(完整版)点、直线、平面之间的位置关系知识点总结,推荐文档

合集下载

高中数学必修《点直线平面之间的位置关系》知识点

高中数学必修《点直线平面之间的位置关系》知识点

高中数学必修《点直线平面之间的位置关系》知识点高中数学必修的《点直线平面之间的位置关系》是一个重要的几何知识点,主要涉及直线与平面、点与直线、点与平面之间的位置关系。

这个知识点对于理解几何图形的形状和性质具有重要作用,也为后续的三角函数、向量等知识打下基础。

下面将详细介绍该知识点的内容。

一、直线与平面的位置关系1.平面方程:平面的一般方程为Ax+By+Cz+D=0,其中A、B、C为不能同时为0的实数,A、B、C为平面的法向量,D为常数项。

2.直线与平面的位置关系:(1)直线与平面相交:直线与平面相交可以有一个交点,也可以有无穷多个交点。

(2)直线含于平面:如果直线的所有点都在平面上,则直线被称为含于平面。

(3)直线与平面平行:如果直线与平面的交点集为空集,则直线与平面平行。

(4)直线与平面垂直:如果直线与平面的任意一条直线都垂直,则直线与平面垂直。

二、点与直线的位置关系1.点与直线的距离:点P(x0,y0)到直线Ax+By+C=0的距离公式为d=,Ax0+By0+C,/√(A^2+B^2)。

2.点到线段的距离:点P到线段AB的距离:(1)如果P在AB的延长线上,则距离为AP或BP的长度。

(2)如果P在线段AB的两边,则距离为点P到线段AB所在直线的距离。

(3)如果P在线段AB上,则距离为0。

三、点与平面的位置关系1.点在平面上:点P(x0,y0,z0)在平面Ax+By+Cz+D=0上的充要条件是Ax0+By0+Cz0+D=0。

2.点到平面的距离:点P到平面Ax+By+Cz+D=0的距离公式为d=,Ax0+By0+Cz0+D,/√(A^2+B^2+C^2)。

3.点关于平面的对称点:点P(x0,y0,z0)关于平面Ax+By+Cz+D=0的对称点的坐标为:(x',y',z')=(x0-2*Ax0/(A^2+B^2+C^2),y0-2*By0/(A^2+B^2+C^2),z0-2*Cz0/(A^2+B^2+C^2))。

点、直线、平面之间的位置关系(知识梳理)

点、直线、平面之间的位置关系(知识梳理)

的位置关系-@>% )一平面1.平面的概念平面是一个只描述而不加定义的最基本的原始概念,常见的桌面㊁黑板面㊁海面都给我们以平面的形象.立体几何里所说的平面就是从这样一些物体中抽象出来的.但是几何里所说的平面是无限延展的.2.平面的基本性质三个公理及公理2的三个推论如下:公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内.公理2:经过不在同一条直线上的三点有且只有一个平面.推论1:经过一条直线和直线外的一点有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面. 推论3:经过两条平行直线,有且只有一个平面.公理3:如果不重合的两个平面有一个公共点,那么它们有且只有一条过这个点的公共直线.二空间两条直线的位置关系1.空间两条直线的位置关系(1)相交直线:在同一平面内,有且仅有一个公共点.(2)平行直线:在同一平面内,没有公共点.(3)异面直线:不同在任何一个平面内,没有公共点.(4)异面直线所成的角:如图51所示,直线a ,b是异面直线,经过空间一点O ,分别引直线a 'ʊa ㊁b 'ʊb ,相交直线a ',b '所成的锐角(或直角)叫作异面直线a ,b 所成的角.如果两条异面直线所成的角是直角,则称这两条异面直线互相垂直.abαabαOOaa b图512.平行公理与等角定理(1)平行公理(公理4):平行于同一直线的两条直线相互平行.(2)等角定理:空间中如果一个角的两边和另一个角的两边分别对应平行,那么这两个角相等或互补.三直线和平面、平面和平面的位置关系1.一条直线和一个平面的位置关系有且只有以下三种:(1)直线在平面内 有无数个公共点;(2)直线和平面相交 有且只有一个公共点;(3)直线和平面平行 没有公共点.2.两个平面的位置关系只有两种(1)平行 没有公共点;(2)相交 有一条公共直线.四直线和平面平行的判定与性质1.直线和平面平行的判定定理(1)判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.(2)判定定理的符号表示:a⊄α}⇒aʊαb⊂αaʊb2.直线和平面平行的性质定理(1)性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和两平面的交线平行.(2)性质定理的符号表示aʊαa⊂βαɘβ=b}⇒aʊb五平面与平面平行的判定与性质1.平面与平面平行的判定定理(1)判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.(2)判定定理的符号表示:a⊂αb⊂αaɘb=A aʊβbʊβüþýïïïïïï⇒αʊβ2.平面与平面平行的性质定理(1)性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行.(2)性质定理的符号表示:αʊβγɘα=a γɘβ=b }⇒a ʊb 六直线和平面垂直的判定与性质1.直线和平面垂直的定义如果一条直线l 和一个平面α内的任意一条直线都垂直,我们就说直线l 和平面α互相垂直,记作l ʅα,直线l 叫作平面α的垂线,平面α叫作直线l 的垂面.2.直线和平面垂直的判定(1)直线和平面垂直的判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与这个平面垂直.判定定理的符号表示:a ⊂αb ⊂αa ɘb =P l ʅal ʅbüþýïïïïïï⇒l ʅα(2)如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面,即a ʊba ʅα}⇒b ʅα3.直线和平面垂直的性质(1)直线和平面垂直的性质定理:垂直于同一个平面的两条直线平行.性质定理的符号表示:a ʅαb ʅα}⇒a ʊb(2)如果一条直线垂直于一个平面,则这条直线垂直于这个平面内的任意一条直线.(3)过一点有且只有一条直线和已知平面垂直;过一点有且只有一个平面和已知直线垂直.(4)如果一条直线与两个平面都垂直,那么这两个平面平行.七平面与平面垂直的判定与性质1.两个平面垂直的定义(1)二面角:从一条直线出发的两个半平面所形成的空间图形叫作二面角.这条直线叫作二面角的棱,两个半平面叫作二面角的面.(2)二面角的平面角:在二面角α-l -β的棱l 上任取一点O ,以O 为垂足,在两个半平面内分别作垂直于棱的射线O A 和O B ,则射线O A 和O B 所成的角øA O B叫作二面角α-l -β的平面角.(3)直二面角:平面角是直角的二面角叫作直二面角(4)两个平面垂直的定义:两个平面相交,如果它们所成的二面角是直二面角,那么就说这两个平面互相垂直.2.两个平面垂直的判定定理(1)判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.(2)判定定理的符号表示:a ⊂αa ʅβ}⇒αʅβ3.两个平面垂直的性质定理(1)性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.(2)性质定理的符号表示:αʅβ,αɘβ=l b ⊂α,b ʅl}⇒b ʅβ。

空间点、直线、平面之间的位置关系

空间点、直线、平面之间的位置关系

空间点、直线、平面之间的位置关系一、基础知识1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.2.空间中两直线的位置关系(1)空间中两直线的位置关系⎩⎪⎨⎪⎧ 共面直线⎩⎨⎧ 平行相交异面直线:不同在任何一个 平面内(2)异面直线所成的角 ①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:⎝ ⎛⎦⎥⎤0,π2. (3)公理4:平行于同一条直线的两条直线互相平行.(4)定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.3.空间中直线与平面、平面与平面的位置关系(1)直线与平面的位置关系有相交、平行、在平面内三种情况.直线l和平面α相交、直线l和平面α平行统称为直线l在平面α外,记作l⊄α.(2)平面与平面的位置关系有平行、相交两种情况.二、常用结论1.公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面.推论2:经过两条相交直线有且只有一个平面.推论3:经过两条平行直线有且只有一个平面.2.异面直线判定的一个定理过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.3.唯一性定理(1)过直线外一点有且只有一条直线与已知直线平行.(2)过直线外一点有且只有一个平面与已知直线垂直.(3)过平面外一点有且只有一个平面与已知平面平行.(4)过平面外一点有且只有一条直线与已知平面垂直.考点一平面的基本性质及应用B1C1D1中,E,F分[典例]如图所示,在正方体ABCD-A别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.[证明](1)如图,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥A1B.又A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,如图所示.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈DA,∴CE,D1F,DA三线共点.[变透练清]1.如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,则这四个点不共面的一个图是()解析:选D A,B,C图中四点一定共面,D中四点不共面.2.(变结论)若本例中平面BB1D1D与A1C交于点M,求证:B,M,D1共线.证明:连接BD1(图略),因为BD1与A1C均为正方体ABCD-A1B1C1D1的对角线,故BD1与A1C相交,则令BD1与A1C的交点为O,则B,O,D1共线,因为BD1⊂平面BB1D1D,故A1C与平面BB1D1D的交点为O,与M重合,故B,M,D1共线.考点二空间两直线的位置关系[典例](1)(优质试题·郑州模拟)已知直线a和平面α,β,α∩β=l,a⊄α,a ⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是() A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面(2)G,N,M,H分别是下图中正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形的是________.(填序号)[解析](1)如图,取平面ABCD为α,平面ABFE为β.若直线CH为a,则a在α,β内的射影分别为CD,BE,此时CD,BE异面,即b,c异面,排除A;若直线GH为a,则a在α,β内的射影分别为CD,EF,此时CD,EF平行,即b,c平行,排除B;若直线BH为a,则a在α,β内的射影分别为BD,BE,此时BD,BE相交,即b,c 相交,排除C.综上所述选D.(2)图①中,直线GH∥MN;图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G,M,N共面,但H∉平面GMN,因此GH与MN异面.所以在图②④中,GH与MN异面.[答案](1)D(2)②④[题组训练]1.下列结论中正确的是()①在空间中,若两条直线不相交,则它们一定平行;②与同一直线都相交的三条平行线在同一平面内;③一条直线与两条平行直线中的一条相交,那么它也与另一条相交;④空间四条直线a,b,c,d,如果a∥b,c∥d,且a∥d,那么b∥c.A.①②③B.②④C.③④D.②③解析:选B①错,两条直线不相交,则它们可能平行,也可能异面;②显然正确;③错,若一条直线和两条平行直线中的一条相交,则它和另一条直线可能相交,也可能异面;④由平行直线的传递性可知正确.故选B.2.如图,在正方体ABCD -A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确结论的序号为________.解析:直线AM与CC1是异面直线,直线AM与BN也是异面直线,所以①②错误.点B,B1,N在平面BB1C1C中,点M在此平面外,所以BN,MB1是异面直线.同理AM,DD1也是异面直线.答案:③④[课时跟踪检测]1.(优质试题·衡阳模拟)若直线l与平面α相交,则()A.平面α内存在直线与l异面B.平面α内存在唯一一条直线与l平行C.平面α内存在唯一一条直线与l垂直D.平面α内的直线与l都相交解析:选A当直线l与平面α相交时,这条直线与该平面内任意一条不过交点的直线均为异面直线,故A正确;该平面内不存在与直线l平行的直线,故B错误;该平面内有无数条直线与直线l垂直,所以C错误,平面α内的直线与l可能异面,故D错误,故选A.2.在正方体ABCD-A1B1C1D1中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF的位置关系是()A.相交B.异面C.平行D.垂直解析:选A由BC綊AD,AD綊A1D1,知BC綊A1D1,从而四边形A1BCD1是平行四边形,所以A1B∥CD1,又EF⊂平面A1BCD1,EF∩D1C=F,故A1B与EF相交.3.已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件解析:选B直线a,b分别在两个不同的平面α,β内,则由“直线a和直线b相交”可得“平面α和平面β相交”,反之不成立.所以“直线a和直线b 相交”是“平面α和平面β相交”的充分不必要条件.故选B.4.设四棱锥P-ABCD的底面不是平行四边形,用平面α去截此四棱锥(如图),使得截面四边形是平行四边形,则这样的平面α()A.不存在B.只有1个C.恰有4个D.有无数多个解析:选D设四棱锥的两组不相邻的侧面的交线为m,n,直线m,n确定了一个平面β.作与β平行的平面α,与四棱锥的各个侧面相交,则截得的四边形必为平行四边形,而这样的平面α有无数多个.5.在空间四边形ABCD各边AB,BC,CD,DA上分别取E,F,G,H四点,如果EF,GH相交于点P,那么()A.点P必在直线AC上B.点P必在直线BD上C.点P必在平面DBC内D.点P必在平面ABC外解析:选A如图,因为EF⊂平面ABC,而GH⊂平面ADC,且EF和GH 相交于点P,所以点P在两平面的交线上,因为AC是两平面的交线,所以点P 必在直线AC上.6.如图,在平行六面体ABCD-A1B1C1D1中,既与AB共面又与CC1共面的棱有________条.解析:依题意,与AB和CC1都相交的棱有BC;与AB相交且与CC1平行有棱AA1,BB1;与AB平行且与CC1相交的棱有CD,C1D1.故符合条件的有5条.答案:57.在四棱锥P-ABCD中,底面ABCD为平行四边形,E,F分别为侧棱PC,PB的中点,则EF与平面P AD的位置关系为________,平面AEF与平面ABCD 的交线是________.解析:由题易知EF ∥BC ,BC ∥AD ,所以EF ∥AD ,故EF ∥平面P AD ,因为EF ∥AD ,所以E ,F ,A ,D 四点共面,所以AD 为平面AEF 与平面ABCD 的交线. 答案:平行 AD8.如图所示,在空间四边形ABCD 中,点E ,H 分别是边AB ,AD 的中点,点F ,G 分别是边BC ,CD 上的点,且CF CB =CG CD =23,有以下四个结论.①EF 与GH 平行;②EF 与GH 异面;③EF 与GH 的交点M 可能在直线AC 上,也可能不在直线AC 上; ④EF 与GH 的交点M 一定在直线AC 上.其中正确结论的序号为________.解析:如图所示.连接EH ,FG ,依题意,可得EH ∥BD ,FG ∥BD ,故EH ∥FG ,所以E ,F ,G ,H 共面.因为EH =12BD ,FG =23BD ,故EH ≠FG ,所以EFGH 是梯形,EF 与GH 必相交,设交点为M .因为点M 在EF 上, 故点M 在平面ACB 上.同理,点M 在平面ACD 上,所以点M 是平面ACB 与平面ACD 的交点,又AC 是这两个平面的交线,所以点M 一定在直线AC 上.答案:④9.如图所示,正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是A 1B 1,B 1C 1的中点.(1)AM 和CN 是否共面?说明理由;。

点直线平面之间的位置关系知识总结

点直线平面之间的位置关系知识总结

点,直线,平面之间的位置关系一、知识网络二、知识要点:(一)空间直线1、空间两条直线的位置关系(1)相交直线——有且仅有一个公共点;(2)平行直线——在同一个平面内,没有公共点;(3)异面直线——不同在任何一个平面内,没有公共点.2、平行直线(1)公理4(平行直线的传递性):平行于同一条直线的两条直线互相平行.符号表示:设a,b,c为直线,(2)空间等角定理如果一个角的两边和另一个角的两边分别平行且方向相同,那么这两个角相等.推论:如果两条相交直线和另两条相交直线分别平行,那么这两条直线所成的锐角(或直角)相等.3、异面直线(1)定义:不同在任何一个平面内的两条直线叫做异面直线.(2)有关概念:(ⅰ)设直线a,b为异面直线,经过空间任意一点O作直线a',b',并使a'//a,b'//b,则把a'和b'所成的锐角(或直角)叫做异面直线a和b所成的角.特例:如果两条异面直线所成角是直角,则说这两条异面直线互相垂直.认知:设为异面直线a,b所成的角,则 .(ⅱ)和两条异面直线都垂直相交的直线(存在且唯一),叫做两条异面直线的公垂线.(ⅲ)两条异面直线的公垂线在这两条异面直线间的线段(公垂线段)的长度,叫做两条异面直线的距离.(二)空间直线与平面直线与平面的位置关系:(1)直线在平面内——直线与平面有无数个公共点;(2)直线和平面相交——直线与平面有且仅有一个公共点;(3)直线和平面平行——直线与平面没有公共点.其中,直线和平面相交或直线和平面平行统称为直线在平面外.1、直线与平面平行(1)定义:如果一条直线和一个平面没有公共点,则说这条直线和这个平面平行,此为证明直线与平面平行的原始依据.(2)判定判定定理:如果平面外的一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.认知:应用此定理证题的三个环节:指出 . (3)性质性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.2、直线与平面垂直(1)定义:如果直线l和平面内的任何一条直线都垂直,则说直线l和平面互相垂直,记作l⊥ .(2)判定:判定定理1:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.判定定理2:如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面. 符号表示: .(3)性质性质定理:如果两条直线垂直于同一个平面,那么这两条直线平行. 符号表示:(4)概念(ⅰ)点到平面的距离:从平面外一点引这个平面的垂线,则这个点和垂足间的距离叫做这个点到这个平面的距离.(ⅱ)直线和平面的距离:当一条直线和一个平面平行时,这条直线上任意一点到这个平面的距离,叫做这条直线和这个平面的距离.(三)空间两个平面1、两个平面的位置关系(1)定义:如果两个平面没有公共点,则说这两个平面互相平行.(2)两个平面的位置关系(ⅰ)两个平面平行——没有公共点;(ⅱ)两个平面相交——有一条公共直线.2、两个平面平行(1)判定判定定理1:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.判定定理2:(线面垂直性质定理):垂直于同一条直线的两个平面平行.(2)性质性质定理1:如果两个平行平面同时和第三个平面相交,那么它们的交线平行.性质定理2(定义的推论):如果两个平面平行,那么其中一个平面内的所有直线都平行于另一个平面.3、有关概念(1)和两个平行平面同时垂直的直线,叫做两个平行平面的公垂线,它夹在这两个平行平面间的部分,叫做这两个平行平面的公垂线段.(2)两个平行平面的公垂线段都相等. (3)公垂线段的长度叫做两个平行平面间的距离.4、认知:两平面平行的判定定理的特征:线面平行面面平行,或线线平行面面平行;两平面平行的性质定理的特征:面面平行线面平行,或面面平行线线平行.它们恰是平行范畴中同一事物的相互依存和相互贯通的正反两个方面.。

完整版高中数学必修2《点、直线、平面之间位置关系》知识点

完整版高中数学必修2《点、直线、平面之间位置关系》知识点

第二章点、直线、平面之间的位置关系空间点、直线、平面之间的位置关系一、平面1、平面及其表示A2、平面的根本性质①公理1:lBllAB②公理2:不共线的三点确定一个平面③公理3:Pl那么P lP二、点与面、直线位置关系1、A1、点与平面有2种位置关系2、B1、A l2、点与直线有2种位置关系2、B l三、空间中直线与直线之间的位置关系1、异面直线2、直线与直线的位置关系相交共面平行异面3、公理4和定理公理4:l1Pl3l1Pl2l2Pl3定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。

4、求异面直线所成角的步骤:①作:作平行线得到相交直线; ②证:证明作出的角即为所求的异面直线所成的角;③构造三角形求出该角。

提示:1、作平行线常见方法有:直接平移,中位线,平行四边形。

2、异面直线所的角的范围是 00,900。

四、空间中直线与平面之间的位置关系位置关系 直线a 在平面内 直线a 与平面相交直线a 与平面 平行 公共点 有无数个公共点 有且只有一个公共点 没有公共点 符号表示a aI A aP 图形表示 五、空间中平面与平面之间的位置关系位置关系 两个平面平行 两个平面相交公共点 没有公共点有一条公共直线 符号表示 P I a图形表示直线、平面平行的判定及其性质一、线面平行1、判定:b a bPbPa〔线线平行,那么线面平行〕2、性质:aPaP abb〔线面平行,那么线线平行〕二、面面平行1、判定:aba b P PPbP〔线面平行,那么面面平行〕2、性质1:PI a aPbI b〔面面平行,那么线面平行〕性质2:PmPm〔面面平行,那么线面平行〕说明〔1〕判定直线与平面平行的方法:①利用定义:证明直线与平面无公共点。

②利用判定定理:从直线与直线平行等到直线与平面平行。

③利用面面平行的性质:两个平面平行,那么其中一个平面内的直线必平行于另一个平面。

2〕证明面面平行的常用方法利用面面平行的定义:此法一般与反证法结合。

(完整word版)《空间中点、直线、平面之间的位置关系》知识点总结,推荐文档

(完整word版)《空间中点、直线、平面之间的位置关系》知识点总结,推荐文档

《空间中点、直线、平面之间的位置关系》知识点总结1.内容归纳总结 (1)四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。

符号语言:,,,A l B l A B l ααα∈∈∈∈ ⇒ ∈且。

公理2:过不在一条直线上的三点,有且只有一个平面。

三个推论:① 经过一条直线和这条直线外一点,有且只有一个平面 ② 经过两条相交直线,有且只有一个平面 ③ 经过两条平行直线,有且只有一个平面它给出了确定一个平面的依据。

公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线(两个平面的交线)。

符号语言:,,P P l P l αβαβ∈∈⇒=∈I 且。

公理4:(平行线的传递性)平行与同一直线的两条直线互相平行。

符号语言://,////a l b l a b ⇒且。

(2)空间中直线与直线之间的位置关系1.概念 异面直线及夹角:把不在任何一个平面内的两条直线叫做异面直线。

已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b '',我们把a '与b '所成的角(或直角)叫异面直线,a b 所成的夹角。

(易知:夹角范围090θ<≤︒)定理:空间中如果一个角的两边分别与另一个角的两边分别平行,那么这两个角相等或互补。

(注意:会画两个角互补的图形)2.位置关系:⎧⎧⎪⎨⎨⎩⎪⎩相交直线:同一平面内,有且只有一个公共点;共面直线平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点(3)空间中直线与平面之间的位置关系直线与平面的位置关系有三种://l l A l ααα⊂⎧⎪=⎧⎨⎨⎪⎩⎩I 直线在平面内()有无数个公共点直线与平面相交()有且只有一个公共点直线在平面外直线与平面平行()没有公共点(4)空间中平面与平面之间的位置关系平面与平面之间的位置关系有两种://l αβαβ⎧⎨=⎩I 两个平面平行()没有公共点两个平面相交()有一条公共直线直线、平面平行的判定及其性质1.内容归纳总结 (1)四个定理1.内容归纳总结 (一)基本概念1.直线与平面垂直:如果直线l 与平面α内的任意一条直线都垂直,我们就说直线l 与平面α垂直,记作l α⊥。

(完整版)高中数学必修2《点、直线、平面之间的位置关系》知识点

(完整版)高中数学必修2《点、直线、平面之间的位置关系》知识点

第二章点、直线、平面之间的地址关系空间点、直线、平面之间的地址关系一、平面1、平面及其表示2、平面的基本性质①公义 1:A lB llAB②公义 2:不共线的三点确定一个平面③公义 3:Pl 则P lP二、点与面、直线地址关系1、A1、点与平面有 2 种地址关系2、B1、A l2、点与直线有 2 种地址关系2、 B l三、空间中直线与直线之间的地址关系1、异面直线2、直线与直线的地址关系订交共面平行异面3、公义 4 和定理公义 4:l1 Pl3l1 Pl 2l 2 Pl3定理:空间中若是两个角的两边分别对应平行,那么这两个角相等或互补。

4、求异面直线所成角的步骤:① 作:作平行线获取订交直线;② 证:证明作出的角即为所求的异面直线所成的角;③ 构造三角形求出该角。

提示: 1、作平行线常有方法有:直接平移,中位线,平行四边形。

2、异面直线所的角的范围是00 ,900。

四、空间中直线与平面之间的地址关系地址关系直线 a在平面内直线 a与平面订交直线 a与平面平行公共点有无数个公共点有且只有一个公共点没有公共点符号表示a a I Aa P图形表示五、空间中平面与平面之间的地址关系地址关系两个平面平行两个平面订交公共点没有公共点有一条公共直线符号表示P I a图形表示直线、平面平行的判断及其性质一、线面平行1、判断:ba b Pb Pa(线线平行,则线面平行)2、性质:a PaPa b b(线面平行,则线线平行)二、面面平行1、判断:aba b P Pa Pb P(线面平行,则面面平行)2、性质 1:PI a a PbI b(面面平行,则线面平行)性质 2:Pm Pm(面面平行,则线面平行)说明( 1)判断直线与平面平行的方法:① 利用定义:证明直线与平面无公共点。

② 利用判判定理:从直线与直线平行等到直线与平面平行。

③ 利用面面平行的性质:两个平面平行,则其中一个平面内的直线必平行于另一个平面。

(2)证明面面平行的常用方法①利用面面平行的定义:此法一般与反证法结合。

点线面之间的位置关系的知识点总结

点线面之间的位置关系的知识点总结

高中空间点线面之间位置关系知识点总结第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。

3 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为A ∈LB ∈L => L α A ∈α B ∈α公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。

符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。

公理2作用:确定一个平面的依据。

(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据2.1.2 空间中直线与直线之间的位置关系1 空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点同一条直线的两条直线互相平行。

符号表示为:设a 、b 、c 是三条直线 a ∥b 。

2 公理4:平行于 c ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

公理4作用:判断空间两条直线平行的依据。

3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, );③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ;④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;D CBAα LA ·α C ·B·A · α P· αLβ 共面直线=>a ∥c2⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。

(完整)空间点线面之间位置关系知识点总结,推荐文档

(完整)空间点线面之间位置关系知识点总结,推荐文档

2.1.3 — 2.1.4 空间中直线与平面、平面与平面之间的位置关系
①柱体的体积 V S底 h
②锥体的体积
V
1 3 S底
h
③台体的体积
V 13(S上上 S S下下 S ) h
④球体的体积V 4 R3 3
1、直线与平面有三种位置关系: (1)直线在平面内 —— 有无数个公共点 (2)直线与平面相交 —— 有且只有一个公共点 (3)直线在平面平行 —— 没有公共点 指出:直线与平面相交或平行的情况统称为直线在平面外,可用 a
画三视图的原则: 长对齐、高对齐、宽相等
2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系:
相交直线:同一平面内,有且只有一个公共点;
β
P
α ·L
3.直观图:直观图通常是在平行投影下画出的空间图形。
共面直 平行直线:同一平面内,没有公共点;
4.斜二测法:在坐标系 x 'o ' y ' 中画直观图时,已知图形中平行于坐标轴的线段保持平行性不变,平行于 x
的四个顶点或者相对的两个顶点的大写字母来表示,如平面 AC、平面 ABCD 等。
(1)多面体——由若干个平面多边形围成的几何体.
3 三个公理:
旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。其中,这条定直 (1)公理 1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内
(1)若 A1B2 A2B1 0 ,两直线相交;
(2)若 A1B2 A2B1 0 ,两直线平行或重合;
(3)若 A1A2 B1B2 0 ,若两直线垂直。
10.点 (x1, y1)和(的x2中, y点2 ) 坐标是

点,直线,平面知识点

点,直线,平面知识点

点、直线、平面之间的位置关系1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内。

,,A l B ll A B ααα∈∈⎧⇒⊂⎨∈∈⎩ 2、公理2:过不在一条直线上的三点,有且只有一个平面。

若A ,B ,C 不共线,则A ,B ,C 确定平面α推论1:过直线的直线外一点有且只有一个平面推论2:过两条相交直线有且只有一个平面推论3:过两条平行直线有且只有一个平面 若A l ∉,则点A 和l 确定平面α若mn A =,则,m n 确定平面α若//m n ,则,m n 确定平面αm nα公理2及其推论的作用:确定平面;判定多边形是否为平面图形的依据。

3、公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

,P P l P l αβαβ∈∈⇒=∈且公理3作用:(1)判定两个平面是否相交的依据;(2)证明点共线、线共点等。

4、公理4:也叫平行公理,平行于同一条直线的两条直线平行.//,////a b c b a c ⇒公理4作用:证明两直线平行。

5、定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。

P · α Lβ作用:该定理也叫等角定理,可以用来证明空间中的两个角相等。

6、线线位置关系:平行、相交、异面。

//,,,a b a b A a b =异面(1)没有任何公共点的两条直线平行 (2)有一个公共点的两条直线相交(3)不同在任何一个平面内的两条直线叫异面直线7、线面位置关系:(1)直线在平面内,直线与平面有无数个公共点;a α⊂ (2)直线和平面平行,直线与平面无任何公共点;//a α(3)直线与平面相交,直线与平面有唯一一个公共点;aAα=8、面面位置关系:平行、相交。

9、线面平行:(即直线与平面无任何公共点)⑴判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

(只需在平面内找一条直线和平面外的直线平行就可以)////a b a a b ααα⊄⎫⎪⊂⇒⎬⎪⎭证明两直线平行的主要方法是:①三角形中位线定理:三角形中位线平行并等于底边的一半; ②平行四边形的性质:平行四边形两组对边分别平行;③线面平行的性质:如果一条直线平行于一个平面,经过这条直线的平面与这个平面相交,那么这条直线和它们的交线平行;////a a a b b αβαβ⊂⇒=⎫⎪⎬⎪⎭④平行线的传递性://,////a b c b a c ⇒ab b a b 'a '方向相反则∠1+∠2=180°方向相同则∠1=∠22121a 'b '(1)αa(2)αa④平行线的传递性://,////a b c b a c ⇒⑤面面平行的性质:如果一个平面与两个平行平面相交,那么它们的交线平行;////a a b b αβαγβγ=⇒=⎫⎪⎬⎪⎭⑥垂直于同一平面的两直线平行; //a a b b αα⊥⎫⇒⎬⊥⎭⑵直线与平面平行的性质:如果一条直线平行于一个平面,经过这条直线的平面与这个平面相交,那么这条直线和它们的交线平行;(上面的③)10、面面平行:(即两平面无任何公共点)(1)判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。

位置关系知识点总结

位置关系知识点总结

位置关系知识点总结位置关系学问点总结第一篇空间点、直线、平面之间的位置关系以下学问点需要我们去理解,记忆。

1、数学所说的直线是无限延长的,没有起点,也没有终点。

2、数学所说的平面是无限延长的,没有起始线,也没有终点线。

3、公理1 假如一条直线上的两点在一个平面内,那么这条直线在此平面内。

4、过不在同始终线上的三点,有且只有一个平面。

5、假如两个不重合的平面有一个公共点,那么它们有且只有一个过该点的公共直线。

6、平行于同一条直线的两条直线平行。

7、直线在平面内,因为直线上有很多多个点,平面上也有很多多个点,因此用子集的符号表示直线在平面内。

8、直线与平面的位置关系,直线与直线的位置关系是本节课的重点和难点。

9、做位置关系的题目,可以借助实物,直观理解。

一、直线与方程考试内容及考试要求考试内容:直线的倾斜角和斜率;直线方程的点斜式和两点式;直线方程的一般式;两条直线平行与垂直的条件;两条直线的交角;点到直线的距离;考试要求:理解直线的倾斜角和斜率的概念,把握过两点的直线的斜率公式,把握直线方程的点斜式、两点式、一般式,并能依据条件娴熟地求出直线方程。

把握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式能够依据直线的方程推断两条直线的位置关系。

位置关系学问点总结第二篇直线、平面平行的判定及其性质直线与平面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线和这个平面平行.稳固深化练习:如图,四棱锥A—DBCE中,O为底面正方形DBCE对角线的交点,F为AE的中点.,求证:AB//平面教师点评,规范步骤,强调判定定理三条件,缺一不行.小组协作合作探究:如图,正方体中,P 是棱A1B1的中点,过点P 在正方体外表画一条直线使之与截面A1BCD1平行.教师引导小组商量,并进行各小组指导,最终汇总点评,总结关键点.如图,在正方体中,E为的中点,试推断与平面AEC的位置关系,并说明理由.位置关系学问点总结第三篇直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特殊地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.当时,;当时,;当时,不存在.②过两点的直线的斜率公式:留意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.(3)直线方程①点斜式:直线斜率k,且过点留意:当直线的斜率为0°时,k=0,直线的方程是当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是②斜截式:,直线斜率为k,直线在y轴上的截距为b③两点式:()直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.⑤一般式:(A,B不全为0)留意:各式的适用范围特别的方程如:(4)平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)垂直直线系垂直于已知直线(是不全为0的常数)的直线系:(C为常数)(三)过定点的直线系(ⅰ)斜率为k的直线系:,直线过定点;(ⅰ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中。

必修二第二章点、直线、平面的位置关系知识总结

必修二第二章点、直线、平面的位置关系知识总结

空间点、直线、平面的位置关系(1)平面① 平面的概念: A.描述性说明; B.平面是无限伸展的;② 平面的表示:通常用希腊字母α、β、γ表示,如平面α(通常写在一个锐角内);也可以用两个相对顶点的字母来表示,如平面BC.③ 点与平面的关系:点A 在平面α内,记作A α∈;点A 不在平面α内,记作A α∉.点与直线的关系:点A 的直线l 上,记作:A ∈l ; 点A 在直线l 外,记作A ∉l. 直线与平面的关系:直线l 在平面α内,记作l ⊂α;直线l 不在平面α内,记作l ⊄α. (2)公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内.(即直线在平面内,或者平面经过直线) 应用:检验桌面是否平 判断直线是否在平面内用符号语言表示公理1:,,,A l B l A B l ααα∈∈∈∈⇒⊂ (3)公理2:经过不在同一条直线上的三点,有且只有一个平面.推论:一直线和直线外一点确定一平面. 两相交直线确定一平面. 两平行直线确定一平面.公理2及其推论作用:①它是空间内确定平面的依据 ②它是证明平面重合的依据(4)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线符号:平面α和β相交,交线是a ,记作α∩β=a. 符号语言:,P A B A B l P l ∈⇒=∈ 公理3的作用:①它是判定两个平面相交的方法.②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点. (教科书习题2.1 B 组3题)③它可以判断点在直线上,即证若干个点共线的重要依据. (教科书习题2.1 B 组2题)(5)公理4:平行于同一条直线的两条直线互相平行(6)空间直线与直线之间的位置关系①异面直线定义:不同在任何一个平面内的两条直线②异面直线性质:既不平行,又不相交.③异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线④异面直线所成角:直线a、b是异面直线,经过空间任意一点O,分别引直线a’∥a,b’∥b,则把直线a’和b’所成的锐角(或直角)叫做异面直线a和b所成的角.两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直.说明:(1)判定空间直线是异面直线方法:①根据异面直线的定义(反证法)②异面直线的判定定理(2)在异面直线所成角定义中,空间一点O是任取的,而和点O的位置无关.(3)求异面直线所成角步骤:A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.B、证明作出的角即为所求角.C、利用三角形来求角.(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补.(8)空间直线与平面之间的位置关系直线在平面内——有无数个公共点.三种位置关系的符号表示:a⊂α a∩α=A a∥α(9)平面与平面之间的位置关系:平行——没有公共点.α∥β相交——有一条公共直线.α∩β=b5、空间中的平行问题(1)直线与平面平行的判定及其性质线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行.线线平行⇒线面平行线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.线面平行⇒线线平行(2)平面与平面平行的判定及其性质两个平面平行的判定定理(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行(线面平行→面面平行),以下书上没有:(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行.(线线平行→面面平行),(3)垂直于同一条直线的两个平面平行,两个平面平行的性质定理(1)如果两个平行平面都和第三个平面相交,那么它们的交线平行.(面面平行→线线平行)以下书上没有:(2)如果两个平面平行,那么某一个平面内的直线与另一个平面平行.(面面平行→线面平行)7、空间中的垂直问题(1)线线、面面、线面垂直的定义①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直.②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直.③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直.(2)垂直关系的判定和性质定理①线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面.性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.②面面垂直的判定定理和性质定理判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面.9、空间角问题(1)直线与直线所成的角①两平行直线所成的角:规定为 0.②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角. ③两条异面直线所成的角:过空间任意一点O ,分别作与两条异面直线a ,b 平行的直线b a '',,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角. (2)直线和平面所成的角①平面的平行线与平面所成的角:规定为0. ②平面的垂线与平面所成的角:规定为90.③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”. 在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线. (3)二面角和二面角的平面角①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内..分别作垂直于...棱的两条射线,这两条射线所成的角叫二面角的平面角.③直二面角:平面角是直角的二面角叫直二面角.两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角 ④求二面角的方法定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角.垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平 面角.1、线线、线面、面面平行关系的转化:线线∥线面∥面面∥公理4 (a//b,b//ca//c)线面平行判定αβαγβγ//,//==⇒⎫⎬⎭a ba b面面平行判定1a ba ba//,//⊄⊂⇒⎫⎬⎭ααα面面平行性质a ba b Aa b⊂⊂=⇒⎫⎬⎪⎭⎪ααββαβ,//,////线面平行性质aaba b////αβαβ⊂=⇒⎫⎬⎪⎭⎪面面平行性质1αβαβ////aa⊂⇒⎫⎬⎭面面平行性质αγβγαβ//////⎫⎬⎭⇒A bα aβabα2. 线线、线面、面面垂直关系的转化:线线⊥线面⊥面面⊥三垂线定理、逆定理PA AO POaa OA a POa PO a AO⊥⊂⊥⇒⊥⊥⇒⊥ααα,为在内射影则线面垂直判定1面面垂直判定a ba b Ol a l bl,,⊂=⊥⊥⇒⊥⎫⎬⎪⎭⎪ααaa⊥⊂⇒⊥⎫⎬⎭αβαβ线面垂直定义lal a⊥⊂⇒⊥⎫⎬⎭αα面面垂直性质,推论2αβαββα⊥=⊂⊥⇒⊥⎫⎬⎪⎭⎪ba a ba,αγβγαβγ⊥⊥=⇒⊥⎫⎬⎪⎭⎪aa面面垂直定义αβαβαβ=--⇒⊥⎫⎬⎭l l,且二面角成直二面角3. 平行与垂直关系的转化:线线∥线面⊥面面∥线面垂直判定2面面平行判定2线面垂直性质2面面平行性质3a bab//⊥⇒⊥⎫⎬⎭ααaba b⊥⊥⇒⎫⎬⎭αα//aa⊥⊥⇒⎫⎬⎭αβαβ//αββ//a⊥⎫⎬a一、选择题:1. 已知βα,为平面,A 、B 、M 、N 为点,a 为直线,下列推理错误的是( )A. βββ⊂⇒∈∈∈∈a B a B A a A ,,,B. MN N N M M =⇒∈∈∈∈βαβαβα ,,,C. A A A =⇒∈∈βαβα ,D. 重合、不共线、、,且、、、、βαβα⇒∈∈M B A M B A M B A ,2. 在正方体ABCD —A 1B 1C 1D 1中,已知棱长为a ,则异面直线A 1B 与B 1C 所成角的大小为( ) A. 30° B. 45° C. 60° D. 90°3. 设P 是异面直线a 、b 外的一点,则过P 点且与a 、b 都平行的平面( )A. 有且只有一个B. 恰有两个C. 没有或只有一个D. 有无数个4. 若三个平面把空间分成6个部分,那么这三个平面的位置关系是( )A. 三个平面共线B. 有两个平面平行且都与第三个平面相交C. 三个平面共线,或两个平面平行且都与第三个平面相交D. 三个平面两两相交二、填空题:5. 用符号语言表示下列语句:(1)点A 在平面α内,但在平面β外 ;(2)直线a 经过平面α外一点M ;(3)直线a 在平面α内,又在平面β内,即平面α和β相交于直线a 。

高一数学必修二第二章“点、直线、平面之间的位置关系”知识点总结

高一数学必修二第二章“点、直线、平面之间的位置关系”知识点总结

数学必修2第二章"点、直线、平面之间的位置关系”知识点1、平面的特征:平的,无厚度,可以无限延展.2、平面的基本性质:公理1、若一条直线上的两点在一个平面内,那么这条直线在此平面内.,,,l l l αααA∈B∈A∈B∈⇒⊂《公理2、过不在一条直线上的三点,有且只有一个平面.,,,,,C C ααααA B ⇒A∈B∈∈三点不共线有且只有一个平面使公理3、若两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.l l αβαβP∈⇒=P∈且推论1、经过一条直线和直线外的一点,有且只有一个平面.推论2、经过两条相交直线,有且只有一个平面.推论3、经过两条平行直线,有且只有一个平面.公理4、平行于同一条直线的两条直线互相平行.—//,////a b b c a c ⇒3、等角定理:空间中若两个角的两边分别对应平行,那么这两个角相等或互补.推论:若两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等.4、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.数学符号表示:,,////a b a b a ααα⊄⊂⇒&直线与平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行. 数学符号表示://,,//a a b a b αβαβ⊂=⇒5、平面与平面平行的判定定理:(1)一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.数学符号表示:,,,//,////a b a b a b ββαααβ⊂⊂=P ⇒(2)垂直于同一条直线的两个平面平行.符号表示:,//a a αβαβ⊥⊥⇒(3):(4)平行于同一个平面的两个平面平行.符号表示://,////αγβγαβ⇒ 面面平行的性质定理:(1)若两个平面平行,那么其中一个平面内的任意直线均平行于另一个平面. //,//a a αβαβ⊂⇒(2)若两个平行平面同时和第三个平面相交,那么它们的交线平行.//,,//a b a b αβαγβγ==⇒【 6、直线与平面垂直的判定定理:(1)一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直. 数学符号表示:,,,,m n m n l m l n l ααα⊂⊂=A ⊥⊥⇒⊥(2)若两条平行直线中一条垂直于一个平面,那么另一条也垂直于这个平面.//,a b a b αα⊥⇒⊥(3)若一条直线垂直于两个平行平面中一个,那么该直线也垂直于另一个平面.//,a a αβαβ⊥⇒⊥直线与平面垂直的性质定理:垂直于同一个平面的两条直线平行.} ,//a b a b αα⊥⊥⇒7、两个平面垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.,a a βααβ⊥⊂⇒⊥8、平面与平面垂直的性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.数学符号表示:,,,b a a b a αβαβαβ⊥=⊂⊥⇒⊥,。

空间中点直线平面之间的位置关系知识点总结

空间中点直线平面之间的位置关系知识点总结

《空间中点、直线、平面之间的位置关系》知识点总结1.内容归纳总结 (1)四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。

符号语言:,,,A l B l A B l ααα∈∈∈∈ ⇒ ∈且。

公理2:过不在一条直线上的三点,有且只有一个平面。

三个推论:① 经过一条直线和这条直线外一点,有且只有一个平面 ② 经过两条相交直线,有且只有一个平面 ③ 经过两条平行直线,有且只有一个平面 它给出了确定一个平面的依据。

公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线(两个平面的交线)。

符号语言:,,P P l P l αβαβ∈∈⇒=∈I且。

公理4:(平行线的传递性)平行与同一直线的两条直线互相平行。

符号语言://,////a l b l a b ⇒且。

(2)空间中直线与直线之间的位置关系1.概念 异面直线及夹角:把不在任何一个平面内的两条直线叫做异面直线。

已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b '',我们把a '与b '所成的角(或直角)叫异面直线,a b 所成的夹角。

(易知:夹角范围090θ<≤︒)定理:空间中如果一个角的两边分别与另一个角的两边分别平行,那么这两个角相等或互补。

(注意:会画两个角互补的图形)2.位置关系:⎧⎧⎪⎨⎨⎩⎪⎩相交直线:同一平面内,有且只有一个公共点;共面直线平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点(3)空间中直线与平面之间的位置关系 直线与平面的位置关系有三种://l l A l ααα⊂⎧⎪=⎧⎨⎨⎪⎩⎩I 直线在平面内()有无数个公共点直线与平面相交()有且只有一个公共点直线在平面外直线与平面平行()没有公共点 (4)空间中平面与平面之间的位置关系 平面与平面之间的位置关系有两种://l αβαβ⎧⎨=⎩I 两个平面平行()没有公共点两个平面相交()有一条公共直线直线、平面平行的判定及其性质1.内容归纳总结 (1)四个定理1.内容归纳总结 (一)基本概念1.直线与平面垂直:如果直线l 与平面α内的任意一条直线都垂直,我们就说直线l 与平面α垂直,记作lα⊥。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

点、直线、平面之间的位置关系
一、线、面之间的平行、垂直关系的证明
书中所涉及的定理和性质可分为以下三类:
1、平行关系与平行关系互推;
2、垂直关系与垂直关系互推;线面垂直判定定理
线面垂直的定义两平面的法线垂直则两平面垂直
面面垂直判定定理线面平行判定定理
线面平行性质定理线面平行转化面面平行判定定理
面面平行性质定理
3、平行关系与垂直关系互推。

以线或面为元素,互推的本质是以某一元素为中介,通过另外两元素与中介元素的垂直或平行关系,推导出该两元素的关系,总共有21种情况,能得出结论的有以下9种情况。

线线平行传递性:;b c c a b a //////⇒⎭
⎬⎫面面平行传递性:;γαβγβα//////⇒⎭
⎬⎫线面垂直、线面垂直线面平行:
;⇒ααββα//a a a ⇒⎪⎭
⎪⎬⎫⊄⊥⊥线面垂直线线平行(线面垂直性质定理):;⇒b a b a //⇒⎭
⎬⎫⊥⊥αα线面垂直面面平行:;⇒βαβα//⇒⎭
⎬⎫⊥⊥a a 线面垂直、面面平行线面垂直:;⇒βαβα⊥⇒⎭
⎬⎫⊥a a //线线平行、线面垂直线面垂直:;⇒αα⊥⇒⎭
⎬⎫⊥b a b a //线面垂直、线面平行面面垂直:。

⇒βααβ⊥⇒⎭
⎬⎫⊥a a //备注:另外证明平行关系时可以从最基本的定义交点入手,证明垂直关系时可以从最基本的定义角度入手。

符号化语言一览表
①线面平行;;;ααα////a a b b a ⇒⎪⎭⎪⎬⎫⊄⊂αββα////a a ⇒⎭⎬⎫⊂ααββα//a a a ⇒⎪⎭
⎪⎬⎫⊄⊥⊥②线线平行:;;;;////a a a b b α
βαβ⎫⎪⊂⇒⎬⎪=⎭ b a b a //⇒⎭⎬⎫⊥⊥αα////a a b b αβαγβγ⎫⎪=⇒⎬⎪=⎭
b c c a b a //////⇒⎭⎬⎫③面面平行:;;;,////,//a b a b O a b αααβββ⊂⊂⎫⎪=⇒⎬⎪⎭
βαβα//⇒⎭⎬⎫⊥⊥a a γαβγβα//////⇒⎭⎬⎫
④线线垂直:;b a b a ⊥⇒⎭
⎬⎫⊂⊥αα⑤线面垂直:;;
,,a b a b O l l a l b ααα⊂⊂⎫⎪=⇒⊥⎬⎪⊥⊥⎭
,l a a a l αβαββα⊥⎫⎪=⇒⊥⎬⎪⊂⊥⎭ ;;βαβα⊥⇒⎭⎬⎫⊥a a //αα⊥⇒⎭
⎬⎫⊥b a b a //⑥面面垂直:二面角900; ;;βααβ⊥⇒⎭
⎬⎫⊥⊂a a βααβ⊥⇒⎭⎬⎫⊥a a //二、立体几何中的重要方法
1、求角:(步骤-------Ⅰ找或作角;Ⅱ求角)
⑴异面直线所成角的求法:
①平移法:平移直线,构造三角形;
②补形法:补成正方体、平行六面体、长方体等,发现两条异面直线间的关系.注:还可用向量法,转化为两直线方向向量的夹角.
⑵直线与平面所成的角:①直接法(利用线面角定义);②先求斜线上的点到平面距离h ,与斜线段长度作比,得sin ;③三线三角公式.
θ12cos cos cos θθθ=注:还可用向量法,转化为直线的方向向量与平面法向量的夹角.
⑶二面角的求法:①定义法:在二面角的棱上取一点(特殊点),作出平面角,再求解;②垂面法:作面与二面角的棱垂直; ③投影法(三垂线定理);④面积摄影法.注:对于没有给出棱的二面角,应先作出棱,然后再选用上述方法;
还可用向量法,转化为两个班平面法向量的夹角.
2、求距离:(步骤-------Ⅰ找或作垂线段;Ⅱ求距离)
⑴两异面直线间的距离:一般先作出公垂线段,再进行计算;或转化为线面距离、点面距离;
⑵点到直线的距离:一般用三垂线定理作出垂线段,再求解;
⑶点到平面的距离:①垂面法:借助面面垂直的性质作垂线段(确定已知面的垂面是关键),再求解;②等体积法;还可用向量法:.
||n d =
3、证明平行、垂直的理论途径:
①证明直线与直线的平行的思考途径:
(1)转化为判定共面二直线无交点(定义);
(2)转化为两直线同与第三条直线平行;
(3)转化为线面平行;
(4)转化为线面垂直;
(5)转化为面面平行.
②证明直线与平面的平行的思考途径:
(1)转化为直线与平面无公共点(定义);
(2)转化为线线平行;
(3)转化为面面平行.
③证明平面与平面平行的思考途径:
(1)转化为判定两平面无公共点(定义);
(2)转化为线面平行;
(3)转化为线面垂直.
④证明直线与直线的垂直的思考途径:
(1)转化为相交垂直;
(2)转化为线面垂直.
⑤证明直线与平面垂直的思考途径:
(1)转化为该直线与平面内任一直线垂直(定义);(2)转化为该直线与平面内相交的两条直线垂直;(3)转化为该直线与平面的一条垂线平行;
(4)转化为该直线垂直于另一个平行平面;
(5)转化为该直线与两个垂直平面交线垂直.
⑥证明平面与平面的垂直的思考途径:
(1)转化为判断二面角是直二面角;
(2)转化为线面垂直.。

相关文档
最新文档