2人一组4人有C26=15种不同的分法;两组各3人共有C36A22=10种不同的分法,因此乘车方法数为252=50,故选B.2.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有()A.36种B.48种C.72种D.96种[答案]C[解析]恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共A33A24=72种排法,故选C.3.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻显现,如此的四位数有()A.6个B.9个C.18个D.36个[答案]C[解析]注意题中条件的要求,一是三个数字必须全部使用,二是相同的数字不能相邻,选四个数字共有C13=3(种)选法,即1231,1232,1233,而每种选择有A22C23=6(种)排法,因此共有36=18(种)情形,即如此的四位数有18个.4.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有()A.2人或3人B.3人或4人C.3人D.4人[答案]A[解析]设男生有n人,则女生有(8-n)人,由题意可得C2nC18-n=30,解得n=5或n=6,代入验证,可知女生为2人或3人.5.某幢楼从二楼到三楼的楼梯共10级,上楼能够一步上一级,也能够一步上两级,若规定从二楼到三楼用8步走完,则方法有() A.45种B.36种C.28种D.25种[答案]C[解析]因为108的余数为2,故能够确信一步一个台阶的有6步,一步两个台阶的有2步,那么共有C28=28种走法.6.某公司聘请来8名职员,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案共有()A.24种B.36种C.38种D.108种[答案]B[解析]本题考查排列组合的综合应用,据题意可先将两名翻译人员分到两个部门,共有2种方法,第二步将3名电脑编程人员分成两组,一组1人另一组2人,共有C13种分法,然后再分到两部门去共有C13A22种方法,第三步只需将其他3人分成两组,一组1人另一组2人即可,由因此每个部门各4人,故分组后两人所去的部门就已确定,故第三步共有C13种方法,由分步乘法计数原理共有2C13A22C13=36(种).7.组合数Crn(n1,n,rZ)恒等于()A.r+1n+1Cr-1n-1 B.(n+1)(r+1)Cr-1n-1C.nrCr-1n-1 D.nrCr-1n-1[答案]D[解析]∵Crn=n!r!(n-r)!=n(n-1)!r(r-1)![(n-1)-(r-1)]!=nrCr-1n-1,故选D.8.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为() A.33 B.34C.35 D.36[答案]A[解析]①所得空间直角坐标系中的点的坐标中不含1的有C12A33=12个;②所得空间直角坐标系中的点的坐标中含有1个1的有C12A33+A33=18个;③所得空间直角坐标系中的点的坐标中含有2个1的有C13=3个.故共有符合条件的点的个数为12+18+3=33个,故选A.9.(2021四川理,10)由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是()A.72 B.96C.108 D.144[答案]C[解析]分两类:若1与3相邻,有A22C13A22A23=72(个),若1与3不相邻有A33A33=36(个)故共有72+36=108个.10.(2021北京模拟)假如在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有()A.50种B.60种C.120种D.210种[答案]C[解析]先安排甲学校的参观时刻,一周内两天连排的方法一共有6种:(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7),甲任选一种为C16,然后在剩下的5天中任选2天有序地安排其余两所学校参观,安排方法有A25种,按照分步乘法计数原理可知共有不同的安排方法C16A25=120种,故选C.二、填空题11.安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有_____ ___种.(用数字作答)[答案]2400[解析]先安排甲、乙两人在后5天值班,有A25=20(种)排法,其余5人再进行排列,有A55=120(种)排法,因此共有20210=2400(种)安排方法.12.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有________种不同的排法.(用数字作答)[答案]1260[解析]由题意可知,因同色球不加以区分,实际上是一个组合问题,共有C49C25C33=1260(种)排法.13.(2021江西理,14)将6位理想者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有___ _____种(用数字作答).[答案]1080[解析]先将6名理想者分为4组,共有C26C24A22种分法,再将4组人员分到4个不同场馆去,共有A44种分法,故所有分配方案有:C26C 24A22A44=1 080种.14.(2021山东济宁)要在如图所示的花圃中的5个区域中种入4种颜色不同的花,要求相邻区域不同色,有________种不同的种法(用数字作答).[答案]72[解析]5有4种种法,1有3种种法,4有2种种法.若1、3同色,2有2种种法,若1、3不同色,2有1种种法,有432(12+11)=72种.三、解答题15.(1)运算C98100+C199200;(2)求20C5n+5=4(n+4)Cn-1n+3+15A2n+3中n的值.[解析](1)C98100+C199200=C2100+C1200=100992+200=4950+200=5150.(2)20(n+5)!5!n!=4(n+4)(n+3)!(n-1)!4!+15(n+3)(n+2),即(n+5)(n+4)(n+3)(n+2)(n+1)6=(n+4)(n+3)(n+2)(n+1)n6+15(n+3) (n+2),因此(n+5)(n+4)(n+1)-(n+4)(n+1)n=90,即5(n+4)(n+1)=90.因此n2+5n-14=0,即n=2或n=-7.注意到n1且nZ,因此n=2.[点拨]在(1)中应用组合数性质使问题简化,若直截了当应用公式运算,容易发生运算错误,因此,当mn2时,专门是m接近于n时,利用组合数性质1能简化运算.16.(2021东北师大附中模拟)有一排8个发光二极管,每个二极管点亮时可发出红光或绿光,若每次恰有3个二极管点亮,但相邻的两个二极管不能同时点亮,依照这三个点亮的二极管的不同位置和不同颜色来表示不同的信息,求这排二极管能表示的信息种数共有多少种?[解析]因为相邻的两个二极管不能同时点亮,因此需要把3个点亮的二极管插放在未点亮的5个二极管之间及两端的6个空上,共有C36种亮灯方法.然后分步确定每个二极管发光颜色有222=8(种)方法,因此这排二极管能表示的信息种数共有C36222=160(种).17.按下列要求把12个人分成3个小组,各有多少种不同的分法?(1)各组人数分别为2,4,6个;(2)平均分成3个小组;(3)平均分成3个小组,进入3个不同车间.[解析](1)C212C410C66=13 860(种);(2)C412C48C44A33=5 775(种);(3)分两步:第一步平均分三组;第二步让三个小组分别进入三个不同车间,故有C412C48C44A33A33=C412C48C44=34 650(种)不同的分法.18.6男4女站成一排,求满足下列条件的排法共有多少种?(1)任何2名女生都不相邻有多少种排法?(2)男甲不在首位,男乙不在末位,有多少种排法?(3)男生甲、乙、丙排序一定,有多少种排法?(4)男甲在男乙的左边(不一定相邻)有多少种不同的排法?[解析](1)任何2名女生都不相邻,则把女生插空,因此先排男生再让女生插到男生的空中,共有A66A47种不同排法.(2)方法一:甲不在首位,按甲的排法分类,若甲在末位,则有A99种排法,若甲不在末位,则甲有A18种排法,乙有A18种排法,其余有A88种排法,综上共有(A99+A18A18A88)种排法.方法二:无条件排列总数A1010-甲在首,乙在末A88甲在首,乙不在末A99-A88甲不在首,乙在末A99-A88甲不在首乙不在末,共有(A1010-2A99+A88)种排法.(3)10人的所有排列方法有A1010种,其中甲、乙、丙的排序有A33种,又对应甲、乙、丙只有一种排序,因此甲、乙、丙排序一定的排法有A 1010A33种.要练说,得练听。

排列组合练习

排列组合练习

排列组合练习一、单选题1.小王有70元钱,现有面值分别为20元和30元的两种IC 电话卡.若他至少买一张,则不同的买法共有( )A . 7种B . 8种C . 6种D . 9种2.某联欢会要安排3个歌舞类节目,2个小品类节目和一个相声类节目的演出顺序,则同类节目不相邻的排法总数是.( )A . 72B . 120C . 144D . 1683.(n −3)(n −4)⋯(n −9)(n −10)(n ∈N,n >10)可表示为( )A . A n−39B . A n−38C . A n−37D . C n−374.12个篮球队中有3个强队,将这12个队任意分成3个组(每组4个队),则3个强队恰好被分在同一组的概率为A .155B .355C .14D .13 5.“2 012”含有数字0,1,2,且有两个数字2,则含有数字0,1,2,且有两个相同数字的四位数的个数为( )A . 18B . 24C . 27D . 366.从0,1,2,3,4中任选两个不同的数字组成一个两位数,其中偶数的个数是A . 6B . 8C . 10D . 127.(2017新课标全国II 理科)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有A . 12种B . 18种C . 24种D . 36种8.现有4种不同的颜色要对图形中(如图)的四个部分涂色,要求有公共边的两部分不能用同一颜色,则不同的涂色方法有( )种.A . 24B . 30C . 48D . 509.现有6名同学去听同时进行的5个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是( )A . 56B . 65C . A 5D . A 510.在第二届乌镇互联网大会中, 为了提高安保的级别同时又为了方便接待, 现将其中的五个参会国的人员安排酒店住宿, 这五个参会国要在a、b、c三家酒店选择一家, 且每家酒店至少有一个参会国入住, 则这样的安排方法共有A.96种B.124种C.130种D.150种11.某单位现需要将“先进个人”、“业务精英”、“道德模范”、“新长征突击手”、“年度优秀员工”5种荣誉分配给3个人,且每个人至少获得一种荣誉,五种荣誉中“道德模范”与“新长征突击手”不能分给同一个人,则不同的分配方法共有()A.114种B.150种C.120种D.118种12.有黑、白、红三种颜色的小球各5个,都分别标有数字1,2,3,4,5,现取出5个,要求这5个球数字不相同但三种颜色齐备,则不同的取法种数有()A.120种B.150种C.240种D.260种13.3个男生4个女生站成一排,要求相邻两人性别不同且男生甲与女生乙相邻,则这样的站法有()A.56种B.72种C.84种D.120种14.将甲、乙、丙、丁、戊共5人分配到A、B、C、D共4所学校,每所学校至少一人,且甲不去A学校,则不同的分配方法有A.72种B.108种C.180种D.360种15.要将甲、乙、丙、丁4名同学分到A、B、C三个班级中,要求每个班级至少分到一人,则甲被分到A班的分法种数为,A.6B.12C.24D.3616.将5本不同的书分给甲、乙、丙三人,每人至少一本至多两本,则不同的分法种数是()A.60B.90C.120D.18017.将3名教师和3名学生共6人平均分成3个小组,分别安排到三个社区参加社会实践活动,则每个小组恰好有1名教师和1名学生的概率为()A.13B.25C.12D.3518.甲乙丙丁戊五个老师要安排去4个地区支教,每个地区至少安排一人,则不同的安排方法共有()种.A.150B.120C.180D.24019.某校在高二年级开设选修课,其中数学选修课开三个班,选课结束后,有4名同学要求改修数学,但每班至多可再接收2名同学,那么不同的分配方案有( )二、填空题20.从数字1,2,3,4中,随机抽取3个数字(允许重复)组成一个三位数,则各位数字之和等于9的概率为__________.21.将A、B、C、D、E、F六个字母排成一排,且A、B均在C的同侧,则不同的排法共有__________种(用数字作答).22.4名学生参加3个兴趣小组活动,每人参加一个或两个小组,那么3个兴趣小组都恰有2人参加的不同的分组共有_________种.23.某班举行的联欢会由5个节目组成,节目演出顺序要求如下: 节目甲不能排在第一个,并且节目甲必须和节目乙相邻.则该班联欢会节目演出顺序的编排方案共有____种.24.无偿献血是践行社会主义核心价值观的具体行动,需要在报名的2名男教师和6名女教师中,选取5人参加无偿献血,要求男、女教师都有,则不同的选取方法的种数为___________.(结果用数值表示)25.(河南省郑州市第一中学2018届高三上学期入学考试)由数字2,0,1,7组成没有重复数字的四位偶数的个数为________.26.把4件不同的产品摆成一排.若其中的产品A与产品B都摆在产品C的左侧,则不同的摆法有____种.(用数字作答)27.某城市的交通道路如图,从城市的东南角AA到城市西北角B,不经过十字道路维修处C,最近的走法种数有.28.从4名男生4名女生中选3位代表,其中至少两名女生的选法有种.29.学校计划利用周五下午第一、二、三节课举办语文、数学、英语、文综4科的专题讲座,每科一节课,每节至少有一科,且数学、文综不安排在同一节,则不同的安排方法共有.30.由1,2,3,4这四个数,组成个位数字不为2的没有重复数字的四位数,共有个。

高中排列组合基础题 (含答案)

高中排列组合基础题 (含答案)

排列、组合问题基本题型及解法同学们在学习排列、组合的过程中,总觉得抽象,解法灵活,不容易掌握.然而排列、组合问题又是历年高考必考的题目.本文将总结常见的类型及相应的解法.一、相邻问题“捆绑法”将必须相邻的元素“捆绑”在一起,当作一个元素进行排列. 例1 甲、乙、丙、丁四人并排站成一排,如果甲、乙必须站在一起,不同的排法共有几种? 分析:先把甲、乙当作一个人,相当于三个人全排列,有33A =6种,然后再将甲、乙二人全排列有22A =2种,所以共有6×2=12种排法. 二、不相邻问题“插空法”该问题可先把无位置要求的元素全排列,再把规定不相邻的元素插入已排列好的元素形成的空位中(注意两端).例2 7个同学并排站成一排,其中只有A 、B 是女同学,如果要求A 、B 不相邻,且不站在两端,不同的排法有多少种?.分析:先将其余5个同学先全排列,排列故是55A =120.再把A 、B 插入五个人组成的四个空位(不包括两端)中,(如图0×0×0×0×0“×”表示空位,“0”表示5个同学)有24A =2种方法.则共有5254A A =440种排法.三、定位问题“优先法”指定某些元素必须排(或不排)在某位置,可优先排这个元素,后排其他元素.例3 6个好友其中只有一个女的,为了照像留念,若女的不站在两端,则不同的排法有 种.分析:优先排女的(元素优先).在中间四个位置上选一个,有14A 种排法.然后将其余5个排在余下的5个位置上,有55A 种方法.则共1545A A =480种排法.还可以优先排两端(位置优先). 四、同元问题“隔板法”例4 10本完全相同的书,分给4个同学,每个同学至少要有一本书,共有多少种分法? 分析:在排列成一列的10本书之间,有九个空位插入三块“隔板”.如图: ×× × ××× ××××一种插法对应于一种分法,则共有39C =84种分法. 五、先分组后排列对于元素较多,情形较复杂的问题,可根据结果要求,先分为不同类型的几组,然后对每一组分别进行排列,最后求和.例5 由数字0,1,2,3,4,5组成无重复数字的六位数,其中个位数字小于十位数字的共有( )(A )210个 (B )300个 (C )464个 (D )600个分析:由题意知,个位数字只能是0,1,2,3,4共5种类型,每一种类型分别有55A 个、113433A A A 个、113333A A A 个、113233A A A 个、1333A A 个,合计300个,所以选B例6 用0,1,2,3,…,9这十个数字组成五位数,其中含有三个奇数数字与两个偶数数字的五位数有多少个?【解法1】考虑0的特殊要求,如果对0不加限制,应有325555C C A 种,其中0居首位的有314544C C A 种,故符合条件的五位数共有325314555544C C A C C A =11040个.【解法2】按元素分类:奇数字有1,3,5,7,9;偶数字有0,2,4,6,8. 把从五个偶数中任取两个的组合分成两类:①不含0的;②含0的.①不含0的:由三个奇数字和两个偶数字组成的五位数有325545C C A 个;②含0的,这时0只能排在除首位以外的四个数位上,有14A 种排法,再选三个奇数数与一个偶数数字全排放在其他数位上,共有31415444C C A A 种排法.综合①和②,由分类计数原理,符合条件的五位数共有325545C C A +31415444C C A A =11040个. 例8 由数字1,2,3,4,5可以组成多少个无重复数字,比20000大,且百位数字不是3的自然数?【解】设A ={满足题设条件,且百位数字是3的自然数},B ={满足题设条件,且比20000大的自然数},则原题即求()card U B A ,画韦恩图如图,阴影部分 即UBA ,从图中看出()()card card UBA B AB =-.又A BB ,由性质2,有()()()card card card .B A B B A B -=-()card B 即由数字1,2,3,4,5组成无重复数字,且比20000大的自然数的个数,易知()1444card A A B =.()card A B 即由数字1,2,3,4,5组成无重复数字、比20000大,且百位数字是3的自然数的个数,易知()1333card A A AB =,所以()14134433card A A A A UB A =-=78.即可组成78个符合已知条件的自然数.典型例题例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数?解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有39A 个;当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有281814A A A ⋅⋅(个).∴ 没有重复数字的四位偶数有2296179250428181439=+=⋅⋅+A A A A 个.例2 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。

高中数学排列组合专题练习题

高中数学排列组合专题练习题

高中数学排列组合专题练习题一、选择题1、从 5 名男同学和 4 名女同学中选出 3 名男同学和 2 名女同学,分别担任 5 种不同的职务,不同的选法共有()A 5400 种B 18000 种C 7200 种D 14400 种解析:第一步,从 5 名男同学中选出 3 名,有\(C_{5}^3\)种选法;第二步,从 4 名女同学中选出 2 名,有\(C_{4}^2\)种选法;第三步,将选出的 5 名同学进行排列,有\(A_{5}^5\)种排法。

所以不同的选法共有\(C_{5}^3 × C_{4}^2 × A_{5}^5 = 10×6×120 =7200\)种,故选 C。

2、有 5 本不同的书,其中语文书 2 本,数学书 2 本,物理书 1 本。

若将其并排摆放在书架的同一层上,则同一科目书都不相邻的放法种数是()A 24B 48C 72D 96解析:先排语文书有\(A_{2}^2 = 2\)种排法,再在语文书的间隔(含两端)处插数学书有\(A_{3}^2 = 6\)种插法,最后将物理书插入 4 个间隔中的一个有 4 种方法。

所以共有\(2×6×4 = 48\)种排法,故选 B。

3、从 0,1,2,3,4,5 这 6 个数字中,任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为()A 300B 216C 180D 162解析:分两类情况讨论:第一类:取出的偶数含 0。

偶数 0 和另外一个偶数的取法有\(C_{2}^1\)种,奇数的取法有\(C_{3}^2\)种。

0 在个位时,其他三个数字全排列,有\(A_{3}^3\)种;0 不在个位时,0 有 2 种位置,其他三个数字全排列,有\(2×A_{2}^1×A_{2}^2\)种。

此时共有\(C_{2}^1×C_{3}^2×(A_{3}^3 + 2×A_{2}^1×A_{2}^2) = 108\)种。

高中数学排列组合专项练习(后附答案)

高中数学排列组合专项练习(后附答案)

排列组合一、知识点讲解1.排列与组合的概念2.排列数与组合数(1)排列数的定义:从n 个不同元素中取出m (m ≤n )个元素的________的个数,叫做从n 个不同元素中取出m 个元素的排列数,用____表示.(2)组合数的定义:从n 个不同元素中取出m (m ≤n )个元素的________的个数,叫做从n 个不同元素中取出m 个元素的组合数,用____表示.3.排列数、组合数的公式及性质)(!n m m −+)m n n n C C =二、课堂练习题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)所有元素完全相同的两个排列为相同排列. ( ) (2)一个组合中取出的元素讲究元素的先后顺序. ( ) (3)两个组合相同的充要条件是其中的元素完全相同. ( ) (4)(n +1)!-n !=n ·n !.( )(5)若组合式C x n =C mn ,则x =m 成立. ( ) (6)k C k n =n C k -1n -1.( )题组二 教材改编2.[P29习题T5]6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为________.3.[P16例7]用数字1,2,3,4,5组成无重复数字的四位数,其中偶数的个数为________.题组三易错自纠4.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有_______种.5.为发展国外孔子学院,教育部选派6名中文教师到泰国、马来西亚、缅甸任教中文,若每个国家至少去一人,则不同的选派方案种数为________.6.寒假里5名同学结伴乘动车外出旅游,实名制购票,每人一座,恰在同一排A,B,C,D,E五个座位(一排共五个座位),上车后五人在这五个座位上随意坐,则恰有一人坐对与自己车票相符座位的坐法有______种. (用数字作答)三、课中讲解题型一排列问题1.某高三毕业班有40人,同学之间两两彼此给对方写一条毕业留言,那么全班共写了_______条毕业留言. (用数字作答)2.用1,2,3,4,5,6组成一个无重复数字的六位数,要求三个奇数1,3,5有且只有两个相邻,则不同的排法种数为________.3.在1,2,3,4,5,6,7的任一排列a1,a2,a3,a4,a5,a6,a7中,使相邻两数都互质的排列种数为________.排列应用问题的分类与解法(1)对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.(2)对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.题型二组合问题例1.某市工商局对35种商品进行抽样检查,已知其中有15种假货. 现从35种商品中选取3种.(1)其中某一种假货必须在内,不同的取法有多少种?(2)其中某一种假货不能在内,不同的取法有多少种?(3)恰有2种假货在内,不同的取法有多少种?(4)至少有2种假货在内,不同的取法有多少种?(5)至多有2种假货在内,不同的取法有多少种?组合问题常有以下两类题型变化:(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“至多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“至多”这两个关键词的含义,谨防重复与漏解. 用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理.练1.在某校2017年举办的第32届秋季运动会上,甲、乙两位同学从四个不同的运动项目中各选两个项目报名,则甲、乙两位同学所选的项目中至少有1个不相同的选法种数为________.练2.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有________种.题型三排列与组合问题的综合应用命题点1相邻、相间及特殊元素(位置)问题例1.在高三某班进行的演讲比赛中,共有5位选手参加,其中3位女生,2位男生,如果2位男生不能连续出场,且女生甲不能排第一个,那么出场的顺序的排法种数为________.例2.大数据时代出现了滴滴打车服务,二胎政策的放开使得家庭中有两个孩子的现象普遍存在. 某城市关系要好的A,B,C,D四个家庭各有两个孩子共8人,他们准备使用滴滴打车软件,分乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4个孩子不考虑位置),其中A家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4个孩子恰有2个来自于同一个家庭的乘坐方式共有________种.命题点2分组与分配问题例1.国家教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教. 现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有_____种不同的分派方法.例2.有4名优秀学生A,B,C,D全部被保送到甲、乙、丙3所学校,每所学校至少去一名,则不同的保送方案共有________种.(1)解排列、组合问题要遵循的两个原则①按元素(位置)的性质进行分类;②按事情发生的过程进行分步. 具体地说,解排列、组合问题常以元素(位置)为主体,即先满足特殊元素(位置),再考虑其他元素(位置).(2)分组、分配问题的求解策略①对不同元素的分配问题a.对于整体均分,解题时要注意分组后,不管它们的顺序如何,都是一种情况,所以分组后一定要除以A n n(n为均分的组数),避免重复计数.b.对于部分均分,解题时注意重复的次数是均匀分组的阶乘数,即若有m组元素个数相等,则分组时应除以m!,分组过程中有几个这样的均匀分组,就要除以几个这样的全排列数.c.对于不等分组,只需先分组,后排列,注意分组时任何组中元素的个数都不相等,所以不需要除以全排列数.②对于相同元素的“分配”问题,常用方法是采用“隔板法”.练1.(2017·全国Ⅱ改编)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有________种.练2.(2017·浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,则共有________种不同的选法. (用数字作答)练3.把5件不同的产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有________种.四、课后练习1.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lg b的不同值的个数是________.2.有5本不同的书,其中语文书3本,数学书2本,若将它们随机并排摆放到书架的同一层上,则同一科目的书都不相邻的摆放方法数为________.3.某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法的种数为________.4.方程ay=b2x2+c中的a,b,c∈{-3,-2,0,1,2,3},且a,b,c互不相同. 在所有这些方程所表示的曲线中,不同的抛物线共有________条.5.有A,B,C,D,E五位学生参加网页设计比赛,决出了第一到第五的名次. A,B两位学生去问成绩,老师对A说:你的名次不知道,但肯定没得第一名;又对B说:你是第三名. 请你分析一下,这五位学生的名次排列的种数为________.6.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为________.7.若把英语单词“good”的字母顺序写错了,则可能出现的错误方法共有________种. (用数字作答)8. 在8张奖券中有一、二、三等奖各1张,其余5张无奖. 将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种. (用数字作答)9. 某医院拟派2名内科医生,3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生,外科医生和护士,则不同的分配方案有______种.10. 用数字0,1,2,3,4组成的五位数中,中间三位数字各不相同,但首末两位数字相同的共有_____个.11. 某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是________.12. 某宾馆安排A,B,C,D,E五人入住3个房间,每个房间至少住1人,且A,B不能住同一房间,则共有________种不同的安排方法. (用数字作答)13. 7人站成两排队列,前排3人,后排4人,现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法的种数为________.14. 将标号为1,2,3,4,5的五个球放入3个不同的盒子中,每个盒子至少有一个球,则一共有________种放法.15. 在第二届乌镇互联网大会中,为了提高安保的级别同时又为了方便接待,现为其中的五个参会国的人员安排酒店,这五个参会国的人员要在a,b,c三家酒店中任选一家,且这三家都至少有一个参会国的人员入住,则这样的安排方法共有________种.16. 设三位数n=abc,若以a,b,c为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数n有多少个?排列组合一、知识点讲解1.排列与组合的概念2.排列数与组合数(1)排列数的定义:从n 个不同元素中取出m (m ≤n )个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用.(2)组合数的定义:从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用.3.排列数、组合数的公式及性质)(!n m m −+C m -1n__ 二、课堂练习题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)所有元素完全相同的两个排列为相同排列. ()(2)一个组合中取出的元素讲究元素的先后顺序. ( ) (3)两个组合相同的充要条件是其中的元素完全相同. ( )(4)(n +1)!-n !=n ·n !.( )(5)若组合式C x n =C mn ,则x =m 成立. ( ) (6)k C k n =n C k -1n -1.( )【答案】×;×;√;√;×;√题组二教材改编2. [P29习题T5]6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为________.【答案】24“插空法”,先排3个空位,形成4个空隙供3人选择就座,因此任何两人不相邻的坐法种数为A34=4×3×2=24.3. [P16例7]用数字1,2,3,4,5组成无重复数字的四位数,其中偶数的个数为________.【答案】48末位数字排法有A12种,其他位置排法有A34种,共有A12A34=48(种)排法,所以偶数的个数为48.题组三易错自纠4. 六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有_______种. 【答案】216第一类:甲在左端,有A55=5×4×3×2×1=120(种)排法;第二类:乙在最左端,甲不在最右端,有4A44=4×4×3×2×1=96(种)排法.所以共有120+96=216(种)排法.5. 为发展国外孔子学院,教育部选派6名中文教师到泰国、马来西亚、缅甸任教中文,若每个国家至少去一人,则不同的选派方案种数为________.【答案】540②一个国家派3名,一个国家派2名,一个国家派1名,有C36C23C11A33=360(种);③每个国家各派6. 寒假里5名同学结伴乘动车外出旅游,实名制购票,每人一座,恰在同一排A,B,C,D,E五个座位(一排共五个座位),上车后五人在这五个座位上随意坐,则恰有一人坐对与自己车票相符座位的坐法有______种. (用数字作答)【答案】45设5名同学也用A,B,C,D,E来表示,若恰有一人坐对与自己车票相符的坐法,设E同学坐在自己的座位上,则其他四位都不坐自己的座位,则有BADC,BDAC,BCDA,CADB,CDAB,CDBA,DABC,DCAB,DCBA,共9种坐法,则恰有一人坐对与自己车票相符座位的坐法有9×5=45(种).三、课中讲解题型一排列问题1. 某高三毕业班有40人,同学之间两两彼此给对方写一条毕业留言,那么全班共写了_______条毕业留言. (用数字作答)【答案】1 560由题意知两两彼此给对方写一条毕业留言相当于从40人中任选两人的排列数,所以全班共写了A240=40×39=1 560(条)留言.2. 用1,2,3,4,5,6组成一个无重复数字的六位数,要求三个奇数1,3,5有且只有两个相邻,则不同的排法种数为________.【答案】432根据题意,分三步进行:第一步,先将1,3,5分成两组,共C23A22种排法;第二步,将2,4,6排成一排,共A33种排法;第三步,将两组奇数插入三个偶数形成的四个空位,共A24种排法. 综上,共有C23A22A33 A24=3×2×6×12=432(种)排法.3. 在1,2,3,4,5,6,7的任一排列a1,a2,a3,a4,a5,a6,a7中,使相邻两数都互质的排列种数为________. 【答案】864解析先把数字1,3,5,7作全排列,有A44=24种排法,再排数字6,由于数字6不与3相邻,在排好的排列中,除去3的左、右2个空隙,还有3个空隙可排数字6,故数字6有3种排法,最后排数字2,4,又数字2,4不与6相邻,故在剩下的4个空隙中排上2,4,有A24种排法,故共有A44×3×A24=864(种)排法.排列应用问题的分类与解法(1)对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.(2)对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.题型二组合问题例1.某市工商局对35种商品进行抽样检查,已知其中有15种假货. 现从35种商品中选取3种.(1)其中某一种假货必须在内,不同的取法有多少种?(2)其中某一种假货不能在内,不同的取法有多少种?(3)恰有2种假货在内,不同的取法有多少种?(4)至少有2种假货在内,不同的取法有多少种?(5)至多有2种假货在内,不同的取法有多少种?【答案】(1)从余下的34种商品中,选取2种有C234=561种取法,∴某一种假货必须在内的不同取法有561种.(2)从34种可选商品中,选取3种,有C334种或者C335-C234=C334=5 984种取法.∴某一种假货不能在内的不同取法有5 984种.(3)从20种真货中选取1种,从15种假货中选取2种有C120C215=2 100种取法.∴恰有2种假货在内的不同的取法有2 100种.(4)选取2种假货有C120C215种,选取3种假货有C315种,共有选取方式C120C215+C315=2 100+455=2 555(种).∴至少有2种假货在内的不同的取法有2 555种.(5)方法一(间接法)选取3种的总数为C335,因此共有选取方式C335-C315=6 545-455=6 090(种).∴至多有2种假货在内的不同的取法有6 090种.方法二(直接法)选取3种真货有C320种,选取2种真货有C220C115种,选取1种真货有C120C215种,因此共有选取方式C320+C220C115+C120C215=6 090(种).∴至多有2种假货在内的不同的取法有6 090种.组合问题常有以下两类题型变化:(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“至多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“至多”这两个关键词的含义,谨防重复与漏解. 用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理.练1.在某校2017年举办的第32届秋季运动会上,甲、乙两位同学从四个不同的运动项目中各选两个项目报名,则甲、乙两位同学所选的项目中至少有1个不相同的选法种数为________.【答案】30因为甲、乙两位同学从四个不同的项目中各选两个项目的选法有C24C24种.其中甲、乙所选的项目完全相同的选法有C24种,所以甲、乙所选的项目中至少有1个不相同的选法共有C24C24-C24=30(种).练2.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有________种. 【答案】66共有4个不同的偶数和5个不同的奇数,要使和为偶数,则4个数全为奇数,或全为偶数,或2个奇数和2个偶数,故不同的取法有C45+C44+C25C24=66(种).题型三排列与组合问题的综合应用命题点1相邻、相间及特殊元素(位置)问题例1.在高三某班进行的演讲比赛中,共有5位选手参加,其中3位女生,2位男生,如果2位男生不能连续出场,且女生甲不能排第一个,那么出场的顺序的排法种数为________.【答案】602位男生不能连续出场的排法共有N1=A33×A24=72(种),女生甲排第一个且2位男生不连续出场的排法共有N2=A22×A23=12(种),所以出场顺序的排法种数为N=N1-N2=60.例2.大数据时代出现了滴滴打车服务,二胎政策的放开使得家庭中有两个孩子的现象普遍存在. 某城市关系要好的A,B,C,D四个家庭各有两个孩子共8人,他们准备使用滴滴打车软件,分乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4个孩子不考虑位置),其中A家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4个孩子恰有2个来自于同一个家庭的乘坐方式共有________种.【答案】24根据题意,分两种情况讨论:①A家庭的孪生姐妹在甲车上,甲车上另外的两个孩子要来自不同的家庭,可以在剩下的三个家庭中任选2个,再从每个家庭的2个孩子中任选一个来乘坐甲车,有C23×C12×C12=12(种)乘坐方式;②A家庭的孪生姐妹不在甲车上,需要在剩下的三个家庭中任选1个,让其2个孩子都在甲车上,对于剩余的两个家庭,从每个家庭的2个孩子中任选一个来乘坐甲车,有C13×C12×C12=12(种)乘坐方式,故共有12+12=24(种)乘坐方式.命题点2分组与分配问题例1.国家教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教. 现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有________种不同的分派方法.【答案】90例2.有4名优秀学生A,B,C,D全部被保送到甲、乙、丙3所学校,每所学校至少去一名,则不同的保送方案共有________种.【答案】36则共有6×6=36(种)不同的保送方案.(1)解排列、组合问题要遵循的两个原则①按元素(位置)的性质进行分类;②按事情发生的过程进行分步. 具体地说,解排列、组合问题常以元素(位置)为主体,即先满足特殊元素(位置),再考虑其他元素(位置).(2)分组、分配问题的求解策略①对不同元素的分配问题a. 对于整体均分,解题时要注意分组后,不管它们的顺序如何,都是一种情况,所以分组后一定要除以A n n(n为均分的组数),避免重复计数.b. 对于部分均分,解题时注意重复的次数是均匀分组的阶乘数,即若有m组元素个数相等,则分组时应除以m!,分组过程中有几个这样的均匀分组,就要除以几个这样的全排列数.c. 对于不等分组,只需先分组,后排列,注意分组时任何组中元素的个数都不相等,所以不需要除以全排列数.②对于相同元素的“分配”问题,常用方法是采用“隔板法”.练1.(2017·全国Ⅱ改编)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有________种.【答案】36由题意可知,其中1人必须完成2项工作,其他2人各完成1项工作,可得安排方式为C13·C24·A22=练2.(2017·浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,则共有________种不同的选法. (用数字作答)【答案】660方法一只有1名女生时,先选1名女生,有C12种方法;再选3名男生,有C36种方法;然后排队长、副队长位置,有A24种方法. 由分步计数原理知,共有C12C36A24=480(种)选法.有2名女生时,再选2名男生,有C26种方法;然后排队长、副队长位置,有A24种方法. 由分步计数原理知,共有C26A24=180(种)选法. 所以依据分类计数原理知,共有480+180=660(种)不同的选法.方法二不考虑限制条件,共有A28C26种不同的选法,而没有女生的选法有A26C24种,故至少有1名女生的选法有A28C26-A26C24=840-180=660(种).练3.把5件不同的产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有________种.【答案】36将产品A与B捆绑在一起,然后与其他三种产品进行全排列,共有A22A44种方法,将产品A,B,C 捆绑在一起,且A在中间,然后与其他两种产品进行全排列,共有A22A33种方法. 于是符合题意的摆法共有A22A44-A22A33=36(种).四、课后练习1.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lg b的不同值的个数是________.【答案】18为A25-2=18.2. 有5本不同的书,其中语文书3本,数学书2本,若将它们随机并排摆放到书架的同一层上,则同一科目的书都不相邻的摆放方法数为________.【答案】12A33A22=12.3. 某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法的种数为________.【答案】24将4个车位捆绑在一起,看成一个元素,先排3辆不同型号的车,在3个车位上任意排列,有A33=6种排法,再将捆绑在一起的4个车位插入4个空档中,有4种方法,故共有4×6=24(种)方法.4. 方程ay=b2x2+c中的a,b,c∈{-3,-2,0,1,2,3},且a,b,c互不相同. 在所有这些方程所表示的曲线中,不同的抛物线共有________条.【答案】62a,b均不为0,且b取互为相反数的两数时抛物线相同,故分a取1与a不取1两类:①a取1时,b2取值为4,9两类,当b2=4和b2=9时,c都有5种情况,此时有2×5=10(种);②a不取1时有C14种,不妨设a取2,则b2取值有1,4,9三类,当b2=1时,c有4种,当b2=4时,c有4种,当b2=9时,c有5种,此时有C14(4+4+5)=52(条)不同的抛物线.故共有10+52=62(种)不同的抛物线.5. 有A,B,C,D,E五位学生参加网页设计比赛,决出了第一到第五的名次. A,B两位学生去问成绩,老师对A说:你的名次不知道,但肯定没得第一名;又对B说:你是第三名. 请你分析一下,这五位学生的名次排列的种数为________.【答案】18由题意知,名次排列的种数为C13A33=18.6. 用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为________.【答案】72由题可知,五位数要为奇数,则个位数只能是1,3,5.分为两步:先从1,3,5三个数中选一个作为个位数有C13种选法,再将剩下的4个数字排列有A44种排法,则满足条件的五位数有C13·A44=72(个).7. 若把英语单词“good”的字母顺序写错了,则可能出现的错误方法共有________种. (用数字作答)【答案】11把g,o,o,d 4个字母排一列,可分两步进行,第一步:排g和d,共有A24种排法;第二步:排两个o,共1种排法,所以总的排法种数为A24=12.其中正确的有一种,所以错误的共有A24-1=12-1=11(种).8. 在8张奖券中有一、二、三等奖各1张,其余5张无奖. 将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种. (用数字作答)【答案】60分两类:第一类:3张中奖奖券分给3个人,共A34种分法;第二类:3张中奖奖券分给2个人相当于把3张中奖奖券分两组再分给4人中的2人,共有C23A24种分法.总获奖情况共有A34+C23A24=60(种).9. 某医院拟派2名内科医生,3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生,外科医生和护士,则不同的分配方案有______种.【答案】362名内科医生的分法为A22,3名外科医生与3名护士的分法为C23C13+C13C23,共有A22(C23C13+C13C23)=36(种)不同的分法.10. 用数字0,1,2,3,4组成的五位数中,中间三位数字各不相同,但首末两位数字相同的共有________个.【答案】240由题意,知本题是一个分步计数问题,从1,2,3,4四个数中选取一个有四种选法,接着从这五个数中选取3个在中间三个位置排列,共有A35=60个,根据分步计数原理知,有60×4=240(个).11. 某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是________.【答案】120先安排小品节目和相声节目,然后让歌舞节目去插空. 安排小品节目和相声节目的顺序有三种:“小品1,小品2,相声”,“小品1,相声,小品2”和“相声,小品1,小品2”. 对于第一种情况,形式为“□小品1歌舞1小品2□相声□”,有A22C13A23=36(种)安排方法;同理,第三种情况也有36种安排方法,对于第二种情况,三个节目形成4个空,其形式为“□小品1□相声□小品2□”,有A22A34=48(种)安排方法. 由分类计数原理知,共有36+36+48=120(种)安排方法.12. 某宾馆安排A,B,C,D,E五人入住3个房间,每个房间至少住1人,且A,B不能住同一房间,则共有________种不同的安排方法. (用数字作答)【答案】1145个人住3个房间,每个房间至少住1人,则有(3,1,1)和(2,2,1)两种,当为(3,1,1)时,有C35·A33=90种,A,B住同一房间有C23·A33=18种,故有90-18=72(种),根据分类计数原理可知,共有42+72=114(种).13. 7人站成两排队列,前排3人,后排4人,现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法的种数为________.【答案】360前排3人有4个空,从甲、乙、丙3人中选1人插入,有C14C13种方法,对于后排,若插入的2人不相邻,有A25种方法;若相邻,有C15A22种,故共有C14C13(A25+C15A22)=360(种).14. 将标号为1,2,3,4,5的五个球放入3个不同的盒子中,每个盒子至少有一个球,则一共有________种放法.【答案】150标号为1,2,3,4,5的五个球放入3个不同的盒子中,每个盒子至少有一个球,故可分成(3,1,1)和(2,2,1)15. 在第二届乌镇互联网大会中,为了提高安保的级别同时又为了方便接待,现为其中的五个参会国的人员安排酒店,这五个参会国的人员要在a,b,c三家酒店中任选一家,且这三家都至少有一个参会国的人员入住,则这样的安排方法共有________种.【答案】150这三家酒店入住的参会国数目有以下两种可能:满足题意的安排方法共有90+60=150(种).。

高中数学排列组合习题精选

高中数学排列组合习题精选

1、体育场南侧有4个大门,北侧有3个大门,某学生到该体育场练跑步,则他进出门的方案有( )种。

2、某公共汽车上有10名乘客,沿途有5个车站,乘客下车的可能方式有( )种3、(1)4名同学选报跑步、跳高、跳远三个项目,每人报一项,共有多少种报名方法?(2)4名同学争夺跑步、跳高、跳远三项冠军(各项目冠军都只有一人),共有多少种可能的结果?4、从集合{1,2,…,10}中任选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为()5、有4位教师在同一年级的四个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有( )种。

A .8 B .9 C .10 D .116、3人玩传球游戏,由甲开始并做为第一次传球,经过4次传球后,球仍回到甲手中,有多少种不同的传球方式呢?7、集合A ={a ,b ,c ,d},B={1,2,3,4,5}。

(1)从集合A 到集合B 可以建立多少个不同的映射?(2)从集合A 到集合B 的映射中,要求集合A 中元素的象不同,这样的映射有多少个8、对一个各边长都不相等的凸五边形的各边进行染色,每条边都可以染红、黄、蓝三种不同的颜色,但是不允许相邻相邻的边染相同的颜色,则不同的染色方法共有( )种.9、用5种不同颜色给图中的A 、B 、C 、D 四个区域涂色,规定一个区域只涂一种颜色,相邻的区域颜色不同,共有( )种不同的涂色方案.10、将1,2,3填入3×3的方格中,要求每行、每列都没有重复数字,如图是一种填法,则不同的填写方法共有 A .6种 B .12种 C .24种 D .48种11、如图所示的五个区域中,中心区域是一幅图画,现要求在其余四个区域中涂色,有四种颜色可供选择.要求每个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为()A .64B .72C 。

84 D .9612、(13山东)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( )A .243B .252C .261D .27913、(13福建)满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为( ) A .14 B .13 C .12 D .1014、(16全国)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a 中0的个数不少于1的个数。

高中排列组合练习题

高中排列组合练习题

高二数学排列与组合练习题黎岗排列练习1、将 3 个不同的小球放入 4 个盒子中,则不同放法种数有()A、81B、64C、12D、142、n∈N且 n<55,则乘积( 55-n )( 56-n )( 69-n )等于()A、B、C、D、3、用 1,2,3, 4 四个数字可以组成数字不重复的自然数的个数()A、64B、60C、24D、2564、3 张不同的电影票全部分给10 个人,每人至多一张,则有不同分法的种数是()A、2160B、120C、240D、7205、要排一张有 5 个独唱和 3 个合唱的节目表,如果合唱节目不能排在第一个,并且合唱节目不能相邻,则不同排法的种数是()A、B、C、D、6、5 个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有()A、B、C、D、7、用数字 1,2,3,4,5 组成没有重复数字的五位数,其中小于50000 的偶数有()A、24B、36C、46D、608、某班委会五人分工,分别担任正、副班长,学习委员,劳动委员,体育委员,其中甲不能担任正班长,乙不能担任学习委员,则不同的分工方案的种数是()A、B、C、D、答案:1-8 BBADCCBA一、填空题1、( 1)( 4P84+2P85)÷( P86-P95)× 0! =___________(2)若 P2n3=10P n3,则 n=___________2、从 a、b、c、 d 这四个不同元素的排列中,取出三个不同元素的排列为__________________________________________________________________3、4 名男生, 4 名女生排成一排,女生不排两端,则有_________种不同排法。

4、有一角的人民币 3 张,5 角的人民币 1 张,1 元的人民币 4 张,用这些人民币可以组成_________种不同币值。

二、解答题5、用 0,1,2, 3, 4, 5 这六个数字,组成没有重复数字的五位数,( 1)在下列情况,各有多少个?①奇数②能被 5 整除③能被 15 整除④比 35142 小⑤比 50000 小且不是 5 的倍数6、若把这些五位数按从小到大排列,第100 个数是什么?1××××10×××12×××13×××14×××1502×15032150347、7 个人排成一排,在下列情况下,各有多少种不同排法?(1)甲排头(2)甲不排头,也不排尾(3)甲、乙、丙三人必须在一起(4)甲、乙之间有且只有两人(5)甲、乙、丙三人两两不相邻(6)甲在乙的左边(不一定相邻)(7)甲、乙、丙三人按从高到矮,自左向右的顺序(8)甲不排头,乙不排当中8、从 2,3,4, 7, 9 这五个数字任取3 个,组成没有重复数字的三位数(1)这样的三位数一共有多少个?(2)所有这些三位数的个位上的数字之和是多少?(3)所有这些三位数的和是多少?答案:一、1、( 1)5(2)8二、2、abc,abd,acd,bac,bad,bcd,cab,cad,cbd,dab,dac,dbc3、86404、395、①3×=288②③④⑤6、=120 〉 100=24=24=24=24=27、( 1)=720(2) 5 =3600( 3)=720( 4)=960( 5)=1440( 6)=2520(7) =840(8)8、( 1)(2)(3)300×( 100+10+1) =33300排列与组合练习1、若,则n的值为()A、6B、7C、8D、92、某班有 30 名男生, 20 名女生,现要从中选出 5 人组成一个宣传小组,其中男、女学生均不少于 2 人的选法为()A、B、C、D、3、空间有 10 个点,其中 5 点在同一平面上,其余没有 4 点共面,则 10 个点可以确定不同平面的个数是()A、206B、205C、111D、1104、6 本不同的书分给甲、乙、丙三人,每人两本,不同的分法种数是()A、B、C、D、5、由 5 个 1,2 个 2 排成含 7 项的数列,则构成不同的数列的个数是()A、21B、25C、32D、426、设 P1、P2, P20是方程 z20=1 的 20 个复根在复平面上所对应的点,以这些点为顶点的直角三角形的个数为()A、360B、180C、90D、457、若,则k的取值范围是()A、[5 ,11]B、[4,11]C、[4,12]D、4,15]8、口袋里有 4 个不同的红球, 6 个不同的白球,每次取出 4 个球,取出一个线球记 2分,取出一个白球记 1 分,则使总分不小于 5 分的取球方法种数是()A、B、C、D、答案:1、B2、D3、C4、A5、A6、B7、B 8、C1、计算:( 1)=_______( 2)=_______2、把 7 个相同的小球放到10 个不同的盒子中,每个盒子中放球不超 1 个,则有_______种不同放法。

排列组合的试题及答案高中

排列组合的试题及答案高中

排列组合的试题及答案高中一、选择题1. 从5个不同的小球中取出3个进行排列,共有多少种不同的排列方式?A. 20种B. 60种C. 120种D. 240种2. 有5个人排成一排,其中甲乙两人必须相邻,共有多少种不同的排法?A. 48种B. 60种C. 120种D. 240种二、填空题3. 用0,1,2,3,4这五个数字组成没有重复数字的三位数,其中个位数字为1的共有多少个?4. 某班有10名同学,需要选出3名代表,有多少种不同的选法?三、解答题5. 某公司有10名员工,需要选出5名员工组成一个工作小组,要求其中至少有1名女性员工。

如果公司中有5名女性员工和5名男性员工,问有多少种不同的组合方式?6. 某校有5个社团,每个学生最多可以参加2个社团,问有多少种不同的参加方式?答案一、选择题1. 答案:B解析:从5个不同的小球中取出3个进行排列,使用排列公式A_{5}^{3} = 5 × 4 × 3 = 60。

2. 答案:A解析:将甲乙两人看作一个整体,有4!种排法,再将甲乙两人内部排列,有2!种排法,所以总共有4! × 2! = 48种排法。

二、填空题3. 答案:18解析:首先确定百位,有4种选择(不能选0和1),然后确定十位,有3种选择(不能与百位相同),最后确定个位为1,所以共有 4 × 3 = 12种。

但是,由于0不能作为百位,所以需要减去3种情况,最终答案为 12 - 3 = 9种。

4. 答案:120解析:从10个人中选出3个人,使用组合公式 C_{10}^{3} = 10! / (3! × (10 - 3)!) = 120。

三、解答题5. 答案:252种解析:首先计算所有可能的组合数,即 C_{10}^{5} = 252。

然后计算没有女性员工的组合数,即 C_{5}^{5} = 1。

所以至少有1名女性员工的组合数为 252 - 1 = 251。

高中数学排列组合专题

高中数学排列组合专题

摆列组合一.选择题(共 5 小题)1.甲、乙、丙三同学在课余时间负责一个计算机房的周一至周六的值班工作,每日 1 人值班,每人值班 2 天,假如甲同学不值周一的班,乙同学不值周六的班,则能够排出不一样的值班表有()A.36 种B.42 种C.50 种D.72 种2.某城市的街道如图,某人要从 A 地前去 B 地,则行程最短的走法有()A.8 种 B.10 种 C.12 种D.32 种3.某次联欢会要安排 3 个歌舞类节目, 2 个小品类节目和 1 个相声类节目的演出次序,则同类节目不相邻的排法种数是()A.72 B.120 C.144 D.1684.现将甲乙丙丁 4 个不一样的小球放入A、B、C 三个盒子中,要求每个盒子起码放 1 个小球,且小球甲不可以放在A 盒中,则不一样的放法有()A.12 种B.24 种C.36 种D.72 种5.从 6 人中选 4 人分别到巴黎、伦敦、悉尼、莫斯科四个城市旅行,要求每个城市有一人旅行,每人只旅行一个城市,且这 6 人中甲、乙两人不去巴黎旅行,则不一样的选择方案共有()A.300 种B.240 种C.144 种D.96 种二.填空题(共 3 小题)6.某排有 10 个座位,若 4 人就坐,每人左右两边都有空位,则不一样的坐法有种.7.四个不一样的小球放入编号为 1,2,3 的三个盒子中,则恰有一个空盒的放法共有种(用数字作答).8.书架上本来并排放着 5 本不一样的书,现要再插入3 本不一样的书,那么不一样的插法共有种.三.解答题(共8 小题)9.一批部件有9 个合格品, 3 个不合格品,组装机器时,从中任取一个部件,若拿出不合格品不再放回,求在获得合格品前已拿出的不合格品数的散布列10.已知睁开式的前三项系数成等差数列.(1)求 n 的值;(2)求睁开式中二项式系数最大的项;(3)求睁开式中系数最大的项.11.设 f(x)=(x2+x﹣ 1)9(2x+1)6,试求 f( x)的睁开式中:(1)全部项的系数和;(2)全部偶次项的系数和及全部奇次项的系数和.12.求( x2+﹣2)5的睁开式中的常数项.13.求值 C n5﹣n +C n+19﹣n.14.3 名男生, 4 名女生,依据不一样的要求排队,求不一样的排队方案的种数.(1)选 5 名同学排成一行;(2)全体站成一排,此中甲只好在中间或两头;(3)全体站成一排,此中甲、乙一定在两头;(4)全体站成一排,此中甲不在最左端,乙不在最右端;(5)全体站成一排,男、女各站在一同;(6)全体站成一排,男生一定排在一同;(7)全体站成一排,男生不可以排在一同;(8)全体站成一排,男、女生各不相邻;(9)全体站成一排,甲、乙中间一定有 2 人;(10)全体站成一排,甲一定在乙的右侧;(11)全体站成一排,甲、乙、丙三人自左向右次序不变;(12)排成前后两排,前排 3 人,后排 4 人.15.用 1、 2、 3、 4、5、6 共 6 个数字,按要求构成无重复数字的自然数(用排列数表示).(1)构成多少个 3 位数?(2)构成多少个 3 位偶数?(3)构成数字 1、2 相邻的 5 位偶数有多少个?(4)构成能被 3 整除的三位数有多少个?(5)构成 1、3 都不与 5 相邻的六位数有多少个?(6)构成个位数字小于十位数的个数有多少个?16.用 6 种不一样的颜色给以下三个图中的4 个格子涂色,每个格子涂一种颜色,且要求相邻的两个格子颜色不一样,则(1)图 1 和图 2 中不一样的涂色方法分别有多少种?(2)图 3 最多只好使用 3 种颜色,不一样的涂色方法有多少种?摆列组合参照答案与试题分析一.选择题(共 5 小题)1.【解答】解:每人值班 2 天的排法或减去甲值周一或乙值周六的排法,再加上甲值周一且乙值周六的排法,共有 C62C42﹣ 2A51C42+A42=42(种).应选 B.2.【解答】解:依据题意,要求从 A 地到 B 地行程最短,一定只向上或向右行走即可,剖析可得,需要向上走 2 次,向右 3 次,共 5 次,从5 次中选 3 次向右,剩下 2 次向上即可,则有 C53=10 种不一样的走法,应选 B.3.【解答】解:分 2 步进行剖析:1、先将 3个歌舞类节目全摆列,有33=6种状况,排好后,有 4 个空位,A2、因为 3个歌舞类节目不可以相邻,则中间 2 个空位一定安排 2 个节目,分 2 种状况议论:①将中间 2 个空位安排 1 个小品类节目和 1 个相声类节目,有 C2122种状况,A=4排好后,最后 1 个小品类节目放在 2 端,有 2 种状况,此时同类节目不相邻的排法种数是6×4×2=48 种;②将中间 2 个空位安排 2 个小品类节目,有A22=2 种状况,排好后,有 6 个空位,相声类节目有 6 个空位可选,即有 6 种状况,此时同类节目不相邻的排法种数是6×2×6=72 种;则同类节目不相邻的排法种数是48+72=120,应选: B.4.【解答】解:从 4 个球种选出 2 个构成复合元素,再把 3 个元素(包括一个复合元素)放入 3 个不一样的盒子中有=36 种,小球甲放在 A 盒中,其余三个球能够分为两类,第一类, 3 个球随意放入 3 个盒子中,有=6,第二类,从剩下的 3 个球种选出 2 个构成复合元素,再把 2 个元素(包括一个复合元素)放入 B, C 两个不一样的盒子中有=6,利用间接法,故每个盒子起码放 1 个小球,且小球甲不可以放在 A 盒中,则不一样的放法有 36﹣6﹣6=24.应选: B.5.【解答】解:依据题意,由摆列公式可得,第一从6人中选 4人分别到四个城市旅行,有 A64=360 种不一样的状况,此中包括甲到巴黎旅行的有 A53种,乙到巴黎旅行的有53种,=60A=60故这 6 人中甲、乙两人不去巴黎旅行,则不一样的选择方案共有360﹣60﹣ 60=240种;应选 B.二.填空题(共 3 小题)6.【解答】解:先排 6 个空座位,因为空座位是同样的,则只有 1 种状况,此中有 5 个空位切合条件,再将 4 人插入 5 个空位中,则共有1×A54=120 种状况,故答案为: 120.7.【解答】解:依据题意,分2 步进行剖析,①、先在编号为 1, 2, 3 的三个盒子中,拿出 2 个盒子,有 C32=3 种取法,②、将 4 个小球放进步出的 2 个盒子中,每个小球有 2 种放法,则 4 个小球一共有 2×2×2×2=24种,此中有 1 个空盒,即 4 个小球都放进此中 1 个盒子的状况有 2 种;则将 4 个小球放进步出的2 个盒子中,且不可以有空盒,其放法数量为(24﹣2)=14 种,故四个不一样的小球放入编号为1,2,3 的三个盒子中,则恰有一个空盒的放法为3×14=42 种;故答案为: 42.8.【解答】解:3 本不一样的书,插入到本来有 5 本不一样的书中,分三步,每插一本为一步,第一步,先插入第一本,插入到本来有 5 本不一样的书排成一排所形成的 6 个间隔中.有,第二步,再插入第二本,插入到有 6 本不一样的书排成一排所形成的 7 个间隔中,有,第三步,最后插入第三本,插入到有 7 本不一样的书排成一排所形成的8 个间隔中,有依据分步计数原理,不一样的插法共有=336三.解答题(共8 小题)9.【解答】解:设在获得合格品前拿出的不合格品数为ξ,则ξ是一个随机变量,且取值 0,1,2,3ξ =0表示从 12 个部件中取 1 件,取到合格品,其概率为 p(ξ =0)== =,ξ =1表示从 12 个部件中取 2 件,第 1 次取到不合格品,第2 次取到合格品,其概率为 p(ξ=1)===,有 p(ξ=2)===,p(ξ =3)===∴所求散布列为10.【解答】解:(1),,解得 n=8(2)因为二项睁开式中中间项的二项式系数最大,因为 n=8,因此睁开式中共有 9 项,因此睁开式中二项式系数最大的项(3)令睁开式中第 r+1 项的系数最大,因此解得 2≤r ≤3∴r=2, 3∴睁开式中系数最大的项为:T3=7x2,T4=7x11.【解答】解:(1)设(f x)=(x2+x﹣1)(9 2x+1)6 =a0+a1x+a2x2+a3x3+a4x4+ +a24x24,令 x=1,可得全部项的系数和为 a0+a1 +a2 +a3 +a4 + +a24=36=729 ①,即全部项的系数和为 729.( 2)再令 x=﹣1,可得 a0﹣a1+a2﹣ a3 +a4 + +a22﹣a23+a24=﹣ 1 ②,由①②求得偶次项的系数和为a0 2 424,全部奇次项的系数和为1+a +a + +a =364a +a3 +a5 + +a23=365.12.【解答】解:(x 2+ ﹣2)5=,睁开式的通项公式为r +1(﹣)T =?1r?x10﹣2r,令 10﹣ 2r=0,求得 r=5,可得睁开式中的常数项为﹣=﹣252.13.【解答】解:由题意可得,解可得, 4≤ n≤ 5∵n∈ N*∴n=4 或 n=5当 n=4 时,原式 =C41+C55=5当 n=5 时,原式 =C50+C64=1614.【解答】解:(1)选 5 名同学排成一行,故有A75=2520 种;(2)全体站成一排,此中甲只好在中间或两头, A66+A21A66=2160 种;(3)全体站成一排,此中甲、乙一定在两头; A22A55=240 种(4)全体站成一排,此中甲不在最左端,乙不在最右端;A77﹣ 2A66+A55=3720种;(5)全体站成一排,男、女各站在一同, A33A44A22=288 种;(6)全体站成一排,男生一定排在一同, A33A55=720 种;(7)全体站成一排,男生不可以排在一同, A44A53=1440 种;(8)全体站成一排,男、女生各不相邻, A33A44=144 种;( 9)全体站成一排,甲、乙中间一定有 2 人,A5222 44种;A A =960( 10)全体站成一排,甲一定在乙的右侧,A77=2520 种,( 11)全体站成一排,甲、乙、丙三人自左向右次序不变,=840 种( 12)排成前后两排,前排 3 人,后排 4 人, A77=5040 种.15.【解答】解:(1)选 3 个全排,故有 A63个;(2)第一步确立个位,第二步确立百位和十位,故有A31A52个;(3)第一类, 2 为个位数字,则有 A43个,第二类, 4 或 6 为个位数字,再从剩下的 3 个数中选 2 个和 1,2 捆绑在一同构成一个复合元素全排,则有 A21A22C32A33个,故构成数字 1、2 相邻的 5 位偶数有 A43+A21A22C32A33个;( 4)构成能被 3 整除的三位数的三个数字之和为 3 的倍数,有 1+2+3=6,1+2+6=9,1+3+5=9,1+5+6=12,2+3+4=9,2+4+6=12,3+4+5=12,4+5+6=15,故构成能被 3 整除的三位数, 8A33个;( 5)若 1,3 不相邻,把 1,3,5 插入到 2,4, 6 形成 4 个空中,则有 A33A43个;若 1,3 相邻,把 1,3 捆绑在一同构成一个复合元素和 5 插入到 2,4,6 形成 4个空中,则有 A22A33A42个,故构成 1、3 都不与 5 相邻的六位数有 A33A43+A22A33A42个;(6)构成个位数字小于十位数的大小次序只有两种,故构成个位数字小于十位数的个数有 A66个.16.【解答】解:如图( 1)图 1 中, A 有 6 种涂色方法, B 种有 5 种涂色方法, C 有 4 种涂色方法, D 有 5 种涂色方法,因此依据分步计数原理知共有6× 5× 4× 5=600 种涂法,图 2 中,若 A,D 同色, A 有 6 种涂色方法, B 种有 5 种涂色方法, C 有 5 种涂色方法,故有 6×5×5=150 种,若 A,D 异色, A 有 6 种涂色方法, D 有 5 种涂色方法, B 种 4 种涂色方法, C 有4种涂色方法, 6×5×4×4=480,因此依据分类计数原理知共有 150+480=630 种涂法,( 2)用 2 色涂格子有 C62×2=30 种方法,用 3 色涂格子,第一步选色有 C63,第二步涂色,共有 3×2(1×1+1× 2) =18 种,因此涂色方法 18×C63=360 种方法,第 9页(共 10页)故总合有 390 种方法.。

高中数学-排列组合100题(附解答)

高中数学-排列组合100题(附解答)

中学数学_排列组合100题一、填充题1. (1)设{}3,8A =﹐{}8,36B x =+﹐若A B =﹐则x =____________﹒(2)设{}2|320A x x x =-+=﹐{}1,B a =﹐若A B =﹐则a =____________﹒ 2. (1)822x x ⎛⎫- ⎪⎝⎭绽开式中10x 项的系数为____________﹒(2)52123x x ⎛⎫- ⎪⎝⎭绽开式中3x 项的系数为____________﹒(3)53212x x ⎛⎫+ ⎪⎝⎭绽开式中常数项为____________﹒3. (1)()82x y z +-绽开式中332x y z 项的系数为____________﹒(2)()532x y z -+绽开式中﹐2.3x y 项的系数为____________﹒4. 四对夫妇围一圆桌而坐﹐夫妇相对而坐的方法有___________种﹒5. {}{}1,21,2,3,4,5,A ⊂⊂且A 有4个元素﹐则这种集合A 有____________个﹒6. 从2000到3000的全部自然数中﹐为3的倍数或5的倍数者共有____________个﹒7. 从1至10的十个正整数中任取3个相异数﹐其中均不相邻的整数取法有____________种﹒8. 某女生有上衣5件﹑裙子4件﹑外套2件﹐请问她外出时共有____________种上衣﹑裙子﹑外套的搭配法﹒(留意:外套可穿也可不穿﹒)9. 已知数列n a 定义为1132n n a a a n +=⎧⎨=+⎩﹐n 为正整数﹐求100a =____________﹒10. 设A ﹑B ﹑T 均为集合﹐{},,,A a b c d =﹐{},,,,=B c d e f g ﹐则满意T A ⊂或T B ⊂的集合T 共有____________个﹒11. 李先生与其太太有一天邀请邻家四对夫妇围坐一圆桌闲聊﹐试求下列各情形之排列数:(1)男女间隔而坐且夫妇相邻____________﹒ (2)每对夫妇相对而坐____________﹒12. 体育课后﹐阿珍将4个相同排球﹐5个相同篮球装入三个不同的箱子﹐每箱至少有1颗球﹐则方法有____________种﹒13. 如图﹐由A 沿棱到G 取快捷方式(最短路径)﹐则有____________种不同走法﹒14. 0﹑1﹑1﹑2﹑2﹑2﹑2七个数字全取排成七位数﹐有____________种方法﹒ 15. 1012⎛⎫⎪ ⎪⎝⎭绽开式中﹐各实数项和为____________﹒17. 设{}2,4,1A a =+﹐{}24,2,23B a a a =----﹐已知A B ⋂{}2,5=﹐则()()A B A B ⋃-⋂=____________﹒ 18. 把1~4四个自然数排成一行﹐若要求除最左边的位置外﹐每个位置的数字比其左边的全部数字都大或都小﹐则共有____________种排法﹒(例如:2314及3421均为符合要求的排列) 19. 从1到1000的自然数中﹐(1)是5的倍数或7的倍数者共有____________个﹒ (2)不是5的倍数也不是7的倍数者共有____________个﹒ (3)是5的倍数但不是7的倍数者共有____________个﹒ 20. 如图﹐从A 走到B 走快捷方式﹐可以有____________种走法﹒21. 1到1000的正整数中﹐不能被2﹑3﹑4﹑5﹑6之一整除者有____________个﹒ 22. 将100元钞票换成50元﹑10元﹑5元﹑1元的硬币﹐则(1)50元硬币至少要1个的换法有____________种﹒ (2)不含1元硬币的换法有____________种﹒ 23. 求()21x -除1001x +的余式为____________﹒24. 在()8x y z ++的绽开式中﹐同类项系数合并整理后﹐(1)共有____________个不同类项﹒(2)其中323x y z 的系数为____________﹒25. 小明与小美玩猜数字嬉戏﹐小明写一个五位数﹐由小美来猜;小美第一次猜75168﹐小明说五个数字都对﹐但只有万位数字对﹐其他数字所在的位数全不对﹐则小美最多再猜____________次才能猜对﹒26. 若{}|,,110000S x x x =≤≤為正整數正整數﹐{}|12,,110000T x x k k x ==≤≤為正整數﹐则()n S T -=____________﹒27. 小于10000之自然数中﹐6的倍数所成集合为A ﹐9的倍数所成集合为B ﹐12的倍数所成集合为C ﹐则(1)()n A B ⋂=____________﹒ (2)()n A B C ⋂⋂=____________﹒ (3)()n A B C ⎡⋂⋃⎤=⎣⎦____________﹒ (4)()n A B C ⎡⋂⋃⎤=⎣⎦____________﹒28. 1到300的自然数中﹐是2或3的倍数但非5的倍数有____________个﹒ 29. ()10222x x -+除以()31x -所得的余式为____________﹒30.如圖﹐以五色塗入各區﹐每區一色且相鄰區不得同色﹐則有____________種不同的塗法﹒(圖固定不得旋轉)31. 如图﹐则(1)由A 取捷徑到B 的走法有____________種﹒(2)由A 走到B ﹐走向可以↑﹑→或↓﹐但不可以←﹐且不可重複走﹐則走法有____________種﹒33.()101kk x =-∑绽开式中5x 的系数为____________﹒34. 绽开()200.990.abcd =……﹐则a b c ++=____________﹒35. 建中高二教室楼梯一层有11个阶梯﹐学生上楼时若限定每步只可跨一阶或二阶﹐则上楼的走法有____________种﹒36. 利用二项式定理求12323n n n n n C C C nC +++⋅⋅⋅⋅⋅⋅+和为____________﹒37. 四对夫妇Aa ﹑Bb ﹑Cc ﹑Dd 围一圆桌而坐﹐若Aa 要相对且Bb 要相邻的坐法有____________种﹒38. 很多白色及黑色的磁砖﹐白色的磁砖为正方形﹐边长为1单位;黑色为长方形﹐其长为2单位﹐宽为1单位﹔则贴满一个长7单位﹐宽1单位的长方形墙壁﹐共有____________种方法﹒ 39.如圖,有三組平行線,每組各有三條直線,則 (1)可決定____________個三角形.(2)可決定____________個梯形.(一組對邊平行,另一組對邊不平行).40. 小功家住在一栋7楼的电梯公寓﹐今日小功回家时有5人同时和小功一起进入1楼电梯欲往上﹐假设每人按下自己想要到的楼层(可相同或不同)﹐请问电梯有____________种停靠方式﹒(假设这期间电梯只会由下而上依次停靠这6人所按的楼层)41. 设202020201232023......20,S C C C C =+⋅+⋅++⋅则S 为____________位数﹒(设log20.3010=)42. 4面不同色的旗子﹐若任取一面或数面悬挂在旗杆上来表示讯号﹐假如考虑上下的次序﹐则可作成____________种不同的讯号﹒ 43.如圖的棋盤式街道﹐甲走捷徑從A 至B ﹐則 (1)走法有____________種﹒(2)若不得經過C 且不經過D 的走法有____________種﹒44.圖中的每一格皆是正方形﹐邊長均為1個單位﹐試問由圖中線段(1)共可決定____________個矩形﹒ (2)可決定____________個正方形﹒45. 有红﹑白﹑黄三种大小一样的正立方体积木各20个﹐从中取出7个积木﹐相同颜色堆在一起﹐一一重迭堆高﹐共有____________种堆法﹒46. 2颗苹果﹐3颗番石榴﹐4颗菠萝﹐将9颗水果随意装入4个不同的箱子﹐水果全装完每个箱子至少装一颗水果有____________种方法﹒(同种水果视为同物)47. A ﹑B ﹑C ﹑D ﹑E 五对夫妇围成一圆桌而坐(座位无编号)﹐A 夫妇相对且B 夫妇相邻的情形有____________种﹒48. 如图﹐取快捷方式而走﹐由A 不经P ﹑Q 至B 有____________种方法﹒50. 二个中国人﹑二个日本人﹑二个美国人排成一列﹐同国籍不相邻有____________种排法﹒二、计算题1. 设数列n a 满意14a =且132k n a a +=+﹐n 为自然数﹐试求(1)2a ﹐3a ﹐4a ﹐5a ﹒(2)推想n a 之值(以n 表示)﹒(3)401kk a=∑﹒2. 某校从8名老师中选派4名老师分别去4个城市研习﹐每地一人﹒其中甲和乙不能同时被选派﹐甲和丙只能同时被选派或同时不被选派﹐问共有几种选派方法?3. 试求()632x y -的绽开式﹒4. 试求()421x -的绽开式﹒5. 从SENSE 的5个字母中任取3个排成一列﹐问有几个排法?6. 下列各图形﹐自A 到A 的一笔划﹐方法各有多少种﹖(1)(2)(3)7. 如图﹐至少包含A 或B 两点之一的矩形共有几个?8. 设()nx y +绽开式中依x 降序排列的第6项为112﹐第7项为7﹐第8项为14﹐试求x ﹑y 及n 之值﹒(但x ﹑y 都是正数)9. 红﹑白﹑绿﹑黑四色大小相同的球各4颗共16颗球﹐任取四颗﹐则(1)四球恰为红﹑白二色的情形有几种? (2)四球恰具两种颜色的情形有几种?10. 一楼梯共10级﹐某人上楼每步可走一级或两级﹐要8步走完这10级楼梯﹐共有多少种走法?11. 设{}1,2,3,4,5,6,7,8,9,10U =为一基集(宇集)﹐则{}1,2,4,5,8A =﹐{}1,2,5,7,9B =﹐求(1)A B ⋃ (2)A B ⋂ (3)A B - (4)B A - (5)'A (6)'B (7)()'⋃A B (8)''⋂A B (9)()'A B ⋂ (10)''A B ⋃﹒12. 若()1922381211x x a x a x x -+=+++⋅⋅⋅⋅⋅⋅+﹐求1a 和2a 的值﹒13. 某一场舞会将4位男生与4位女生配成4对﹐每一对皆含一位男生与一位女生﹐试问总共有几种配对法﹖(1)43C ﹒ (2)44P ﹒ (3)44﹒ (4)44H ﹒ (5)4﹒14. 如图﹐A A →一笔划的方法数有几种﹖(1) (2)15. 如图﹐由A 至B 走快捷方式﹐不能穿越斜线区﹐有多少种走法﹖16. 求()70.998之近似值﹒(至小数点后第6位)17. 设()1012220211x x ax bx cx +-=+++⋅⋅⋅⋅⋅⋅+﹐求a ﹑b ﹑c 之值﹒18. (1)试证明下列等式成立:()1012121.12311n n n n n n C C C C n n ++++⋅⋅⋅⋅⋅⋅+=-++ (2)设n 为自然数﹐且满意1231,2311n nn nn C C C C n n +++⋅⋅⋅⋅⋅⋅+=++则n 之值为何?19. 王老师改段考考卷﹐她希望成果是0﹑4﹑5﹑6﹑7﹑8﹑9所组成的2位数﹐则(1)不小于60分的数有几个﹖ (2)有几个3的倍数﹖(3)改完考卷后发觉由小到大排列的第12个数正是全班的平均成果﹐请问班上的平均成果是几分﹖20. 某日有七堂课﹐其中有两堂是数学﹐有两堂是国文﹐另外是英文﹑生物﹑体育各一堂﹒若数学要连两堂上课﹐国文也要连两堂上课﹐但同科目的课程不跨上﹑下午(即第四五节课不算连堂)﹐若第四﹑五堂课也不排体育﹐则该日之课程有几种可能的排法﹖21. ()10122320211,x x ax bx cx x +-=++++⋅⋅⋅⋅⋅⋅+求a ﹑b ﹑c ﹒22. 已知{}{}{}0,,1,2,1,1,2=∅A ﹐下列何者为真﹖(A)∅∈A (B)∅⊂A (C)0A ∈ (D)0A ⊂ (E){}1,2A ∈ (F){}1,2A ⊂ (G){}∅⊂A ﹒ 23.設有A ﹑B ﹑C ﹑D ﹑E 五個市鎮﹐其通道如圖所示﹐今某人自A 地到E 地﹐同一市鎮不得經過兩次或兩次以上﹐且不必走過每一市鎮﹐求有幾種不同路線可走﹖24. 设数列n a 的首项15a =且满意递归关系式()123n n a a n +=+-﹐n 为正整数﹐试求(1)2a ﹐3a ﹐4a ﹐5a ﹒(2)一般项na (以n 表示)﹒(3)20a ﹒25. 方程式10x y z ++=有多少组非负整数解?26. 用0﹑1﹑2﹑3﹑4﹑5作成大于230的三位数奇数﹐数字可重复运用(1)可作成多少个﹖ (2)其总和若干﹖5678192028. 妈妈桌球俱乐部拟购买8把桌球拍以供遗忘携带球拍的会员运用﹐若球拍分为刀板﹐直拍与大陆拍3类﹐试问俱乐部有多少种不同的购买方式?29. 设直线方程式0ax by +=中的,a b 是取自集合{}3,2,1,0,2,4,6---中两个不同的元素﹐且该直线的斜率为正值﹐试问共可表出几条相异的直线﹖30. 下列各图﹐由A 到B 的一笔划﹐方法各有多少种﹖(1) (2)31. 以五种不同的颜色﹐涂入下列各图(图形不能转动)﹐同色不相邻﹐颜色可重复运用﹐则涂法各有多少种﹖(1)(2)32. 平面上有n 个圆﹐其中任三个圆均不共点﹐此n 个圆最多可将平面分割成n a 个区域﹐则(1)求1a ﹐2a ﹐3a ﹐4a ﹒(2)写出n a 的递归关系式﹒(3)求第n 项n a (以n 表示)﹒33. 于下列各图中﹐以五色涂入各区﹐每区一色但相邻不得同色﹐则各有几种不同的涂法﹖(各图固定﹐不得旋转)(1)(2)(3)34. 车商将3辆不同的休旅车及3辆不同的跑车排成一列展示﹒求下列各种排列方法:(1)休旅车及跑车相间排列﹒(2)休旅车及跑车各自排在一起﹒35. 从6本不同的英文书与5本不同的中文书中﹐选取2本英文书与3本中文书排在书架上﹐共有几种排法?36. 将9本不同的书依下列情形安排﹐方法各有几种?(1)分给甲﹐乙﹐丙3人﹐每人各得3本﹒(2)分装入3个相同的袋子﹐每袋装3本﹒(3)分装入3个相同的袋子﹐其中一袋装5本﹐另两袋各装2本﹒37. 学校举办象棋及围棋竞赛﹐已知某班级有42位同学参赛﹐其中有34位同学参与围棋竞赛﹐而两种棋赛都参与的同学有15人﹒试问此班有多少位同学参与象棋竞赛?38. 求()321x x ++的绽开式中2x 的系数﹒39. 求()322x x -+的绽开式中4x 的系数﹒40. 求240的正因子个数﹒41. 自甲地到乙地有电车路途1条﹐公交车路途3条﹐自乙地到丙地有电车路途2条﹐公交车路途2条﹒今小明自甲地经乙地再到丙地﹐若甲地到乙地与乙地到丙地两次选择的路途中﹐电车与公交车路途各选一次﹐则有几种不同的路途支配?42. 某班实行数学测验﹐测验题分A ﹐B ﹐C 三题﹒结果答对A 题者有15人﹐答对B 题者有19人﹐答对C 题者有20人﹐其中A ﹐B 两题都答对者有10人﹐B ﹐C 两题都答对者有12人﹐C ﹐A 两题都答对者有8人﹐三题都答对者有3人﹒试问A ﹐B ﹐C 三题中至少答对一题者有多少人?43. 在1到600的正整数中﹐是4﹐5和6中某一个数的倍数者共有几个?44.用黑白兩種顏色的正方形地磚依照如右的規律拼圖形: 設n a 是第n 圖需用到的白色地磚塊數﹒ (1)寫下數列n a 的遞迴關係式﹒ (2)求一般項n a ﹒(3)拼第95圖需用到幾塊白色地磚﹒45. 欲将8位转学生分发到甲﹐乙﹐丙﹐丁四班﹒(1)若平均每班支配2人﹐共有几种分法?(2)若甲乙两班各支配3人﹐丙丁两班各支配1人﹐共有几种分法?46. 求满意12320003000n nn nn C C C C <++++<的正整数n ﹒47. (1)方程式9x y z ++=有多少组非负整数解﹖(2)方程式9x y z ++=有多少组正整数解﹖48. 旅行社支配两天一夜的渡假行程﹐其中来回渡假地点的交通工具有飞机﹑火车及汽车3种选择﹐而住宿有套房与小木屋2种选择﹒试问全部渡假行程﹐交通工具与住宿共有几种支配法﹖49. 老师想从10位干部中选出3人分别担当班会主席﹑司仪及纪录﹒试问有几种选法﹖50. 假如某人周末时﹐都从上网﹑打牌﹑游泳﹑慢跑与打篮球等5种活动选一种作休闲﹐那么这个月4个周末共有多少种不同的休闲支配呢﹖一、填充题 (65格 每格0分 共0分)1. (1)1-;(2)22. (1)112;(2)0;(3)403. (1)4480;(2)90-4. 485. 36. 4687. 568. 609. 9903 10. 44 11.(1)48;(2)384 12. 228 13. 6 14. 90 15. 12- 16. 6 17. {}4,4- 18. 8 19. (1)314;(2)686;(3)172 20. 35 21. 26622. (1)37;(2)18 23. 10098x - 24. (1)45;(2)560 25. 9 26. 84 27. (1)555;(2)277;(3)1111;(4)1111 28. 160 29.2102011x x -+ 30. 780 31. (1)26;(2)120 32. 20349 33. 462- 34. 16 35. 144 36. 12n n -⋅ 37. 192 38. 21 39. (1)27;(2)81 40. 63 41. 8 42. 64 43. (1)56;(2)20 44. (1)369;(2)76 45. 129 46. 3756 47. 8640 48. 80 49. 54 50. 240二、计算题 (75小题 每小题0分 共0分)1. (1)2112a =﹐37a =﹐4172a =﹐510a =;(2)3522n +;(3)1330 2. 600 3. 见解析 4. 见解析 5. 18 6.(1)48;(2)48;(3)96 7. 150 8. 4x =﹐12y =﹐8n = 9. (1)3;(2)18 10. 28 11. 见解析 12. 1219,190a a =-= 13. (2) 14. (1)32;(2)64 15. 27 16. 0.986084 17. 101,4949,a b ==1c =- 18. (1)见解析;(2)4 19. (1)28;(2)14;(3)57 20. 52 21.101,4949,a b ==156550c = 22. (A)(B)(C)(E)(F)(G) 23. 76 24. (1)24a =﹐35a =﹐48a =﹐513a =;(2)248n n -+;(3)328 25. 66 26. (1)63;(2)25299 27. 5980 28. 45 29. 13 30. (1)72;(2)864 31. (1)420;(2)3660 32. (1)12a =﹐24a =﹐38a =﹐414a =;(2)12n n a a n +=+⨯;(3)22n n -+ 33. (1)260;(2)3380;(3)43940 34. (1)72;(2)72 35. 18000 36.(1)1680;(2)280;(3)378 37. 23 38. 6 39. 9 40. 20 41. 8 42. 27 43. 280 44. (1)15,2n n a a n -=+≥;(2)53n +;(3)478 45. (1)2520;(2)1120 46. 11 47. (1)55;(2)28 48. 18 49. 720 50. 625一、填充题 (65格 每格0分 共0分)1. (1)3631x x +=⇒=-﹒(2)()()2320120x x x x -+=⇒--=1,2x ⇒=﹐∴2a =﹒ 2. (1)设第1r +项为10x 项﹐则()()882816222rrr r r rr Cx C x x x ---⎛⎫-=- ⎪⎝⎭163102r r ⇒-=⇒=﹐∴10x 项之系数为()2822112C -=﹒ (2)设第1r +项为3x 项﹐则()55255102112233r rrr r r rr Cx C x x x ----⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭710333r r ⇒-=⇒=(不合)﹐∴3x 项之系数为0﹒ (3)设第1r +项为常数项﹐则()5535515322122rrr r rrr Cx C xx x ----⎛⎫= ⎪⎝⎭15503r r ⇒-=⇒=﹐∴常数项为523240C =﹒3. (1)()()()()332238!22144803!3!2!x y z -⇒⨯⨯-=﹒4. 所求为1161412148⨯⨯⨯⨯⨯⨯⨯=﹒ [另解]34!2484⨯=﹒ 5. {}1,2,3,4﹐{}1,2,3,5﹐{}1,2,4,5﹐共3个﹒6. 2000~3000中3的倍数有3000200033433⎡⎤⎡⎤-=⎢⎥⎢⎥⎣⎦⎣⎦个﹐ 2000~3000中5的倍数有30002000120155⎡⎤⎡⎤-+=⎢⎥⎢⎥⎣⎦⎣⎦个﹐ 2000~3000中15的倍数有30002000671515⎡⎤⎡⎤-=⎢⎥⎢⎥⎣⎦⎣⎦个﹐ ∴所求为33420167468+-=﹒7. 83563!P =﹒8. ()542160⨯⨯+=﹒ 9. ∵12n n a a n +=+﹐ ∴2121a a =+⨯ 3222a a =+⨯()1)21n n a a n -+=+⨯-()()21121213232n n n a a n n n -⋅=+⎡++⋅⋅⋅⋅⋅⋅+-⎤=+⨯=-+⎣⎦﹐∴210010010039903a =-+=﹒ 10. ∵T A T B ⊂⋃⊂﹐∴T 的个数为4522221632444+-=+-=﹒ 11. (1)5!2485⨯=﹒ (2)A a B b C c D d E e 1181614121384⨯⨯⨯⨯⨯⨯⨯⨯⨯=﹒ [另解]55!1238452⨯⨯=﹒ 12. 全部-(恰有一空箱)-(恰有二空箱)()()333223114514524511H H C H H C H H ⨯-⨯---⨯()67564545323228C C C C =⨯-⨯--=﹒13. 3216⨯⨯=﹒15. 绽开后各实数项和为24681086421010101010024681111122222C C C C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭10101012C ⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭512110242=-=-﹒ [另解]原式()()10cos 60sin 60i =⎡-︒+-︒⎤⎣⎦()()cos 600sin 600i =-︒+-︒12=-+﹐∴实数项和为12-﹒16. ∵1213n n a a +=+⋅⋅⋅⋅⋅⋅∴1213n n a a -=+⋅⋅⋅⋅⋅⋅-()1123n n n n a a a a +-⇒-=- 而11a =﹐2125133a a =+=﹐2123a a -=﹐表示数列1n n a a +-为首项23﹐公比23的等比数列﹐()()()121321n n n a a a a a a a a -=+-+-+⋅⋅⋅⋅⋅⋅+-111221332211213223313n n n ---⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎛⎫⎣⎦=+=+-=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦-﹐∴()111223262313n n n n a -∞∞==⎛⎫-=== ⎪⎝⎭-∑∑﹒17. ∵{}2,5A B ⋂=﹐∴154a a +=⇒=﹐∴{}2,4,5A =﹐{}4,2,5B =-﹐{}4,2,4,5A B ⋃=-﹐ ∴()(){}4,4A B A B ⋃-⋂=-﹒ 18. 1234 3214 2134 3241 2314 3421 2341 4321 共8种﹒19. 设1到1000的自然数所成的集合为基集U ﹐1到1000的自然數中﹐5的倍數者所成的集合為A ﹐ 而7的倍數者所成的集合為B ﹐ 則A B ⋂表示35的倍數者所成的集合﹐(1)即求()()()()n A B n A n B n A B ⋃=+-⋂100010001000200142283145735⎡⎤⎡⎤⎡⎤=+-=+-=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦﹒(2)即求()()()()1000314686⎡⎤'''⋂=⋃=-⋃=-=⎢⎥⎣⎦n A B n A B n U n A B ﹒(3)即求()()()20028172n A B n A n A B -=-⋂=-=﹒ 20.7!354!3!=﹒ 21. 若一整数不能被2整除﹐则必不能被4﹑6整除﹐故本题即求1到1000正整数中﹐不能被2﹑3﹑5之一整除者的个数﹒设1到1000之正整数中﹐可被2﹑3﹑5整除者之集合分别为A ﹑B ﹑C ﹐则()10005002n A ⎡⎤==⎢⎥⎣⎦﹐()10003333n B ⎡⎤==⎢⎥⎣⎦﹐()10002005n C ⎡⎤==⎢⎥⎣⎦﹐ ()10001666n A B ⎡⎤⋂==⎢⎥⎣⎦﹐()100010010n A C ⎡⎤⋂==⎢⎥⎣⎦﹐()10006615n B C ⎡⎤⋂==⎢⎥⎣⎦﹐()10003330n A B C ⎡⎤⋂⋂==⎢⎥⎣⎦﹐ ()()()()()()()()n A B C n A n B n C n A B n A C n B C n A B C ⋃⋃=++-⋂-⋂-⋂+⋂⋂5003332001661006633734=++---+=﹐故所求为()()'''10001000734266n A B C n A B C ⋂⋂=-⋃⋃=-=(个)﹒22. (1)①一个50⇒设10元x 个﹐5元y 个﹐1元z 个﹐则10550x y z ++=﹐共119753136+++++=种﹒②二个50⇒1种﹒ ∴所求为36137+=种﹒(2)设50元x 个﹐10元y 个﹐5元z 个﹐则50105100x y z ++= 10220x y z ⇒++=﹐23. ()()()1002100100100121111111x x C x C x +=⎡+-⎤+=+-+-+⎣⎦……()10010010011C x +-+﹐∴1001x +除以()21x -的余式为()11001110098x x +-+=-﹒24. (1)3101088245H C C ===﹒(2)8!560.3!2!3!= 25. 先考虑5不在千位﹐1不在百位﹐6不在十位﹐8不在个位的方法﹐ 14!43!62!41!10!9⨯-⨯+⨯-⨯+⨯=﹐∴最多再猜9次﹒26. {}{}2222,1100001,2,3,,100,=≤≤=正整數S x x ∴()100n S =﹐{}|12,,110000T x x k k x ==≤≤為正整數﹐令()222212232336x k k ==⨯⨯=⨯⨯=﹐则()()(){}22261,62,,616,⋂=⨯⨯⨯S T∴()16n S T ⋂=﹐故()1001684n S T -=-=﹒27. (1)所求为999955518⎡⎤=⎢⎥⎣⎦﹒ (2)所求为999927736⎡⎤=⎢⎥⎣⎦﹒(3)()()()()n A B C n A B n C n A B C ⎡⋂⋃⎤=⋂+-⎡⋂⋂⎤⎣⎦⎣⎦ 5558332771111=+-=﹒ (4)()()()n A B C n A B A C ⎡⋂⋃⎤=⎡⋂⋃⋂⎤⎣⎦⎣⎦()()()()n A B n A C n A B A C =⋂+⋂-⎡⋂⋂⋂⎤⎣⎦ ()555833n A B C =+-⋂⋂ 5558332771111=+-=﹒ 28.()()()()()()236151030n n n n n n +---+15010050203010160=+---+=﹒29. ()()1010222211x x x ⎡⎤-+=-+⎣⎦()()10922101010911C x C x ⎡⎤⎡⎤=-+-+⎣⎦⎣⎦……()()22210101021011C x C x C ⎡⎤+-+-+⎣⎦故余式为()()210102210110211102011C x C x x x x -+=-++=-+﹒30.①B ﹑D 同﹐54143240,A B D C E ⨯⨯⨯⨯=②B ﹑D 異﹐54333540,A B D C E ⨯⨯⨯⨯=由①②可得﹐共有240540780+=种﹒ 31.(1)走捷徑等於是走向只許向右與向上兩種﹒如圖﹐ 由A 開始朝任何方向走都有1種走法﹐走至交叉 點P 後﹐將會合箭頭的方法數全部加起來﹐即為走到該點的走法數(累加法)﹒如圖﹐走法有26種﹒(2)走向可以↑﹑→或↓﹐但不可以←又不可重複走﹒ 如圖﹐由P 出發﹐依所規定的走法﹐走到隔鄰的鉛垂路線上立即停止﹐再決定走向﹒如此相鄰的兩鉛垂路線間的走法數相乘﹐即為所求的走法數﹒∴走法有120種﹒32. ()()23311x x ++++……()()()()()()203321332033311111111x x x x x x x ⎡⎤++-+-+⎢⎥⎣⎦++==+-﹐ 所求即分子()2131x +绽开式中15x 项系数∴所求为21521201918172034954321C ⨯⨯⨯⨯==⨯⨯⨯⨯﹒33.()()()()10121111kk x x x x =-=-+-+-+∑……()101x +-()()()11111111111x x x x⎡⎤----⎣⎦==--﹐绽开式中5x 系数即为()1111x --绽开式中6x 系数﹐ ∴所求为()61161462C --=-﹒ 34. ()()20200.9910.01=⎡+-⎤⎣⎦()()()2320202012310.010.010.01C C C =+-+-+-+……()2020200.01C +-10.20.0190.00114=-+-+……0.81786≈﹐ ∴81716a b c ++=++=﹒35. 设一步一阶走x 次﹐一步二阶走y 次﹐则211x y +=﹐36. 令12323n n n n n S C C C nC =+++⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅则()0111n n n n S nC n C C -=+-+⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅+()0122n n n nn S n C C C n ⇒=++⋅⋅⋅⋅⋅⋅+=⋅﹐∴12n S n -=⋅﹒ 37.()1142!4!192.⨯⨯⨯⨯=選位A aBb38. 设白色x 块﹐黑色y 块﹐则27x y +=﹐⇒6!5!4!116104215!2!3!3!+++=+++=﹒ 39. (1)33311127C C C =﹒ (2)33333333321121121181C C C C C C C C C ++=﹒40. 62163-=41. 20202020123202320S C C C C =+++⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅ 20202001192019S C C C =++⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅()202020200120220202S C C C +⇒=++⋅⋅⋅⋅⋅⋅+=⨯﹐∴20102S =⨯﹐∵20log 220log 2200.3010 6.02==⨯=﹐∴202为7位数﹐∴S 为8位数﹒ 42. ①选一面4⇒﹐ ②选二面4312⇒⨯=﹐ ③选三面43224⇒⨯⨯=﹐ ④选四面⇒432124⨯⨯⨯=﹐由①②③④可得﹐共可作成412242464+++=种﹒ 43. (1)8!565!3!=﹒ (2)所求=全部()n C D -⋃()()()56A C B A D B A C D B =-⎡→→+→→-→→→⎤⎣⎦3!5!4!4!3!4!5612!3!2!3!2!2!2!2!2!⎛⎫=-⨯+⨯-⨯⨯ ⎪⎝⎭()5630241820=-+-=﹒44. (1)含中空:3342111172,C C C C ⨯⨯⨯= 左 上 右 下不含中空:37934792334342222222222222223C C C C C C C C C C C C C C +++----左 上 右 下 左上 右上 左下 右下 631081263691836297=+++----= ∴所求为72297369.+=左 上 右 下 左上 右上 左下 右下 ∴所求为146276+=个﹒ 45. ①只用一色:3种﹐②只用二色:()()()()()()6,1,5,2,4,3,3,42,5,1,6∴()322!636,C ⋅⨯=上下色交換③用三色:红+白+黄=7 1 1 1 剩4∴36443!690,⨯=⨯=H C 紅白黃排列∴共33690129++=种﹒46. 444333222111234234234234146410H H H H H H H H H H H H ⨯⨯⨯-⨯⨯⨯+⨯⨯⨯-⨯⨯⨯+⨯700049006604103756=-⨯+⨯-⨯+=﹒ 47. 6A a Bb →→→坐法其他人坐法 1162!6!8640⨯⨯⨯⨯=﹒48. ()A B A P B A Q B A P Q B →-→→+→→-→→→10!4!6!5!5!4!5!16!4!2!2!4!2!3!2!3!2!2!2!3!2!⎛⎫⇒-⨯+⨯-⨯⨯ ⎪⎝⎭()210901006080=-+-=﹒ 49. aa 不相邻且llll不相邻﹐可先排pmaa ﹐再安插llll ﹐ ①aa 排在一起时:3!6=种﹐再安插4个l :p m a a △△△△△方法有434C =种﹒ ↑ l②aa 不排在一起时:p m △△△排法有322!6C ⨯=种﹐ 再支配4个l :p a m a △△△△△方法有545C =种﹒ 由①②可知﹐排法有646554⨯+⨯=种﹒ [另解]llll 不相邻llll -不相邻且aa 相邻54444!3!606542!4!4!P P =⨯-⨯=-=﹒ 50. 6!35!2!34!2!2!13!2!2!2!240-⨯⨯+⨯⨯⨯-⨯⨯⨯⨯=﹒二、计算题 (75小题 每小题0分 共0分)1. ∵132n n a a +=+﹐∴132n n a a +-=﹐ 表示n a 为首项4﹐公差32的等差数列﹐(1)2133114222a a =+=+=﹐ 3231137222a a =+=+=﹐ 4333177222a a =+=+=﹐ 54317310222a a =+=+=﹒ (2)()()1335141222n a a n d n n =+-=+-⨯=+﹒ (3)()401240134024401213302k k a a a a =⎡⎤⨯+-⨯⎢⎥⎣⎦=++⋅⋅⋅⋅⋅⋅+==∑﹒ 2. 从8名老师中选出4名老师去4个城市研习的方式可分为甲去和甲不去两种情形: (1)若是甲去研习﹐则丙也会去﹐而乙不去﹐因此需从剩下的5名老师中选出2人去参与研习﹐故选法有52C 种﹒ (2)若是甲不去研习﹐则丙也不会去﹐而乙可去也可不去﹐因此需从剩下的6名老师中选出4名老师去参与研习﹐故选法有64C 种﹒综合这两种情形﹐从8名老师中选派4名老师的选法共有562425C C +=种﹒而选出4名老师后﹐分别支配到4个城市去研习﹐则支配的方式有4!种﹐ 因此总共有254!600⨯=种选派方法﹒3. ()()()()()()()()()()6651423324666660123432332323232x y C x C x y C x y C x y C x y -=+-+-+-+-()()()566656322C x y C y +-+-6542332456729291648604320216057664.x x y x y x y x y xy y =-+-+-+4. ()()()()()()()()()44312213444444012342122121211x C x C x C x C x C -=+-+-+-+-43216322481x x x x =-+-+﹒5. SENSE 的5个字母中取3种字母﹐其中任取3个字母可能取出「三个字母皆不相同」或「两个字母同另一不同」两种情形:(1)选出三个字母皆不相同的选法有331C =种﹐排列的方法有3!种﹐ 因此排法有333!6C ⨯=种﹒(2)选出两个字母同另一不同的选法有2211C C ⨯种﹐排列的方法有3!2!1!种﹐ 因此排法有22113!122!1!C C ⨯⨯=种﹒ 综合这两种情形﹐共有18种排法﹒6. (1)先走任一瓣都可以﹐故将3瓣视为3条路随意排列﹐方法3!种﹐又每一瓣走法有2种(两个方向)﹐故所求为323!⨯48=种﹒ (2)323!48⨯=﹒ (3)423!96⨯=﹒7. ()()()()n A B n A n B n A B ⋃=+-⋂253343422332111111111111C C C C C C C C C C C C =⨯⨯⨯+⨯⨯⨯-⨯⨯⨯909636150.=+-=8. 555112n n C x y -=⋅⋅⋅⋅⋅⋅ 6667n n C x y -=⋅⋅⋅⋅⋅⋅77714n n C x y -=⋅⋅⋅⋅⋅⋅6165xn y⇒⋅=⋅⋅⋅⋅⋅⋅- 7286xn y ⇒⋅=⋅⋅⋅⋅⋅⋅- ()()66167528n n -⇒=-﹐∴8n =﹐ 代入⇒8x y =﹐由⇒()877184C y y =8812y ⎛⎫⇒= ⎪⎝⎭﹐即得12y =±﹐4x =±﹐∴14,,82x y n ===(取正值)﹒9. (1)红+白=41 1 剩223223H C ⇒==﹒[另解] 红 白1322313.⇒共種(2)利用第(1)题的结果42318C ⇒⨯=﹒10. 用8步走完10级楼梯﹐假设一级走了x 步﹐两级走了y 步﹐ 可列得8210x y x y +=⎧⎨+=⎩解得6x =﹐2y =﹐因此用这样的走法共有8!286!2!=(种)﹒ 11.(1){}1,2,4,5,7,8,9A B ⋃=﹒ (2){}1,2,5A B ⋂=﹒ (3){}4,8A B -=﹒(4){}7,9B A -=﹒(5){}3,6,7,9,10'=-=A U A ﹒ (6){}3,4,6,8,10'=-=B U B ﹒(7)(){}3,6,10'⋃=A B ﹒(8){}3,6,10''⋂=A B ﹒(9)(){}3,4,6,7,8,9,10'⋂=A B ﹒(10){}3,4,6,7,8,9,10''⋃=A B ﹒12. ()()()()191919182219192011111x x x x C x C x x ⎡⎤-+=-+=-+-+⋅⋅⋅⋅⋅⋅⎣⎦﹐∴()1919101119,a C C =-=-1919192021190.a C C C =+=13. 可看作第一位男生有4位女生舞伴可选择﹐其次位男生有3位女生舞伴可选择﹐以此类推得舞会配对方法数共有44432124P =⨯⨯⨯=种﹒故选(2)﹒ 14. (1)5232=﹒(2)①先往右42232⨯=﹐ ②先往左42232⨯=﹐ 共有323264+=﹒ 15.如图﹐共有27种方法﹒16. ()()()()()77237777712370.99810.00210.0020.0020.0020.002C C C C =-=-⨯+⨯-⨯+⋅⋅⋅⋅⋅⋅-⨯10.0140.0000840.0000002800.9860837200.986084.≈-+-=≈ 17. ()()1011012211x x x x ⎡⎤+-=+-⎣⎦()()()()()21011011009910121012101212101111x C x x C x x C x =+-+++-⋅⋅⋅⋅⋅⋅+-()10111c =-=-﹐∵()1011x +绽开式中才有x 项﹐∴1011101,a C == ∵()1011x +及()100101211C x x -+绽开式中均有2x 项﹐∴101101214949.b C C =-=18. (1)∵()()()()()()111!!11!1!1!1!1n n k k n C n C k n k k k n n k k n +++===+-+⋅+⋅-++﹐∴左式()()1111121011121.111nn n n n n k n k C C C C k n n +++++==⨯=++⋅⋅⋅⋅⋅⋅+=-+++∑ (2)承(1)知﹐()1113121213111n n n n ++-=⇒-=++﹐得4n =﹒ 19. (1)□□:4728⨯=﹒ ↓ 6﹑7﹑8﹑9(2)45﹑48﹑54﹑57﹑60﹑66﹑69﹑75﹑78﹑84﹑87﹑90﹑96﹑99﹐共14个﹒ (3)4□7⇒个﹐ 5□7⇒个﹐∴1459a =﹐1358a =﹐1257a =﹐∴平均为57分﹒ 20.上午 下午 1 2 3 4 5 6 7數 數 國 國 ╳ 體 體 2228⇒⨯⨯= 數 數 體 ╳ 國 國 體 2228⇒⨯⨯=數 數 體 ╳ ╳ 國 國 2124⇒⨯⨯= 體 數 數 ╳ 國 國 體 2228⇒⨯⨯= 體 數 數 ╳ ╳ 國 國 2124⇒⨯⨯=體 體數數國國 體 23212⇒⨯⨯=體體 數 數 ╳國國 2228⇒⨯⨯=∴共有8848412852++++++=種﹒21. ()()()()1011012211x xx x+-=++-()()()()()()21011011009910121012101212101111x C x x C x x C x =+++-++-+⋅⋅⋅⋅⋅⋅+-()()()1011002411011x x x x f x =+-++⋅﹐其中()f x 为一多项式﹐∴x 项的系数1011101,a C == 2x 项的系数10121014949,b C =-=3x 项的系数10110031101156550.c C C =-⨯=23.∴共有441212218396676+++++++++=种走法﹒ 24. (1)∵()123n n a a n +=+-且15a =﹐∴()21213514a a =+⨯-=-=﹐ ()32223415a a =+⨯-=+=﹐ ()43233538a a =+⨯-=+=﹐ ()542438513a a =+⨯-=+=﹒ (2)∵()123n n a a n +=+-﹐ ∴()21213a a =+⨯- ()32223a a =+⨯-()()121223)213n n n n a a n a a n ---=+⎡⨯--⎤⎣⎦+=+⎡⨯--⎤⎣⎦()()()2112121315233482n n n a a n n n n n -⋅=+⨯⎡++⋅⋅⋅⋅⋅⋅+-⎤--=+⨯-+=-+⎣⎦﹒(3)20a =2204208328-⨯+=﹒25. x ﹐y ﹐z 的非负整数解共有331011212101010266H C C C +-====(组)﹒→有363⨯⨯个→有123⨯⨯个→有113⨯⨯个∴共有()()36323363⨯⨯+⨯+=个大于230的三位数奇数﹒(2)①个位数字为1者有()()()36121121⨯+⨯+⨯=个﹐为3﹑5者也各有21个﹐ 故个位数字的和为()21135189⨯++=﹒②十位数字为1﹑2者各有339⨯=个﹐为3者有()33312⨯+=个﹐为4﹑5者各有 ()331312⨯+⨯=个﹐故十位数字和为()()()9121231245171⨯++⨯+⨯+=﹒③百位数字为3﹑4﹑5者各有6318⨯=个﹐为2者有()()23139⨯+⨯=个﹐ 故百位数字和为()()1834592234⨯++⨯⨯=﹒由①②③可知﹐总和为()()1891711023410025299+⨯+⨯=﹒27. 由于515C =且565622125C C C C =-=-﹐于是利用帕斯卡尔定理111n n n m m m C C C ---=+﹐得原式()66781920234516175C C C C C C =++++++-778192034516175C C C C C =+++++-8819204516175C C C C =++++-21175C =- 5980=﹒28. 设桌球俱乐部拟购买刀板﹐直拍与大陆拍各1x ﹐2x ﹐3x 把﹐ 依据题意得1238x x x ++=﹒其非负整数解有33811010888245H C C C +-====(组)﹐故共有45种不同的购买方式﹒29. 直线0ax by +=是恒过原点﹐且斜率为a b -的直线﹒因为斜率ab-为正值﹐所以,a b 必需异号﹐且,a b 皆不等于0﹒我们以a 的正负情形探讨如下﹕(1)当0a >时﹐a 有3种选法﹐而此时0b <亦有3种选法﹐ 因此有339⨯=种选法﹒(2)当0a <时﹐a 有3种选法﹐而此时0b >亦有3种选法﹐ 因此有339⨯=种选法﹒ 但是①当()()()(),2,1,4,2,6,3a b =---时﹐均表示同一条直线20x y -=﹒ ②当()()()(),3,6,2,4,1,2a b =---时﹐均表示同一条直线20x y -+=﹒ ③当()(),2,2a b =-﹐()2,2-时﹐均表示同一条直线0x y -=﹒ 因此需扣除重复计算的2215++=条直线﹒ 故共可表出99513+-=条相异的直线﹒ 30.(1)從A 走到P 後 ﹐方法有2種﹐完成A 到P 的各路線﹐方法有3!種﹐ 完成P 到B 的各路線﹐方法有3!種﹐ ∴共有()223!3!23!⨯⨯=⨯72=種﹒(2)A 到P 後 ﹐方法2種﹐P 到Q 後 ﹐方法2種﹐∴共有()32223!3!3!23!⨯⨯⨯⨯=⨯864=種﹒ABA Q P B31. (1)B ﹑D 同色﹐A BD C E →→→ 5433180⨯⨯⨯=﹐ B ﹑D 异色﹐A B D C E →→→→ 54322240⨯⨯⨯⨯=﹐ ∴共有180240420+=种涂法﹒(2)B ﹑D ﹑F 同色﹐A BDF C E G →→→→ 54333540⨯⨯⨯⨯=﹐ B ﹑D ﹑F 异色﹐A B D F C E G →→→→→→ 5432222960⨯⨯⨯⨯⨯⨯=﹐ B ﹑D 同色﹐F 异色﹐A BD F C E G →→→→→ 543322720⨯⨯⨯⨯⨯=﹐同理B ﹑F 同色﹐D 异色;D ﹑F 同色﹐B 异色涂法也各有720种﹐ ∴共有54096072033660++⨯=种﹒ 32.(1)12a =24a = 38a = 414a =1n = 2n = 3n = 4n =(2)12a =﹐212a a =+﹐3222a a =+⨯﹐4323a a =+⨯﹐∴12n n a a n +=+⨯﹒ (3)∵12n n a a n +=+⨯且12a =﹐ ∴2121a a =+⨯ 3222a a =+⨯()1222n n a a n --=+⨯- ()1)21n n a a n -+=+⨯-()()21121212222n n n a a n n n -⨯=+⨯⎡++⋅⋅⋅⋅⋅⋅+-⎤=+⨯=-+⎣⎦∴22n a n n =-+﹒ 33. (1)①A ﹑C 同色﹐541480,A B C D ⨯⨯⨯=②A ﹑C 异色﹐5433180,A B C D⨯⨯⨯=由①②可得﹐共有80180260+=种﹒(2)由(1)可知[]541433⨯⨯⨯+⨯﹐推得[]25414333380⨯⨯⨯+⨯=﹒(3)[]354143343940⨯⨯⨯+⨯=﹒34.(1)休旅車及跑車相間排列的情形﹐可分為兩種情形﹐如圖所示:3輛休旅車排成一列共有3!6=種方法﹐同樣地﹐3輛跑車排成一列共有3!6=種方法﹐ 因此根據乘法原理﹐共有26672⋅⋅=種排法﹒ (2)因為休旅車及跑車要各自排在一起﹐如圖所示:所以可以將3輛休旅車看成「1」輛﹐3輛跑車看成「1」輛﹐變成2輛的排列問題﹐有2!2=種方法﹒又3輛休旅車之間有3!6=種排列方法﹐3輛跑車之間有3!6=種排列方法﹒故共有2!3!3!26672⋅⋅=⋅⋅=種排法﹒35. 选出2本英文书3本中文书的方法有6523150C C ⋅=(种)﹐将此5本书作直线排列﹐有5!种排法﹐故所求排法为65235!18000C C ⋅⋅=(种)﹒36.(1)從9本中取出3本給甲﹐取法有93C 種;再從其餘的6本取出3本給乙﹐取法有63C 種;剩下的3本給丙﹐即33C 種﹒因此﹐全部分配方式共有9633331680C C C ⋅⋅=(種)﹒(2)先假設袋子上依序標示有甲﹐乙﹐ 丙的記號﹐則有963333C C C ⋅⋅種分 法﹐但事實上袋子是相同的﹐因此每3!種只能算1種﹐如圖所示﹒故分配方式共有96333316802803!6C C C ⋅⋅==(種)﹒ (3)仿上述作法﹐先假設袋子依序有甲﹐乙﹐丙的記號﹐甲得5本﹐乙丙各得2本的分法有942522C C C ⋅⋅種﹒因袋子是無記號的﹐所以如圖的2!種其實是同1種﹒故分配方式共有9425223782!C C C ⋅⋅=(種)﹒37.設集合A 表示參加象棋比賽的同學﹐ 集合B 表示參加圍棋比賽的同學﹐ 集合A B ⋃表示參加棋藝活動的同學﹐集合A B ⋂表示參加兩種棋藝活動的同學﹒由題意知()34n B =﹐()42n A B ⋃=﹐()15n A B ⋂=﹒ 利用()()()()n A B n A n B n A B ⋃=+-⋂﹐得()423415n A =+-﹐即()23n A =﹒ 故這個班級中共有23位同學參加象棋比賽﹒38. 因为()()()332211x x x x ++=++﹐所以利用二项式定理将乘积绽开﹐得()()()()()3321232320111A x x C x C x x ++=++部分+()()()1233232311B C x x C x +++部分﹒由于上式中A 部分的各项次数均超过2次﹐因此全部绽开式中2x 的系数﹐就是B 部分的绽开式中的2x 系数﹒ 又B 部分的绽开式为()()223243232133137631x x x x x x x x x x ++++++=++++﹐ 故全部绽开式中2x 的系数为6﹒ 39. 因为()()()332222x x x x -+=-+﹐所以利用二项式定理将乘积绽开得()()()()()()()()()()3321123232323232012322222A B xx C x x C x x C x x C x x -+=-+-+-+-部分部分上述()()322x x -+绽开式中B 部分各项次数低于4次﹐因此要计算绽开式中4x 的系数只要计算A 部分各项绽开式即可﹐又A 部分绽开式为()()()()32132320122C x x C x x -+-()()654343233322x x x x x x x =-+-+-+⨯6543239136x x x x x =-+-+故4x 的系数为9﹒40. 将240作质因子分解﹐得411240235=⨯⨯﹒因为240的正因子必为235a b c ⨯⨯的形式﹐其中{}0,1,2,3,4a ∈﹐{}0,1b ∈﹐{}0,1c ∈﹐ 所以a 有5种选择﹐b 有2种选择﹐c 有2种选择﹒ 利用乘法原理﹐得240的正因子个数有52220⨯⨯=个﹒ 41. 依题意图示如下:其中实线表电车路途﹐虚线表公交车路途﹒因为电车与公交车路途各选一次﹐所以路途支配可分成以下二类: (1)先电车再公交车:利用乘法原理﹐得有122⨯=种路途﹒ (2)先公交车再电车:利用乘法原理﹐得有326⨯=种路途﹒ 由加法原理得知﹐共有268+=种路途支配﹒42. 设A ﹐B ﹐C 分别表示答对A ﹐B ﹐C 题的人组成的集合﹒由题意知()15n A =﹐()19n B =﹐()20n C =﹐()10n A B ⋂=﹐()12n B C ⋂=﹐()8n C A ⋂=﹐()3n A B C ⋂⋂=﹒ 利用排容原理﹐得()()()()()()()n A B C n A n B n C n A B n B C n C A ⋃⋃=++-⋂-⋂-⋂()n A B C +⋂⋂151920101283=++---+27=﹒ 故三题中至少答对一题者有27人﹒ 43.設集合A ﹐B ﹐C 分別表示從1到600的自然數當中的4﹐5,6倍數所形成的集合﹐即()150n A =﹐()120n B =﹐()100n C =﹐()30n A B ⋂=﹐()20n B C ⋂=﹐()50n C A ⋂=﹐()10n A B C ⋂⋂=利用排容原理()()()()()()()n A B C n A n B n C n A B n B C n C A ⋃⋃=++-⋂-⋂-⋂ ()n A B C +⋂⋂﹐得()15012010030205010280n A B C ⋃⋃=++---+=﹒故1到600的自然數中﹐是4﹐5﹐6中某一個數的倍數﹐共有280個﹒44. (1)n a 代表「第n 个图需用到白色地砖的块数」﹐我们可以发觉图形每次均增 加1个黑色地砖与5个白色地砖﹐因此15n n a a -=+﹐2n ≥﹒(2)而上述这些图形中﹐白色地砖的个数可视为一个首项为8﹐公差为5的等 差数列﹐故()81553n a n n =+-⨯=+﹒(3)拼第95图所需用到白色地砖数955953478a =⨯+=﹒ 45. (1)先将这8位转学生分成四堆﹐每堆2人﹐ 再将这四堆分发到甲﹐乙﹐丙﹐丁四班﹐故总共有86428642222222224!25204!C C C C C C C C ⋅⋅⋅⨯=⋅⋅⋅=种分法﹒(2)先将这8位转学生分成四堆﹐两堆3人﹐两堆1人﹐再将3人的两堆分发到甲乙两班﹐1人的两堆分发到丙丁两班﹐故总共有85218521331133112!2!11202!2!C C C C C C C C ⋅⋅⋅⨯⨯=⋅⋅⋅=⋅种分法﹒ 46. 因为01232n n n n n n n C C C C C +++++=﹐ 所以1230221n n n nn n n n C C C C C ++++=-=-﹒即原式可改写为2000213000n <-<﹐即200123001n <<﹐得11n =﹒ 47. (1)3119911!559!2!H C ===组﹒ (2)338936628H H C -===组﹒48. 因为去程有3个交通工具可以选择﹐住宿则有2个方式可供选择﹐而回程亦有3个交通工具可以选择﹒因此由乘法原理得共有32318⨯⨯=种支配法﹒ 49. 10310!10987207!P ==⨯⨯=种选法﹒ 50. 由题意知每个周末都有5种休闲活动可以选择﹒利用乘法原理﹐得4个周末共有5555625⨯⨯⨯=种休闲支配﹒。

高中数学选修_排列组合经典问题练习(详细解析)

高中数学选修_排列组合经典问题练习(详细解析)

排列组合经典练习(含解析)1.6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为( )A .40B .50C .60D .70 【解析】先分组再排列,一组2人一组4人有C 26=15种不同的分法;两组各3人共有C 36A 22=10种不同的分法,所以乘车方法数为25×2=50,故选B.2.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有( )A .36种B .48种C .72种D .96种【解析】恰有两个空或n =6,代入验证,可知女生为2人或3人.5.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则方法有( )A .45种B .36种C .28种D .25种【解析】因为10÷8的余数为2,故可以肯定一步一个台阶的有6步,一步两个台阶 ②所得空间直角坐标系中的点的坐标中含有1个1的有C 12·A 33+A 33=18个;③所得空间直角坐标系中的点的坐标中含有2个1的有C 13=3个.故共有符合条件的点的个数为12+18+3=33个,故选A.8.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是( )A .72B .96C .108D .144 【解析】分两类:若1与3相邻,有A 22·C 13A 22A 23=72个,若1与3不相邻有A 33·A 33=36个故共有72+36=108个.9.如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有( )A .50种B .60种C .120种D .210种【解析】先安排甲学校的参观时间,一周内两天连排的方法一共有6种:(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7),甲任选一种为C 16,然后在剩下的5天中任选2天有序地安排其余两所学校参观,安排方法有A 25种,按照分步乘法计数原理可知共有不同的安排方法C 16·A 25=120种,故选C.10.安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有________种.(用数字作答)【解析】先安排甲、乙两人在后5天值班,有A 25=20(种)排法,其余5人再进行排列,有A 55=120(种)排法,所以共有20×120=2400(种)安排方法.11.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有________种不同的排法.(用数字作答)【解析】由题意可知,因同色球不加以区分,实际上是一个组合问题,共有C 49·C 25·C 33=1260(种)排法.12.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有________种(用数字作答).【解析】先将6名志愿者分为4组,共有C 26C 24A 22种分法,再将4组人员分到4个不同场馆去,共有A 44种分法,故所有分配方案有:C 26·C 24A 22·A 44=1 080种. 13.要在如图所示的花圃中的5个区域中种入4种颜色不同的花,要求相邻区域不同色,有________种不同的种法(用数字作答).【解析】5有4种种法,1有3种种法,4有2种种法.若1、3同色,2有2种种法,若1、3不同色,2有1种种法,∴有4×3×2×(1×2+1×1)=72种.14. 将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有( )(A )12种 (B )18种 (C )36种 (D )54种【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.15. 某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有( )A. 504种B. 960种C. 1008种D. 1108种 解析:分两类:甲乙排1、2号或6、7号 共有4414222A A A ⨯种方法甲乙排中间,丙排7号或不排7号,共有)(43313134422A A A A A +种方法故共有1008种不同的排法16. 由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是( ) (A )72 (B )96 (C ) 108 (D )144【解析】先选一个偶数字排个位,有3种选法①若5在十位或十万位,则1、3有三个位置可排,32232A A =24个②若5排在百位、千位或万位,则1、3只有两个位置可排,共32222A A =12个算上个位偶数字的排法,共计3(24+12)=108个答案:C17. 在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为( )A.10B.11C.12D.15【解析】与信息0110至多有两个对应位置上的数字相同的信息包括三类:第一类:与信息0110有两个对应位置上的数字相同有624=C 个第二类:与信息0110有一个对应位置上的数字相同有414=C 个第三类:与信息0110没有一个对应位置上的数字相同有104=C 个。

高中数学选择性必修三 专题27 排列与组合(含答案)

高中数学选择性必修三 专题27 排列与组合(含答案)

专题27 排列与组合一、单选题1.(2020·山东省高二期中)若33210n n A A =,则n =( )A .6B .7C .8D .9【答案】C 【解析】因为33210n n A A =,所以*3,n n N ≥∈,所以有()()()()221221012n n n n n n ⋅-⋅-=⋅-⋅-, 即()()22152n n -=-,解得:8n =. 故选:C.2.(2020·山东省高二期中)若3212n n n A C -=,则n =( )A .4B .6C .7D .8【答案】D 【解析】∵3221212n n n n A C C -==,∴()()()112122n n n n n ---=⨯,即26n -=,∴8n =, 故选:D .3.(2020·北京市鲁迅中学高二月考)某班级要从4名男士、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为( ) A .14 B .24C .28D .48【答案】A 【解析】法一:4人中至少有1名女生包括1女3男及2女2男两种情况,故不同的选派方案种数为.故选A.法二:从4男2女中选4人共有种选法,4名都是男生的选法有种,故至少有1名女生的选派方案种数为-=15-1=14.故选A4.(2020·山东省高二期中)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有不同的选法种数为()A.420 B.660 C.840 D.880【答案】B【解析】从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,共有2286840A C⋅=种选法,其中不含女生的有2264180A C=种选法,所以服务队中至少有1名女生的选法种数为840180660-=.故选:B5.(2020·北京市鲁迅中学高二月考)用0,1,2,3,4,5这6个数字,可以组成没有重复数字的四位数的个数是( )A.360B.300C.240D.180【答案】B【解析】当四个数字中没有0时,没有重复数字的四位数有:45120A=种;当四个数字中有0时,没有重复数字的四位数有:1335180A A=种,两类相加一共有300种,故选B.6.(2020·北京大峪中学高二期中)5本不同的书全部分给4个学生,每个学生至少一本,不同的分法种数为()A.240种B.120种C.96种D.480种【答案】A 【解析】由题先把5本书的两本捆起来看作一个元素共有2510C =种可能,这一个元素和其他的三个元素在四个位置全排列共有4424A =种可能,所以不同的分法种数为1024240⨯=种,故选A.7.(2020·福建省高三二模(理))在“弘扬中华文化”的演讲比赛中,参赛者甲、乙、丙、丁、戊进入了前5名的决赛(获奖名次不重复).甲、乙、丙三人一起去询问成绩,回答者说:“第一名和第五名恰好都在你们三人之中,甲的成绩比丙好”,从这个回答分析,5人的名次排列的所有可能情况有( ). A .18种 B .24种 C .36种 D .48种【答案】A 【解析】(1)当甲排第1名时,则第5名从乙、丙两个选一个,其它三名任意排列,∴313212N A ==;(2)当甲排第2,3,4名时,则第5名必排丙,第1名排乙,其它三名任意排列,∴3236N A ==;∴12618N =+=,故选:A.8.(2019·佛山市顺德区容山中学高二开学考试)高三某6个班级从“照母山”等6个不同的景点中任意选取一个进行郊游活动,其中1班、2班不去同一景点且均不去“照母山”的不同的安排方式有多少种( ) A .2454C A B .2456CC .2454A AD .2456A【答案】D 【解析】1班、2班的安排方式有25A 种,剩余4个班的安排方式有46种,所以共有2456A 各安排方式,故选D . 二、多选题9.(2020·南京市秦淮中学高二期中)下列各式中,等于!n 的是( ) A .1n nA -B .1nn A +C .11n n nA --D .!mn m C【答案】AC 【解析】根据题意,依次分选项:对于A ,1(1)2!n nA n n n -=⨯-⨯⋯⋯⨯=,故A 正确; 对于B ,1(1)(1)2(1)!nn A n n n n +=+⨯⨯-⨯⋯⋯⨯=+,故B 错误;对于C ,11(1)1!n n nA n n n --=⨯-⨯⋯⋯⨯=,故C 正确;对于D ,!!!mm mn nnA m C m A m ==,故D 错误; 故选:AC .10.(2020·江苏省高二期中)下列等式中,正确的是( )A .11m m m n n n A mA A -++=B .11r r n n rC nC --=C .111111m m m m n n n n C C C C +--+--=++D .11mm n n m C C n m++=- 【答案】ABD 【解析】选项A ,左边=()()()()()()()1!1!!!!!1!1!1!1!n m n n n n n n m m n m n m n m n m n m -+⋅+⋅+⋅=+⋅=--+-+-+-+ ()()1!1!n n m +=-+=右边,正确; 选项B ,右边()()()()()()1!!!1!11!1!!!!n r n n n r r n r r r n r r n r -=⋅=⋅=⋅=-⋅--+-⋅-⋅-左边,正确;选项C ,右边11m m mn n n C C C -+=+=≠左边,错误;选项D ,右边()()()()()()()1!1!!1!1!1!1!!!m n m n n n m m n m m m n m n m m n m +⋅+=⋅===-+⋅--+⋅⋅-⋅--⋅-左边,正确. 故选:ABD11.(2020·山东省潍坊一中高二月考)某工程队有卡车、挖掘机、吊车、混凝土搅拌车4辆工程车,将它们全部派往3个工地进行作业,每个工地至少派一辆工程车,共有多少种方式?下列结论正确的有( ) A .18 B .11113213C C C CC .122342C C AD .2343C A【答案】CD 【解析】根据捆绑法得到共有234336C A ⋅=,先选择一个工地有两辆工程车,再剩余的两辆车派给两个工地,共有122342C C A 36=.11113213C C C C 1836=≠.故选:CD .12.(2020·临淄区英才中学高二期中)甲,乙,丙,丁,戊五人并排站成一排,下列说法正确的是( ) A .如果甲,乙必须相邻且乙在甲的右边,那么不同的排法有24种 B .最左端只能排甲或乙,最右端不能排甲,则不同的排法共有42种 C .甲乙不相邻的排法种数为72种D .甲乙丙按从左到右的顺序排列的排法有20种 【答案】ACD 【解析】A. 甲,乙必须相邻且乙在甲的右边,可将甲乙捆绑看成一个元素,则不同的排法有4424A =种,故A 正确.B.最左端只能排甲或乙,最右端不能排甲,则不同的排法共有1311333323+=54A A A A A 种,故B 不正确. C.甲乙不相邻的排法种数为3234=72A A 种,故C 正确.D.甲乙丙按从左到右的顺序排列的排法有5533=20A A 种,故D 正确.故选:ACD. 点睛:排列组合中的排序问题,常见类型有:(1)相邻问题捆绑法;(2)不相邻问题插空排;(3)定序问题缩倍法(插空法);(4)定位问题优先法. 三、填空题13.(2020·北京市鲁迅中学高二月考)5人排成一排,其中甲、乙相邻的排法有______种(用数字作答) 【答案】48 【解析】因为甲、乙相邻,则利用捆绑法,看作一个人,则有222A =种, 再与其余3人看作4人全排列有4424A =种,所以5人排成一排,其中甲、乙相邻的排法有242448A A ⋅=种,故答案为:4814.(2020·北京市鲁迅中学高二月考)5个人站成一排,其中甲、乙两人不相邻的排法有 种(用数字作答). 【答案】72 【解析】可分两个步骤完成,第一步骤先排除甲乙外的其他三人,有33A 种,第二步将甲乙二人插入前人形成的四个空隙中,有24A 种,则甲、乙两不相邻的排法有3234A A 72=种.15.(2020·山东省高二期中)用1,2,3,4,5这5个数字组成的没有重复数字的四位数中,能被5整除的数的个数为______.(用数字作答) 【答案】24 【解析】由题意知,能被5整除的四位数末位必为5,只有1种方法,其它位的数字从剩余的四个数中任选三个全排列有34=432=24A ⨯⨯, 故答案为:2416.(2020·浙江省宁波诺丁汉附中高二期中)用0, 1, 2, 3, 4, 5这六个数字, 可以组成______个无重复数字的三位数, 也可以组成______个能被5整除且无重复数字的五位数. 【答案】100 216 【解析】第一个空:第一步,先确定三位数的最高数位上的数,有155C =种方法; 第二步,确定另外二个数位上的数,有255420A =⨯=种方法,所以可以组成520100⨯=个无重复数字的三位数;第二个空:被5整除且无重复数字的五位数的个数上的数有2种情况:当个数上的数字是0时,其他数位上的数有455432120A =⨯⨯⨯=个;当个数上的数字是5时,先确定最高数位上的数,有14C 4=种方法,而后确定其他三个数位上的数有3443224A =⨯⨯=种方法,所以共有24496⨯=个数,根据分类计算原理共有12096216+=个数. 四、解答题17.(2020·江苏省扬州中学高二期中)有5名男生,4名女生排成一排. (1)从中选出3人排成一排,有多少种排法? (2)若4名女生互不相邻,有多少种不同的排法? 【答案】(1)504 (2)43200 【解析】(1)由题意,有5名男生,4名女生排成一排,共9人从中选出3人排成一排,共有39504A =种排法;(2)可用插空法求解,先排5名男生有55A 种方法, 5个男生可形成6个空,将4个女生插入空中,有46A 种方法 故共有545643200A A =种方法18.(2020·黑龙江省铁人中学高二期中(理))从6名运动员中选出4人参加4100⨯接力赛,分别求满足下列条件的安排方法种数:(1)甲、乙两人都不跑中间两棒; (2)甲、乙二人不都跑中间两棒. 【答案】(1)144(2)336 【解析】(1)先选跑中间的两人有24A 种,再从余下的4人中选跑1、4棒的有24A ,则共有2244144A A =种.(2)用间接法:“不都跑”的否定是“都跑”,所以用任意排法46A ,再去掉甲、乙跑中间的安排方法2224A A 种,故满足条件的安排方法有246224336A A A =-种.19.(2020·江苏省泰州中学高二期中)从5名男生和4名女生中选出4人参加辩论比赛. (1)如果男生中的甲与女生中的乙至少要有1人在内,那么有多少种不同选法? (2)如果4个人中既有男生又有女生,那么有多少种不同选法? 【答案】(1)91种;(2)120种. 【解析】分析:(1)用间接法分析,先计算在9人中任选4人的选法数,再排除其中“甲乙都没有入选”的选法数,即可得答案;(2)用间接法分析,先计算在9人中任选4人的选法数,再排除其中“只有男生”和“只有女生”的选法数,即可得答案. 详解:(1)先在9人中任选4人,有49126C =种选法, 其中甲乙都没有入选,即从其他7人中任选4人的选法有4735C =种, 则甲与女姓中的乙至少要有1人在内的选法有1263591-=种.(2)先在9人中任选4人,有49126C =种选法,其中只有男生的选法有455C =种,只有女生的选法有441C =种,则4人中必须既有男生又有女生的选法有12651120--=种.20.(2019·佛山市顺德区容山中学高二开学考试)以下问题最终结果用数字表示 (1)由0、1、2、3、4可以组成多少个无重复数字的五位偶数? (2)由1、2、3、4、5组成多少个无重复数字且2、3不相邻的五位数?(3)由1、2、3、4、5组成多少个无重复数字且数字1,2,3必须按由大到小顺序排列的五位数? 【答案】(1)60 (2)72 (3)20 【解析】(1)偶数末位必须为0,2,4对此进行以下分类: 当末位是0时,剩下1,2,3,4进行全排列,44A =24当末位是2时,注意0不能排在首位,首位从1,3,4选出有13A 种方法排在首位,剩下的三个数可以进行全排列有33A 种排法,所以当末位数字是2时有1333A A =18个数. 同理当末位数字是4时也有18个数,所以由0、1、2、3、4可以组成无重复数字的五位偶数有24+18+18=60个.(2)由1、2、3、4、5组成五位数一共有5554321120A =⨯⨯⨯⨯=个.第一步,把2.3捆定,有122A =种排法;第二步,捆定的2,3与1,4,5一起全排列,共有44432124A =⨯⨯⨯=个数, 根据分步计数原理,2,3相邻的五位数共有12A 44A =48个数,因此由1、2、3、4、5组成无重复数字且2、3不相邻的五位数共有1204872-=个数.(3)把五位数每个数位看成五个空,数字4,5共有255420A =⨯=个,然后把数字1,2,3按照3,2,1的顺序插入,只有一种方式, 根据分步计数原理,可知由1、2、3、4、5组成无重复数字且数字1,2,3必须按由大到小顺序排列的五位数为25120A ⨯=个.21.(2020·浙江省效实中学高二期中)(1)由0,1,2,…,9这十个数字组成的无重复数字的四位数中,十位数字与千位数字之差的绝对值等于7的四位数的个数共有几种?(2)我校高三学习雷锋志愿小组共有16人,其中一班、二班、三班、四班各4人,现在从中任选3人,要求这三人不能是同一个班级的学生,且在三班至多选1人,求不同的选取法的种数. 【答案】(1)280种;(2)472种. 【解析】(1)十位数字与千位数字之差的绝对值等于7,可得千位数字和十位数字的组合有(1,8)(2,9)(7,0)(8,1)(9,2)五种,每种组合中百位和个位的数共有2856A =种组合,所以符合条件的四位数共有285280A =种.(2)情形一:不选三班的同学,从12个人中选出3人,有312C 种选取方法,其中来自同一个班级的情况有343C 种,则此时有33124322012208C C -=-=种选取方法;情形二:选三班的一位同学,三班的这一位同学的选取方法有4种,剩下的两位同学从剩下的12人中任选2人,有212C 种选取方法,则此时有2124264C =种选取方法.根据分类计数原理,共有208264472+=种选取方法.22.(2020·北京大峪中学高二期中)一场小型晚会有3个唱歌节目和2个相声节目,要求排出一个节目单. (1)2个相声节目要排在一起,有多少种排法? (2)2个相声节目彼此要隔开,有多少种排法?(3)第一个节目和最后一个节目都是唱歌节目,有多少种排法? (4)前3个节目中要有相声节目,有多少种排法? (要求:每小题都要有过程,且计算结果都用数字表示)【答案】(1)48;(2)72;(3)36;(4)108.【解析】(1)将2个相声节目进行捆绑,与其它3个节目形成4个元素,然后进行全排,所以,排法种数为242448A A=种;(2)将2个相声节目插入其它3个节目所形成的4个空中,则排法种数为323472A A=种;(3)第一个节目和最后一个节目都是唱歌节目,则其它3个节目排在中间,进行全排,由分步乘法计数原理可知,排法种数为233336A A=种;(4)在5个节目进行全排的排法种数中减去前3个节目中没有相声节目的排法种数,可得出前3个节目中要有相声节目的排法种数为53253212012108A A A-=-=.。

高中数学排列组合题目专项训练卷

高中数学排列组合题目专项训练卷

高中数学排列组合题目专项训练卷一、选择题1、从 5 名男生和 4 名女生中选出 4 人参加辩论比赛,如果男生中的甲和女生中的乙必须在内,有()种选法。

A 35B 21C 120D 60【解析】除甲、乙之外,从剩下 7 人中选 2 人,有 C(7, 2) = 21 种选法。

答案:B2、用 0 到 9 这 10 个数字,可以组成没有重复数字的三位数的个数为()A 648B 720C 810D 900【解析】百位不能为 0,有 9 种选择;十位有 9 种选择;个位有 8 种选择。

所以共有 9×9×8 = 648 个。

答案:A3、 5 个人排成一排,其中甲不在排头且乙不在排尾的排法有()A 120 种B 78 种C 72 种D 36 种【解析】5 个人全排列有 A(5, 5) = 120 种排法。

甲在排头有 A(4, 4) = 24 种排法,乙在排尾有 A(4, 4) = 24 种排法,甲在排头且乙在排尾有 A(3, 3) = 6 种排法。

所以甲不在排头且乙不在排尾的排法有 120 24 24 + 6 = 78 种。

答案:B4、从 6 名志愿者中选出 4 人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者不能从事翻译工作,则选派方案共有()A 280 种B 240 种C 180 种D 96 种【解析】从除甲、乙外的 4 人中选 1 人从事翻译工作,有 4 种选法;然后从剩下 5 人中选 3 人安排其余 3 项工作,有 A(5, 3) = 60 种安排方法。

所以共有 4×60 = 240 种选派方案。

答案:B5、某班新年联欢会原定的 5 个节目已排成节目单,开演前又增加了两个新节目。

如果将这两个节目插入原节目单中,那么不同插法的种数为()A 42B 30C 20D 12【解析】分两步,第一步先插入第一个节目,有 6 个位置可选;第二步插入第二个节目,有 7 个位置可选。

高中数学选修2-3同步练习题库:排列与组合(选择题:一般)

高中数学选修2-3同步练习题库:排列与组合(选择题:一般)

排列与组合(选择题:一般)1、五人并排站成一排,如果必须站在的右边(可以不相邻),那么不同的排法有()A.24种 B.60种 C.90种 D.120种2、8名象棋选手进行单循环赛(即每两名选手比赛一场).规定两人对局胜者得2分,平局各得1分,负者得0分,并按总得分由高到低进行排序.比赛结束后,8名选手的得分各不相同,且第二名的得分与最后四名选手得分之和相等.则第二名选手的得分是()A.14 B.13 C.12 D.113、生产过程中有4道工序,每道工序需要安排一人照看.现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两名工人中安排一人,第四道工序只能从甲、丙两名工人中安排一人,则不同的安排方案共有()A.24种 B.36种 C.48种 D.72种4、在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一或最后一步,程序B和C在实施时必须相邻,问实验顺序的编排方法共有()A.34种 B.48种 C.96种 D.144种5、一个长椅上共有10个座位,现有4人去坐,其中恰有5个连续空位的坐法共有()A.240种 B.600种 C.408种 D.480种6、(2012辽宁高考)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为()A. B. C. D.7、若直线的系数可以从中取不同的值,这些方程表示不同直线的条数为()A. B. C. D.8、名成人带两个小孩排队上山,小孩不排在一起也不排在头尾,则不同的排法种数有()A.种 B.种 C.种 D.种9、字母排成一列,其中和相邻且在的前面,共有排列方法种数为()A. B. C. D.10、有6 名学生,其中有3 名会唱歌,2 名会跳舞,1名既会唱歌又会跳舞,现从中选出2 名会唱歌的,1名会跳舞的,去参加文艺演出,求所有不同的选法种数为( )A.18 B.15 C.16 D.2511、=( )A.31 B.32 C.33 D.3412、用数字0,1,2,3,4组成没有重复数字且大于3000的四位数,这样的四位数有()A.250个 B.249个 C.48个 D.24个13、现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张.不同取法的种数为()A.232 B.252 C.472 D.48414、甲、乙、丙3人从1楼乘电梯去商场的3到9楼,每层楼最多下2人,则下电梯的方法有( ) A.210种 B.84种 C.343种 D.336种15、在1,2,3,4,5,6,7,8这组数据中,随机取出五个不同的数,则数字4是取出的五个不同数的中位数的概率为( )A. B. C. D.16、等于()A. B. C. D.17、4名同学参加3项不同的课外活动,若每名同学可自由选择参加其中一项,则每项活动至少一名同学参加的概率为()A. B. C. D.18、从6名同学中选派4人分别参加数学、物理、化学、生物四科知识竞赛,若其中甲、乙两名同学不能参加生物竞赛,则选派方案共有()A.180种 B.280种 C.96种 D.240种19、若,则的值为( )A. B.70 C.120 D.14020、有30个完全相同的苹果,分给4个不同的小朋友,每个小朋友至少分得4个苹果,问有多少种不同的分配方案?( )A.680 B.816 C.1360 D.145621、将4本完全相同的小说,1本诗集全部分给4名同学,每名同学至少1本书,则不同分法有()A.24种 B.28种 C.32种 D.16种22、学校高二学生小明在练习电脑编程,其中有一道程序题的要求如下:它由六个子程序构成,且程序必须在程序之后,程序必须在程序之后,执行程序后须立即执行程序,按此要求,小明有多少不同的编程方法( )A.20种 B.12种 C.30种 D.90种23、育才中学高二四班要从4名男生,2名女生中选派4人参加志愿者活动,如果要求至少有1名女生,那么不同的选派方法种数共有( )A.8 B.14 C.16 D.1824、有本相同的数学书和本相同的语文书,要将它们排在同一层书架上,并且语文书不能放在一起,则不同的放法数为()A. B. C. D.25、有个人排成一排照相,要求甲、乙、丙三人站在一起,则不同的排法种数为()A. B. C. D.26、4名大学生到三家企业应聘,每名大学生至多被一家企业录用,则每家企业至少录用一名大学生的情况有()A.24种 B.36种 C.48种 D.60种27、古有苏秦、张仪唇枪舌剑驰聘于乱世之秋,今看我一中学子论天、论地、指点江山,现有高二某班需从甲、乙、丙、丁、戊五位同学中选出四位组成重庆一中“口才秀”中的一个辩论队,根据他们的文化、思维水平,分别担任一辩、二辩、三辩、四辩,其中四辩必须由甲或乙担任,而丙与丁不能担任一辩,则不同组队方式有()A.8种 B.16种 C.20种 D.24种28、8把椅子摆成一排,4人随机就座,任何两人不相邻的坐法种数为()A.144 B.120 C.72 D.2429、在同一个袋子中含有不同标号的红、黑两种颜色的小球共有8个,从红球中选取2粒,从黑球中选取1粒,共有30种不同的选法,其中黑球至多有()A.2粒 B.4粒 C.3粒 D.5粒30、某班组织文艺晚会,准备从等8个节目中选出4个节目演出,要求:两个节目至少有一个选中,且同时选中时,它们的演出顺序不能相邻,那么不同演出顺序的和数为()A.1860 B.1320 C.1140 D.102031、18×17×16×…×9×8等于 ( )A. B. C. D.32、圆周上有12个不同的点,过其中任意两点作弦,这些弦在圆内的交点个数最多有A.个 B.个 C.个 D.个33、下列等式中,不正确的是A. B.C. D.34、A、B、C、D、E、F六人并排站成一排,如果A、B必须相邻且B在A的左边,那么不同的排法种数为()A. 720B. 240C. 120D. 6035、某城市关系要好的,,,四个家庭各有两个小孩共8人,分乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4名小孩不考虑位置),其中户家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4名小孩恰有2名来自于同一个家庭的乘坐方式共有( )A.18种 B.24种 C.36种 D.48种36、某校的A、B、C、D四位同学准备从三门选修课中各选一门,若要求每门选修课至少有一人选修,且A,B不选修同一门课,则不同的选法有()A. 36种B. 72种C. 30种D. 66种37、将5件不同的奖品全部奖给3个学生,每人至少一件奖品,则不同的获奖情况种数是A.150 B.210 C.240 D.30038、篮球比赛中每支球队的出场阵容由5名队员组成,2017年的篮球赛中,休斯敦火箭队采取了“八人轮换”的阵容,即每场比赛只有8名队员有机会出场,这8名队员中包含两名中锋,两名控球后卫,若要求每一套出场阵容中有且仅有一名中锋,至少包含一名控球后卫,则休斯顿火箭队的主教练一共有()种出场阵容的选择.A.16 B.28 C.84 D.9639、我市某学校组织学生前往南京研学旅行,途中4位男生和3位女生站成一排合影留念,男生甲和乙要求站在一起,3位女生不全站在一起,则不同的站法种数是()A. 964 B,1080 C.1296 D.115240、我们把各位数字之和等于6的三位数称为“吉祥数”,例如123就是一个“吉祥数”,则这样的“吉祥数”一共有()A.28个 B.21个 C.35个 D.56个41、现从名男生和名女生中任选取人,若必须有男有女,则不同的选法共有()A.种 B.种 C.种 D.种42、已知,则()A.1 B.9 C.1或2 D.1或343、某单位安排7位员工在10月1日至7日值班,每天安排1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有()A.504种 B.960种 C.1008种 D.1108种44、某高校大一新生中的6名同学打算参加学校组织的“演讲团”、“吉他协会”等五个社团,若每名同学必须参加且只能参加1个社团且每个社团至多两人参加,则这6个人中没有人参加“演讲团”的不同参加方法数为()A.3600 B.1080 C.1440 D.252045、若=,则x的值为()A.1或2 B.3或4 C.1或3 D.2或446、某高校大一新生的五名同学打算参加学校组织的“小草文学社”、“街舞俱乐部”、“足球之家”、“骑行者”四个社团.若毎个社团至少一名同学参加,每名同学至少参加一个社团且只能参加一个社团,其中同学甲不参加“街舞俱乐部”,则这五名同学不同的参加方法的种数为()A. B. C. D.47、有本相同的数学书和本相同的语文书,要将它们排在同一层书架上,并且语文书不能放在一起,则不同的放法数为()A. B. C. D.48、有个人排成一排照相,要求甲、乙、丙三人站在一起,则不同的排法种数为()A. B. C. D.49、将4名学生分别安排甲、乙、丙三个地方参加实践活动,每个地方至少安排一名学生,则不同的安排方案共有()A.12 B.18 C.24 D.3650、将甲、乙等5位同学分别保送到北京大学、上海交通大学、浙江大学三所大学就读,则每所大学至少保送一人的不同保送方法有()A.240种 B.180种 C.150种 D.540种51、小明跟父母、爷爷奶奶一同参加《中国诗词大会》的现场录制,5人坐成一排.若小明的父母至少有一人与他相邻,则不同坐法的总数为A.60 B.72 C.84 D.9652、将甲、乙等5位同学分别保送到北京大学,上海交通大学,中山大学这3所大学就读,则每所大学至少保送1人的不同保送方法数为()A.150种 B.180种 C.240种 D.540种53、算式可以表示为()A. B. C. D.54、某城市关系要好的,,,四个家庭各有两个小孩共8人,分乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4名小孩不考虑位置),其中户家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4名小孩恰有2名来自于同一个家庭的乘坐方式共有( )A.18种 B.24种 C.36种 D.48种55、有7个灯泡排成一排,现要求至少点亮其中的3个灯泡,且相邻的灯泡不能同时点亮,则不同的点亮方法有()A.11种 B.21种 C.120种 D.126种56、上饶高铁站进站口有个闸机检票通道口,若某一家庭有个人检票进站,如果同一个人进的闸机检票通道口选法不同,或几个人进同一个闸机检票通道口但次序不同,都视为不同的进站方式,那么这个家庭个人的不同进站方式有()种.A. B. C. D.57、为防止部分学生考试时用搜题软件作弊,命题组指派5名教师对数学卷的选择题、填空题和解答题这3种题型进行改编,则每种题型至少指派一名教师的不同分派方法种数为()A.150 B.180 C.200 D.28058、某学校需从3名男生和2名女生中选出4人,分派到甲、乙、丙三地参加义工活动,其中甲地需要选派2人且至少有1名女生,乙地和丙地各需要选派1人,则不同的选派方法的种数是()A.18 B.24 C.36 D.4259、学校计划利用周五下午第一、二、三节课举办语文、数学、英语、理综科的专题讲座,每科一节课,每节至少有一科,且数学、理综不安排在同一节,则不同的安排方法共有A.种 B.种 C.种 D.种60、九九重阳节期间,学校准备举行慰问退休老教师晚会,学生们准备用歌曲、小品、相声三种艺术形式表演五个节目,其中歌曲有个节目,小品有个节目,相声有个节目,要求相邻的节目艺术形式不能相同,则不同的编排种数为()A. B. C. D.61、某微信群中有甲、乙、丙、丁、戊五个人玩抢红包游戏,现有4个红包,每人最多抢一个,且红包被全部抢完,4个红包中有2个6元,1个8元,1个10元(红包中金额相同视为相同红包),则甲、乙都抢到红包的情况有()A.18种 B.24种 C.36种 D.48种62、5位大学毕业生分配到3家单位,每家单位至少录用1人,则不同的分配方法共有( )A.25种 B.60种 C.90种 D.150种63、如果一个为十进制数的数位上的数字满足“小大小大…小大”的顺序,即满足:,我们称这种数为“波浪数”,从1,2,3,4,5组成的数字不重复的五位数中任取一个五位数,这个数为“波浪数”的概率是()A. B. C. D.64、若一个四位数的各位数字相加和为,则称该数为“完美四位数”,如数字“”.试问用数字组成的无重复数字且大于的“完美四位数”有()个A. B. C. D.65、甲、乙、丙、丁、戊五人排成一排,甲和乙都排在丙的同一侧,排法种数为()A.12 B.40 C.60 D.8066、《中国诗词大会》(第二季)亮点颇多,十场比赛每场都有一首特别设计的开场诗词,在声光舞美的配合下,百人团齐声朗诵,别有韵味.若《将进酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另确定的两首诗词排在后六场,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻且均不排在最后,则后六场的排法有()A.种 B.种 C.种 D.种67、某五国领导人参加国际会议,除与,与不单独会晤外,其他领导人两两之间都要单独会晤,现安排他们在两天的上午、下午单独会晤(每人每个半天最多进行一次会晤),那么安排他们单独会晤的不同方法共有 ( )A.48种 B.36种 C.24种 D.8种68、如图,圆被其内接三角形分为4块,现有5种颜色准备用来涂这4块,要求每块涂一种颜色,且相邻两块的颜色不同,则不同的涂色方法有()A.360种 B.320种 C.108种 D.96种69、甲乙和其他名同学合影留念,站成两排三列,且甲乙两人不在同一排也不在同一列,则这名同学的站队方法有()A.种 B.种 C.种 D.种70、我市正在建设最具幸福感城市,原计划沿渭河修建7个河滩主题公园,为提升城市品味、升级公园功能,打算减少2个河滩主题公园,两端河滩主题公园不在调整计划之列,相邻的两个河滩主题公园不能同时被调整,则调整方案的种数为()A.12 B.8 C.6 D.4参考答案1、B2、C3、B4、C5、D6、C7、B8、A9、A10、B11、D12、C13、C14、D15、B16、D17、A18、D19、D20、A21、D22、A23、B24、A25、C26、D27、D28、B29、C30、C31、D32、D33、B34、C35、B36、C37、A38、B39、D40、B41、C42、D43、C44、C45、D46、B47、A48、C49、D50、C51、C52、A53、D54、B55、A56、D57、A58、D59、C60、C61、C62、D63、B64、D65、D66、A67、A68、B69、C70、C【解析】1、试题分析:在的左边和右边是对称的(只要一个站位后,交换位置就可左右交换),因此所求排法为.故选B.考点:排列的综合应用.2、从高到底分数为14,12,10,8,6,4,2,0,满足第二名的得分与最后四名选手得分之和相等,所以第二名选手的得分是12,选C.3、第一道工序安排甲则第四道工序安排丙,从剩下4选两人照看剩下两道工序有方案第一道工序安排乙则第四道工序有两种方案,再从剩下4选两人照看剩下两道工序有方案,因此共有,选B.4、先安排A两种方法,再安排BC,有种方法,剩下全排列,所以共有,选C.5、若5个连续空位在两端时,坐法共有 ;若5个连续空位不在两端时,坐法共有 ;所以共有,选D.6、三个家庭有种坐法,每个家庭三人有种坐法,所以共有,选C.7、从不含0的5个数中任取两个数,共有种,其中如果选中2,3与4,6则有重复的两条,2,4和3,6也有重复的两条,所以有不同的直线种,当选中0时,只能表示两条不同的直线和,有加法原理共有种不同直线,故选B.8、首先5名大人先排队,共有种,然后把两个小孩插进中间的4个空中,共有种排法,根据乘法原理,共有种,故选A.9、把和看做是一个字母,和其他四个字母作一个排列,共有排法,故选A.10、名会唱歌的从中选出两个有种,名会跳舞的选出名有种选法,但其中一名既会唱歌又会跳舞的有一个,两组不能同时用他,共有种,故选B.11、本题选择D选项.12、先考虑四位数的首位,当排数字4,3时,其它三个数位上课从剩余的4个数任选4个全排,得到的四位数都满足题设条件,因此依据分类计数原理可得满足题设条件的四位数共有个,应选答案C。

高中数学例题:排列与组合 (17)

高中数学例题:排列与组合 (17)

第 1 页 共 1 页 高中数学例题:排列与组合
1.[2019山西长治一模]某人设计一项单人游戏,规则如下:先将一棋子放在如图所示的正方形ABCD (边长为3个单位)的顶点A 处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单位,如果掷出的点数为i (i =1,2,…,6),则棋子就按逆时针方向行走i 个单位,一直循环下去,则某人抛掷三次骰子后棋子恰好又回到点A 处的所有不同走法共有( )
A .22种
B .24种
C .25种
D .36种
答案:C 解析:由题意知,正方形ABCD (边长为3个单位)的周长是12,抛掷三次骰子后棋子恰好又回到点A 处表示三次骰子的点数之和是12,在点数中三个数字能够使得和为12的有1,5,6;2,4,6;3,4,5;3,3,6;5,5,2;4,4,4,共有6种组合,前三种组合1,5,6;2,4,6;3,4,5各可以排A 33=6(种)结果,3,3,6和5,5,2各可以排出A 33A 22=3(种)结果,4,4,4只可以排出1种结果.
根据分类计数原理知,共有3×6+2×3+1=25(种)结果,故选
C.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学:排列与组合练习1.(昆明质检)互不相同的5盆菊花,其中2盆为白色,2盆为黄色,1盆为红色,先要摆成一排,要求红色菊花摆放在正中间,白色菊花不相邻,黄色菊花也不相邻,共有摆放方法(D) A.A55种B.A22种C.A24A22种D.C12C12A22A22种解析:红色菊花摆放在正中间,白色菊花不相邻,黄色菊花也不相邻,即红色菊花两边各一盆白色菊花,一盆黄色菊花,共有C12C12A22A22种摆放方法.2.(广州测试)某学校获得5个高校自主招生推荐名额,其中甲大学2个,乙大学2个,丙大学1个,并且甲大学和乙大学都要求必须有男生参加,学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有(B)A.36种B.24种C.22种D.20种解析:根据题意,分两种情况讨论:第一种,3名男生每个大学各推荐1人,2名女生分别推荐给甲大学和乙大学,共有A33A22=12种推荐方法;第二种,将3名男生分成两组分别推荐给甲大学和乙大学,共有C23A22A22=12种推荐方法.故共有24种推荐方法,选B.3.(广东珠海模拟)将5个不同的球放入4个不同的盒子中,每个盒子至少放一个球,则不同放法共有(C)A.480种B.360种C.240种D.120种解析:根据题意,将5个不同的球放入4个不同的盒子中,每个盒子至少放一个球,则必须有2个小球放入1个盒子,其余的小球各单独放入一个盒子,分2步进行分析:①先将5个小球分成4组,有C25=10种分法;②将分好的4组全排列,放入4个盒子,有A44=24种情况,则不同放法有10×24=240种.故选C.4.某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法的种数为(C)A.16 B.18C.24 D.32解析:将4个车位捆绑在一起,看成一个元素,先排3辆不同型号的车,在3个车位上任意排列,有A33=6(种)排法,再将捆绑在一起的4个车位插入4个空档中,有4种方法,故共有4×6=24(种)方法.5.(河北保定一模)甲、乙、丙、丁四位同学高考之后计划去A、B、C三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去A社区,乙不去B社区,则不同的安排方法种数为(B)A.8 B.7C.6 D.5解析:根据题意,分2种情况讨论:①乙和甲一起去A社区,此时将丙丁二人安排到B、C社区即可,有A22=2种情况,②乙不去A社区,则乙必须去C社区,若丙丁都去B社区,有1种情况,若丙丁中有1人去B社区,则先在丙丁中选出1人,安排到B社区,剩下1人安排到A或C社区,有2×2=4种情况,则不同的安排方法种数有2+1+4=7种,故选B.6.将7个人(其中包括甲、乙、丙、丁4人)排成一排,若甲不能在排头,乙不能在排尾,丙、丁两人必须相邻,则不同的排法共有(B)A.1 108种B.1 008种C.960种D.504种解析:将丙、丁两人进行捆绑,看成一人.将6人全排列有A22A66种排法;将甲排在排头,有A22A55种排法;乙排在排尾,有A22A55种排法;甲排在排头,乙排在排尾,有A22A44种排法.则甲不能在排头,乙不能在排尾,丙、丁两人必须相邻的不同排法共有A22A66-A22A55-A22A55+A22A44=1 008(种).7.从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有(C)A.24对B.30对C.48对D.60对解析:利用正方体中两个独立的正四面体解题,如图,它们的棱是原正方体的12条面对角线.一个正四面体中两条棱成60°角的有(C26-3)对,两个正四面体有(C26-3)×2对.又正方体的面对角线中平行成对,所以共有(C26-3)×2×2=48对,故选C.8.(河南豫北名校联考)2018年元旦假期,高三的8名同学准备拼车去旅游,其中(1)班、(2)班、(3)班、(4)班每班各两名,分乘甲乙两辆汽车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中(1)班两位同学是孪生姐妹,需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自同一个班的乘坐方式共有(B)A.18种B.24种C.48种D.36种解析:由题意,有两类:第一类,一班的2名同学在甲车上,甲车上剩下两个要来自不同的班级,从三个班级中选两个,有C23=3种,然后分别从选择的班级中再选择一个学生,有C12C12=4种,故有3×4=12种.第二类,一班的2名同学不在甲车上,则从剩下的3个班级中选择一个班级的两名同学在甲车上,有C13=3种,然后再从剩下的两个班级中分别选择一人,有C12C12=4种,这时共有3×4=12种,根据分类计数原理得,共有12+12=24种不同的乘车方式,故选B.9.(洛阳统考)某校有4个社团向高一学生招收新成员,现有3名同学,每人只选报1个社团,恰有2个社团没有同学选报的报法有36种(用数字作答).解析:解法一第一步,选2名同学报名某个社团,有C23·C14=12种报法;第二步,从剩余的3个社团里选一个社团安排另一名同学,有C13·C11=3种报法.由分步乘法计数原理得共有12×3=36种报法.解法二第一步,将3名同学分成两组,一组1人,一组2人,共C23种方法;第二步,从4个社团里选取2个社团让两组同学分别报名,共A24种方法.由分步乘法计数原理得共有C23·A24=36种报法.10.(豫南九校联考)某医院拟派2名内科医生,3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生,外科医生和护士,则不同的分配方案有36种.解析:2名内科医生的分法为A22,3名外科医生与3名护士的分法为C23C13+C13C23,共有A22(C23C13+C13C23)=36(种)不同的分法.11.(衡水模拟)某宾馆安排A,B,C,D,E五人入住3个房间,每个房间至少住1人,且A,B不能住同一房间,则共有114种不同的安排方法.(用数字作答)解析:5个人住3个房间,每个房间至少住1人, 则有(3,1,1)和(2,2,1)两种,当为(3,1,1)时,有C35·A33=60(种),A,B住同一房间有C13·A33=18(种),共有60-18=42(种),当为(2,2,1)时,有C25·C23A22·A33=90(种),A,B住同一房间有C23·A33=18(种),故有90-18=72(种),根据分类加法计数原理可知,共有42+72=114(种).12.(上海崇明一模)从5男3女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人志愿者服务队,要求服务队中至少有1名女生,共有780种不同的选法.解析:要求服务队中至少有1名女生,则分3种情况讨论:①选出志愿者服务队的4人中有1名女生,有C35C13=30种选法,这4人选2人作为队长和副队长有A24=12种,其余2人为普通队员,有1种情况,此时有30×12=360种不同的选法.②选出志愿者服务队的4人中有2名女生,有C25C23=30种选法,这4人选2人作为队长和副队长有A24=12种,其余2人为普通队员,有1种情况,此时有30×12=360种不同的选法.③选出志愿者服务队的4人中有3名女生,有C15C33=5种选法,这4人选2人作为队长和副队长有A24=12种,其余2人为普通队员,有1种情况,此时有5×12=60种不同的选法.则一共有360+360+60=780种不同的选法.13.(南昌调研)某校毕业典礼上有6个节目,考虑整体效果,对节目演出顺序有如下要求:节目甲必须排在前三位,且节目丙、丁必须排在一起.则该校毕业典礼节目演出顺序的编排方案共有(A)A.120种B.156种C.188种D.240种解析:解法一记演出顺序为1~6号,对丙、丁的排序进行分类,丙、丁占1和2号,2和3号,3和4号,4和5号,5和6号,其排法种数分别为A22A33,A22A33,C12A22A33,C13A22A33,C13A22A33,故总编排方案有A22A33+A22A33+C12A22A33+C13A22A33+C13A22A33=120(种).解法二记演出顺序为1~6号,按甲的编排进行分类,①当甲在1号位置时,丙、丁相邻的情况有4种,则有C14A22A33=48(种);②当甲在2号位置时,丙、丁相邻的情况有3种,共有C13A22A33=36(种);③当甲在3号位置时,丙、丁相邻的情况有3种,共有C13A22A33=36(种).所以编排方案共有48+36+36=120(种).14.(山西长治模拟)某人设计一项单人游戏,规则如下:先将一棋子放在如图所示的正方形ABCD(边长为3个单位)的顶点A处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单位,如果掷出的点数为i(i=1,2,…,6),则棋子就按逆时针方向行走i个单位,一直循环下去.则某人抛掷三次骰子后棋子恰好又回到点A处的所有不同走法共有(C)A.22种B.24种C.25种D.36种解析:由题意知正方形ABCD(边长为3个单位)的周长是12,抛掷三次骰子后棋子恰好又回到点A处表示三次骰子的点数之和是12,在点数中三个数字能够使得和为12的有1,5,6;2,4,6;3,4,5;3,3,6;5,5,2;4,4,4,共有6种组合,前三种组合1,5,6;2,4,6;3,4,5各可以排出A33=6种结果,3,3,6和5,5,2各可以排出A33A22=3种结果,4,4,4只可以排出1种结果.根据分类计数原理知共有3×6+2×3+1=25种结果,故选C.15.(天津和平一模)把8个相同的小球全部放入编号为1,2,3,4的四个盒中,则不同的放法种数为(C)A.35 B.70C.165 D.1 860解析:根据题意,分4种情况讨论:①没有空盒,将8个相同的小球排成一列,排好后,各球之间共有7个空位,在7个空位中任选3个,插入隔板,将小球分成4组,顺次对应4个盒子,有C37=35种放法;②有1个空盒,在4个盒中任选3个,放入小球,有C34=4种选法,将8个相同的小球排成一列,排好后,各球之间共有7个空位,在7个空位中任选2个,插入隔板,将小球分成3组,顺次对应3个盒子,有C27=21种分组方法,则有4×21=84种放法;③有2个空盒,在4个盒中任选2个,放入小球,有C24=6种选法,将8个相同的小球排成一列,排好后,各球之间共有7个空位,在7个空位中任选1个,插入隔板,将小球分成2组,顺次对应2个盒子,有C17=7种分组方法,则有6×7=42种放法;④有3个空盒,即将8个小球全部放进1个盒子,有4种放法.故一共有35+84+42+4=165种放法.故选C.16.(洛阳预测)设三位数n=abc,若以a,b,c为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数n有165个.解析:a,b,c要能构成三角形的边长,显然均不为0,即a,b,c∈(1,2,3,…,9).①若构成等边三角形,设这样的三位数的个数为n1,由于三位数中三个数字都相同,所以n1=C19=9;②若构成等腰(非等边)三角形,设这样的三位数的个数为n2,由于三位数中只有2个不同数字,设为a,b,注意到三角形腰与底可以互换,所以可取的数组(a,b)共有2C29组,但当大数为底时,设a>b,必须满足b<a<2b,此时,不能构成三角形的数字是共20种情况.同时,每个数组(a,b)中的两个数字填上三个数位,有C23种情况,故n2=C23(2C29-20)=156.综上,n=n1+n2=165.。

相关文档
最新文档