七年级上《有理数》全章过关验收检测题

合集下载

人教版七年级上册数学 第一章《有理数》 过关检测题B

人教版七年级上册数学  第一章《有理数》 过关检测题B

A 村 D 村B 村电厂C 村 85.5786911 456.5 人教版七年级上册数学第一章《有理数》 过关检测题B 卷 限时40分钟 满分100分 附加题20分班级 姓名_________得分一. 选择题(每小题4分,共40分) 1.在2),2(,)2(,222------中,负数的个数是( )A 、 l 个B 、 2个C 、 3个D 、 4个 2.x <0, y >0时,则x, x+y, x -y ,y 中最小的数是 ( )A x B x -y C x+y D y 3.若有理数a 的绝对值的相反数是-5,则a 的值是 ( )A 5B -5C ±5D±154.近似数1.20所表示的准确数a 的范围是( ) A. 11951205..≤<a B. 12001205..≤<a C. 115116..≤<a D. 110130..≤<a5.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个)经过3小时,这种细菌由1个可繁殖成( ). A .511个 B .512个 C .1023个 D .1024个6.已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水 ( )A. 3瓶B. 4瓶C. 5瓶D. 6瓶7.已知:| a |=1,| b |=2,| c |=3, 且a > b >c ,则2()a b c +-=( ). A .16 B .0 C .4或 0 D .368.在一列数1,2,3,4,…,1000中,数字“0”出现的次数一共是( ). A .182 B .189 C .192 D .194 9.若,则a 的取值范围是( ).A .a ≤3B .a <3C .a ≥3D .a >3 10.为解决四个村庄用电问题,政府投资在已建电 厂与这四个村庄之间架设输电线路.现已知这四个 村庄及电厂之间的距离如图所示(距离单位:公里), 则能把电力输送到这四个村庄的输电线路的最短总 长度应该是( ). A .19.5 B .20.5C .21.5D .25.5二、填空题(每小题4分,共24分)11.北京与纽约的时差为 -13小时,北京时间是中国教师节那天 8∶00,则纽约时间是____月______日_______时.(比北京时间晚记为-)12.计算:1– 2 + 3 - 4 +5 - 6 +······+2003 - 2004 =________________.13.非零有理数 a. b , 如果 a>b ,且|a|<|b|,则比较a 、b 、-a 、-b 这四个数的大小的结果是 。

人教版七年级上册数学第1章《有理数》单元检测试卷(Word版,含答案)

人教版七年级上册数学第1章《有理数》单元检测试卷(Word版,含答案)

人教版七年级上册数学第1章《有理数》单元检测试卷题号一二三总分19 20 21 22 23 24分数1.点A在数轴上表示的数为-3,若一个点从点A向左移动4个单位长度,此时终点所表示的数是()A.-7 B.1 C.7 D.-12.如果水位下降2021m记作﹣2021m,那么水位上升2020m记作()A.﹣1m B.+4041m C.﹣4041m D.+2020m3.将下列四个数表示在数轴上,它们对应的点中,离原点最近的是()A.﹣0.4 B.0.6 C.1.3 D.﹣24.把有理数a、b在数轴上表示如图所示,那么则下列说法正确的是()A.a+b>0 B.a﹣b<0 C.a>﹣b D.﹣b>a5、若x是3的相反数,|y|=4,则x-y的值是()A.-7B.1C.-1或7D.1或-76、下列说法中正确的是()A.任何正整数的正因数至少有两个B.一个数的倍数总比它的因数大C.1是所有正整数的因数D.3的因数只有它本身7.当n为正整数时,(﹣1)2n+1﹣(﹣1)2n的值为()A.0 B.2 C.﹣2 D.2或﹣28.在分数3579,,,8123250中能化成有限小数的有()A.1个B.2个C.3个D.4个9.实数a、b在数轴上的位置如图所示,且这两个点到原点的距离相等,下列结论中,正确的是()A .0a b +=B .0a b -=C .||||a b <D .0ab >10.文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店西边100米处,小明从书店沿街向东走了40米,接着又向西走了60米,此时小明的位置在( ) A .文具店B .玩具店C .文具店西边40米D .玩具店西边60米二、填空题: (每题3分,24分) 11.计算:=____________12.计算(−1.5)3×(−)2−1×0.62=___________. 13.的相反数是________.14.若,则________.15.、在数轴上得位置如图所示,化简:________.16. 当x________时,代数式的值为非负数.17. 一跳蚤在一直线上从O 点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,……,依此规律跳下去,当它跳第100次落下时,落点处离O 点的距离是________个单位. 18.观察规律并填空. ⑴⑵⑶________(用含n 的代数式表示,n 是正整数,且 n ≥ 2)三.解答题(共46分,19题6分,20 ---24题8分)。

人教版七年级数学上册第一章《有理数》单元同步检测试题(含答案)

人教版七年级数学上册第一章《有理数》单元同步检测试题(含答案)

第一章《有理数》单元检测题题号一二三总分21 22 23 24 25 26 27 28分数一、选择题(每小题3分,共30分)1.2018的相反数是()A.﹣2018 B.2018 C.﹣ D.2.如图,点A所表示的数的绝对值是()A.3 B.﹣3 C.D.3.如图,a、b两个数在数轴上的位置如图所示,则下列各式正确的是()A.a+b<0 B.ab<0 C.b﹣a<0 D.4.大于﹣2.2的最小整数是( )A.﹣2 B.﹣3 C.﹣1 D.05.(2020·湖北宜昌中考)陆地上最高处是珠穆朗玛峰的峰顶,高出海平面约8 844 m,记为+8 844 m;陆地上最低处是地处亚洲西部的死海,低于海平面约415 m,记为()A.415 mB.-415 mC.±415 mD.-8 844 m6.(2020·北京中考)实数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )A.a>-2B.a<-3 第6题图C.a>-bD.a<-b7.下列说法正确的个数是( )①一个有理数不是整数就是分数;②一个有理数不是正数就是负数;③一个整数不是正的,就是负的;④一个分数不是正的,就是负的.A.1B.2C.3D.48.下列结论成立的是()A.若|a|=a,则a>0 B.若|a|=|b|,则a=±bC .若|a |>a ,则a ≤0D .若|a |>|b |,则a >b .9.如图,点A 表示的有理数是a ,则a ,﹣a ,1的大小顺序为( )A .a <﹣a <1B .﹣a <a <1C .a <1<﹣aD .1<﹣a <a10.设[a ]是有理数,用[a ]表示不超过a 的最大整数,如[1.7]=1,[﹣1]=﹣1,[0]=0,[﹣1.2]=﹣2,则在以下四个结论中,正确的是( ) A .[a ]+[﹣a ]=0 B .[a ]+[﹣a ]等于0或﹣1C .[a ]+[﹣a ]≠0D .[a ]+[﹣a ]等于0或1二、填空题(每小题3分,共24分)11.31的倒数是____;321的相反数是____. 12.在数轴上,点所表示的数为2,那么到点的距离等于3个单位长度的点所表示的数是 .13.若0<<1,则a ,2a ,1a的大小关系是 .14.+5.7的相反数与-7.1的绝对值的和是 .15.已知每辆汽车要装4个轮胎,则51只轮胎至多能装配 辆汽车. 16.-9、6、-3这三个数的和比它们绝对值的和小 .17. 一家电脑公司仓库原有电脑100台,一个星期调入、调出的电脑记录是:调入38台,调出42台,调入27台,调出33台,调出40台,则这个仓库现有电脑 台. 18. 规定﹡,则(-4)﹡6的值为 . 三、解答题(共66分)19.计算﹣+×(23﹣1)×(﹣5)×(﹣)20.已知3m+7与﹣10互为相反数,求m 的值. 21.计算(1)11﹣18﹣12+19(2)(﹣5)×(﹣7)+20÷(﹣4) (3)(+﹣)×(﹣36) (4)2×(﹣)﹣12÷ (5)3+12÷22×(﹣3)﹣5(6)﹣12+2014×(﹣)3×0﹣(﹣3)22.某股民在上周星期五买进某种股票1000股,每股10元,星期六,星期天股市不交易,下表是本周每日该股票的涨跌情况(单位:元): 星期 一 二 三 四 五 每股涨+0.3 +0.1 ﹣﹣+0.2跌0.2 0.5(1)本周星期五收盘时,每股是多少元?(2)已知买进股票时需付买入成交额1.5‰的手续费,卖出股票时需付卖出成交额1.5‰的手续费和卖出成交额1‰的交易费,如果在本周五收盘时将全部股票一次性地卖出,那么该股民的收益情况如何?23.定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算.比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5.若3⊕x的值小于13,求x的取值范围,并在图示的数轴上表示出来.24.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2013(a≠0且a≠1)的值.25.观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=6,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=(__________)2=__________.根据以上规律填空:(1)13+23+33+…+n3=(__________)2=[__________]2.(2)猜想:113+123+133+143+153=__________.参考答案与解析一、选择题1.A 2.A 3.B 4.A 5.B 6.D 7.B8.B 9.A 10.B二、填空题11.解析:根据倒数和相反数的定义可知的倒数为的相反数是.12.解析:点所表示的数为2,到点的距离等于3个单位长度的点所表示的数有两个,分别位于点的两侧,分别是13解析:当0<<1时,14.1.4 解析:的相反数为,的绝对值为7.1,所以+5.7的相反数与-7.1的绝对值的和是15.12 解析:51÷4=12 3.所以51只轮胎至多能装配12辆汽车.16.24 解析:,,所以.17.50 解析:将调入记为“+”,调出记为“-”,则根据题意有所以这个仓库现有电脑50台.18.-9 解析:根据﹡,得(-4)﹡6.三、解答题19.计算﹣+×(23﹣1)×(﹣5)×(﹣)【考点】有理数的混合运算.【专题】计算题.【分析】根据运算顺序先算括号中的乘方运算,23表示三个2的乘积,计算后再根据负因式的个数为2个,得到积为正数,约分后,最后利用异号两数相加的法则即可得到最后结果.【解答】解:原式=﹣+×(8﹣1)×(﹣5)×(﹣)=﹣+×7×(﹣5)×(﹣)=﹣+4=.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序:先乘方,再乘除,最后算加减,有括号先算括号中的,同级运算从左到右依次进行,然后按照运算法则运算,有时可以利用运算律来简化运算.20.已知3m+7与﹣10互为相反数,求m的值.【考点】相反数.【分析】根据互为相反数的和为零,可得关于m的方程,根据解方程,可得答案.【解答】解:由3m+7与﹣10互为相反数,得3m+7+(﹣10)=0.解得m=1,m的值为1.【点评】本题考查了相反数,利用互为相反数的和为零得出关于m的方程是解题关键.21.计算(1)11﹣18﹣12+19(2)(﹣5)×(﹣7)+20÷(﹣4)(3)(+﹣)×(﹣36)(4)2×(﹣)﹣12÷(5)3+12÷22×(﹣3)﹣5(6)﹣12+2014×(﹣)3×0﹣(﹣3)【考点】有理数的混合运算.【专题】计算题.【分析】(1)原式结合后,相加即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式先计算乘除运算,再计算加减运算即可得到结果;(5)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(6)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=11+19﹣18﹣12=30﹣30=0;(2)原式=35﹣80=﹣45;(3)原式=﹣4﹣6+9=﹣1;(4)原式=﹣×﹣12×=﹣﹣18=﹣19;(5)原式=3+12××(﹣3)﹣5=3﹣9﹣5=﹣11;(6)原式=﹣1+0+3=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.四、解答题22.某股民在上周星期五买进某种股票1000股,每股10元,星期六,星期天股市不交易,下表是本周每日该股票的涨跌情况(单位:元):星期一二三四五每股涨跌+0.3 +0.1 ﹣0.2﹣0.5+0.2(1)本周星期五收盘时,每股是多少元?(2)已知买进股票时需付买入成交额1.5‰的手续费,卖出股票时需付卖出成交额1.5‰的手续费和卖出成交额1‰的交易费,如果在本周五收盘时将全部股票一次性地卖出,那么该股民的收益情况如何?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据卖出股票金额减去买入股票金额,减去成交额费用,减去手续费,可得收益情况.【解答】解:(1)10+0.3+0.1﹣0.2﹣0.5+0.2=9.9(元).答:本周星期五收盘时,每股是9.9元,(2)1000×9.9﹣1000×10﹣1000×10×1.5‰﹣1000×9.9×1.5‰﹣1000×9.9×1‰=9900﹣15﹣14.85﹣9.9﹣10000=﹣139.75(元).答:该股民的收益情况是亏了139.75元.【点评】本题考查了正数和负数,利用了炒股知识:卖出股票金额减去买入股票金额,减去成交额费用,减去手续费.23.定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算.比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5.若3⊕x的值小于13,求x的取值范围,并在图示的数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【专题】新定义.【分析】首先根据运算的定义,根据3⊕x的值小于13,即可列出关于x的不等式,解方程即可求解.【解答】解:∵3⊕x<13,∴3(3﹣x)+1<13,9﹣3x+1<13,解得:x>﹣1..【点评】本题考查了不等式的性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.24.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2013(a≠0且a≠1)的值.【考点】整式的混合运算.【专题】换元法.【分析】(1)将1+3+32+33+34+35+36乘3,减去1+3+32+33+34+35+36,把它们的结果除以3﹣1=2即可求解;(2)将1+a+a2+a3+…+a2013乘a,减去1+a+a2+a3+…+a2013,把它们的结果除以a﹣1即可求解.【解答】解:(1)1+3+32+33+34+35+36=[(1+3+32+33+34+35+36)×3﹣(1+3+32+33+34+35+36)]÷(3﹣1)=[(3+32+33+34+35+36+37)﹣(1+3+32+33+34+35+36)]÷2=(37﹣1)÷2=2187÷2=1093.5;(2)1+a+a2+a3+…+a2013(a≠0且a≠1)═[(1+a+a2+a3+…+a2013)×a﹣(1+a+a2+a3+…+a2013)]÷(a﹣1)=[(a+a2+a3+…+a2013+a2014)﹣(1+a+a2+a3+…+a2013)]÷(a﹣1)=(a2014﹣1)÷(a﹣1)=.【点评】本题考查了整式的混合运算,有理数的乘方,读懂题目信息,理解等比数列的求和方法是解题的关键.25.观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=6,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=(1+2+3+4+5)2=225.根据以上规律填空:(1)13+23+33+…+n3=(1+2+…+n)2=[]2.(2)猜想:113+123+133+143+153=11375.【考点】整式的混合运算.【专题】规律型.【分析】观察题中的一系列等式发现,从1开始的连续正整数的立方和等于这几个连续正整数和的平方,根据此规律填空,(1)根据上述规律填空,然后把1+2+…+n变为个(n+1)相乘,即可化简;(2)对所求的式子前面加上1到10的立方和,然后根据上述规律分别求出1到15的立方和与1到10的立方和,求出的两数相减即可求出值.【解答】解:由题意可知:13+23+33+43+53=(1+2+3+4+5)2=225(1)∵1+2+…+n=(1+n)+[2+(n﹣1)]+…+[+(n﹣+1)]=,∴13+23+33+…+n3=(1+2+…+n)2=[]2;(2)113+123+133+143+153=13+23+33+...+153﹣(13+23+33+ (103)=(1+2+…+15)2﹣(1+2+…+10)2=1202﹣552=11375.故答案为:1+2+3+4+5;225;1+2+…+n;;11375.【点评】此题要求学生综合运用观察、想象、归纳、推理概括等思维方式,探索问题,获得解题途径.考查了学生善于观察,归纳总结的能力,以及运用总结的结论解决问题的能力.。

新人教版七年级数学试题第一章《有理数》全章检测120分钟150分

新人教版七年级数学试题第一章《有理数》全章检测120分钟150分

第一章《有理数》全章检测测试题(时间120分钟 满分150分)一、选择题(每题3分,共45分)1、大于–3.5,小于2.5的整数共有( )个。

A.6B.5C.4D.32、如果一个数的相反数比它本身大,那么这个数为 ( )A 、正数B 、负数C 、整数D 、不等于零的有理数3、在有理数中,绝对值等于它本身的数有 ( )A. 1个B. 2个C. 3个D. 无穷多个4. 若ab≠0,则a/b 的取值不可能是 ( )A 0B 1C 2D -25. 在-2,0,1,3这四个数中,比0小的数是( )A 、-2B 、0C 、1D 、36、已知点A 和点B 在同一数轴上, 点A 表示数2-, 又已知点B 和点A 相距5个单位长度, 则点B 表示的数是 ( )A.3B.-7C.3或-7D.3或77、 若两个有理数的和是正数,那么一定有结论( )A . 两个加数都是正数;B .两个加数有一个是正数;C . 一个加数正数,另一个为零D .两个加数不能同为负数8. 下列说法正确的个数是 ( ) ①一个有理数不是整数就是分数 ②一个有理数不是正数就是负数 ③一个整数不是正的,就是负的 ④一个分数不是正的,就是负的。

A 1B 2C 3D 4 2.9、甲、乙、丙三地的海拔高度分别为20米,-15米和-10米,那么最高的地方比最低的地方高( )A.10米B.15米C.35米D.5米10、下列说法中正确的是 ( )A.a -一定是负数B.a 一定是负数C.a -一定不是负数D.2a -一定是负数11、每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为15000000千米,将150000000千米用科学记数法表示为( )A .0.15×910千米B .1.5×810千米C .15×710千米D .1.5×710千米12. 下列说法正确的是 ( )。

①0是绝对值最小的有理数 ②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数 ④两个数比较,绝对值大的反而小 。

人教版七年级数学上册第一章《有理数》单元同步检测试题

人教版七年级数学上册第一章《有理数》单元同步检测试题

第一章《有理数》单元检测题题号一二三总分19 20 21 22 23 24分数1.用科学记数法表示316000000为()A.3.16×107B.3.16×108C.31.6×107D.31.6×1062.1.998精确到0.01的近似数是()A.2 B.2.0 C.1.99 D.2.003.下列说法正确的是().A.有理数分为正有理数和负有理数B.正数和负数互为有理数C.0的倒数、绝对值、相反数都是0 D.相反数是其本身的数只有一个4.数轴上有A、B、C、D四个点,其中所表示的数的绝对值等于2的点是( )A.点AB.点BC.点CD.点D5.若|x|=2,|y|=3.且xy异号,则|x+y|的值为()A.5 B.5或1 C.1 D.1或﹣1 6.按照有理数加法则,计算(﹣180)+(+20)的正确过程是()A.﹣(180﹣20)B.+(180+20)C.+(180﹣20)D.﹣(180+20)7.用分配律计算()×,去括号后正确的是()A.﹣B.﹣C.﹣D.﹣8.如图,数轴上点C对应的数为c,则数轴上与数﹣2c对应的点可能是()A.点A B.点B C.点D D.点E9.下列计算:①(-1)×(-2)×(-3)=6;②(-36)÷(-9)=-4;③23×(-)÷(-1)=32;④(-4)÷4912×(-2)=16.其中计算正确的个数为( )A.4个B.3个C.2个D.1个10.利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20.如图2第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示该生为5班学生.表示6班学生的识别图案是( )A. B. C. D.二、填空题: (每题3分,24分)11.38_______%=12÷_______=9:_______.12.点A在数轴上距离原点为3个单位,且位于原点左侧,若将A向右移动4个单位,再向左移动1个单位,这时A点表示的数是_________.13.大于-2且小于3的整数有__________.14.张叔叔得稿费6000元,按稿酬所得税规定,超过1200元的部分要按14%缴纳稿酬所得税,张叔叔需要缴纳的稿酬所得税是元.15.冰箱冷藏室的温度是+5℃,保鲜室的温度是−7℃,则冷藏室比保鲜室的温度高______℃.16.对于有理数a、b,定义一种新运算,规定a☆b=a2﹣|b|,则2☆(﹣3)=.17.一个矩形的面积为96000000cm2,第一次截去它的,第二次截去剩下的,如此截下去,第六次截去后剩余图形的面积为cm2,用科学记数法表示剩余图形的面积为cm2.18.母亲节来临之际,小凡同学打算用自己平时节省出来的50元钱给母亲买束鲜花,已知花店里鲜花价格如表:百合薰衣草玫瑰蔷薇向日葵康乃馨12元/支2元/支5元/支4元/支15元/支3元/支母亲节期间包装免费若三种花都要购买且50元全部花净,请给出一种你喜欢的组成方式,百合、玫瑰、康乃馨的支数分别为_______.三.解答题(共46分,19题6分,20 ---24题8分)19、计算下列各题:(1)10﹣(﹣5)+(﹣8);(2)÷(﹣1)×(﹣2);(3)(+﹣)×12;(4)(﹣1)10×2+(﹣2)3÷4.20、如图,在数轴上有三个点A、B、C,请回答下列问题.(1)A、B、C三点分别表示、、;(2)将点B向左移动3个单位长度后,点B所表示的数是;(3)将点A向右移动4个单位长度后,点A所表示的数是.21、已知:a与b互为相反数,c与d互为倒数,|x|=2,求代数式(﹣cd)2019+x2﹣的值.22、国庆放假时,小明一家三口开车去探望爷爷、奶奶和外公、外婆,早上从家里出发,向东行了5千米到超市买东西,然后又向东行了2千米到爷爷家,下午从爷爷家出发向西行了10千米到外公家,晚上开车返回家里.(1)若以小明家为原点,向东为正方向,用1个单位长度表示1千米,请将超市、爷爷家和外公家的位置在下面数轴上分别用点A、B、C表示出来;(2)超市和外公家相距多少千米?(3)若该汽车每千米耗油0.08升,求小明一家从出发到返回家,汽车的耗油量.23.冰墩墩和雪容融放学后一起回家,下面是他们走了一段路程后的对话:请根据他们的对话内容,解答问题:(1)如果他们行走的速度不变,则冰墩墩和雪容融先到家的是A.冰墩墩B.雪容融C.无法确定(2)如果雪容融家距离学校1200m,那么冰墩墩再走多少m就能到家?24.食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负来表示,记录如下表;与标准质量的差值(单位:5-2-0136克)袋数143453少克?(2)若每袋标准质量为450克,求抽样检测的样品总质量是多少?参考答案一、选择题题号 1 2 3 4 5 6 7 8 9 10 答案 B D D A C A D B A D二、填空题11.37.5 32 24【解析】解:3380.37537.5%8=÷==,3 8根据商不变的性质,把被除数、除数同时乘以4可得312328=÷,3 8根据比的性质,将比的前项和后项都乘以3可得39:248=,故答案为:37.5;32;24.12.0【解析】解:点A在数轴上距离原点为3个单位,且位于原点左侧,∴A点所表示的数为3-,将A向右移动4个单位,再向左移动1个单位,∴3410-+-=这时A点表示的数是0.故答案为:0.13.-1,0,1,2【解析】解:大于-2且小于3的整数有-1,0,1,2共4个.故答案为:-1,0,1,2.14.张叔叔得稿费6000元,按稿酬所得税规定,超过1200元的部分要按14%缴纳稿酬所得税,张叔叔需要缴纳的稿酬所得税是672 元.解:由题意可得:(6000﹣1200)×14%=672(元).故答案为:672.15.【答案】12;【解析】解:5−(−7)=5+7=12.故答案为:12.用冷藏室的温度减去保鲜室的温度即可.此题主要考查的是有理数的减法,依据题意列出算式是解答该题的关键.16.解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1.故答案为:1.17.解:∵第一次剩下的面积为96000000×cm2,第二次剩下的面积为96000000×cm2,第三次剩下的面积为96000000×cm2,∴第n次剩下的面积为96000000×cm2,∴第六次截去后剩余图形的面积为:96000000×=1500000(cm2)=1.5×106(cm2).故答案为:1500000;1.5×106.18.1,4,6(答案不唯一)【解析】∵12×1+5×4+3×6=50,∴可买百合1支、玫瑰4支、康乃馨6支,故答案为:1,4,6.(本题答案不唯一,符合要求即可)三、解答题19、解:(1)10﹣(﹣5)+(﹣8)=10+5﹣8=7;(2)÷(﹣1)×(﹣2)=×(﹣)×(﹣)=;(3)(+﹣)×12=×12+×12﹣×12=3+2﹣6=﹣1;(4)(﹣1)10×2+(﹣2)3÷4=1×2+(﹣8)÷4=2﹣2=0.20、解:(1)从数轴看,点A、B、C三点分别为:﹣4,﹣2,3,故答案为:﹣4,﹣2,3;(2)将点B向左移动3个单位长度后,点B所表示的数是﹣5,故答案为﹣5;(3)将点A向右移动4个单位长度后,点A所表示的数为0,故答案为:0.21、解:∵a与b互为相反数,c与d互为倒数,|x|=2,∴a+b=0,cd=1,x=±2,当x=2时,(﹣cd)2019+x2﹣=(﹣1)2019+22﹣=﹣1+4﹣=﹣1+4﹣0=3;当x=﹣2时,(﹣cd)2019+x2﹣=(﹣1)2019+(﹣2)2﹣=﹣1+4﹣=﹣1+4﹣0=3;由上可得,代数式(﹣cd)2019+x2﹣的值是3.22、解:(1)A、B、C的位置如图所示:(2)因为5−(−3)=8(千米)故答案为:8;(3)小明一家走的路程:5+2+10+3=20(千米),共耗油:0.08×20=1.6(升)答:小明一家从出发到返回家所经历路程小车的耗油量为1.6升.23. 解:(1)如果他们行走的速度不变,则雪容融先到家,故选:B.(2)1200×80%=960m,960÷30%=3200m,3200﹣960=2240m.答:冰墩墩再走2240m就能到家.24.(1)超过标准质量,平均每袋超过1.2克;(2)9024克-⨯+-⨯+⨯+⨯+⨯+⨯=【解析】解:(1)(5)1(2)40314356324÷=(克)2420 1.2答:这批样品的平均质量超过标准质量,平均每袋超过1.2克.(2)1.2×20+450×20=24+9000=9024克.答:抽样检测的总质量是9024克.。

人教版数学七年级上册第一章《有理数》检测试试题(含答案)

人教版数学七年级上册第一章《有理数》检测试试题(含答案)

人教版数学七年级上册第一章《有理数》检测试题一、选择题1.-1的相反数是( )A.-1B.0C.1D.-1或12.计算(-1)2020的结果是( )A.-1B.1C.-2020D.20203.若x =-(-2)×3,则x 的倒数是( )A.-16B.16C.-6D.64.已知有理数a 、b 在数轴上对应点如图所示,则下列式子正确的是( )A .ab >0B .︱a ︱>︱b ︱C .a -b >0D .a +b >05.比较-12,-13,14的大小,下列选项中正确的结果是( ) A.-12<-13<14 B.-12<14<-13C.14<-13<-12D.-13<-12<14 6.有以下两个结论:①任何一个有理数和它的相反数之间至少有一个有理数;②如果一个有理数有倒数,则这个有理数与它的倒数之间至少有一个有理数.则( )A.①,②都不对B.①对,②不对C.①,②都对D.①不对,②对7.若a +b <0,ab <0,则( )A.a >0,b >0B.a <0,b <0C.a ,b 两数一正一负,且正数的绝对值大于负数的绝对值D.a ,b 两数一正一负,且负数的绝对值大于正数的绝对值8.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg ,(25±0.2)kg ,(25±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差( )BA.0.8kgB.0.6kgC.0.5kgD.0.4kg9.一根1m 长的小棒,第一次截去它的13,第二次截去剩下的13,如此截下去,第五次后剩下的小棒的长度是( )C A.513⎛⎫ ⎪⎝⎭m B.[1-513⎛⎫ ⎪⎝⎭]m C.523⎛⎫ ⎪⎝⎭m D.[1-523⎛⎫ ⎪⎝⎭]m 10.若ab ≠0,则a a +b b的取值不可能是( ) A.0 B.1C.2D.-2 二、填空题11.-15的绝对值是_______;立方等于-8的数是_______. 12.一种商品原价120元,按八折(即原价的80%)出售,则现售价应为_______元. 0 1 -1 b a13.对于式子-(-4),下列理解:①可表示-4的相反数;②可表示-1与-4的乘积;③可表示-4的绝对值;④运算结果等于4.其中理解错误的有_______个.14.数轴距离原点3个单位的点有_______个,他们分别表示数是_______.15.比-312大而比213小的所有整数的和为_______.16.多伦多与北京的时间差为-12小时(正数表示同一时刻比北京时间早的时数),如果北京时间是10月1日14:00,那么多伦多时间是_______.17.某校师生在为某地地震灾区举行的爱心捐款活动中总计捐款18.49 万元.把18.49 万用科学记数法表示并保留两个有效数字为_______.18.规定a※b=5a2+2b-1,则(-4)※6的值为_______.19.大家知道5=50-,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离.又如式子63-,它在数轴上的意义是表示6的点与表示3的点之间的距离.类似地,式子5a+在数轴上的意义是_______.20.为了求1+2+22+23+…+22020的值,可令S=1+2+22+23+…+22020,则2S=2+22+23+24+…+22021,因此2S-S=22021-1,所以1+2+22+23+24+…+22020=22021-1,仿照以上推理计算出1+5+52+53+…+52020的值是_______.三、解答题21.计算:(1)-9÷3+(12-23)×12+32;(2)713×(-9)+713×(-18)+713;(3)-691516×8.22.一条小虫沿一根东西方向放着的长杆向东以2.5米/分的速度爬行4分钟后,又向西爬行6分钟.问此时它距出发点的距离是多少?23.马虎同学在做题时画一条数轴,数轴上原有一点A,其表示的数是-2,由于一时粗心把数轴上的原点标错了位置,使A点正好落在-2的相反数的位置,请你帮帮马虎同学,借助于这个数轴要把这个数轴画正确,原点应向哪个方向移动几个单位长度.24.我们常用的数是十进制数,如4657=4×103+6×102+5×101+7×100,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中110=1×22+1×21+0×20等于十进制的数6,110101=1×25+1×24+0×23+1×22+0×21+1×20等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?25.若1+2+3+…+31+32+33=17×33,试求1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值.26.我国古代有一道有趣的数学题,“井深10米,一只蜗牛从井底向上爬,白天向上爬2米,夜间又滑下1米,问小蜗牛几天可以爬出深井?”27.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向(1)求收工时距A地多远?(2)在第几次纪录时距A地最远?(3若每km耗油0.3升,问共耗油多少升?参考答案:一、1.C;2.B;3.A;4.C.点拨:由数轴上a、b对应点的位置可知0<a<1,b<-1,故a、b异号,即ab<0,否定A选项;又︱a︱<1,︱b︱>1,即︱a︱<︱b︱,选项B 错误;因为a>0>b,所以a-b>0,选项C正确;由︱a︱<︱b︱且a>0,b<0,得a+b<0,选项D错误;5.A.点拨:因为正数大于一切负数,所以三个数中14最大.又因为︱-1 2︱=12=36,︱-13︱=13=26,︱-12︱>︱-13︱,所以-12<-13,即-12<-13<14;6.A.点拨:①中的说法我们可以想象在一条数轴上原点的两边如±1,±2,…这样的两个非零有理数之间存在“间隙”,也就是说它们之间一定有另外的有理数.但是0的相反数是0,0和它的相反数0之间就没有“间隙”了,所以①错;②中按照①的分析方法,如果一个数的倒数等于它本身,那么说法②就是错的,我们知道1的倒数是1,-1的倒数是-1,显然②这种说法也不对;7.D;8.B;9.C;10.B.点拨:本题可利用分析的方法考虑.因为ab≠0,所以ab>0或ab<0.若ab>0,则可能有两种情况:a>0,b>0或a<0,b<0.当a>0,b>0时,aa+bb=1+1=2;当a<0,b<0时,aa+bb=-1-1=-2;若ab<0,则可能有两种情况:a>0,b<0或a<0,b>0;当a>0,b<0时,aa+bb=1-1=0;当a<0,b>0时,aa+bb=-1+1=0.可能出现的结果有0,2,-2,所以应选B.二、11.15、-2;12.96;13.2.点拨:②和③理解错误;14.2个、+3和-3;15.-3;16.2:00;17.1.8×105.点拨:因为18.49万=184900,所以用科学记数可表示为1.849×105,保留两个有效数字在8后的数要舍去为1.8×105;18.61.点拨:因为a※b=2a2+5b-1,所以(-4)※6=2×(-4)2+5×6-1=61;19.表示a的点与表示-5的点之间的距离;20.4152021-.点拨:不妨模仿条件中的求解方法,设S=1+5+52+53+…+52020,再在两边同乘以5,得5S=5+52+53+…+52021,两式相减,得5S-S=52021-1,即S=4152021-.三、21.(1)-9÷3+(12-23)×12+32=-3+12×12-23×12+9=-3+6-8+9=4.(2)7 13×(-9)+713×(-18)+713=713×(-9-18+1)=713×(-26)=-14.(3)-691516×8=-(70-116)×8=-(70×8-116×8)=-55912.点拨:(1)中涉及有理数的加、减、乘、除与乘方,用运算法则进行运算,其中可以运用分配律简化运算,(12-23)×12=12×12-23×12=6-8=-2;(2)中各部分含有相同因数713,所以可想到逆用分配律计算;(3)题先确定符号,然后把绝对值691516化成(70-116)再与8相乘比较简便.解:评析:在进行有理数的计算时,切记要灵活.在拿到题目之前先要看看题目的特点,选择恰当的运算性质,尤其是分配律的正向和反向应用,正确应用运算律会起到事半功倍的效果.22.设向东速度为2.5米/分,向西为-2.5米/分.2.5×4+(-2.5)×6=10-15=-5(米).答:它在距出发点西边5米的地方.点拨:我们一般规定向东为正,即向东速度为2.5米/分;向西为负,即向西速度为-2.5米/分.评析:本题是一道有理数乘法与数轴知识综合运用的应用题,可以利用数轴的直观性使问题变得简单.23.向左移动4个单位长度.24.101011=1×25+0×24+1×23+0×22+1×21+1×20=32+0+8+0+2+1=43.25.1-3+2-6+3-9+4-12+…+31-93+32-96+33-99=(1+2+3+…+31+32+33)+(-3-6-9-…-99)=17×33-3(1+2+3+…+31+32+33)=17×33-3×17×33=-2×17×33.26.把向上爬记为正数,向下滑记为负数,由蜗牛一天爬1米;蜗牛最后一天可以爬出井,在此之前它要爬10-2=8(米);所以蜗牛要先爬8天,加上最后一天,总共是9天.答:蜗牛要9天可以爬出深井.点拨:如果把向上爬记为正数,向下滑记为负数,则蜗牛一天爬(2+(-1)=1)米,那么蜗牛爬了8天,就爬8米,剩下2米,第9天就可以爬出来了.27.(1)因为(-4)+(+7)+(-9)+(+8)+(+6)+(-5)+(-2)=+1,所以收工时距A 地1 km.(2)五.(3)因为一天中共行驶的路程=4-+7++9-+8++6++5-+2-发=41(km ),而41×0.3=12.3(升),所以共耗油12.3升.。

必刷提高练2【第1章《有理数》章节达标检测】(原卷版+解析版)(人教版)

必刷提高练2【第1章《有理数》章节达标检测】(原卷版+解析版)(人教版)

2022-2023学年七年级数学上册考点必刷练精编讲义(人教版)提高第一章《有理数》 章节达标检测考试时间:120分钟 试卷满分:100分姓名:__________ 班级:__________考号:__________第Ⅰ卷(共10题;每题2分,共20分)1.(2分)(2022七上·汇川期末)已知代数式8x ﹣7与6﹣2x 的值互为相反数,那么x 的值等于( ) A .16B .﹣16C .1310D .﹣13102.(2分)(2020七上·仁寿期末)点A 表示数轴上的一个点,将点A 向右移动6个单位,再向左移动4个单位,终点恰好是原点,则点A 表示的数是( ) A .2-B .3-C .0D .1-3.(2分)(2021七上·丽水期末)|-4|的相反数是( ) A .4B .14C .-4D .14-4.(2分)(2021七上·宜宾期末)如图,点A ,B ,C ,D 四个点在数轴上表示的数分别为a ,b ,c ,d ,则下列结论中,错误的是( )A .0a c +<B .0b a ->C .0ac >D .0bd< 5.(2分)(2021七上·南京期末)目前全球新型冠状病毒肺炎疫情防控形势依旧严峻,我们应该坚持“勤洗手,戴口罩,常通风”.一双没有洗过的手,带有各种细菌约75 000万个,将数据75 000用科学记数法表示是( ) A .7.5×103B .75×103C .7.5×104D .7.5×1056.(2分)(2022七上·遵义期末)在数轴上,点M 、N 分别表示数m ,n.则点M 、N 之间的距离为m n - .已知点A ,B ,C ,D 在数轴上分别表示的数为a ,b ,c ,d.且22,1()5a cbcd a a b -=-=-=≠ ,则线段 BD 的长度为( ) A .4.5B .1.5C .6.5或1.5D .4.5或1.57.(2分)(2021七上·长兴期末)如图,已知正方形的边长为24厘米,甲,乙两动点分别从正方形ABCD 的顶点D ,B 同时沿正方形的边开始移动,甲点按顺时针方向环行,乙点按逆时针方向环行,若乙的速度为9厘米/秒,甲的速度为3厘米/秒,当它们运动了2022秒时,它们在正方形边上相遇了( )A .252 次B .253次C .254次D .255次8.(2分)(2021七上·平阳期中)将1,2,3,4...,60这60个自然数,任意分成30组,每组两个数,将每组的两个数中的任意一个数记做a ,另一个数记做b ,代入代数式(|a-b|+a+b)中进行计算,求出结果,30组分别代入后可求出30个结果,则这30个值的和的最大值是( ) A .1365B .1565C .1735D .18309.(2分)(2021七上·江津期中)a ,b ,c 大小关系如图,下列各式①0a b c --<②1b ca ab c++=③0ac b ->④a c a b c b --+=+ ,其中错误的个数为( ).A .1个B .2个C .3个D .4个10.(2分)(2021七上·苏州月考)若a 表示一个有理数,且有|﹣3﹣a|=3+|a|,则a 应该是( ) A .任意一个有理数 B .任意一个正数 C .任意一个负数D .任意一个非负数(共10题;每题2分,共20分)11.(2分)(2021七上·紫金期末)若|a ﹣2020|+|b +2021|=0,则|a +b|= .12.(2分)(2021七上·宜宾期末)有理数a ,b 在数轴上的位置如图所示,化简 a b b a +-- 的结果是 .13.(2分)(2021七上·衡阳期末)比较两数大小: - 67 - 76(用“<”,或“>”,或“=”填空)14.(2分)(2021七上·普陀期末)设a ,b ,c 为不为零的实数,且 0abc > ,那么b a cx a b c=++ ,则x 的值为 . 15.(2分)(2021七上·余姚期末)计算: 34ππ-+-= .16.(2分)(2021七上·云梦期末)一只昆虫从点A 处出发,以每分钟2米的速度在一条直线上运动,它先前进1米,再后退2米,又前进3米,再后退4米,…依此规律继续走下去,则运动1小时时这只昆虫与A 点相距 米.17.(2分)(2021七上·青岛期中)若 0x y z ++= ,且x ,y ,z 均不为零,则 y x zx y z++ 的值为 .18.(2分)(2021七上·苏州期中)如图1,在一条可以折叠的数轴上有点A ,B ,C ,其中点A ,点B 表示的数分别为﹣16和9,现以点C 为折点,将数轴向右对折,点A 对应的点A 1落在B 的右边;如图2,再以点B 为折点,将数轴向左折叠,点A 1对应的点A 2落在B 的左边.若A 2、B 之间的距离为3,则点C 表示的数为 .19.(2分)(2021七上·黔西南期中)若a ,b ,c 为整数,且|a -b|+|c -a|=1,则|c -a|+|a -b|+|b -c|的值为20.(2分)(2020七上·龙山期末)我们知道: 52- 表示5与2的差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离; 52+ 也可以看成 5(2)-- ,表示5与 2- 之差的绝对值,也可理解为数轴上表示5与 2- 两数在数轴上所对应的两点之间的距离事实上,数轴上表示有理数 ,a b 的点 ,A B 的距离均可以用 a b - 来计算.根据以上材料,则使 347x x ++-= 的所有整数x 的和是 .第Ⅱ卷 主观题(共8题;共61分)21.(9分)(2022七上·句容期末)计算: (1)(3分)10(5)(9)--+-(2)(3分)1251631248⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭(3)(3分)20211113269⎛⎫--÷-⨯+- ⎪⎝⎭22.(4分)(2021七上·孝义期中)把以下各数填入表示它所在的数集的集合里:2, 0.3⋅- ,0.1,32-,-100,0, 13- .-,23.(10分)(2021七上·韶关期末)如图,点A,B是数轴上两点,点A表示的数为16AB=.动点P,Q分别从A,B出发,点P以每秒2个单位长度的速度沿数轴向右匀速运动,点Q 20t t>秒.以每秒1个单位长度的速度沿数轴向左匀速运动,设运动时间为()0(1)(1分)数轴上点B表示的数是.(2)(3分)求数轴上点P,Q表示的数(用含t的式子表示).(3)(3分)若点P和Q同时出发,t为何值时,这两点相遇?(4)(3分)若点Q比点P迟2秒钟出发,则点Q出发几秒时,点P和点Q刚好相距5个单位长度?24.(9分)(2021七上·黄埔期末)数轴上两点A、B,A在B左边,原点O是线段AB上的一点,已知AB=4,且OB=3OA.A、B对应的数分别是a、b,点P为数轴上的一动点,其对应的数为x.(1)(1分)a= ,b= ,并在数轴上面标出A、B两点;(2)(3分)若PA=2PB,求x的值;(3)(4分)若点P以每秒2个单位长度的速度从原点O向右运动,同时点A以每秒1个单位长度的速度向左运动,点B以每秒3个单位长度的速度向右运动,设运动时间为t秒.请问在运动过程中,3PB-PA 的值是否随着时间t的变化而改变?若变化,请说明理由若不变,请求其值.25.(6分)如图,数轴上A点表示的数是﹣2,B点表示的数是5,C点表示的数是10.(1)(1分)若要使A、C两点所表示的数是一对相反数,则“原点”表示的数是:.(2)(5分)若此时恰有一只老鼠在B点,一只小猫在C点,老鼠发现小猫后立即以每秒一个单位的速度向点A方向逃跑,小猫随即以每秒两个单位的速度追击.①在小猫未抓住老鼠前,用时间t(秒)的代数式表示老鼠和小猫在移动过程中分别与点A之间的距离;26.(7分)(2021七上·海珠期末)某食品厂从生产的食品中抽出样品20袋,检测每袋的质量是否符合标准,超过的部分用正数表示,不足的部分用负数表示,记录如表:(1)(3分)若每袋标准质量为350克,则这批抽样检测的样品的总质量是多少克?(2)(4分)若该食品的包装袋上标有产品合格要求为“净重350±2克”,则这批样品的合格率为多少?27.(7分)(2020七上·仁寿期末)2020年12月8日,中尼两国共同宣布珠穆朗玛峰的最新测定高度为8848.86米.今有某登山队5名队员在一次登山活动中,以二号高地为基地,开始向海拔距二号高地500米的顶峰冲刺,设他们向上走为正,行程单位:记录如下:180+,33-,75+,25-,40+,55+,42-,150+.(1)(3分)他们最终有没有登上顶峰?如果没有,那么他们离顶峰还差多少米?(2)(4分)登山时,5名队员在登山全程中都使用了氧气瓶,且每人向下行走每米要消耗氧气m 升,向上行走每米还要多消耗0.01升,求他们共消耗了氧气多少升?(用含m 的代数式表示)28.(9分)(2022七上·句容期末)某快递公司规定每件体积不超标的普通小件物品的收费标准如表:例如:寄往省内一件1.6千克的物品,运费总额为: 85(0.50.5)13+⨯+= 元. 寄往省外一件2.3千克的物品,运费总额为: 126(10.5)21+⨯+= 元. (下面问题涉及的寄件按上表收费标准计费)(1)(4分)小明同时寄往省内一件3千克的物品和省外一件2.8千克的物品,各需付运费多少元? (2)(1分)小明寄往省内一件重 ()m n + 千克,其中m 是大于1的正整数,n 为大于0且不超过0.5的小数(即 00.5n <≤ ),则用含字母m 的代数式表示小明这次寄件的运费为 ; (3)(4分)小明一次向省外寄了一件物品,用了36元,你能知道小明这次寄件物品的重量范围吗?2022-2023学年七年级数学上册考点必刷练精编讲义(人教版)提高第一章《有理数》 章节达标检测考试时间:120分钟 试卷满分:100分(共10题;每题2分,共20分)8x ﹣7与6﹣2x 的值互为相反数,那么x 的值等于( ) A .16B .﹣16C .1310D .﹣1310【答案】A【完整解答】根据题意得:(8x ﹣7)+(6﹣2x )=0, 解得:x=16. 故答案为:A.【思路引导】根据互为相反数的两个数的和为0,据此解答即可.2.(2分)(2020七上·仁寿期末)点A 表示数轴上的一个点,将点A 向右移动6个单位,再向左移动4个单位,终点恰好是原点,则点A 表示的数是( ) A .2- B .3-C .0D .1-【答案】A【完整解答】解:设点A 表示的数是x. 依题意,有640x +-=, 解得2x =-, 即点A 表示的数是2-. 故答案为:A.【思路引导】 设点A 表示的数是x ,根据向右移动用加法,向左移动用减法,列方程求解即可.3.(2分)(2021七上·丽水期末)|-4|的相反数是( )A .4B .14C .-4D .14- 【答案】C 【完整解答】解:|-4|=4∴|-4|的相反数为-4.故答案为:C.【思路引导】利用负数的绝对值等于它的相反数,再求出|-4|的相反数.4.(2分)(2021七上·宜宾期末)如图,点A ,B ,C ,D 四个点在数轴上表示的数分别为a ,b ,c ,d ,则下列结论中,错误的是( )A .0a c +<B .0b a ->C .0ac >D .0b d < 【答案】C【完整解答】解:由数轴上点的位置可知: 0a b c d <<<< ,因为 0a c << 且 a c > ,所以 0a c +< ,故 A 正确,不符合题意;因为 0a b << ,所以 0b a -> ,故 B 正确,不符合题意;因为 0a < , 0c > ,所以 0ac < ,故 C 错误,符合题意,因为 0b < , 0d > ,所以0b d < ,故 D 正确,不符合题意. 故答案为:C.【思路引导】根据数轴可得a<b<0<c<d ,且|a|>|c|,据此判断A 、B ;根据有理数的乘法法则可判断C ;根据有理数的除法法则可判断D.5.(2分)(2021七上·南京期末)目前全球新型冠状病毒肺炎疫情防控形势依旧严峻,我们应该坚持“勤洗手,戴口罩,常通风”.一双没有洗过的手,带有各种细菌约75 000万个,将数据75 000用科学记数法表示是( )A .7.5×103B .75×103C .7.5×104D .7.5×105 【答案】C【完整解答】解:将数据75000用科学记数法表示为7.5×104.故答案为:C.【思路引导】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.6.(2分)(2022七上·遵义期末)在数轴上,点M 、N 分别表示数m ,n.则点M 、N 之间的距离为 m n - .已知点A ,B ,C ,D 在数轴上分别表示的数为a ,b ,c ,d.且22,1()5a c b c d a a b -=-=-=≠ ,则线段 BD 的长度为( ) A .4.5B .1.5C .6.5或1.5D .4.5或1.5【答案】C 【完整解答】解:①如图,当 D 在 A 点的右侧时,22,1()5a cbcd a a b -=-=-=≠ 224AB AC a c ∴==-= , 2.5AD =∴4 2.5 1.5BD AB AD =-=-=②如图,当 D 在 A 点的左侧时,22,1()5a cbcd a a b -=-=-=≠ 224AB AC a c ∴==-= , 2.5AD =∴4 2.5 6.5BD AB AD =+=+=综上所述,线段 BD 的长度为6.5或1.5故答案为:C【思路引导】分两种情况:①如图,当 D 在 A 点的右侧时,②如图,当 D 在 A 点的左侧时,据此分别解答即可.7.(2分)(2021七上·长兴期末)如图,已知正方形的边长为24厘米,甲,乙两动点分别从正方形ABCD 的顶点D ,B 同时沿正方形的边开始移动,甲点按顺时针方向环行,乙点按逆时针方向环行,若乙的速度为9厘米/秒,甲的速度为3厘米/秒,当它们运动了2022秒时,它们在正方形边上相遇了( )A .252 次B .253次C .254次D .255次【答案】B【完整解答】解:根据题意可得:第一次相遇所需时间为:2424934+÷+=()()(秒) 从第2此相遇起,相遇路程变成了正方形的周长,也就是24×4=96(厘米)因此,之后每次相遇所需时间为:96938÷+=()(秒)2022-4=2018(秒)20188252......2÷=所以,在第一次相遇后还有252此相遇因此,总共相遇了252+1=253(次)故答案为:B.【思路引导】根据相遇问题的公式求出第一次和第二次之后的相遇时间,再根据周期规律,求解出相遇次数。

人教版初中数学七年级上册第一章《有理数》综合能力检测题含答案

人教版初中数学七年级上册第一章《有理数》综合能力检测题含答案

人教版初中数学七年级上册第一章《有理数》综合能力检测题一、选择题1.-2019的相反数是( )A.-2019B.2019C.-20191D. 20191 2.一个数的倒数等于它本身的数是( )A.1B.-1C.±1D.03.如果两个数的绝对值相等,则这两个数( )A.互为相反数 B .相等 C.积为0 D.互为相反数或相等4.下列说法中正确的是( )A.一个数前面加上“-”号,这个数就是负数B.非负数就是正数C.正数和负数统称为有理数D.0既不是正数又不是负数5.下列各对数中,数值相等的是( )A.-27与(-2)7B.-32与(-3)2C.-3×23与-32×2D.-(-3)2与-(-2)36.大于-2019而小于2020的所有整数的和是( )A.-2019B.-2018C.2019D.20207.当n 为正整数时,(-1)2n +1-(-1)2n 的值是( )A.0B.2C.-2D.2,或-28.定义a ∨b 表示a 、b 两数中较大的一个,a ∧b 表示a 、b 两数中较小的一个,则(50∨52)∨(49∧51)的结果是( )A.50B.52C.49D.519.某人用1000元购进一批货物,第二天售出,获利110,过几天又以900元购进一批货物,但这一次亏了10%,这样,他在这两次交易中( )A.不盈不亏B.盈10元C.亏10元D.不能确定10.31=3,32=9,33=27,34=81,35=243,36=729,…,用你发现的规律写出32019的末位数字是( )A.3B.9C.7D.1二、填空题11.绝对值最小的有理数是_____,最小的正整数是_____.12.写出与-32异号的两个有理数:_____.13.比7大-7的数是_____.14.最小的自然数与最大的负整数的差是_____.15.不为零的两数成互为相反数,则它们的商是_____.16.绝对值小于π的所有整数有_____个,其积为_____.17.在数轴上距2.5有3.5个单位长度的点所表示的数是_____.18.19.一外地民工10天的收支情况如下(收入为正):30元,-17元,23元,-15元,-3 元,27元,45元,-10元,-8元,20元.如果他原来有钱60元,则现在他有_____元钱.20.你喜欢吃拉面吗?拉面馆的师傅将一根很粗的面条,捏合一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条,拉成了许多细的面条,如图所示:这样,第4次捏合后可拉出_____根细面条;第_____次捏合后可拉出256根细面条.三、解答题21.计算:(1)-6+213.(2)(712-56+1)÷(-124). 22.某项科学研究,以45分钟为一个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正.例如9:15记为-1,10:45记为1等等,依此类推,上午7:45•应记为多少?23.一天美美和丽丽利用温差来测量山峰的高度.美美在山脚测得的温度是4℃,丽丽此时在山顶测得的温度是-2℃,已知该地区高度每升高100米,气温下降0.6℃,问这个山峰有多高?24.讲完“有理数的乘法”后,老师在课堂上出了下面一道计算题:992122×(-11). 不一会儿,不少同学算出了答案,老师把班上同学的解题归类写到黑板上: 解法一:原式=-219922×11=-2418922=-109912. 解法二:原式=(99+2122)×(-11)=99×(-11)+ 2122×(-11)=-109912. 解法三:原式=(100-122)×(-11)=100×(-11)+122×11=-109912. 对这三种解法,大家议论纷纷,你认为哪种方法最好?说说你的理由,通过对本题的求解,你有何启发?25.若定义一种新的运算为a *b =ab ÷(1-ab ),计算[(3*2)]*16. 26.写出一个三位数,它的各个数位上的数字都不相等,如637,用这个三位数各个数位上的数字组成一个最大数和一个最小数,并用最大数减去最小数,得到一个新的三位数.对于新得到的三位数,重复上面的过程,又得到一个新的三位数,一直重复下去,你发现了什么?请写出你的探索过程.27.任选1,2,3,…,9中的一个数字,将这个数乘7,再将结果乘15 873,你发现了什么规律?能试着解释一下理由吗?28.某一出租车一天下午以文昌阁为出发地在东西方向营运,向东走为正,向西走为负,行车里程(单位:千米)依先后次序记录如下:+9,-3,-5,+4,-8,+6,-5,-6,-4,+10.(1)将最后一名乘客送到目的地,出租车在文昌阁的什么方向?离文昌阁多远?(2)若每公里的价格为2.4元,司机一个下午的营业额是多少?参考答案:一、1.B.点拨:负数的相反数是正数;2.C.点拨:1的倒数等于1,-1的倒数等于-1;3.D.点拨:非负数的绝对值等于它的本身,负数的绝对值等于它的相反数;4.D.点拨:A、B、C都应忽视了0;5.A.点拨:(-2)7=-27,-32=-9≠(-3)2=9,-3×23=-24≠-32×2=-18,-(-3)2=-9≠-(-2)3=-8;6.C.点拨:-2018+(-2017) +(-2016) +…+2016+2017+2018+2019=2019;7.C.点拨:因为(-1)2n+1=-1,(-1)2n=1,所以(-1)2n+1-(-1)2n=-1-1=2;8.B.点拨:由新定义,得(50∨52)∨(49∧51)=52∨49=52;9.B.点拨:1000×110-900×10%=10;10.C.点拨:末位数字依次以3、9、7、1循环,而2019÷4=502…3,即末位数字是7.二、11.0、1;12.答案不惟一,所有正数都可,如,2、9.等等;13.0.点拨:7+(-7)=0;14.1.点拨:最小的自然数是0,最大的负整数是-1,其差为0-(-1)=1;15.-1.点拨:取具体数值验证;16.7、0.点拨:绝对值小于π的所有整数有-3、-2、-1、0、1、2、3,其和为(-3)+(-2)+(-1)+0+1+2+3=0;17.-1和6.点拨:在2.5的左边,且与之相距3.5个单位长度的点是-1,在2.5的右边,且与之相距3.5个单位长度的点是6;18.日,一.点拨:星期一的温差=11℃-2℃=9℃,星期二的温差=12℃-1℃=11℃,星期三的温差=11℃-0℃=11℃,星期四的温差=9℃-(-1)℃=10℃,星期五的温差=7℃-(-4)℃=11℃,星期六的温差=5℃-(-5)℃=10℃,星期日的温差=7℃-(-5)℃=12℃,显然,星期日的温差最大,星期一的温差最小;19.152.点拨:60+30+(-17)+23+(-15)+(-3)+27+45+(-10)+(-8)+20=152;20.16、8.点拨:第在次捏合后可拉出21根细面条,第2次捏合后可拉出22根细面条,第3次捏合后可拉出23根细面条,第4次捏合后可拉出24根细面条,…,第n次捏合后可拉出2n根细面条,所以第4次捏合后可拉出24=16根细面条,若拉出256根细面条,则有2n=256,即2n=28,所以n=8.三、21.(1)原式=-183+73=-323.(2)原式=(712-56+1)×(-24)=(712-56+1)×(-24)=712×(-24)-56×(-24) +1×(-24)=-14+20-24=-18.22.以10时为0,向前每45分钟为一个“-1”,因为7:45到10:00共135分钟,含3个45分钟,所以7:45应记为-3.23.从山脚到山顶温度降低了4-(-2)=6(℃).因为每升高100米平均降低0.6℃,由6÷0.6=10,可知从山脚到山顶共升高了10个100米,所以山高为10×100=2500(米).即综合式子是:[4-(-2)]÷0.6×100=1000(米),即山高为1000米.24.解法二与解法三;解法二与解法三巧妙地利用了拆分思想,把带分数拆成一个整数与一个真分数的和,再应用分配律,简化了计算过程;我们在解题时要善于发现问题的特点.25.因为a*b=ab÷(1-ab),所以[(3*2)]*16=3×2÷(1-3×2)*16=(-65)*16=(-65)×16÷[1-(-65)×16]=(-15)÷65=-15×56=-16.26.若以637为例进行尝试:637→763-367=396→963-369=594→954-459=495→954-459=495,最后结果固定为495,若再用258进行尝试:258→852-258=594→954-459=495→954-459=495.经过多次尝试后发现,总能得到495这结果,并固定在这一结果上,似乎掉进了一个“黑洞”.点拨:这是数学上的“黑洞”问题,有兴趣的同学可以尝试探索四位数、五位数是否也存在同样的“黑洞”,自己发现数学中某些数字的神奇作用,感受数学的无穷魅力.27.取数字3,乘7,再将结果乘15 873,得(3×7)×15 873=21•×15 •873=333 333;取数字5,乘7,再将结果乘15 873,得(5×7)×15 873=35×15 •873=555555;取数字8,乘7,再将结果乘15 873,得(8×7)×15 873=56×15 873=888 888.由此,通过观察发现,任选1,2,3,…,9中的一个数字n ,将这个数乘7,再将结果乘15 873,均得到一个6位数,每位上的数字相同,都是n ,即(n ×7)×15 873=nnn nnn .因为7×15873=111 111,所以(n ×7)×15 873=n ×(7×15 873)=n ×111 111=nnn nnn .点拨:通过探索规律可以发现,数学真奇妙,数学中存在一些具有特殊作用的数字,如本题7与15 873的积就具有神奇的“复印”功能,你能将任意一个1,2,3,…,9中的数字连续“复印”6次,你还能发现其他具有“特异功能”的数字吗?28.(1)因为+9+(-3)+(-5)+4+(-8)+6+(-5)+(-6)+(-4)+10=-2,所以出租车在文昌阁的西边,距文昌阁2千米.(2)因为+9+3-+5-+4+8-+6+5-+6-+4-+10=60,所以60×2.4=144,即司机一个下午的营业额是144元.。

新人教版初中数学七年级数学上册第一单元《有理数》检测(有答案解析)

新人教版初中数学七年级数学上册第一单元《有理数》检测(有答案解析)

一、选择题1.数学考试成绩85分以上为优秀,以85分为标准,老师将某一小组五名同学的成绩记为+9、-4、+11、-7、0,这五名同学的实际成绩最高的应是()A.94分B.85分C.98分D.96分2.数轴上点A和点B表示的数分别为-4和2,若要使点A到点B的距离是2,则应将点A向右移动()A.4个单位长度B.6个单位长度C.4个单位长度或8个单位长度D.6个单位长度或8个单位长度3.2--的相反数是()A.12-B.2-C.12D.24.下列说法正确的是( )A.近似数1.50和1.5是相同的B.3520精确到百位等于3600C.6.610精确到千分位D.2.708×104精确到千分位5.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>06.下列说法中,正确的是()A.正数和负数统称有理数B.既没有绝对值最大的数,也没有绝对值最小的数C.绝对值相等的两数之和为零D.既没有最大的数,也没有最小的数7.下列说法:①a-一定是负数;②||a一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是l;⑤平方等于它本身的数是1.其中正确的个数是()A.1个B.2个C.3个D.4个8.一个数的绝对值是3,则这个数可以是()A.3B.3-C.3或者3-D.1 39.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10﹣9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为()A.28×10﹣9m B.2.8×10﹣8m C.28×109m D.2.8×108m10.6-的相反数是()A .6B .-6C .16D .16- 11.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中正确的是( )A .a+b <0B .a+b >0C .a ﹣b <0D .ab >012.有理数a ,b 在数轴上表示如图所示,则下列各式中正确的是( )A .0ab >B .b a >C .a b ->D .b a <二、填空题13.按下面程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件所有x 的值是___.14.截至格林尼治标准时间2020年6月7日10时,全球累计报告新冠肺炎确诊病例达7000000例;其中累计死亡病例超过40万例,数据7000000科学记数法表示为_____. 15.某电视塔高468 m ,某段地铁高-15 m ,则电视塔比此段地铁高_____m .16.33278.5 4.5 1.67--=____(精确到千分位) 17.填空:(1)____的平方等于9;(2)(-2)3=____;(3)-14+1=____;(4)23×212⎛⎫ ⎪⎝⎭=____. 18.气温由﹣20℃下降50℃后是__℃.19.我们知道,海拔高度每上升100米,温度下降0.6℃,肥城市区海拔大约100米,某时刻肥城市区地面温度为16℃,泰山的海拔大约为1530米,那么此时泰山顶部的气温大约为______.℃20.在数轴上与表示 - 2的点的距离为3个单位长度的点所表示的数是 _________ . 三、解答题21.(1)()()()()413597--++---+;(2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭. 22.计算:(1)152|18|()263-⨯-+; (2)20203221124(2)3()3-+÷--⨯. 23.如图,将一根木棒放在数轴(单位长度为1cm )上,木棒左端与数轴上的点A 重合,右端与数轴上的点B 重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B 时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A 时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为________cm ;(2)图中点A 所表示的数是_______,点B 所表示的数是_______;(3)由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要37年才出生;你若是我现在这么大,我就119岁啦!”请问奶奶现在多少岁了?24.计算:(1)()110822⎫⎛---÷-⨯-⎪⎝⎭ (2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭25.计算:(1)113623⎛⎫-⨯- ⎪⎝⎭ (2)2233(3)3(2)|4|-÷-+⨯-+-26.某儿童自行车厂计划一周生产儿童自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天的生产量与计划每天的生产量有出入.实际情况如下表(超产记为正,减产记为负) 星期一 二 三 四 五 六 日 增减 5+ 2- 4- 13+ 10- 16+ 9-(2)这周生产量最多的一天比生产量最少的一天多生产多少辆?(3)该厂实行每周计件工资制,每生产一辆可得50元,若超额完成任务,则超出部分每辆另奖12元;少生产一辆扣20元,那么该工厂这周的工资总额是多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据85分为标准,以及记录的数字,求出五名学生的实际成绩,即可做出判断.【详解】+-+--解:根据题意得:859=94,854=81,8511=96,857=78,850=85即五名学生的实际成绩分别为:94;81;96;78;85,则这五名同学的实际成绩最高的应是96分.故选D.【点睛】本题考查了正数和负数的识别,有理数的加减的应用,正确理解正负数的意义是解题的关键.2.C解析:C【分析】A点移动后可以在B点左侧,或右侧,分两种情况讨论即可.【详解】∵到2距离为2的数为2+2=4或2-2=0∴-4移动到0需向右移动4个单位长度,移动到4需向右移动8个单位长度故选C.【点睛】本题考查了数轴表示距离,分两种情况一左一右讨论是本题的关键.3.D解析:D【分析】|-2|去掉绝对值后为2,而-2的相反数为2.【详解】--的相反数是2,2故选:D.【点睛】本题考查了相反数和绝对值的概念,本题的关键是首先要对原题进行化简,然后在求这个数的相反数;其中,正数的相反数是负数,负数的相反数是正数,0的相反数是0.4.C解析:C相似数和原值是不相同的;3520精确到百位是3500;2.708×104精确到十位.【详解】A、近似数1.50和1.5是不同的,A错B、3520精确到百位是3500,B错D、2.708×104精确到十位.【点睛】本题考察相似数的定义和科学计数法.5.B解析:B【分析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.6.D解析:D【分析】分别根据有理数的定义,绝对值的定义,有理数的大小比较逐一判断即可.【详解】整数和分数统称为有理数,故原说法错误,故选项A不合题意;没有绝对值最大的数,绝对值最小的数是0,故原说法错误,故选项B不合题意;绝对值相等的两数之和等于零或大于0,故原说法错误,故选项C不合题意;既没有最大的数,也没有最小的数,正确,故选项D符合题意.故选:D.【点睛】本题考查有理数的定义、绝对值的定义,熟知有理数和绝对值的定义是解题的关键.7.A解析:A【分析】根据正数与负数的意义对①进行判断即可;根据绝对值的性质对②与④进行判断即可;根据倒数的意义对③进行判断即可;根据平方的意义对⑤进行判断即可.-不一定是负数,故该说法错误;①a②||a一定是非负数,故该说法错误;③倒数等于它本身的数是±1,故该说法正确;④绝对值等于它本身的数是非负数,故该说法错误;⑤平方等于它本身的数是0或1,故该说法错误.综上所述,共1个正确,故选:A.【点睛】本题主要考查了有理数的性质,熟练掌握相关概念是解题关键.8.C解析:C【解析】试题∵一个数的绝对值是3,可设这个数位a,∴|a|=3,∴a=±3故选C.9.B解析:B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】28nm =28×10﹣9m = 2.8×10﹣8m ,所以28nm用科学记数法可表示为:2.8×10﹣8m,故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.B解析:B【详解】先根据绝对值的定义化简|-6|,再由相反数的概念解答即可.解:∵|-6|=6,6的相反数是-6,∴|-6|的相反数是-6.故选B.11.A解析:A【分析】根据数轴判断出a 、b 的符号和取值范围,逐项判断即可.【详解】解:从图上可以看出,b <﹣1<0,0<a <1,∴a+b <0,故选项A 符合题意,选项B 不合题意;a ﹣b >0,故选项C 不合题意;ab <0,故选项D 不合题意.故选:A .【知识点】本题考查了数轴、有理数的加法、减法、乘法,根据数轴判断出a 、b 的符号,熟知有理数的运算法则是解题关键.12.C解析:C【分析】根据数轴可得0a b <<且a b >,再逐一分析即可.【详解】由题意得0a <,0b >,a b >,A 、0ab <,故本选项错误;B 、a b >,故本选项错误;C 、a b ->,故本选项正确;D 、b a >,故本选项错误.故选:C .【点睛】本题考查数轴,由数轴观察出0a b <<且a b >是解题的关键.二、填空题13.131或26或5或【分析】利用逆向思维来做分析第一个数就是直接输出656可得方程5x+1=656解方程即可求得第一个数再求得输出为这个数的第二个数以此类推即可求得所有答案【详解】用逆向思维来做:第一解析:131或26或5或45. 【分析】利用逆向思维来做,分析第一个数就是直接输出656,可得方程5x+1=656,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【详解】用逆向思维来做:第一个数就是直接输出其结果的:5x+1=656,解得:x=131;第二个数是(5x+1)×5+1=656,解得:x=26;同理:可求出第三个数是5;第四个数是45,∴满足条件所有x的值是131或26或5或45.故答案为131或26或5或45.【点睛】此题考查了方程与不等式的应用.注意理解题意与逆向思维的应用是解题的关键.14.7×106【分析】根据科学记数法形式:a×10n其中1≤a<10n为正整数即可求解【详解】解:7000000科学记数法表示为:7×106故答案为:7×106【点睛】本题考查科学记数法解决本题的关键是解析:7×106【分析】根据科学记数法形式:a×10n,其中1≤a<10,n为正整数,即可求解.【详解】解:7000000科学记数法表示为:7×106.故答案为:7×106.【点睛】本题考查科学记数法,解决本题的关键是把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.[科学记数法形式:a×10n,其中1≤a<10,n为正整数.15.483【分析】根据有理数减法进行计算即可【详解】解∶依题意得:电视塔比此段地铁高468-(-15)=483m故答案为:483【点睛】本题考查了有理数减法根据题意列出式子是解题的关键解析:483【分析】根据有理数减法进行计算即可.【详解】解∶依题意得:电视塔比此段地铁高468-(-15)=483 m.故答案为:483.【点睛】本题考查了有理数减法,根据题意列出式子是解题的关键.16.【分析】根据有理数的运算法则进行运算再精确到精确到千分位【详解】故答案为【点睛】此题主要考查近似数解题的关键是熟知有理数的运算法则解析: 2.559【分析】根据有理数的运算法则进行运算,再精确到精确到千分位.【详解】33278.5 4.55231.6 2.56 2.5597823543--=-≈- 故答案为 2.559-.【点睛】此题主要考查近似数,解题的关键是熟知有理数的运算法则.17.3或-3-802【分析】根据乘方的法则计算即可【详解】解:(1)32=9(-3)2=9所以3或-3的平方等于9;(2)(-2)3=-2×2×2=-8;(3)-14+1=-1+1=0;(4)23×=8解析:3或-3 -8 0 2【分析】根据乘方的法则计算即可.【详解】解:(1)32=9,(-3)2=9,所以3或-3的平方等于9;(2)(-2)3=-2×2×2=-8;(3)-14+1=-1+1=0;(4)23×212⎛⎫ ⎪⎝⎭=8×14=2. 故答案为:3或-3;-8;0;2.【点睛】本题考查了有理数乘方运算,熟记法则和乘方的意义是解决此题的关键. 18.-70【分析】先将-20-50转化为-20+(-50)再由有理数的加法运算法则进行计算【详解】解:零上的温度用正数来表示零下的温度用负数来表示再根据有理数的减法的运算法则(减去一个数等于加上这个数的解析:-70【分析】先将-20-50转化为-20+(-50),再由有理数的加法运算法则进行计算.【详解】解:零上的温度用正数来表示,零下的温度用负数来表示,再根据有理数的减法的运算法则(减去一个数等于加上这个数的相反数),将有理数的减法化为有理数的加法来进行计算.∵-20-50=-20+(-50)=-70∴答案为:-70.【点睛】本题考查了有理数的减法的运算法则(减去一个数等于加上这个数的相反数),有理数的加法运算法则之一:(同号两数相加,和的正负号取任何一个加数的正负号,和的绝对值取两个加数的绝对值的和),熟记并灵活运用这两个运算法则是解本题的关键.19.【分析】首先用泰山的海拔减去肥城市区海拔求出泰山的海拔比肥城市区海拔高多少米进而求出泰山顶部的气温比某时刻肥城市区地面温度低多少;然后用某时刻肥城市区地面温度减去此时泰山顶部低的温度即可【详解】解: 解析:7.42【分析】首先用泰山的海拔减去肥城市区海拔,求出泰山的海拔比肥城市区海拔高多少米,进而求出泰山顶部的气温比某时刻肥城市区地面温度低多少;然后用某时刻肥城市区地面温度减去此时泰山顶部低的温度即可.【详解】解:()1615301001000.6--÷⨯1614301000.6=-÷⨯168.58=-7.42=(℃);答:此时泰山顶部的气温大约为7.42℃.故答案为:7.42.【点睛】此题主要考查了有理数混合运算的实际应用,正确理解题意并列出算式是解题的关键. 20.-5或1【分析】根据题意得出两种情况:当点在表示-2的点的左边时当点在表示-2的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-2的点的左边时数为-2-3=-5;②当点在表示-2的点的解析:-5或1【分析】根据题意得出两种情况:当点在表示-2的点的左边时,当点在表示-2的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-2的点的左边时,数为-2-3=-5;②当点在表示-2的点的右边时,数为-2+3=1;故答案为-5或1.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况.在数轴上到一个点的距离相等的点有两个,一个在这个点的左边,一个在这个点的右边.三、解答题21.(1)-6;(2)715. 【分析】(1)原式根据有理数的加减法法则进行计算即可得到答案;(2)原式把除法转换为乘法,再进行乘法运算即可得到答案.【详解】解:(1)()()()()413597--++---+=-4-13-5+9+7=-22+9+7=-13+7=-6;(2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭ =174435⨯⨯ =715. 【点睛】 此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.22.(1)6;(2)-5【分析】(1)先去掉绝对值,然后根据乘法分配律即可解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】解:(1)152|18|()263-⨯-+ =18×(12﹣56+23) =18×12﹣18×56+18×23=9﹣15+12=6;(2)20203221124(2)3()3-+÷--⨯ =﹣1+24÷(﹣8)﹣9×19=﹣1+(﹣3)﹣1=﹣5.【点睛】 此题主要考查有理数的混合运算,熟练掌握混合运算顺序是解题关键.23.(1)8;(2)14,22;(3)奶奶现在的年龄为67岁.【分析】(1)由观察数轴可知三根这样长的木棒的长度,即可求出这根木棒的长;(2)由所求出的这根木棒的长,结合图中的已知条件即可求得A 和B 所表示的数; (3)根据题意,设数轴上小木棒的A 端表示妙妙的年龄,小木棒的B 端表示奶奶的年龄,则小木棒的长表示二人的年龄差,由此参照(1)中的方法结合已知条件分析解答即可.【详解】(1)观察数轴可知三根这样长的木棒长为30624cm -=,则这根木棒的长为2438cm ÷=;(2)由这根木棒的长为8cm ,所以A 点表示为6+8=14,B 点表示为6+8+8=22;(3)借助数轴,把妙妙和奶奶的年龄差看做木棒AB ,奶奶像妙妙这样大时,可看做点B 移动到点A ,此时点A 向左移后所对应的数为37-,可知奶奶比妙妙大()11937352⎡⎤⎣÷⎦--=,则奶奶现在的年龄为1195267-=(岁). 【点睛】此题考查认识数轴及用数轴表示有理数和有理数的加减法,难度一般,读懂题干要求是关键.24.(1)12- ;(2)0【分析】(1)先去绝对值,同时把除变乘,再计算乘法,最后加减即可(2)先计算乘方和括号内的,把除变乘,再计算乘法,最后加减法即可【详解】(1)()110822⎫⎛---÷-⨯-⎪⎝⎭ =1110822⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭ =102--=-12(2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭=()()2386154-⨯---⨯-=243660--+=0【点睛】本题考查有理数的混合运算,解答的关键是熟练掌握运算法则和运算顺序.25.(1)2;(2)-21.【分析】(1)根据有理数的混合运算法则即可求解;(2)根据有理数的混合运算法则即可求解.【详解】解:(1)113623⎛⎫-⨯-⎪⎝⎭ =1136623-⨯+⨯ =332-+=2;(2)2233(3)3(2)|4|-÷-+⨯-+-=993(8)4-÷+⨯-+=1244--+=-21.【点睛】此题主要考查有理数的运算,解题的关键是熟知其运算法则.26.(1)该厂本周实际生产自行车1409辆;(2)产量最多的一天比产量最少的一天多生产自行车26辆;(3)该厂工人这一周工资总额是70558元.【分析】(1)根据每天的增减量,依次相加,可得答案;(2)根据每天的增减量,用最多的一天减去最少的一天即可;(3)该厂一周工资=实际自行车产量×50+超额自行车产量×12.【详解】解:(1)1400+5-2-4+13-10+16-9=1409(辆),答:该厂本周实际生产自行车1409辆;(2)16-(-10)=26(辆),答:产量最多的一天比产量最少的一天多生产自行车26辆;(3)50×1409+12×9=70558.答:该厂工人这一周工资总额是70558元.【点睛】本题考查有理数加、减运算的应用,用正数和负数表示.明白“+”是比计划多、“-”是比计划少是解题的关键.。

人教版七年级数学上册《第一章有理数》章节检测卷-带有答案

人教版七年级数学上册《第一章有理数》章节检测卷-带有答案

人教版七年级数学上册《第一章有理数》章节检测卷-带有答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.如果某商场盈利5万记作+5万元,那么亏损4万元,应记作()A.+4万元B.﹣4万元C.+1万元D.﹣1万元2.下列有关“0”的叙述中,错误的是( )A.不是正数,也不是负数B.不是有理数,是整数C.是整数,也是有理数D.不是负数,是有理数3.在数0,4,-3,-1.5中,属于负整数的是()A.0 B.4 C.−3D.−1.54.在−2.5 , 100, 0.01,−32四个数中,最小的数是()A.−2.5 B.100 C.0.01 D.−325.如图,数轴上点M所表示的数可能是()A.1.5 B.−1.6C.−2.6D.−3.46.−2024的相反数是()A.2024 B.−12024C.−2024D.120247.若一个数的绝对值等于这个数本身,这个数是()A.正数B.负数C.正数或0 D.负数或08.下列各数中,绝对值大于3的是()A.−5B.−3C.0 D.2二、填空题9.若月球表面的白天平均温度零上180°C,记为+180°C,则月球表面的夜间平均温度零下120°C记为°C.10.大于−2.5而小于3.5的整数共有个;11.在数轴上,到原点的距离等于3.5个单位长度的点所表示的有理数是.12.若a与−12互为相反数,则a的值为.13.如果|m|=4,且m<0,那么m=.三、解答题14.一种商品的标准价格是200元,但随着季节的变化,商品的价格可浮动±10%,想一想±10%的含义是什么?15.写出下列各数的绝对值:-1 23-340 -3 2515.16.把下列各数填入相应的大括号里:﹣7,﹣0.5,-130,﹣98%,8.7,2018,﹣2003.负整数集合:{ };非负数集合:{ };正分数集合:{ };负分数集合:{ }.17.把下列各数和它们的相反数在数轴上表示出来.+3 -1.5,0 −5218.已知在纸面上有一数轴(如图),折叠纸面.(1)若1表示的点与-1表示的点重合,则-2表示的点与何数表示的点重合;(2)若-1表示的点与5表示的点重合,0表示的点与何数表示的点重合;(3)若-1表示的点与5表示的点之间的线段折叠2次,展开后,请写出所有的折点表示的数?参考答案1.B2.B3.C4.A5.C6.A7.C8.A9.−12010.611.±3.512.1213.﹣414.+10%表示比标准高10%,-10%表示比标准价低10%15.解:|-1|=1|23|=23|-34|=34|0|=0|-325|=325|15|=1516.解:﹣7,﹣0.5,﹣13 0,﹣98%,8.7,2018,﹣2003.负整数集合:{﹣7,﹣2003……};非负数集合:{0,8.7,2018,……};正分数集合:{8.7,……};负分数集合:{﹣0.5,﹣13,﹣98%,……}.17.解:+3的相反数为:-3-1.5的相反数为:1.50的相反数为:0−52 的相反数为: 52在数轴上表示如下:.18.(1)解:若1表示的点与-1表示的点重合,则-2表示的点与2表示的点重合;(2)解:若-1表示的点与5表示的点重合,0表示的点与4表示的点重合;(3)解:若-1表示的点与5表示的点重合,则对称中心是2表示的点,第2次对折:-1表示的点与2表示的点重合,则对称中心是0.5表示的点;2表示的点与5表示的点重合,则对称中心是3.5表示的点;∴展开后,所有的折点表示的数:0.5,2,3.5.。

人教版数学七年级上册《有理数》单元检测试题(含答案)

人教版数学七年级上册《有理数》单元检测试题(含答案)

人教版七年级上册《有理数》单元检测试题(时间:90分钟总分120分)一.选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10答案1.我市2019年的最高气温为39℃,最低气温为零下7℃,则计算2019年温差列式正确的是( )A.(+39)-(-7)B.(+39)+(+7)C.(+39)+(-7)D.(+39)-(+7)2.|-5|的相反数是( )A.-5B.5C.D.-3.如图,数轴上蝴蝶所在点表示的数可能为( )A.3B.2C.1D.-14.将数据123 000 000用科学记数法表示为( )A.12.3×107B.1.23×108C.1.23×109D.0.123×1095.用四舍五入法按要求对0.050 19取近似值,其中错误的是()A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.05(精确到千分位)D.0.050 2(精确到0.000 1)6.下列计算错误的是( )A.0.14=0.000 1B.3÷9×=-3C.8÷=-32D.3×23=247.若a+b+c=0,且b<c<0,则下列结论:①a+b>0;②b+c>0;③c+a>0;④a-c<0,其中正确的有( )A.1个B.2个C.3个D.4个8.马小哈在计算一道有理数运算|(-3)+■|时, 一不小心将墨水泼在作业本上了, 其中“■”是被墨水污染看不清的一个数,他便问同桌,同桌故弄玄虚地说:“该题计算的结果等于6” ,那么被墨水遮住的数是( )A.3B.-3C.9D.-3或99.我们定义一种新运算a⊕b=,例如5⊕2==,则式子7⊕(-3)的值为( A)A. B. C. D.10.地球正面临第六次生物大灭绝,据科学家预测,到2050年,目前的四分之一到一半物种将会灭绝或濒临灭绝.2019年年底,长江江豚数量仅剩约1 000头,其数量年平均下降的百分率在13%~15%范围内,由此预测,2020年年底剩下江豚的数量可能为头. ( )A.970B.860C.750D.720二.填空题(每小题3分,共24分)11.比较大小:--1.12.张小丽和王小青从同一地点出发,规定向西走为正,若张小丽走了-6米,王小青走了3米,则她们此时相距米.13.-9,6,-3这三个数的和比它们绝对值的和小.14.若实数a满足=,则a对应于图中数轴上的点可以是A,B,C三点中的点.15.习总书记指出,善于学习,就是善于进步.“学习强国”平台上线后的某天,全国大约有1.2亿人在平台上学习.1.2亿这个数用科学记数法表示为.16.一家电脑公司仓库原有电脑100台,一个星期调入、调出的电脑记录是:调入38台,调出42台,调入27台,调出33台,调出40台,则这个仓库现有电脑台.17.在整数-5,-3,-1,6中任取三个数相乘,所得的积的最大值为.18.小敏中午放学回家自己煮面条吃.有下面几道工序:①洗锅盛水2分钟;②洗菜3分钟;③准备面条及佐料2分钟;④用锅把水烧开7分钟;⑤用烧开的水煮面条和菜要3分钟.以上各道工序,除④外,一次只能进行一道工序.小敏要将面条煮好,最少用分钟.三.解答题(共66分)19.(8分)把下列各数填在表示集合的相应的大括号中:-(-4),0,-,(-1)2,-0.25,-|-3|,1.5,-12 020.整数集合{}.分数集合{}.负数集合{}.20.(8分)已知有理数:-0.5,0,-2,5,-3.5,3.(1)把以上各数先用数轴上的点表示出来,再按照从大到小的顺序用“>”把它们连接起来;(2)把这些数中符合要求的数分别填入如图所示的集合圈中,并标注重叠部分集合的名称.21.(24分)计算下列各题: (1)+(-3)÷;(2)-23+(-2)2×(-1)-(-2)4÷(-2)3;(3)÷;(4)29×(-12).22.(8分)下表是某中学七年级5名学生的体重情况,试完成下表.姓名小颖小明小刚小京小宁体重/千克34 45体重与平均体重的差-7 +3 -4 0(1)谁的体重最重?谁的体重最轻?(2)最重的与最轻的相差多少?23.(8分)在下面的一排小方格中,除已知的数外,其余的小方格中的每个字母代表一个有理数,已知其中任何三个连续方格中的有理数之和为23.T -12 H A N K 8 …(1)求T+H+A+N+K的值;(2)分别求出T,H的值;(3)在经历了问题(2)的解答后,请你说明小方格中的数的排列规律,并猜想:小方格中第2 020个数应是多少?24.(10分)如图,已知A,B分别为数轴上的两点,A点对应的数为-10,B点对应的数为90.(1)请写出AB的中点M对应的数;(2)现在有一只电子蚂蚁P从B点出发,以3个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以2个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?(3)若当电子蚂蚁P从B点出发时,以3个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以2单位/秒的速度向右运动,经过多长时间两只电子蚂蚁在数轴上相距35个单位长度?人教版七年级上册《有理数》单元检测试题(答案版)(时间:90分钟总分100分)一.选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10答案1.我市2019年的最高气温为39℃,最低气温为零下7℃,则计算2019年温差列式正确的是( A)A.(+39)-(-7)B.(+39)+(+7)C.(+39)+(-7)D.(+39)-(+7)2.|-5|的相反数是( A)A.-5B.5C.D.-3.如图,数轴上蝴蝶所在点表示的数可能为( D)A.3B.2C.1D.-14.将数据123 000 000用科学记数法表示为( B)A.12.3×107B.1.23×108C.1.23×109D.0.123×1095.用四舍五入法按要求对0.050 19取近似值,其中错误的是(C)A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.05(精确到千分位)D.0.050 2(精确到0.000 1)6.下列计算错误的是( B)A.0.14=0.000 1B.3÷9×=-3C.8÷=-32D.3×23=247.若a+b+c=0,且b<c<0,则下列结论:①a+b>0;②b+c>0;③c+a>0;④a-c<0,其中正确的有( B)A.1个B.2个C.3个D.4个8.马小哈在计算一道有理数运算|(-3)+■|时, 一不小心将墨水泼在作业本上了, 其中“■”是被墨水污染看不清的一个数,他便问同桌,同桌故弄玄虚地说:“该题计算的结果等于6” ,那么被墨水遮住的数是( D)A.3B.-3C.9D.-3或99.我们定义一种新运算a⊕b=,例如5⊕2==,则式子7⊕(-3)的值为( A)A. B. C. D.10.地球正面临第六次生物大灭绝,据科学家预测,到2050年,目前的四分之一到一半物种将会灭绝或濒临灭绝.2019年年底,长江江豚数量仅剩约1 000头,其数量年平均下降的百分率在13%~15%范围内,由此预测,2020年年底剩下江豚的数量可能为头. ( B)A.970B.860C.750D.720二.填空题(每小题3分,共24分)11.比较大小:->-1.12.张小丽和王小青从同一地点出发,规定向西走为正,若张小丽走了-6米,王小青走了3米,则她们此时相距9米.13.-9,6,-3这三个数的和比它们绝对值的和小24.14.若实数a满足=,则a对应于图中数轴上的点可以是A,B,C三点中的点B.15.习总书记指出,善于学习,就是善于进步.“学习强国”平台上线后的某天,全国大约有1.2亿人在平台上学习.1.2亿这个数用科学记数法表示为 1.2×108.16.一家电脑公司仓库原有电脑100台,一个星期调入、调出的电脑记录是:调入38台,调出42台,调入27台,调出33台,调出40台,则这个仓库现有电脑50台.17.在整数-5,-3,-1,6中任取三个数相乘,所得的积的最大值为90.18.小敏中午放学回家自己煮面条吃.有下面几道工序:①洗锅盛水2分钟;②洗菜3分钟;③准备面条及佐料2分钟;④用锅把水烧开7分钟;⑤用烧开的水煮面条和菜要3分钟.以上各道工序,除④外,一次只能进行一道工序.小敏要将面条煮好,最少用12分钟.三.解答题(共46分)19.(8分)把下列各数填在表示集合的相应的大括号中:-(-4),0,-,(-1)2,-0.25,-|-3|,1.5,-12 020.整数集合{-(-4),0,(-1)2,-|-3|,-12 020}.分数集合{-,-0.25,1.5}.负数集合{-,-0.25,-|-3|,-12 020}.20.(8分)已知有理数:-0.5,0,-2,5,-3.5,3.(1)把以上各数先用数轴上的点表示出来,再按照从大到小的顺序用“>”把它们连接起来;(2)把这些数中符合要求的数分别填入如图所示的集合圈中,并标注重叠部分集合的名称. 【解析】(1)5>3>0>-0.5>-2>-3.5.(2)21.(6分)计算下列各题: (1)+(-3)÷;(2)-23+(-2)2×(-1)-(-2)4÷(-2)3;(3)÷;(4)29×(-12).【解析】(1)原式=+(-3)÷=+3×6=18.(2)原式=-8+(-4)-16÷(-8)=-8-4+2=-10.(3)原式=×(-48)=-×(-48)-×(-48)+×(-48)-×(-48)=8+6-36+4=-18.(4)原式=×(-12)=30×(-12)-×(-12)=-360+=-359.22.(8分)下表是某中学七年级5名学生的体重情况,试完成下表.姓名小颖小明小刚小京小宁体重/千克34 45体重与平均体重的差-7 +3 -4 0(1)谁的体重最重?谁的体重最轻?(2)最重的与最轻的相差多少?【解析】(1)由小颖体重为34千克,体重与平均体重的差为-7,得到平均体重为34-(-7)=34+7=41(千克),则小明的体重为41+3=44(千克);小刚的体重为45千克;小京的体重为41+(-4)=37(千克);小宁的体重为41千克,填表如下:姓名小颖小明小刚小京小宁体重(千克)3444453741体重与平均体重的差-7+3+4-40所以小刚的体重最重;小颖的体重最轻.(2)最重与最轻相差为45-34=11(千克).23.(8分)在下面的一排小方格中,除已知的数外,其余的小方格中的每个字母代表一个有理数,已知其中任何三个连续方格中的有理数之和为23.T -12 H A N K 8 …(1)求T+H+A+N+K的值;(2)分别求出T,H的值;(3)在经历了问题(2)的解答后,请你说明小方格中的数的排列规律,并猜想:小方格中第2 020个数应是多少?【解析】(1)T+H+A+N+K=23+23-(-12)=58.(2)依题意:N+K +8=23,所以N+K =15.又A+N+K =23,所以A=8.因为(-12)+H+A =23,所以H=27.又 T+(-12)+H=23,所以T=8.(3)小方格中的数由8,-12,27依次反复循环出现,第2 020个数是8.24.(8分)如图,已知A,B分别为数轴上的两点,A点对应的数为-10,90.B点对应的数为(1)请写出AB的中点M对应的数;(2)现在有一只电子蚂蚁P从B点出发,以3个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以2个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?(3)若当电子蚂蚁P从B点出发时,以3个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以2单位/秒的速度向右运动,经过多长时间两只电子蚂蚁在数轴上相距35个单位长度?【解析】(1)AB=|-10|+90=100,所以AM=AB=50,-10+50=40,所以AB的中点M对应的数为40.(2)100÷(3+2)=20,2×20=40,-10+40=30.所以点C对应的数是30.(3)①相遇前两只电子蚂蚁在数轴上相距35个单位长度;(100-35)÷(3+2)=65÷5=13(秒);②相遇后两只电子蚂蚁在数轴上相距35个单位长度,(100+35)÷(3+2)=135÷5=27(秒).所以经过13秒或27秒两只电子蚂蚁在数轴上相距35个单位长度.- 11 - / 11。

人教版七年级数学上册《第一章有理数》单元检测卷及答案

人教版七年级数学上册《第一章有理数》单元检测卷及答案

人教版七年级数学上册《第一章有理数》单元检测卷及答案 知识点题型分布:考点1:正数与负数考点2:有理数及其大小比较一、选择题1.在-2,3与13,0, 1.7-五个数中,正数有( ) A .1个 B .2个 C .3个 D .4个2.增长2.7%记作 2.7+%,“减少3.4%”记作( )A . 3.4-%B . 2.7+%C . 3.4±%D . 3.4+%3.在有理数0.5012.5--,,,中,最小的数是( )A .0.5-B .0C .1-D .2.54.下列有理数大小关系判断正确的是( )A .33-<+B .910>-C 10.01->-D .010>-5.两个有理数a ,b 在数轴上的位置如图所示,则下列各式正确的是( )A .a >bB .a <bC .-a <-bD .|a|<|b|6.(23-24七年级上·江苏南通·期中)如下表,检测五个排球,其中质量超过标准的克数记为正数,不足的克数记为负数 2号3号 4号 5号1号−2.8 −1.7 +1.6 −0.5 +2.5某教练想从这五个排球中挑一个最接近标准的排球作为赛球,应选哪一个( )A .2号B .3号C .4号D .5号7.下列各数中,互为相反数的是( )A .-2.25与214B .13与-0.33C .-12与0.2 D .5与-(-5) 8. 如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+q=0,则m ,n ,p ,q 四个有理数中,绝对值最小的一个是( )A .pB .qC .mD .n二、填空题9.(23-24七年级上·江苏徐州·期中)有一种记分方法:以60分为准,68分记为8+分,某同学得54分,则应记为 分.10.(23-24七年级上·安徽合肥·阶段练习)若m 、n 互为相反数,x 、y 互为倒数,则2021m +2021n -2022xy = .11.(23-24七年级上·江苏南通·阶段练习)某项科学研究,以25分钟为一个时间单位,并记每天上午8时为0,8时以前记为负,8时以后记为正.例如:7:35记为1-,8:25记为1等等,以此类推,上午5:05应记为 .12.(22-23七年级上·山东青岛·期中)检查5个足球的质量,把超过标准质量的克数记为正数,不足标准质量的克数记为负数,检查的结果如下表:足球编号1 2 3 4 5 与标准质量的差/克 5+ 7+ 3- 9- 9+则最接近标准质量的是 号足球;质量最大的足球比质量最小的足球多 克.13.(23-24六年级下·黑龙江哈尔滨·期中)已知a 、b 互为相反数,c 、d 互为倒数,x 的绝对值等于3,则255a b cdx +-的值为 .14.(22-23七年级上·江苏南京·期中)绝对值不小于2且小于512的负整数的和是 .15.(22-23七年级上·广东深圳·期中)若2a -与3b +互为相反数,则a b -的值为 .16.(24-25七年级上·浙江杭州·阶段练习)如图所示,A,B,C 为数轴上三点,且当A 为原点时,点B 表示的数是2,点C 表示的数是5.若以B 为原点,则点A 表示的数是 ,点C 表示的数是 ;若A ,C 表示的两个数互为相反数,则点B 表示的数是 .三、解答题17.(23-24七年级上·河南周口·阶段练习)高速公路养护小组乘车沿南北公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米):17+ 9- 7+ 15- 3- 11+ 6- 8- 5+ 16+.(1)养护小组最后到达的地方在出发点哪个方向?距离出发点多远?(2)该养护小组一共行驶了多少千米?18.(23-24七年级上·湖南长沙·阶段练习)已知:a 是最大的负整数,b 是绝对值最小的数,c 是倒数等于本身的正数,试回答问题:(1)请直接写出a ,b ,c 的值;(2)若a ,b ,c 所对应的点分别为A ,B ,C ,点P 为一动点,其对应的数为x ,点P 在A 到C 之间运动时,请化简式子:1123x x x +--+-.19.(23-24七年级上·河南商丘·期末)10袋小麦以每袋150千克为标准,超过的千克数记为正数,不足的千克数记为负数,记录如下: 编号1 2 3 4 5 6 7 8 9 10 与标准质量差 6- 3- 0 2+ 3+ 4+ 2- 2- 4-6+ (1)在10袋小麦中,第几袋的记数质量最接近标准质量?(2)与标准质量相比较,10袋小麦总计超过或不足多少千克?(3)每袋小麦的平均质量是多少千克?参考答案1.B【分析】根据正数大于0,负数小于0判断即可.【详解】解:在-2,313 0,-1.7五个数中,正数有3,13共2个. 故选:B .【点睛】本题考查了正数和负数,掌握正数和负数的定义是解答本题的关键.2.A【分析】根据正负数的意义即可求解.【详解】解:增长2.7%记作 2.7+%,“减少3.4%”记作 3.4%-故选:A .【点睛】本题考查了正负数的意义,理解题意是解题的关键.3.C【分析】根据有理数大小比较的法则:①正数都大于0; ①负数都小于0; ①正数大于一切负数; ①两个负数,绝对值大的其值反而小,即可得出答案.【详解】解:①10.50-<-<<2.5①有理数中0.5012.5--,,,,最小的数是1-.故选:C .【点睛】本题主要考查了有理数的比较大小,解本题的关键是熟练掌握有理数的比较大小的法则. 4.B【分析】根据有理数比较大小的法则逐项比较即可解答. 【详解】解:A 、①3333-=+=,,①33-=+,故本选项错误; B 、①90,100>-<,①910>-,故本选项正确;C 、①10.010->-<且10.01->-,则10.01-<-,故本选项错误;D 、由10100-=>故本选项错误.故选:B .【点睛】本题主要考查了有理数的大小比较,掌握好正数都大于0,负数都小于0,正数大于一切负数;两个负数相比较,绝对值大的反而小是本题的关键.5.B6.C7.A8.C9.6-【分析】本题主要考查了正负数的意义,正确理解题意是解题的关键.本题根据54分比基准分低6分可得答案.【详解】解:①以60分为准,68分记为8+分①某同学得54分,则应记为6-分故答案为:6-.10.-2022【分析】根据两个数是互为相反数可得,两数之和等于0,由两个数是互为倒数可得,两数乘积是1.【详解】①若m 、n 互为相反数,x 、y 互为倒数①m +n =0,xy =1,2021m +2021n -2022xy =2021×(x +y )-2022xy =2021×0-20221=-2022. 故答案为:-2022.【点睛】本题主要考查相反数的性质和倒数的性质,解决本题的关键是要熟练掌握相反数和倒数的性质. 11.7-【分析】本题考查了正负数的实际应用,相反意义的量,解题的关键是理解题意,掌握相反意义的量.由题意得,以上午8时为0,向前每25分钟为一个“1-”,上午5:05与8时相隔175分钟,进而可求出答案.【详解】解:由题意得,以上午8时为0,向前每45分钟为一个“1-”①上午5:05与8时相隔175分钟,175?25=7①上午5:05应记为:7-故答案为:7-.12. 3 18【分析】根据超过的记为正,不足的记为负,绝对值小的接近标准,可得最接近标准的球;根据质量最大的求减去质量最小的球,可得质量最大的足球比质量最小的足球多多少克. 【详解】解:55+= 77+= |3|3-= |9|9-= 99+=①3570<<<①最接近标准质量的是3号足球; ()999918+--=+=(克)即质量最大的足球比质量最小的足球多18克.故答案为:3;18.【点睛】本题考查了正负数的意义,绝对值的意义,有理数的减法的应用,掌握正负数的意义是解题的关键.13.-9【分析】根据相反数,倒数,绝对值得出a +b =0,cd =1,x =±3,再代入求出即可.【详解】解:①a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是3①a +b =0,cd =1,x =±3①将其带入可得()25()13a b +-⨯±最后计算得到值为9-.故答案为9-.【点睛】本题考查了相反数,倒数,绝对值,求代数式的值的应用,能根据已知得出a +b =0,cd =1,x =±3是解此题的关键.14.【答案】−14【知识点】绝对值的意义、有理数大小比较、有理数加法运算【分析】本题考查绝对值和有理数大小比较,关键是掌握绝对值的性质;找出绝对值不小于2且小于512的所有负整数,相加即可得到结果.【详解】解:绝对值不小于2且小于512的整数包括:±2,±3,±4,±5 其中负整数有:−2 −3 ∴绝对值不小于2且小于512和为:−2+(−3)+(−4)+(−5)=−14.故答案为:−14.15.9-【分析】先根据相反数的性质列等式,得到|2||3|0a b -++=,再根据绝对值的非负性解得a b 、的值,代入求解即可.【详解】两个数互为相反数,则相加和为0,即|2||3|0a b -++=,根据绝对值的非负性,求得2a = 3b =- 则()239a b -=--=-.故答案为:9-【点睛】本题主要考查了绝对值、相反数与乘方的综合运算,掌握各概念性质是解题的关键. 16.【答案】 −2 3 −0.5【知识点】用数轴上的点表示有理数、相反数的定义、数轴上两点之间的距离【分析】本题考查数轴的综合应用,熟练掌握点在数轴上的表示、数轴的意义及三要素、相反数的意义和性质等是解题关键.根据各点之间的位置关系、原点位置及相反数的性质解答;【详解】解:由题意可知:AB =2 AC =5 BC =3①以B 为原点时,点A 表示的数是−2,点C 表示的数是3若A ,C 表示的两个数互为相反数,则AC 的中点(如图,设为D )为原点①AD =CD =2.5 BD =AD −AB =0.5且D 在B 的右边①点B 表示的数是−0.5;故答案为:−2 3 −0.5.17.(1)养护小组在出发点的北方,距离出发点15千米(2)97千米【分析】此题主要考查有理数计算的应用.分析理解原题意是关键.(1)把这些数据相加即可得最后到达的位置及特点;(2)把这些数据的绝对值加起来可得汽车行驶的路程,再算出耗油量.【详解】(1)1797153116851615+-+--+--++=因为150>所以养护小组在出发点的北方,距离出发点15千米;(2)1797153116851697++-+++-+-+++-+-++++=所以该养护小组一共行驶了97千米.18.(1)1a =- 0b = 1c = (2)6【分析】本题考查了有理数、绝对值以及数轴(1)根据a 是最大的负整数,b 是绝对值最小的数,c 是倒数等于本身的正数,即可得出a 、b ,c 的值;(2)先确定11x -≤≤,分析当11x -≤≤时113x x x +--、、的正负,去掉绝对值符号即可得出结论; 【详解】(1)①a 是最大的负整数,b 是绝对值最小的数,c 是倒数等于本身的正数①1a =- 0b = 1c =;(2)①P 在A 和C 之间①11x -≤≤①10x +> 10x -≥ 30x -< ①()()112311236x x x x x x +--+-=+--+-=19.(1)第3袋(2)不足2千克(3)149.8千克【分析】本题考查正负数表示相反意义量,绝对值,有理数加减运算,平均数,掌握正负数表示相反意义量,绝对值,有理数加减运算,平均数是解题关键.(1)先求超过或不足各数的绝对值,找出绝对值最小的即可;(2)计算超过或不足各数的和,看是正数还是负数,正数是几超过几千克,负数是不足几千克即可; (3)求出超过与不足数的平均数与150标准相加即可.【详解】(1)解:因为00=,所以第3袋的记数质量最接近标准质量.(2)解:()()()()()()()()630234224620-+-++++++++-+-+-++=-<所以10袋小麦总计不足2千克.(3)解:150102149.810⨯-=(千克) 所以每袋小麦的平均质量是149.8千克.。

人教版数学七年级上册第一章有理数《单元检测卷》附答案

人教版数学七年级上册第一章有理数《单元检测卷》附答案

人教版数学七年级上学期第一章有理数测试一.选择题(共 10 小题)1.的相反数是( )A. B. 2 C. 12 D. 12- 2.若气温为零上10℃记作+10℃,则-3℃表示气温为( )A. 零上3℃B. 零下3℃C. 零上7℃D. 零下7℃ 3.若0a <,0b >,且a b <,则+a b 的值一定是( )A. 正数B. 负数C. 0D. 非负数 4.下列化简错误是( )A. -(-5)=5B. -|-45|=45C. -(-3.2)=3.2D. +(+7)=7 5.股民小王上周五买进某公司的股票,每股25元,下表为本周内该股票的涨跌情况,则本周五收盘时,该股票每股价格是( )A. 27.1元B. 24.5元C. 29.5元D. 25.8元 6.当n 为正整数时,(﹣1)2n+1﹣(﹣1)2n 的值为( )A. 0B. 2C. ﹣2D. 2或﹣27.(﹣2)6表示( )A. 6个﹣2相乘的积B. ﹣2与6相乘的积C. 2个6相乘的积的相反数D. 6与2相乘的积8.有理数,在数轴上的对应点的位置如图所示,则正确的结论是( )A. m<-1B. n>3C. m<-nD. m>-n9.现规定一种运算:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,……,则200!199!的值为( )A. 200B. 199C. 200199D. 110.根据最新数据统计,2018 年中山市常住人口已达到3260000 人.将 3260000用科学记数法表示,下列选项正确的是()A. 3.26×105B. 3.26×106C. 32.6×105D. 0.326×107二.填空题(共 7 小题)11.在数轴上表示a、b两数的点如图所示,则a b a b+++=__________.12.74-的相反数是__,倒数是__.13.8÷(﹣32)=_____14.数轴上表示1 的点和表示﹣2 的点的距离是_____.15.某种零件,标明要求是φ25±0.2 mm(φ表示直径,单位:毫米),经检查,一个零件的直径是24.9mm,该零件____________(填“合格”或“不合格”).16.若定义一种新的运算,规定acbd=ab-cd,则1423-=_____.17.计算:①﹣7﹣3=_________;②3﹣(﹣2)×4=_________;③比3 小﹣5 的数是_________.三.解答题(共 6 小题)18.(1)计算:﹣1+(﹣2)÷(﹣23)×13(2)计算:(﹣34+16﹣38)×(﹣24) (3)计算:﹣24÷(﹣8)﹣14×(﹣2)2 19.我们规定“※”一种数学运算符号,两数、通过“※”运算是()22A B +⨯-,即※()22A B =+⨯-, 例如:※()32255=+⨯-=(1)求:7※9值;(2)求:(7※9)※(-2)的值.20.在东西向的绿道上设有一个岗亭,佳佳从岗亭出发以 13km/h 的速度沿绿道巡逻.规定向东巡逻为正,向西巡逻为负,巡逻情况记录(单位:km)如下:第一次 第二次 第三次 第四次 第五次 第六次 第七次4﹣5 3 ﹣4 ﹣3 6 ﹣1(1)第六次巡逻结束时,佳佳在岗亭哪一边?(2)在第几次巡逻结束时,佳佳离岗亭最远?(3)佳佳一共巡逻多少时间?21.在下面给出的数轴中,点 A 表示 1,点 B 表示-2,回答下面的问题:(1)A 、B 之间的距离是 ;(2)观察数轴,与点 A 的距离为 5 的点表示的数是: ;(3)若将数轴折叠,使点 A 与-3 表示的点重合,则点 B 与数 表示的点重合;(4)若数轴上 M 、N 两点之间的距离为 2018(M 在 N 的左侧),且 M 、N 两点经过(3)中折 叠 后 互 相 重 合 , 则 M 、 N 两 点 表 示 的 数 分 别 是 : M : ;N : .22.规定:求若干个相同的有理数(均不等于 0)的除法运算叫做除方,如 2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,类比有理数的乘方,我们把记作 2÷2÷2,2②,读作“2的圈 3 次方,”(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作:“(﹣3)的圈 4 次方”.一般地,把个记作 a ⓝ,读作 “a 的圈 n 次方”【初步探究】(1)直接写出计算结果:2②,(﹣12)②. 【深入思考】 21111112=2==222222⨯⨯⨯⨯④() 我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(2)试一试,仿照上面的算式,将下列运算结果直接写成幂的形式.5⑥;(﹣12)⑩. (3)想一想:有理数 a(a≠0)的圈n(n≥3)次方写成幂的形式等于多少.23.某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产为正,减产为负):⑴根据记录可知前三天共生产________辆;⑵产量最多的一天比产量最少的一天多生产________辆;⑶该厂实行计件工资制,每辆车60元,超额完成任务每辆奖15元,少生产一辆扣15元,那么该厂工人这一周工资总额是多少?答案与解析一.选择题(共 10 小题)1.的相反数是( )A.B. 2C. 12D. 12- 【答案】B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B .【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .2.若气温为零上10℃记作+10℃,则-3℃表示气温为( )A. 零上3℃B. 零下3℃C. 零上7℃D. 零下7℃ 【答案】B【解析】根据用正负数来表示具有意义相反的两种量:若零上记为正,则零下就记为负,故若气温为零上10℃记作+10℃,则−3℃表示气温为零下3℃.故选B.3.若0a <,0b >,且a b <,则+a b 的值一定是( )A. 正数B. 负数C. 0D. 非负数 【答案】A【解析】【分析】根据题意,利用绝对值的代数意义,以及有理数的加法法则判断即可.【详解】∵a <0,b >0,且|a|<|b|,∴a+b 一定正数,故选A .【点睛】此题考查了有理数的加法,以及绝对值,熟练掌握运算法则是解本题的关键.4.下列化简错误的是()A -(-5)=5 B. -|-45|=45C. -(-3.2)=3.2D. +(+7)=7【答案】B【解析】【分析】根据相反数的定义逐一判断即可.【详解】A. -5的相反数为5,则-(-5)=5是正确的,B. |-45|为45,45的相反数为-45,则- |-45|=45是错误的,C.-3.2的相反数为3.2,则-(-3.2)=3.2是正确的,D. +(+7)=7是正确的.故答案选B.【点睛】本题考查了相反数的知识点,解题的关键是熟练的掌握相反数的定义并判断正确答案.5.股民小王上周五买进某公司的股票,每股25元,下表为本周内该股票的涨跌情况,则本周五收盘时,该股票每股价格是( )A. 27.1元B. 24.5元C. 29.5元D. 25.8元【答案】B【解析】【分析】本题是一道较为基础的题型,考查的是对正数和负数的实际意义的熟练程度,对于本题而言,星期五收盘时,该股票每股是:25﹣2.1+2﹣1.2+0.5+0.3=24.5(元).【详解】解:25﹣2.1+2﹣1.2+0.5+0.3=24.5(元),故选B.【点睛】本题考查正数和负数的实际意义,解题关键是掌握本题中正数和负数的意义,这样可以提高解题的速度和准确率.6.当n为正整数时,(﹣1)2n+1﹣(﹣1)2n的值为( )A. 0B. 2C. ﹣2D. 2或﹣2【答案】C【解析】【分析】1、由n为正整数, 得2n是偶数, 2n+1是奇数;2、根据“指数是偶数时, 负数的幂是正数”以及“指数是奇数时, 负数的幂是负数"可得(-1)2n+1=-1,(-1)2n=1;3、接下来根据有理数的加法法则进行计算即可.【详解】解:原式=(﹣1)2n+1﹣(﹣1)2n = -1-1= - 2,故选C.【点睛】本题主要考查负数的幂运算: 指数是偶数时, 负数的幂是正数,指数是奇数时, 负数的幂是负数.7.(﹣2)6表示( )A. 6个﹣2相乘的积B. ﹣2与6相乘的积C. 2个6相乘的积的相反数D. 6与2相乘的积【答案】A【解析】【分析】根据乘方的意义直接回答即可.【详解】根据乘方的意义知:(-2)6表示6个-2相乘,故选A.【点睛】本题考查了有理数的乘法的意义,了解乘方的意义是解答本题的关键,难度不大.8.有理数,在数轴上的对应点的位置如图所示,则正确的结论是( )A. m<-1B. n>3C. m<-nD. m>-n【答案】D【解析】【分析】根据数轴可以判断m、n的大小,从而可以解答本题.【详解】由数轴可得,-1<m<0<2<n<3,故选项A错误,选项B错误,∴m>-n,故选项C错误,选项D正确,故选D.【点睛】本题考查数轴,解答本题的关键是明确数轴的特点,利用数形结合的思想解答.9.现规定一种运算:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,……,则200!199!的值为( )A. 200B. 199C. 200199D. 1【答案】A【解析】【分析】首先观察已知条件,不难找到规律n!=n×(n-1)×(n-2)×…×2×1,注意不要找错对应关系;然后根据新运算法则将待求式转化为一般的算式,再进行化简、计算即可求出所要求的结果.【详解】解:根据题中的新定义得:原式=2001991 1991981⨯⨯⋅⋅⋅⨯⨯⨯⋅⋅⋅⨯=200,故选A.【点睛】本题考查定义新运算,有理数的除法,有理数的乘法,解题关键是要根据题目所给的已知条件得到新运算的法则.10.根据最新数据统计,2018 年中山市常住人口已达到3260000 人.将 3260000用科学记数法表示,下列选项正确的是()A. 3.26×105B. 3.26×106C. 32.6×105D. 0.326×107【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n 是负数.【详解】3260000用科学记数法表示为:3.26×106, 故选B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.二.填空题(共 7 小题)11.在数轴上表示a 、b 两数的点如图所示,则a b a b +++=__________.【答案】0【解析】【分析】根据数轴上点的位置判断出a +b 的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】根据题意得:b <0<a ,∴ |b |>|a |,∴ a +b <0,∴a b +=-a -b,∴a +b +a b + =a +b -a -b =0,故答案为0.【点睛】此题考查了整式的加减,数轴,以及绝对值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.12.74-的相反数是__,倒数是__. 【答案】 (1).74 (2). 47- 【解析】【分析】 根据相反数的定义及倒数的定义作答.【详解】−74的相反数是74,−74的倒数是−47. 【点睛】本题考查的知识点是相反数及倒数,解题的关键是熟练的掌握相反数及倒数.13.8÷(﹣32)=_____【答案】-0.25【解析】【分析】根据有理数的除法法则进行计算即可.详解】8÷(﹣32)=-0.25.故答案为-0.25.【点睛】本题考查了有理数的除法运算法则,熟记法帖是解题的关键.14.数轴上表示1 的点和表示﹣2 的点的距离是_____.【答案】3【解析】分析】直接根据数轴上两点间的距离公式求解即可.【详解】∵|1-(-2)|=3,∴数轴上表示-2的点与表示1的点的距离是3.故答案为3.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.15.某种零件,标明要求是φ25±0.2 mm(φ表示直径,单位:毫米),经检查,一个零件的直径是24.9mm,该零件____________(填“合格”或“不合格”).【答案】合格【解析】【分析】根据φ250.2mm±可知,零件的最大直径为:25.2mm,最小直径为24.8mm,直径在24.8mm到25.2mm之间的零件为合格.【详解】解:∵φ250.2mm±,∴零件直径最大值为:25.2mm,零件直径最小值为:24.8mm,合格范围:25.2≥φ24.8≥,∵24.9mm在该范围内,∴该零件合格,故答案为合格.【点睛】本题考查了正负数的意义.读懂正负号并求出直径的取值范围是解题的关键.16.若定义一种新的运算,规定acbd=ab-cd,则1423-=_____.【答案】14 【解析】【分析】根据acbd=ab-cd,可以求得所求式子的值.【详解】∵acbd=ab-cd,∴1423=1×2-4×(-3)=2+12=14,故答案为14.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.17.计算:①﹣7﹣3=_________;②3﹣(﹣2)×4=_________;③比3 小﹣5 的数是_________.【答案】(1). ﹣10(2). 11(3). 8【解析】【分析】根据有理数的加减法和乘除法可以解答各个小题.①-7-3=(-7)+(-3)=-10;②3-(-2)×4=3+8=11;③比3小-5的数是:3-(-5)=3+5=8,故答案为-10;11;8.【详解】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.三.解答题(共 6 小题)18.(1)计算:﹣1+(﹣2)÷(﹣23)×13(2)计算:(﹣34+16﹣38)×(﹣24)(3)计算:﹣24÷(﹣8)﹣14×(﹣2)2【答案】(1)0;(2)23;(3)1.【解析】【分析】(1)原式先计算乘除运算,再计算加减运算即可求出值;(2)原式利用乘法分配律计算即可求出值;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】解:(1)原式=﹣1+2×32×13=﹣1+1=0;(2)原式=18﹣4+9=23;(3)原式=2﹣1=1.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.我们规定“※”是一种数学运算符号,两数、通过“※”运算是()22A B +⨯-,即※()22A B =+⨯-, 例如:※()32255=+⨯-=(1)求:7※9的值;(2)求:(7※9)※(-2)的值.【答案】(1)9;(2)24.【解析】【分析】(1)把所给定义式中的a 换成7、b 换成9代入计算即可;(2)原式利用题中的新定义计算即可求出值.【详解】解:(1)7※9=(7+2)×2-9=9×2-9=9; (2)根据题中的新定义得:原式=9※(-2)=(9+2)×2-(-2)=11×2+2=24.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.在东西向的绿道上设有一个岗亭,佳佳从岗亭出发以 13km/h 的速度沿绿道巡逻.规定向东巡逻为正,向西巡逻为负,巡逻情况记录(单位:km)如下:(1)第六次巡逻结束时,佳佳在岗亭的哪一边?(2)在第几次巡逻结束时,佳佳离岗亭最远?(3)佳佳一共巡逻多少时间?【答案】(1)第六次巡逻结束时,佳佳在岗亭的东边;(2)在第五次巡逻结束时,佳佳离岗亭最远;(3)佳佳一共巡逻 2 小时.【解析】【分析】(1)把前面六次巡逻记录相加,根据和的情况即可判断佳佳在岗亭的哪一边;(2)求出每次记录时与出发点岗亭的距离,数值最大的为最远的距离;(3)求出所有记录的绝对值的和,再除以佳佳的速度13km/h,计算即可得解.【详解】(1)4﹣5+3﹣4﹣3+6=1.答:第六次巡逻结束时,佳佳在岗亭的东边;(2)第一次4km;第二次4+(﹣5)=﹣1(km);第三次﹣1+3=2(km);第四次2+(﹣4)=﹣2(km);第五次﹣2+(﹣3)=﹣5(km);第六次﹣5+6=1(km);第七次1+(﹣1)=0(km);答:在第五次巡逻结束时,佳佳离岗亭最远;(3)|4|+|﹣5|+|3|+|﹣4|+|﹣3|+|6|+|﹣1|=26(km),26÷13=2(小时).答:佳佳一共巡逻2 小时.21.在下面给出的数轴中,点A 表示1,点B 表示-2,回答下面的问题:(1)A、B 之间的距离是;(2)观察数轴,与点A 的距离为5 的点表示的数是:;(3)若将数轴折叠,使点A 与-3 表示的点重合,则点B 与数表示的点重合;(4)若数轴上M、N 两点之间的距离为2018(M 在N 的左侧),且M、N 两点经过(3)中折叠后互相重合 , 则M 、N 两点表示的数分别是:M :;N:.【答案】(1)3;(2)6或-4;(3)0;(4) M : -1010 ;N: 1008 .【解析】【分析】(1)(2)观察数轴,直接得出结论;(3)A 点与-3表示的点相距4单位,其对称点为-1,由此得出与B 点重合的点;(4)对称点为-1,M 点在对称点左边,离对称点2018÷2=1009个单位,N 点在对称点右边,离对称点1009个单位,由此求出M 、N 两点表示的数.【详解】(1)A 、B 之间的距离是1+|−2|=3.故答案为3;(2)与点A 的距离为5的点表示的数是:−4或6.故答案为−4或6;(3)则A 点与−3重合,则对称点是−1,则数B 关于−1的对称点是:0.故答案为0;(4)由对称点为−1,且M 、N 两点之间的距离为2018(M 在N 的左侧)可知,M 点表示数−1010,N 点表示数1008.故答案为−1010,1008.【点睛】本题考查了数轴的运用.关键是利用数轴,数形结合求出答案.22.规定:求若干个相同的有理数(均不等于 0)的除法运算叫做除方,如 2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,类比有理数的乘方,我们把记作 2÷2÷2,2②,读作“2的圈 3 次方,”(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作:“(﹣3)的圈 4 次方”.一般地,把个记作 a ⓝ,读作 “a 的圈 n 次方”【初步探究】(1)直接写出计算结果:2②,(﹣12)②. 【深入思考】 21111112=2==222222⨯⨯⨯⨯④() 我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(2)试一试,仿照上面的算式,将下列运算结果直接写成幂的形式.5⑥;(﹣12)⑩. (3)想一想:有理数 a(a≠0)的圈n(n≥3)次方写成幂的形式等于多少.【答案】(1)12,-2;(2)41()5,(﹣2)8;(3)21()n a -. 【解析】【分析】(1)根据所给定义计算即可(2)仿照上面的算式计算即可(3)根据前两问,找出规律写出结果即可,【详解】(1)2②=2÷2÷2=12,2②=﹣12÷(﹣12)÷(﹣12)=﹣2; (2)5⑥=5×15×15×15×15×15=415⎛⎫ ⎪⎝⎭,同理得;(﹣12)⑩=(﹣2)8; (3)a ⓝ=a×1a ×1a ×…×1a =21n a -⎛⎫ ⎪⎝⎭【点睛】本题考查了有理数的混合运算,充分理解新定义是解题的关键.23.某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产为正,减产为负):⑴根据记录可知前三天共生产________辆;⑵产量最多一天比产量最少的一天多生产________辆;⑶该厂实行计件工资制,每辆车60元,超额完成任务每辆奖15元,少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?【答案】(1)599;(2)23;(3)83925【解析】试题分析:(1)根据有理数的加法,可得答案;(2)根据最大数减最小数,可得答案;(3)根据实际生产的量乘以单价,可得工资,根据超出的部分或不足的部分乘以每辆的奖金,可得奖金,根据工资加奖金,可得答案.试题解析:解:(1) 200×3+5-2-4=599(辆)(2) 13-(-10)=23(辆)(3) 5-2-4+13-10+6-9=-1(辆)(1400-1)×60+(5-2-4+13-10+6-9)×15=83925(元)。

人教版初中数学七年级上册第一章《有理数》单元检测题(含答案)

人教版初中数学七年级上册第一章《有理数》单元检测题(含答案)

《有理数》检测题一、单选题1.实数在数轴上的对应点的位置如图所示,则正确的结论是()A. B. C. D.2.实数在数轴上的对应点位置如图所示,把,按照从小到大的顺序排列,正确的是( ).A. B.C. D.3.的计算结果为()A. B. C. D.4.在﹣,0,﹣π,﹣1这四个数中,最小的数是()A. ﹣B. 0C. ﹣πD. ﹣15.在“有理数的加法与减法运算”的学习过程中,我们做过如下数学实验.“把笔尖放在数轴的原点处,先向左移动3个单位长度,再向右移动1个单位长度,这时笔尖的位置表示什么数?”用算式表示以上过程和结果的是()A. (﹣3)﹣(+1)=﹣4 B. (﹣3)+(+1)=﹣2 C. (+3)+(﹣1)=+2 D. (+3)+(+1)=+46.在 0.5, 0 ,-1,-2 这四个数中,绝对值最大的数是( ) A. 0.5 B. 0 C. -1 D. -27.一个数的绝对值等于5,这个数是().A. 5B. ±5C. -5D.8.的倒数的相反数是()A. ﹣5B.C.D. 59.计算的结果等于( ).A. -2B. 0C. 1D. 210.气温由﹣1℃上升2℃后是()A. 3℃B. 2℃C. 1℃D. ﹣1℃11.武汉地区冬季某一天最高气温7℃,最低-3℃,则这一天最高气温比最低气温高()A. 10℃B. 4℃C. 8℃D. 7℃二、填空题12.(2017四川省宜宾市)规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.则下列说法正确的是________.(写出所有正确说法的序号)①当x=1.7时,[x]+(x)+[x)=6;②当x=﹣2.1时,[x]+(x)+[x)=﹣7;③方程4[x]+3(x)+[x)=11的解为1<x<1.5;④当﹣1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有两个交点.13.常用成语中有“半斤八两”,旧制一斤为十六两,若一两为十六钱,则48钱为_____斤.14.可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源.据报道,仅我国可燃冰预测远景资源量就超过了1200亿吨油当量.将1200亿用科学记数法表示为a×10n的形式,则a的值为_____.15.2017年襄阳全市实现地区生产总值4064.9亿元,数据4064.9亿用科学计数法表示为_______.16.扬州市梅岭中学图书馆藏书12000本,数据“12000”用科学记数法可表示为_________.17.计算_______________.三、解答题18.已知:b是最小的正整数,且a、b、c满足(c﹣5)2+|a+b|=0,试回答下列问题:(1)求a,b,c的值(2)a、b、c所对应的点分别为A、B、C,若点A以每秒1个单位长度的速度向左运动,点C以每秒5个单位长度的速度向右运动,试求几秒后点A 与点C距离为12个单位长度?参考答案1.C【解析】分析:根据数轴上点的位置关系,可得a,b,c,d的大小,根据有理数的运算,绝对值的性质,可得答案.详解:由数轴上点的位置,得:a<−4<b<0<c<1<d.A.a<−4,故A不符合题意;B.bd<0,故B不符合题意;C.|a|>|b|,故C符合题意;D.b+c<0,故D不符合题意;故选:C.点睛:本题考查了实数与数轴、绝对值的性质.2.C【解析】分析:根据数轴得出a<0<b,求出﹣a>﹣b,﹣b<0,﹣a>0,即可得出答案.详解:∵从数轴可知:a<0<b,∴﹣a>﹣b,﹣b<0,﹣a>0,∴﹣b<0<﹣a.故选C.点睛:本题考查了数轴,有理数的大小比较的应用,能根据数轴得出﹣b<0<﹣a,是解答此题的关键.3.B【解析】分析:原式利用绝对值的代数意义计算即可.详解:原式==﹣.故选B.点睛:本题考查了有理数的减法以及绝对值,熟练掌握运算法则是解答本题的关键.4.C【解析】分析:正数大于一切负数;零大于一切负数;零小于一切正数;两个正数比较大小,绝对值大的数就大;两个负数比较大小,绝对值大的数反而小.本题只要根据有理数大小比较方法即可得出答案.详解:根据有理数的大小比较方法可得:-π<-<-1<0,故选C.点睛:本题主要考查的是有理数的大小比较方法,属于基础题型.明白有理数的大小比较方法即可得出答案.5.B【解析】分析:根据向左为负,向右为正得出算式(-3)+(+1),求出即可.详解:∵把笔尖放在数轴的原点处,先向左移动3个单位长度,再向右移动1个单位长度,∴根据向左为负,向右为正得出(-3)+(+1)=-2,∴此时笔尖的位置所表示的数是-2.故选:B.点睛:本题考查了有关数轴问题,解此题的关键是理解两次运动的表示方法和知道一般情况下规定:向左用负数表示,向右用正数表示.6.D【解析】分析:根据绝对值的意义,数轴上一个数所对应的点与原点(点零处)的距离叫做该数绝对值,由距离的多少比较即可.详解:0.5的绝对值为0.5;0的绝对值为0;-1的绝对值为1;-2的绝对值为2.因为2最大,所以绝对值最大的是-2.故选:D.点睛:此题主要考查了绝对值的意义,熟记绝对值的意义和绝对值的性质是解题关键,比较简单.7.B【解析】分析:根据绝对值的定义解答.详解:绝对值是5的数,原点左边是-5,原点右边是5,∴这个数是±5.故选B.点睛:本题主要考查了绝对值的定义,要注意从原点左右两边考虑求解.8.D【解析】分析:先根据倒数的定义得到的倒数为-5,再根据相反数的定义得到-5的相反数为5.详解:∵的倒数为-5,-5的相反数为5,∴的倒数的相反数是5.故选D.点睛:本题考查了倒数的定义,也考查了相反数的定义.9.A【解析】分析:根据有理数的减法运算法则进行计算即可得解.详解:﹣1﹣1=﹣2.故选A.点睛:本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.10.C【解析】分析:根据上升2℃即是比原来的温度高了2℃,就是把原来的温度加上2℃即可.详解:∵气温由﹣1℃上升2℃,∴﹣1℃+2℃=1℃.故选C.点睛:本题考查了有理数的加法,要先判断正负号的意义:上升为正,下降为负,再根据有理数加法运算法则进行计算.11.A【解析】分析:根据题意列出式子按有理数减法法则计算即可.详解:由题意可得:(℃).故选A.点睛:本题考查的是有理数减法的实际应用,解题的关键是根据题意列出正确的算式.12.②③【解析】试题解析:①当x=1.7时,[x]+(x)+[x)=[1.7]+(1.7)+[1.7)=1+2+2=5,故①错误;②当x=﹣2.1时,[x]+(x)+[x)=[﹣2.1]+(﹣2.1)+[﹣2.1)=(﹣3)+(﹣2)+(﹣2)=﹣7,故②正确;③当1<x<1.5时,4[x]+3(x)+[x)=4×1+3×2+1=4+6+1=11,故③正确;④∵﹣1<x<1时,∴当﹣1<x<﹣0.5时,y=[x]+(x)+x=﹣1+0+x=x﹣1,当﹣0.5<x<0时,y=[x]+(x)+x=﹣1+0+x=x﹣1,当x=0时,y=[x]+(x)+x=0+0+0=0,当0<x<0.5时,y=[x]+(x)+x=0+1+x=x+1,当0.5<x<1时,y=[x]+(x)+x=0+1+x=x+1,∵y=4x,则x﹣1=4x时,得x=;x+1=4x时,得x=;当x=0时,y=4x=0,∴当﹣1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有三个交点,故④错误,故答案为:②③.考点:1.两条直线相交或平行问题;2.有理数大小比较;3.解一元一次不等式组.13.256【解析】【分析】根据题意列出算式,计算即可得.【详解】根据题意得:48÷16=48÷42=46(两),46÷16=46÷42=44=256(斤),故答案为:256.【点睛】本题考查了有理数的乘方、同底数幂的除法,掌握相应的运算法则是解题的关键.14.1.2.【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1200亿有12位,所以可以确定n=12-1=11.详解:1200亿=1.2×1011,故a=1.2.故答案为:1.2.点睛:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.15.4.0649×1011【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】4064.9亿=406490000000,406490000000小数点向左移动11位得到4.0649,所以4064.9亿用科学计数法表示为4.0649×1011,故答案为:4.0649×1011.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.详解:12000=1.2×104.故答案为:1.2×104.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.17.【解析】分析:根据绝对值的定义可知,负指数幂的运算法则可知,再由实数的运算法则计算即可.详解:原式=.点睛:本题考察了去绝对值符号、负指数幂.18.(1) a=﹣1,b=1,c=5;(2) 1秒后点A与点C距离为12个单位长度.【解析】分析:(1)根据非负数的性质列出算式,求出a、b、c的值;(2)根据题意列出方程,解方程即可.详解:(1)由题意得,b=1,c-5=0,a+b=0,则a=-1,b=1,c=5;(2)设x秒后点A与点C距离为12个单位长度,则x+5x=12-6,解得,x=1,答:1秒后点A与点C距离为12个单位长度.点睛:本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.。

人教版七年级数学上册第一章《有理数》全章练习题题(含答案解析)

人教版七年级数学上册第一章《有理数》全章练习题题(含答案解析)
创新应用 ★11.如图所示的是两个正方体纸盒的表面展开图,请分别在标有字母的正方形内填入适当 的数,使得它们折成正方体后相对面上的两个数互为相反数.
能力提升 1.C 2.D
参考答案
1.2.2 数轴
能力提升 1.在数轴上,原点及原点右边的点表示的数是( )
A.正数
B.整数
C.非负数
D.非正数
2.数轴上的点 A 与原点距离 6 个单位长度,则点 A 表示的数为( )
A.6 或-6
B.6
C.-6
D.3 或-3
3.在数轴上,表示-17 的点与表示-10 的点之间的距离是( )
A.27 个单位长度 B.-27 个单位长度
参考答案
能力提升 1.C 在数轴上,原点及原点右边的点表示的数是 0 和正数. 2.A 3.C 4.D 5.4 -6 6.2 7.7 符合条件的点有-3,3,-2,2,-1,1,0,共 7 个. 8.-5 或 1 画出数轴,找出-2 表示的点,与该点距离 3 个单位长度的点有两个,分别表示 -5,1. 9.分析:从图中可见墨迹盖住两段,一段是在-8~-3 之间,另一段在 4~9 之间. 解:-8~-3 之间的整数有-4,-5,-6,-7;4~9 之间的整数有 5,6,7,8.
D.Q 站点与 R 站点之间
5. 在 数 轴 上 , 表 示 数 -6,2.1,- ,0,-4 ,3,-3 的 点 中 , 在 原 点 左 边 的 点 有
个,
表示的点与原点的距离最远.
7
6.点 M 表示的有理数是-1,点 M 在数轴上向右移动 3 个单位长度后到达点 N,则点 N 表示的有
理数是 .
5 -0.8 0 -2 -3
整数
分数
负整数

人教版数学七年级上《有理数》单元检测卷 含答案

人教版数学七年级上《有理数》单元检测卷   含答案

人教版七年级第1章《有理数》单元检测卷一.填空题(共8小题,满分24分,每小题3分)1.﹣的相反数是,倒数是,绝对值是.2.如果上升10米记作+10米,那么下降5米记作米.3.比较大小:﹣0.4 ﹣.4.我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为118000千米,用科学记数法表示为千米.5.1.95≈(精确到十分位);576000≈(精确到万位).6.在数轴上,若A点表示数﹣1,点B表示数2,A、B两点之间的距离为.7.当|a|+a=0时,则a是.8.现规定一种新的运算“*”:a*b=ab,如3*2=32=9,则()*3=.二.选择题(共10小题,满分30分,每小题3分)9.一个数的相反数仍是它本身,这个数是()A.1 B.﹣1 C.0 D.正数10.下列说法正确的是()A.整数就是正整数和负整数B.负整数的相反数就是非负整数C.有理数中不是负数就是正数D.零是自然数,但不是正整数11.四个有理数﹣1,2,0,﹣3,其中最小的是()A.﹣1 B.2 C.0 D.﹣312.下列各式中一定为负数的是()A.﹣(﹣1)B.﹣|﹣1| C.﹣(﹣1)3 D.(﹣1)2 13.杨梅开始采摘啦!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则这4筐杨梅的总质量是()A.19.7千克B.19.9千克C.20.1千克D.20.3千克14.近似数2.7×103是精确到()A.十分位B.个位C.百位D.千位15.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c16.若|a|=5,|b|=6,且a>b,则a+b的值为()A.﹣1或11 B.1或﹣11 C.﹣1或﹣11 D.11 17.两个数的差是负数,则这两个数一定是()A.被减数是正数,减数是负数B.被减数是负数,减数是正数C.被减数是负数,减数也是负数D.被减数比减数小18.已知a,b为有理数,则下列说法正确的个数为()①若a+b>0,>0,则a>0,b>0;②若a+b>0,<0,则a>0,b<0且|a|>|b|或a<0,b>O 且|b|>|a|;③若a+b<0,>0,则a<0,b<0;④若a+b<0,<0,则a>0,b<0且|b|>|a|或a<0,b>0且|a|>|b|.A.1 B.2 C.3 D.4三.解答题(共7小题,满分46分)19.(6分)计算:(1)(﹣49)﹣(+91)﹣(﹣5)+(﹣9);(2)﹣17+17÷(﹣1)11﹣52×(﹣0.2)3;(3)﹣5﹣[﹣﹣(1﹣0.2×)÷(﹣2)2].20.(5分)在数轴上表示数:﹣2,|﹣2|,﹣3,3,+3.5,并从小到大的顺序用“<“连接起来.21.(5分)已知a是最大的负整数,b是﹣2的相反数,c与d互为倒数,计算:a+b﹣cd的值.22.(6分)10盒火柴如果以每盒100根为准,超过的根数记作正数,不足的根数记作负数,每盒数据记录如下:+3,+2,0,﹣1,﹣2,﹣3,﹣2,+3,﹣2,﹣2.求:这10盒火柴共有多少根.23.(8分)把下列各数填在相应的集合内.﹣3,2,﹣1,﹣,﹣0.58,0,﹣3.1415926,0.618,整数集合:{ }负数集合:{ }分数集合:{ }非负数集合:{ }正有理数集合:{ }.24.(8分)如图,将一串有理数按下列规律排列,回答下列问题:(1)在A处的数是正数还是负数?(2)负数排在A、B、C、D中的什么位置?(3)第2013个数是正数还是负数?排在对应于A、B、C、D中的什么位置?25.(8分)已知x,y为有理数,现规定一种新运算*,其意义是x ⊗y=xy+1.(1)求(﹣2)⊗4的值;(2)求(﹣1⊗3)⊗(﹣2)的值;(3)任意选择两个有理数,分别填入下列□和○内,并比较两个运算结果,你有什么发现?把你的发现用等式表示出来.□⊗○和○⊗□参考答案一.填空题(共8小题,满分24分,每小题3分)1.解:﹣的相反数是,倒数是﹣3,绝对值是.故答案为:;﹣3;.2.解:“正”和“负”相对,所以,如果上升10米记作+10米,那么下降5米记作﹣5米.故答案为:﹣5.3.解:根据有理数比较大小的方法,可得﹣0.4>﹣.故答案为:>.4.解:将118000用科学记数法表示为:1.18×105.故答案为:1.18×105.5.解:1.95≈2.0(精确到十分位);576000≈58万(精确到万位),故答案为:2.0;58万.6.解:2﹣(﹣1)=3.故答案为:37.解:∵|a|+a=0,∴|a|=﹣a,∴a≤0,即a为非正数,故答案为:非正数.8.解:∵a*b=ab,3*2=32=9,∴()*3=(﹣)3=﹣.故答案为:﹣.二.选择题(共10小题,满分30分,每小题3分)9.解:0的相反数是其本身.故选:C.10.解:A、整数就是正整数和负整数,还有0,故本选项错误;B、负整数的相反数就是正整数,故本选项错误;C、有理数中不是负数就是正数,还有0,故本选项错误;D、零是自然数,但不是正整数,本选项正确;故选:D.11.解:根据有理数比较大小的方法,可得﹣3<﹣1<0<2,∴四个有理数﹣1,2,0,﹣3,其中最小的是﹣3.故选:D.12.解:A、﹣(﹣1)=1,为正数,故本选项错误;B、﹣|﹣1|=﹣1,为负数,故本选项正确;C、﹣(﹣1)3=1,为正数,故本选项错误;D、(﹣1)2=1,为正数,故本选项错误.故选:B.13.解:(﹣0.1﹣0.3+0.2+0.3)+5×4=20.1(千克),故选:C.14.解:∵2.7×103=2700,∴近似数2.7×103精确到百位.故选:C.15.解:∵由图可知,a<b<0<c,∴A、ac<bc,故A选项错误;B、∵a<b,∴a﹣b<0,∴|a﹣b|=b﹣a,故B选项错误;C、∵a<b<0,∴﹣a>﹣b,故C选项错误;D、∵﹣a>﹣b,c>0,∴﹣a﹣c>﹣b﹣c,故D选项正确.故选:D.16.解:已知|a|=5,|b|=6,则a=±5,b=±6∵a>b,∴当a=5,b=﹣6时,a+b=5﹣6=﹣1;当a=﹣5,b=﹣6时,a+b=﹣5﹣6=﹣11.故选:C.17.解:如果两个数的差是负数,则这两个数一定是被减数比减数小.故选:D.18.解:①若a+b>0,>0,则a>0,b>0,此选项正确;②若a+b>0,<0,则a>0,b<0且|a|>|b|或a<0,b>O 且|b|>|a|,此选项正确;③若a+b<0,>0,则a<0,b<0,此选项正确;④若a+b<0,<0,则a>0,b<0且|b|>|a|或a<0,b>0且|a|>|b,此选项正确|.故正确的有4个.故选:D.三.解答题(共7小题,满分46分)19.解:(1)原式=﹣49﹣91+5﹣9=﹣49﹣91﹣9+5=﹣149+5=﹣144;(2)原式=﹣17+17÷(﹣1)﹣25×(﹣)=﹣17+(﹣17)﹣(﹣)=﹣34+=﹣33;(3)原式=﹣5﹣(﹣﹣×)=﹣5﹣(﹣)=﹣5+=﹣4.20.解:在数轴上表示各数得:从小到大的顺序用“<”连接为:﹣3<﹣2<|﹣2|<3<+3.5.21.解:根据题意得:a=﹣1,b=2,cd=1,则原式=﹣1+2﹣1=0.22.解:先求超过的根数:(+3)+(+2)+0+(﹣1)+(﹣2)+(﹣3)+(﹣2)+(+3)+(﹣2)+(﹣2)=﹣4;则10盒火柴的总数量为:100×10﹣4=996(根).答:10盒火柴共有996根.23.解:整数集合:{﹣3,2,﹣1,0 }负数集合:{﹣3,﹣1,﹣,﹣0.58,﹣3.1415926 }分数集合:{﹣,﹣0.58,﹣3.1415926,0.618,}非负数集合:{ 2,0,0.618,}正有理数集合:{2,0.618,},故答案为:﹣3,2,﹣1,0;﹣3,﹣1,﹣,﹣0.58,﹣3.1415926;﹣,﹣0.58,﹣3.1415926,0.618,;2,0,0.618;2,0.618,.24.解:(1)A是向上箭头的上方对应的数,与4的符号相同,在A 处的数是正数;(2)观察不难发现,向下箭头的上边的数是负数,下方是正数,向上箭头的下方是负数,上方是正数,所以,B和D的位置是负数;(3)∵2013÷4=503…1,∴第2013个数排在B的位置,是负数.25.解:(1)(﹣2)⊗4=﹣2×4+1=﹣7;(2)(﹣1⊗3)⊗(﹣2)=(﹣1×3+1)⊗(﹣2)=(﹣2)⊗(﹣2)=﹣2×(﹣2)+1=5;(3)(﹣1)⊗5=﹣1×5+1=﹣4,5⊗(﹣1)=5×(﹣1)+1=﹣4;所以□⊗○=○⊗□.。

第一章有理数本章检测2021--2022学年七年级上学期数学人教版(课堂过关试卷)

第一章有理数本章检测2021--2022学年七年级上学期数学人教版(课堂过关试卷)
四川省绵阳南山双语学校
2021--2022 学年七年级上学期数学课堂过关试卷
班级
姓名
第一章 有理数
本章检测
一、选择题(每小题 3 分,共 30 分)
1.(2021 内蒙古呼和浩特期末)我国古代著作《九章算术》在世界数
学史上首次正式引入负数,若气温升高 3℃,气温变化记作+3℃,那么
气温下降 10℃,气温变化记作( )
A.-13℃
B.-10℃
C.-7℃
D.+7℃
2.(2021 辽宁大连旅顺期中)下列四个数中,是负分数的是 ( )
A.!
B.4
"
3.下列说法错误的是 (
C.-5 )
D.-#
!
A.-2 的相反数是 2 B.3 的倒数是#
!
C.(-3)-(-5)=2
D.-11,0,4 这三个数中最小的数是 0
4.(2021 独家原创试题)2021 年春节假期,北京市接待旅游总人数为
()

.
14. 把 -22,(-2)2,-|-2|,- # 按 从 小 到 大 的 顺 序 排 列
"

.
15.(2021 吉林长春双阳期末)如图 1-6-2 是一个计算程序,若输入 a
的值为-2,则输出的结果应为
.
图 1-6-2
16.(2021 云南文山期末)若 a 是最大的负整数,b 是绝对值最小的有理
"!'!
解析 由题意可知分子存在的规律为 21,22,23,…,2n. 因为分母比分子大 3, 所以分母存在的规律为 21+3,22+3,23+3,…,2n+3, 则第 n 个数是 "! .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a
10七年级上《有理数》全章过关验收检测题
(满分150分 时刻90分钟)
一、填空题(每题3分,共30分) 1.-3-2= .
2.用四舍五入法把0.07902保留三位有效数字为 . 3.
31277⎛⎫
÷- ⎪⎝⎭
=___________. 4.右上图是一数值转换机,若输入的x 为-5,则输出的结果为__________.
5.某地气温开始是6℃,一会儿升高4℃,再过一会儿又下降11℃, 这时气温是__ . 6.一个数的相反数的倒数是113
-,那个数是________ . 7.若│-a │=5,则a=________ .
8.用科学记数法表示13040000≈_______________________,(保留3个有效数字). 9.李斌同学利用暑假外出旅行一周,已知这一周各天的日期之和是126,那么李斌同学回家的日期是________号.
10.若|a+2|+()2
3-b =0,则b
a +a ()
b -•3=____________.
二、选择题(每题4分,共40分) 11.下列说法正确的是( )
A.所有的整数差不多上正数
B.不是正数的数一定是负数
C.0不是最小的有理数
D.正有理数包括整数和分数
12.
1
2的相反数的绝对值是( ) A.-12 B.2 C.-2 D.12
13.在2),2(,)2(,22
2
------中,负数的个数是( )
A 、 l 个
B 、 2个
C 、 3个
D 、 4个 14.下列有理数大小关系判定正确的是( ) A 、10
1
)91(-
->-- B 、100-> C 、33+<- D 、01.01->- 15.有理数a 、b 在数轴上的位置如图1-1所示,那么下列式子中成立的是( ) A.a>b B.a<b C.ab>0 D.
0a
b
> 16.下列各项判定正确的是( )
A.a+b 一定大于a-b;
B.若-ab<0,则a 、b 异号;
C.若a 3=b 3,则a=b;
D.若a 2=b 2
,则a=b
17.下列运算正确的是( )
A.-22
÷(-2)2
=1; B. 3
1128327⎛⎫
-=- ⎪⎝⎭
C.1352535-÷⨯
=- D. 13
3( 3.25)6 3.2532.544
⨯--⨯=- 18.若a=-2×32,b=(-2×3)2,c=-(2×3)2
,则下列大小关系中正确的是( )
A.a>b>0
B.b>c>a;
C.b>a>c
D.c>a>b 19.若│x │=2,│y │=3,则│x+y │的值为( )
A.5
B.-5
C.5或1
D.以上都不对
20.若0<m<1,m 、m 2
、1m
的大小关系是( )
A.m<m 2<1m ;
B.m 2<m<1m ;
C.1m <m<m 2
; D.1m
<m 2<m
三、解答题(21题8分,22题40分,23~26题每题8分,共80分) 21.把下列各数填在相应的大括号里。

+8,0.275,-|-2|,0,-1.04,-(-10),0.1010010001…,-(-2)2
,722,-31,+4
3
,•1.0
正整数集合{ ……}
整数集合{ ……} 负整数集合{ ……} 正分数集合{ ……} 22(1) 4131211-+- (2)()1-⎪⎭
⎫ ⎝⎛-÷2131
(3) 1564358-÷⨯ (4)22128(2)2⎛⎫
-⨯-+÷- ⎪⎝⎭
(5))4955.5(1416.34955.61416.3-⨯+⨯ (6)100()()222
---÷3
)2(32-+⎪⎭
⎫ ⎝⎛-
÷
(7)7)14136
()5.0()2(20032004
⨯-+-⨯-(8)200423)1()2(161)1()2
1
()21(-÷-⨯⎥⎦⎤⎢⎣⎡--÷--
(9)2
2
2121(3)242433⎛⎫⎛⎫
-÷⨯-+-⨯- ⎪ ⎪⎝⎭⎝⎭
(10))12()4332125(-⨯-+
23.(1)运算下列各式同时填空:
=+31( ) =++531( ) =+++7531( ) =++++97531( )
… …
(2)细心观看上述运算和结果,你会发觉什么规律?
(3)你能专门快算出200397531+⋅⋅⋅+++++等于多少吗?
24.要把一笔钱寄给别人,能够从邮局汇款,也能够从银行汇款。

依照1996年12月1日邮
电部公布的邮政汇费规定,每笔汇款按1%收费,最低汇费为1 元。

银行汇款的规定是:未开户的个人汇款,5000元以下的按1%收汇费,5000以上(含5000元),每笔汇费统一收50元。

王老师想给远方的期望小学汇款8000元,没有在银行开户,依照以上规定,王老师从哪里汇款所需汇费较少?
25.下表记录的是珠江今年某一周内的水位变化情形,上周末(星期六)的水位已达到戒备水位33米。

(正号表示水位比前一天上升,负号表示水位比前一天下降)
⑴ 本周哪一天河流的水位最高?哪一天河流的水位最低?位于戒备水位之上依旧之下? ⑵ 与上周末相比,本周末河流的水位是上升了依旧下降了?
⑶ 以戒备水位作为零点,仿照图示,用折线统计图表示本周的水位情形。

解:
日 一 二 三 四 五 六 (星期)
26.英国股民吉姆上星期买进某公司月股票1000股,每股27 元,下表为本周内每日该股的涨跌情形 (星期六、日股市休市) (单位:元) (2) 本周内每股最高价多少元?最低价是多少元?(2分)
(3) 已知吉姆买进股票时付了1.5%的手续费,卖出时还需付成交额1.5%的手续费和的1‰交
易税,假如吉姆在星期五收盘前将全部股票卖出,他的收益情形如何?(4分)
1。

相关文档
最新文档