高中数学必修3第三章教案(定)

合集下载

人教版高中必修三数学教案

人教版高中必修三数学教案

人教版高中必修三数学教案
教学内容:人教版高中必修三数学教材内容
教学目标:通过本节课的学习,学生能够掌握相关知识点,提升数学解题能力
教学重点:重点讲解本节课的知识点,帮助学生理解并掌握
教学难点:难点讲解本节课中较为复杂的知识点,引导学生深入思考
教学准备:教材、课件、教学用具等
教学过程:
一、导入:
通过提出一个与学生生活相关的问题引入本节课的内容,并激发学生的兴趣。

二、知识讲解:
1. 介绍本节课的知识点,帮助学生了解学习的目的。

2. 逐步讲解本节课中的重点知识,同时解答学生可能出现的疑问。

三、示范演练:
给学生提供一些相关的例题,让学生通过演示和讨论来解题,引导学生掌握知识点。

四、课堂练习:
让学生通过小组合作或个人练习来巩固所学内容,同时教师进行指导和辅导。

五、课堂讨论:
组织学生进行讨论,梳理本节课的重点和难点,加深学生对知识点的理解。

六、作业布置:
布置相关的作业,巩固学生的学习成果,并留有一定的思考空间,促进学生自主学习。

七、课堂总结:
对本节课的重点知识进行总结,并对学生提出的问题进行澄清和解答。

教学反思:
通过本节课的教学,学生对相关知识点有了更深入的理解,提高了解题能力,同时也提升了数学学习的兴趣。

在以后的教学中,需要更加注重引导学生深入思考,培养学生的创新能力和解决问题的能力。

高中数学必修三3

高中数学必修三3

高中数学必修三3.2教案
教学重点:椭圆的定义和性质,三要素、离心率和焦点等相关理论知识的掌握。

教学难点:椭圆方程的转化和应用、椭圆的综合应用、以及解答椭圆相关问题的思维能力。

教学准备:教学课件、教学实验装置、教学实验设备、课堂习题
教学过程:
一、导入:通过提问和展示图片等形式引导学生了解椭圆的概念和性质。

二、讲解:介绍椭圆的定义、三要素、离心率、焦点等椭圆的基本概念和性质,以及相关
定理。

三、实验:通过实验装置演示椭圆的性质和形状,帮助学生更直观地理解椭圆的特点。

四、练习:设计一些练习题,让学生灵活运用椭圆的相关知识进行计算和分析,加深对椭
圆的理解。

五、讨论:组织学生进行小组讨论,分享解题思路和方法,探讨解答椭圆问题的多种可能性。

六、总结:总结本节课的内容,强调椭圆的重要性和应用价值,激发学生学习兴趣。

七、作业:布置相关练习作业,巩固学生对椭圆的理解和掌握。

教学反思:本节课通过多种形式和方法引导学生深入了解椭圆的相关知识,激发学生学习
兴趣和解题能力,提高了学生数学素养和应用能力。

高中湘教版数学必修3教案

高中湘教版数学必修3教案

高中湘教版数学必修3教案教学目标:1. 了解函数的概念和基本性质,掌握常见函数的图像及性质。

2. 掌握导数的概念和性质,能够计算简单函数的导数。

3. 能够应用函数与导数的知识解决实际问题。

教学内容:1. 函数的概念和性质2. 常见函数的图像及性质3. 导数的定义及性质4. 计算简单函数的导数5. 应用函数与导数解决实际问题教学重点:1. 函数的概念和性质2. 导数的定义及性质3. 计算简单函数的导数教学难点:1. 导数的应用问题2. 函数图像的性质教学方法:1. 讲授法2. 示例法3. 实验法教学过程:一、引入通过举例引入函数的概念,引导学生了解函数的定义和性质。

二、讲解函数的概念和性质1. 介绍函数的定义和基本性质2. 讲解常见函数的图像及性质三、讲解导数的概念和性质1. 介绍导数的定义2. 讲解导数的性质及计算方法四、应用函数与导数解决实际问题通过实际例题,让学生应用函数与导数的知识解决问题。

五、总结与反思对本节课内容进行总结,检查学生对函数与导数的掌握情况,进行讨论和反思。

教学案例:已知函数$f(x)=x^2+2x$,求其在点$x=2$处的导数。

解:$f'(x)=(x^2+2x)'=2x+2$$f'(2)=2(2)+2=6$教学反思:通过本节课的学习,学生应该掌握了函数的概念和性质,了解导数的定义和性质,能够计算简单函数的导数,并应用函数与导数解决实际问题。

在学习过程中,教师要注重培养学生的逻辑思维能力和问题解决能力,提高学生的学习兴趣和动手能力。

高中数学 第三章第3节几何概型 理 知识精讲人教新课标A版必修3

高中数学 第三章第3节几何概型 理 知识精讲人教新课标A版必修3

高二数学 第三章第3节几何概型 理 知识精讲人教新课标A 版必修3一、学习目标:(1)了解几何概型的概念及基本特点 (2)熟练掌握几何概型中概率的计算公式 (3)会进行简单的几何概率计算(4)能运用模拟的方法估计概率,掌握模拟估计面积的思想二、重点、难点:重点:掌握几何概型中概率的计算公式;并能进行简单的几何概率计算。

难点:将实际问题转化为几何概型,并能正确应用几何概型的概率计算公式解决问题。

三、考点分析:本部分内容是新增的内容,对几何概型的要求仅限于体会几何概型的意义,所以在练习时,侧重于一些简单的试题即可。

(1)区别古典概型与几何概型(2)理解随机模拟求几何概型的概率1、几何概型的概念: 对于一个随机试验,我们将每个基本事件理解为从某个特定的可以几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则可以理解为恰好取到上述区域内的某个指定区域中的点。

这里的区域可以是线段,平面图形,立体图形等.用这种方法处理随机试验,称为几何概型。

2、几何概型的基本特点:(1)试验中所有可能出现的结果(基本事件)有无限多个; (2)每个基本事件出现的可能性相等。

3、几何概型的概率:一般地,在几何区域D 中随机地取一点,记事件“该点落在其内部一个区域d 内”为事件A ,则事件A 发生的概率()d P A D的测度的测度。

说明:(1)D 的测度不为0;(2)其中“测度”的意义依D 确定,当D 分别是线段,平面图形,立体图形时,相应的“测度”分别是长度,面积和体积。

(3)区域为“开区域”;(4)区域D 内随机取点是指:该点落在区域内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的测度成正比而与其形状位置无关。

4、模拟计算几何概型的步骤: (1)构造图形(作图);(2)模拟投点,计算落在阴影部分的点的频率m n; (3)利用()m d P A n D ≈=的测度的测度算出相应的量。

人教版数学必修三教案古典概型

人教版数学必修三教案古典概型

§3.2 古典概型§3.2.1 古典概型一、教材分析本节课是高中数学3(必修)第三章概率的第二节古典概型的第一课时,是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的.古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位.学好古典概型可以为其他概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题.根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题.概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象.适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例.使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是的科学态度和锲而不舍的求学精神.二、教学目标1、知识与技能:(1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;A包含的基本事件个数)(A=(2)掌握古典概型的概率计算公式:P总的基本事件个数2、过程与方法:(1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。

3、情感态度与价值观:通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.三、重点难点教学重点:理解古典概型的概念及利用古典概型求解随机事件的概率.教学难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数.四、课时安排1课时五、教学设计(一)导入新课思路1(1)掷一枚质地均匀的硬币,结果只有2个,即“正面朝上”或“反面朝上”,它们都是随机事件.(2)一个盒子中有10个完全相同的球,分别标以号码1,2,3,...,10,从中任取一球,只有10种不同的结果,即标号为1,2,3, (10)思考讨论根据上述情况,你能发现它们有什么共同特点?.教师板书课题,为此我们学习古典概型思路2将扑克牌(52张)反扣在桌上,先从中任意抽取一张,那么抽到的牌为红心的概率有多大?是否一定要进行大量的重复试验,用“出现红心”这一事件的频率估计概率?这样工作量较大且不够准确.有更好的解决方法吗?把“抽到红心”记为事件B,那么事件B相当于“抽到红心1”,“抽到红心2”,…,“抽到红心K”这13种情况,而同样抽到其他牌的共有39种情况;由于是任意抽取的,可以认为这52种情况的可能性是相等的.所以,当出现红心时“抽到红心1”,“抽131=.,于是P(B)=为此我们学这13种情形之一时,事件B就发生抽到红心到红心2”,…,“K”452习古典概型.(二)推进新课、新知探究、提出问题试验一:抛掷一枚质地均匀的硬币,分别记录“正面朝上”和“反面朝上”的次数,要求每个数学小组至少完成20次(最好是整十数),最后由学科代表汇总;试验二:抛掷一枚质地均匀的骰子,分别记录“1点”“2点”“3点”“4点”“5点”和“6点”的次数,要求每个数学小组至少完成60次(最好是整十数),最后由学科代表汇总.(1)用模拟试验的方法来求某一随机事件的概率好不好?为什么?(2)根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点?(3)什么是基本事件?基本事件具有什么特点?(4)什么是古典概型?它具有什么特点?(5)对于古典概型,应怎样计算事件的概率?活动:学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受,讨论可能出现的情况,师生共同汇总方法、结果和感受.讨论结果:(1)用模拟试验的方法来求某一随机事件的概率不好,因为需要进行大量的试验,同时我们只是把随机事件出现的频率近似地认为随机事件的概率,存在一定的误差.(2)上述试验一的两个结果是“正面朝上”和“反面朝上”,它们都是随机事件,出现的概率是相等的,都是0.5.上述试验二的6个结果是“1点”“2点”“3点”“4点”“5点”和“6点”,它们也都是1. 都是出现的概率是相等的,随机事件,6(3)根据以前的学习,上述试验一的两个结果“正面朝上”和“反面朝上”,它们都是随机事件;上述试验二的6个结果“1点”“2点”“3点”“4点”“5点”和“6点”,它们都是随机事件,像这类随机事件我们称为基本事件(elementary event);它是试验的每一个可能结果.基本事件具有如下的两个特点:①任何两个基本事件是互斥的;②任何事件(除不可能事件)都可以表示成基本事件的和.(4)在一个试验中如果①试验中所有可能出现的基本事件只有有限个;(有限性)②每个基本事件出现的可能性相等.(等可能性)我们将具有这两个特点的概率模型称为古典概率模型(classical models of probability),简称古典概型.向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典为什么??概型吗.因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概型的第一个条件.如下图,某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环.你认为这是古典概型吗?为什么?不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环……命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件.(5)古典概型,随机事件的概率计算对于实验一中,出现正面朝上的概率与反面朝上的概率相等,即P(“正面朝上”)=P(“反面朝上”)由概率的加法公式,得P(“正面朝上”)+P(“反面朝上”)=P(必然事件)=1.因此1. =”)=P(“反面朝上P(“正面朝上”)21出现正面朝上所包含的基本事件的个数?. 即P(“出现正面朝上”)= 2基本事件的总数试验二中,出现各个点的概率相等,即P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”).反复利用概率的加法公式,我们有P(“1点”)+P(“2点”)+P(“3点”)+P(“4点”)+P(“5点”)+P(“6点”)=P(必然事件)=1.1. =点“6”)“5点”)=P(()点“2”)=P(“3点”=P(“4点”)=P)(所以P“1点”=P(6, ,例如进一步地,利用加法公式还可以计算这个试验中任何一个事件的概率11131++==. =点)(点)(P“出现偶数点”=P(“2”)+P“4点”+P(“6”)666623出现偶数点所包含的基本事件的个数?. )=”“P 即(出现偶数点6基本事件的总数古典概型计算任何事件的概率计算公式为:,可以概括总结出,因此根据上述两则模拟试验A所包含的基本事件的个数.)=P(A基本事件的总数在使用古典概型的概率公式时,应该注意:①要判断该概率模型是不是古典概型;②要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.下面我们看它们的应用.(三)应用示例思路1例1 从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?活动:师生交流或讨论,我们可以按照字典排序的顺序,把所有可能的结果都列出来.解:基本事件共有6个:A={a,b},B={a,c},C={a,d},D={b,c},E={b,d},F={c,d}.点评:一般用列举法列出所有基本事件的结果,画树状图是列举法的基本方法.分布完成的结果(两步以上)可以用树状图进行列举.变式训练用不同的颜色给下图中的3个矩形随机地涂色,每个矩形只涂一种颜色,求:(1)3个矩形颜色都相同的概率;(2)3个矩形颜色都不同的概率.分析:本题中基本事件比较多,为了更清楚地枚举出所有的基本事件,可以画图枚举如下:(树形图)解:基本事件共有27个.(1)记事件A=“3个矩形涂同一种颜色”,由上图可以知道事件A包含的基本事件有1×3=3个,31?. P(A)=故279(2)记事件B=“3个矩形颜色都不同”,由上图可以知道事件B包含的基本事件有2×3=6个,故62?. P(B)=27912;3个矩形颜色都不同的概率为. 答:3个矩形颜色都相同的概率为99例2 单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案.如果考生掌握了考查的内容,他可以选择唯一正确的答案.假设考生不会做,他随机地选择一问他答对的概率是多少?,个答案.即讨论这个问,,解决这个问题的关键搜集信息,交流讨论,教师引导活动:学生阅读题目,这都不满足古典概,.如果学生掌握或者掌握了部分考查内容题什么情况下可以看成古典概型,随机地选择了一个答案的情况下只有在假定学生不会做,等可能性,因此,型的第2个条件——.才可以化为古典概型、选择CB、选择4个:选择A、选择解:这是一个古典概型,因为试验的可能结果只有从而由的可能性是相等的.个,考生随机地选择一个答案是选择A,B,C,DD,即基本事件共有41所包含的基本事件的个数答对?=0.25.)=答对P(“”古典概型的概率计算公式得:4基本事件的总数:点评:古典概型解题步骤,搜集信息;(1)阅读题目,并用字母表示事件;(2)判断是否是等可能事件m;和事件A所包含的结果数(3)求出基本事件总数n m. 求出概率并下结论4)用公式P(A)=(n变式训练.两枚均匀硬币,求出现两个正面的概率1.}. 甲反乙反,甲反乙正,解:样本空间:{甲正乙正,甲正乙反. 故属古典概型这里四个基本事件是等可能发生的,1. n=4,m=1,P= 4.求出现的点数之和为奇数的概率2.一次投掷两颗骰子,,点第一颗骰子出现i”,用(i,j)记“解法一:设表示“出现点数之和为奇数A其中个基本事件组成等概样本空间,点”,i,j=1,2,…6.显然出现的36 第二颗骰子出现j1. P(A)=k=3×3+3×3=18,故包含的基本事件个数为2,,偶)奇),(偶,(奇,偶),(偶,(奇解法二:若把一次试验的所有可能结果取为:,奇)1P(A)=故. n=4,A包含的基本事件个数k=2,则它们也组成等概率样本空间.基本事件总数2.点数和为偶数点数和为奇数},也组成等解法三:若把一次试验的所有可能结果取为:{1. P(A)=1,故概率样本空间,基本事件总数n=2,A所含基本事件数为2注:找出的基本事件组构成的样本空间,必须是等概率的.解法2中倘若解为:(两个奇),1(一奇一偶),(两个偶)当作基本事件组成样本空间,则得出P(A)=,错的原因就是它不是311,而P(一奇一偶)=.本例又告诉我们,(两个奇)等概率的.例如P=同一问题可取不同的42样本空间解答.例3 同时掷两个骰子,计算:(1)一共有多少种不同的结果?(2)其中向上的点数之和是5的结果有多少种??的概率是多少5向上的点数之和是(3).解:(1)掷一个骰子的结果有6种.我们把两个骰子标上记号1,2以便区分,由于1号骰子的每一个结果都可与2号骰子的任意一个结果配对,组成同时掷两个骰子的一个结果,因此同时掷两个骰子的结果共有36种.(2)在上面的所有结果中,向上的点数之和为5的结果有(1,4),(2,3),(3,2),(4,1),其中第一个数表示1号骰子的结果,第二个数表示2号骰子的结果.(3)由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,因此,41 . 由古典概型的概率计算公式可得P(A)=369例4 假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,2,…,9十个数字中的任意一个.假设一个人完全忘记了自己的储蓄卡密码,问他到自动取款机上随机试一次密码就能取到钱的概率是多少?解:一个密码相当于一个基本事件,总共有10 000个基本事件,它们分别是0000,0001,0002,…,9998,9999.随机地试密码,相当于试到任何一个密码的可能性都是相等的,所以这是一个古典概型.事件“试一次密码就能取到钱”由1个基本事件构成,即由正确的密码1. ”)=P(“试一次密码就能取到钱构成.所以100001的事件是小概率事件发生概率为,通常我们认为这样的事件在一次试验中是几乎不可10000能发生的,也就是通过随机试验的方法取到储蓄卡中的钱的概率是很小的.但我们知道,如果试验很多次,比如100 000次,那么这个小概率事件是可能发生的.所以,为了安全,自动取款机一般允许取款人最多试3次密码,如果第4次键入的号码仍是错误的,那么取款机将“没收”储蓄卡.另外,为了使通过随机试验的方法取到储蓄卡中的钱的概率更小,现在储蓄卡可以使用6位数字作密码.人们为了方便记忆,通常用自己的生日作为储蓄卡的密码.当钱包里既有身份证又有储蓄卡时,密码泄密的概率很大.因此用身份证上的号码作密码是不安全的.例5 某种饮料每箱装6听,如果其中有2听不合格,问质检人员从中随机抽出2听,检测出不合格产品的概率有多大?解:我们把每听饮料标上号码,合格的4听分别记作:1,2,3,4,不合格的2听分别记作a,b,只要检测的2听中有1听不合格,就表示查出了不合格产品.依次不放回地从箱中取出2听饮料,得到的两个标记分别记为x和y,则(x,y)表示一次抽取的结果,即基本事件.由于是随机抽取,所以抽取到任何基本事件的概率相等.用A表示“抽出的2听饮料中有不合格产品”,A表示“仅第一次抽出的是不合格产品”,A仅第二次抽出的“表示21.是不合格产品”,A表示“两次抽出的都是不合格产品”,则A,A和A是互不相容的事件,且121122A=A ∪A∪A,从而P(A)=P(A)+P(A)+P(A).12221112因为A中的基本事件的个数为8,A中的基本事件的个数为8,A中的基本事件的个数1221882 =0.6. 所以P(A)=为2,全部基本事件的总数为30,3030302思路, 从中一次摸出两个球只白球,2只黑球,例1 一个口袋内装有大小相同的5只球,其中3 共有多少个基本事件?(1) (2)摸出的两个都是白球的概率是多少?活动:可用枚举法找出所有的等可能基本事件.号有如下基本事件(摸到1,24,5解:(1)分别记白球为1,2,3号,黑球号,从中摸出2只球,(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5). (1,2)表示):球用.10个基本事件因此,共有个基本事件是摸到两个白球(记且只有3(2)上述10个基本事件发生的可能性是相同的,3. A为事件),即(1,2),(1,3),(2,3),故P(A)=103. ∴共有10个基本事件,摸到两个白球的概率为10变式训练将一颗骰子先后抛掷两次,观察向上的点数,问:(1)共有多少种不同的结果?(2)两数的和是3的倍数的结果有多少种?(3)两数和是3的倍数的概率是多少?解析:(1)将骰子抛掷1次,它出现的点数有1,2,3,4,5,6这6种结果.先后抛掷两次骰子,第一次骰子向上的点数有6种结果,第2次又有6种可能的结果,于是一共有6×6=36种不同的结果;(2)第1次抛掷,向上的点数为1,2,3,4,5,6这6个数中的某一个,第2次抛掷时都可以有两种结果,使向上的点数和为3的倍数(例如:第一次向上的点数为4,则当第2次向上的点数为2或5时,两次的点数的和都为3的倍数),于是共有6×2=12种不同的结果;(3)记“向上点数和为3的倍数”为事件A,则事件A的结果有12种,因为抛两次得到的36种结121=. ,果是等可能出现的所以所求的概率为P(A)=336答:先后抛掷2次,共有36种不同的结果;点数的和是3的倍数的结果有12种;点数的和1. 的倍数的概率为是33说明:也可以利用图表来数基本事件的个数:例2 从含有两件正品a,a和一件次品b的三件产品中,每次任取一件,每次取出后不放回,121连续取两次,求取出的两件产品中恰有一件次品的概率.活动:学生思考或交流,教师引导,每次取出一个,取后不放回,其一切可能的结果组成的基本事件是等可能发生的,因此可用古典概型解决.解:每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a,a)和(a,b),(a,a),(a,b),(b,a),(b,a).其中小括号内左边的字母表示212211112211第1次取出的产品,右边的字母表示第2次取出的产品用A表示“取出的两种中,恰好有一件次品”这一事件,则A=[(a,b),(a,b),(b,a),(b,a)], 2211111142=. A)=由4个基本事件组成,因而,P(事件A 63思考在上例中,把“每次取出后不放回”这一条件换成“每次取出后放回”,其余条件不变,求取出的两件中恰好有一件次品的概率.有放回地连续取出两件,其一切可能的结果有:(a,a)(a,a),(,a,b)(a,a),(a,a),,2111122112(a,b),(b,a),(b,b),由9个基本事件组成,由于每一件产品被取到的机会均等,因此可112112以认为这些基本事件的出现是等可能的.用B表示“恰有一件次品”这一事件,则B=[(a,b),11(a,b),(b,a),(b,a)], 2111124. =B),因而,P(事件B包含4个基本事件9点评:(1)在连续两次取出过程中,(a,b)与(b,a)不是同一个基本事件,因为先后1111顺序不同.(2)无论是“不放回抽取”还是“有放回抽取”,每一件产品被取出的机会都是均等的.变式训练现有一批产品共有10件,其中8件为正品,2件为次品:(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率;(2)如果从中一次取3件,求3件都是正品的概率.分析:(1)为放回抽样;(2)为不放回抽样.解:(1)有放回地抽取3次,按抽取顺序(x,y,z)记录结果,则x,y,z都有10种可能,所以3种;设事件A为“连续3次都取正品”,则包含的基本事件共有10=10试验结果有10×10×383=0.512. ,P(A)=,因此8×8×8=8种310(2)解法1:可以看作不放回抽样3次,顺序不同,基本事件不同,按抽取顺序记录(x,y,z),则x有10种可能,y有9种可能,z有8种可能,所以试验的所有结果为10×9×8=720种.设事件336≈0.467. P(B)=6=336,所以”,则事件B包含的基本事件总数为8×7ד3B为件都是正品720解法2:可以看作不放回3次无顺序抽样,先按抽取顺序(x,y,z)记录结果,则x有10种可能,y有9种可能,z有8种可能,但(x,y,z),(x,z,y),(y,x,z),(y,z,x),(z,x,y),(z,y,x)是相同的,所以试验的所有结果有10×9×8÷6=120,按同样的方法,事件B包含的基本事件个数为56≈0.467. P(B)=6÷8×7×6=56,因此120也可以看作是无顺,既可以看作是有顺序的,计算基本事件个数时,关于不放回抽样点评:序的,其结果是一样的,但不论选择哪一种方式,观察的角度必须一致,否则会导致错误.(四)知能训练本节练习1、2、3.(五)拓展提升一个各面都涂有色彩的正方体,被锯成1 000个同样大小的小正方体,将这些正方体混合后,从中任取一个小正方体,求:(1)有一面涂有色彩的概率;(2)有两面涂有色彩的概率;(3)有三面涂有色彩的概率.2×6个,两面涂有色彩的有8×12个解:在1 000个小正方体中,一面涂有色彩的有8,三面384=0.384;1)有一面涂有色彩的概率为P=涂有色彩的有8个,∴(1100096=0.096;(2)有两面涂有色彩的概率为P=210008=0.008.=P(3)有三面涂有色彩的概率为31000答:(1)一面涂有色彩的概率为0.384;(2)有两面涂有色彩的概率为0.096;(3)有三面涂有色彩的概率为0.008.(六)课堂小结1.古典概型我们将具有(1)试验中所有可能出现的基本事件只有有限个;(有限性)(2)每个基本事件出现的可能性相等.(等可能性)这样两个特点的概率模型称为古典概率概型,简称古典概型.2.古典概型计算任何事件的概率计算公式A所包含的基本事件的个数.=P(A)基本事件的总数3.求某个随机事件A包含的基本事件的个数和实验中基本事件的总数的常用方法是列举法(画树状图和列表),应做到不重不漏.(七)作业习题3.2 A组1、2、3、4.。

高中数学高一必修第三章《方程的根与函数的零点》教育教学课件

高中数学高一必修第三章《方程的根与函数的零点》教育教学课件
由图象知g(x)=lg (x+1)的图象和h(x)=2-2x的图象有且只有一个交点, 即f(x)=2x+lg (x+1)-2有且只有一个零点.
反思与感悟
判断函数零点的个数的方法主要有:(1)可以利用零点存在性定理来 确定零点的存在性,然后借助于函数的单调性判断零点的个数.(2)利用 函数图象交点的个数判定函数零点的个数.
反思与感悟
函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的 图象与x轴交点的横坐标,所以函数的零点是一个数,而不是一个点. 在写函数零点时,所写的一定是一个数字,而不是一个坐标.
跟踪训练1 函数f(x)=(x2-1)(x+2)2(x2-2x-3)的零点个数是____4____. 解析 f(x)=(x+1)(x-1)(x+2)2(x-3)(x+1) =(x+1)2(x-1)(x+2)2(x-3). 可知零点为±1,-2,3,共4个.
4.下列各图象表示的函数中没有零点的是( D )
函数 = - 的零点个数是 B



无数个
则f(-1)=0.37-1<0,f(0)=1-2<0,f(1)=2.72-3<0,f(2)=7.40-4
=3.40>0.由于f(1)·f(2)<0,
∴方程ex-(x+2)=0的一个根在(1,2)内.
反思与感悟
在函数图象连续的前提下,f(a)·f(b)<0,能判断在区间(a,b)内有 零点,但不一定只有一个;而f(a)·f(b)>0,却不能判断在区间(a,b)内 无零点.
3.1.1 方程的根与函数的零点
主讲老师:
CONTENTS
1 • PART 01学习目标 2 • PART 02问题导学
3 • PART 03题型探究

高中数学人教A版必修3课件:第三章3.1 3.1.1

高中数学人教A版必修3课件:第三章3.1 3.1.1

解析: 949÷1 006≈0.943 34,1 430÷1 500≈0.953 33,1 917 ÷2 015≈0.951 36, 2 890÷3 050≈0.947 54, 4 940÷5 200=0.95. 都稳定于 0.95,故所求概率约为 0.95.
பைடு நூலகம்
探究点一
事件类型的判断
指出下列事件是必然事件、 不可能事件, 还是随机事件. (1)2012 年奥运会在英国伦敦举行; (2)甲同学今年已经上高一,三年后他被北大自主招生录取; (3)A 地区在“十三五”规划期间会有 6 条高速公路通车; (4)在标准大气压下且温度低于 0 ℃时,冰融化. [解] (1)是必然事件,因事件已经发生.
能再连任下届总统,是不可能事件,④是必然事件.
3. 某出版公司对发行的三百多种教辅用书实行跟踪式问卷调查, 连续五年的调查结果如表所示: 发送问卷数 返回问卷数 1 006 949 1 500 1 430 2 015 1 917 3 050 2 890 5 200 4 940
则本公司问卷返回的概率约为( A ) A.0.95 C.0.93 B.0.94 D.0.92
(2)(3)是随机事件,其事件的结果在各自的条件下不确定. (4)是不可能事件,在本条件下,事件不会发生.
对事件分类的两个关键点 (1)条件:在条件 S 下事件发生与否是与条件相对而言的,没有 条件,就无法判断事件是否发生; (2)结果发生与否:有时结果较复杂,要准确理解结果包含的各 种情况.
1.(1)下面的事件: ①在标准大气压下, 水加热到 80℃时会沸腾; ②a, b∈R, 则 ab=ba; ③一枚硬币连掷两次, 两次都出现正面向上.其中是不可能事件的为( B A.② C.①② B.① D.③ )

最新高中数学人教A版必修三教学案:第三章 第2节 古典概型含答案

最新高中数学人教A版必修三教学案:第三章 第2节 古典概型含答案

最新人教版数学精品教学资料[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P 125~P 130,回答下列问题.教材中的两个试验:(1)掷一枚质地均匀的硬币的试验;(2)掷一枚质地均匀的骰子的试验.(1)试验(1)中的基本事件是什么?试验(2)中的基本事件又是什么?提示:试验(1)的基本事件有:“正面朝上”、“反面朝上”;试验(2)的基本事件有:“1点”、“2点”、“3点”、“4点”、“5点”、“6点”.(2)基本事件有什么特点?提示:①任何两个基本事件是互斥的;②任何事件(除不可能事件)都可以表示成基本事件的和.(3)古典概型的概率计算公式是什么?提示:P (A )=A 包含的基本事件的个数基本事件的总数. 2.归纳总结,核心必记(1)基本事件①定义:在一次试验中,所有可能出现的基本结果中不能再分的最简单的随机事件称为该次试验的基本事件. ②特点:一是任何两个基本事件是互斥的;二是任何事件(除不可能事件)都可以表示成基本事件的和.(2)古典概型①定义:如果一个概率模型满足:(ⅰ)试验中所有可能出现的基本事件只有有限个;(ⅱ)每个基本事件出现的可能性相等.那么这样的概率模型称为古典概率模型,简称古典概型.②计算公式:对于古典概型,任何事件的概率为P (A )=A 包含的基本事件的个数基本事件的总数. [问题思考](1)若一次试验的结果所包含的基本事件的个数是有限个,则该试验是古典概型吗? 提示:不一定是,还要看每个事件发生的可能性是否相同,若相同才是,否则不是.(2)掷一枚不均匀的骰子,求出现点数为偶数点的概率,这个概率模型还是古典概型吗? 提示:不是.因为骰子不均匀,所以每个基本事件出现的可能性不相等,不满足特点(ⅱ).(3)“在区间[0, 10]上任取一个数,这个数恰为2的概率是多少?”这个概率模型属于古典概型吗?提示:不是,因为在区间[0,_10]上任取一个数,其试验结果有无限个,故其基本事件有无限个,所以不是古典概型.[课前反思]通过以上预习,必须掌握的几个知识点:(1)基本事件的定义: ;(2)基本事件的特点: ;(3)古典概型的定义: ;(4)古典概型的计算公式: .掷一枚质地均匀的硬币两次,观察哪一面朝上.[思考1] 这个试验共有哪几种结果?基本事件总数有多少? 事件A ={恰有一次正面朝上}包含哪些试验结果?名师指津:共有正正、正反、反正、反反四种结果.基本事件有4个.事件A 包含的结果有:正反、反正.[思考2] 基本事件有什么特点?名师指津:基本事件具有以下特点:(1)不可能再分为更小的随机事件;(2)两个基本事件不可能同时发生.讲一讲1.先后抛掷3枚均匀的壹分,贰分,伍分硬币.(1)求试验的基本事件数;(2)求出现“2枚正面,1枚反面”的基本事件数.[尝试解答](1)因为抛掷壹分,贰分,伍分硬币时,各自都会出现正面和反面2种情况,所以一共可能出现的结果有8种.可列表为:(2)从(1)中表格知,出现“2枚正面,1枚反面”的结果有3种,即(正,正,反),(正,反,正),(反,正,正).所以“2枚正面,1枚反面”的基本事件数为3.基本事件的两个探求方法(1)列表法:将基本事件用表格的形式表示出来,通过表格可以清楚地弄清基本事件的总数,以及要求的事件所包含的基本事件数,列表法适合于较简单的试验的题目,基本事件较多的试验不适合用列表法.(2)树状图法:树状图法是用树状的图形把基本事件列举出来的一种方法,树状图法便于分析基本事件间的结构关系,对于较复杂的问题,可以作为一种分析问题的主要手段.树状图法适合于较复杂的试验的题目.练一练1.从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?解:所求的基本事件共有6个:即A={a,b},B={a,c},C={a,d},D={b,c},E={b,d},F={c,d}.观察图形,思考下列问题[思考1]某射击运动员随机地向一靶心进行射击,试验的结果有:命中10环,命中9环,…,命中1环和命中0环(即不命中),你认为这是古典概型吗?名师指津:试验的所有结果只有11个,但是命中10环,命中9环,…,命中1环和命中0环(即不命中)的出现不是等可能的,这个试验不是古典概型.[思考2] 若一个试验是古典概型,它需要具备什么条件?名师指津:若一个试验是古典概型,需具备以下两点:(1)有限性:首先判断试验的基本事件是否是有限个,若基本事件无限个,即不可数,则试验不是古典概型.(2)等可能性:其次考查基本事件的发生是不是等可能的,若基本事件发生的可能性不一样,则试验不是古典概型.讲一讲2.某校夏令营有3名男同学A ,B ,C 和3名女同学X ,Y ,Z ,其年级情况如下表:现从这6).(1)用表中字母列举出所有可能的结果;(2)设M 为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M 发生的概率.[尝试解答] (1)从6名同学中随机选出2人参加知识竞赛的所有可能结果为{A ,B },{A ,C },{A ,X },{A ,Y },{A ,Z },{B ,C },{B ,X },{B ,Y },{B ,Z },{C ,X },{C ,Y },{C ,Z },{X ,Y },{X ,Z },{Y ,Z },共15种.(2)选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为{A ,Y },{A ,Z },{B ,X },{B ,Z },{C ,X },{C ,Y },共6种.因此,事件M 发生的概率P (M )=615=25.(1)古典概型求法步骤①确定等可能基本事件总数n ;②确定所求事件包含基本事件数m ;③P (A )=m n. (2)使用古典概型概率公式应注意①首先确定是否为古典概型;②所求事件是什么,包含的基本事件有哪些.练一练2.一个口袋内装有大小相等的1个白球和已编有不同号码的3个黑球,从中摸出2个球.求:(1)基本事件总数;(2)事件“摸出2个黑球”包含多少个基本事件?(3)摸出2个黑球的概率是多少?解:由于4个球的大小相等,摸出每个球的可能性是均等的,所以是古典概型.(1)将黑球编号为黑1,黑2,黑3,从装有4个球的口袋内摸出2个球,所有基本事件构成集合Ω={(黑1,黑2),(黑1,黑3),(黑1,白),(黑2,黑3),(黑2,白),(黑3,白)},其中共有6个基本事件.(2)事件“摸出2个黑球”={(黑1,黑2),(黑2,黑3),(黑1,黑3)},共3个基本事件.(3)基本事件总数n=6,事件“摸出两个黑球”包含的基本事件数m=3,故P=1 2.讲一讲3.袋子中装有除颜色外其他均相同的编号为a,b的2个黑球和编号为c,d,e的3个红球,从中任意摸出2个球.(1)写出所有不同的结果;(2)求恰好摸出1个黑球和1个红球的概率;(3)求至少摸出1个黑球的概率.[思路点拨](1)可以利用初中学过的树状图写出;(2)找出恰好摸出1个黑球和1个红球的基本事件,利用古典概型的概率计算公式求出;(3)找出至少摸出1个黑球的基本事件,利用古典概型的概率计算公式求出.[尝试解答](1)用树状图表示所有的结果为所以所有不同的结果是ab,ac,ad,ae,bc,bd,be,cd,ce,de.(2)记“恰好摸出1个黑球和1个红球”为事件A,则事件A包含的基本事件为ac,ad,ae,bc,bd,be,共6个基本事件,所以P(A)=610=0.6,即恰好摸出1个黑球和1个红球的概率为0.6.(3)记“至少摸出1个黑球”为事件B,则事件B包含的基本事件为ab,ac,ad,ae,bc,bd,be,共7个基本事件,所以P (B )=710=0.7, 即至少摸出1个黑球的概率为0.7.利用事件间的关系求概率在求解较复杂事件的概率时,可将其分解为几个互斥的简单事件的和事件,由公式P (A 1∪A 2∪A 3∪…∪A n )=P (A 1)+P (A 2)+…+P (A n )求得,或采用正难则反的原则,转化为求其对立事件,再用公式P (A )=1-P (A )(A 为A 的对立事件)求得.练一练3.先后掷两枚大小相同的骰子.(1)求点数之和出现7点的概率;(2)求出现两个4点的概率;(3)求点数之和能被3整除的概率.解:如图所示,从图中容易看出基本事件与所描点一一对应,共36个.(1)记“点数之和出现7点”为事件A ,从图中可以看出,事件A 包含的基本事件共6个:(6,1),(5,2),(4,3),(3,4),(2,5),(1,6).故P (A )=636=16. (2)记“出现两个4点”为事件B ,从图中可以看出,事件B 包含的基本事件只有1个,即(4,4).故P (B )=136. (3)记“点数之和能被3整除”为事件C ,则事件C 包含的基本事件共12个:(1,2),(2,1),(1,5),(5,1),(2,4),(4,2),(3,3),(3,6),(6,3),(4,5),(5,4),(6,6).故P (C )=1236=13. ——————————————[课堂归纳·感悟提升]———————————————1.本节课的重点是了解基本事件的特点,能写出一次试验所出现的基本事件,会用列举法求古典概型的概率.难点是理解古典概型及其概率计算公式,会判断古典概型.2.本节课要掌握以下几类问题:(1)基本事件的两种探求方法,见讲1.(2)求古典概型的步骤及使用古典概型概率公式的注意点,见讲2.(3)利用事件的关系结合古典概型求概率,见讲3.3.本节课的易错点有两个:(1)列举基本事件时易漏掉或重复,如讲1;(2)判断一个事件是否是古典概型易出错.课下能力提升(十八)[学业水平达标练]题组1基本事件的列举问题1.同时投掷两颗大小完全相同的骰子,用(x,y)表示结果,记A为“所得点数之和小于5”,则事件A包含的基本事件数是()A.3 B.4 C.5 D.6解析:选D事件A包含的基本事件有6个:(1,1),(1,2),(1,3),(2,1),(2,2),(3,1).故选D.2.做试验“从0,1,2这3个数字中,不放回地取两次,每次取一个,构成有序数对(x,y),x为第1次取到的数字,y为第2次取到的数字”.①写出这个试验的基本事件;②求出这个试验的基本事件的总数;③写出“第1次取出的数字是2”这一事件包含的基本事件.解:①这个试验的基本事件为(0,1),(0,2),(1,0),(1,2),(2,0),(2,1).②基本事件的总数为6.③“第1次取出的数字是2”包含以下2个基本事件:(2,0),(2,1).题组2简单古典概型的计算3.下列关于古典概型的说法中正确的是()①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等;③每个基本事件出现的可能性相等;④基本事件的总数为n,随机事件A若包含k个基本事件,则P(A)=kn.A.②④B.①③④C.①④D.③④解析:选B根据古典概型的特征与公式进行判断,①③④正确,②不正确,故选B.4.下列试验中,属于古典概型的是( )A .种下一粒种子,观察它是否发芽B .从规格直径为250 mm±0.6 mm 的一批合格产品中任意抽一根,测量其直径dC .抛掷一枚硬币,观察其出现正面或反面D .某人射击中靶或不中靶解析:选C 依据古典概型的特点判断,只有C 项满足:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相同.5.设a 是掷一枚骰子得到的点数,则方程x 2+ax +2=0有两个不相等的实根的概率为( )A.23B.13C.12D.512解析:选A 基本事件总数为6,若方程有两个不相等的实根则a 2-8>0,满足上述条件的a 为3,4,5,6,故P =46=23. 6.一枚硬币连掷3次,有且仅有2次出现正面向上的概率为( )A.38B.23C.13D.14解析:选A 所有的基本事件是(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反),共有8个,仅有2次出现正面向上的有:(正,正,反),(正,反,正),(反,正,正),共3个.则所求概率为38. 7.袋中有6个球,其中4个白球,2个红球,从袋中任意取出两球,求下列事件的概率:(1)A :取出的两球都是白球;(2)B :取出的两球1个是白球,另1个是红球.解:设4个白球的编号为1,2,3,4;2个红球的编号为5,6.从袋中的6个小球中任取2个球的取法有(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15种.(1)从袋中的6个球中任取两个,所取的两球全是白球的取法共有6种,为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).∴取出的两个球全是白球的概率为P (A )=615=25. (2)从袋中的6个球中任取两个,其中一个是红球,而另一个是白球,其取法包括(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)共8种.∴取出的两个球一个是白球,一个是红球的概率为P (B )=815. 题组3 较复杂的古典概型的计算8.某停车场临时停车按时段收费,收费标准如下:每辆汽车一次停车不超过1小时收费6元,超过1小时的部分每小时收费8元(不足1小时按1小时计算).现有甲、乙两人在该地停车,两人停车都不超过4小时.(1)若甲停车1小时以上且不超过2小时的概率为13,停车费多于14元的概率为512,求甲的停车费为6元的概率;(2)若甲、乙两人每人停车的时长在每个时段的可能性相同,求甲、乙两人停车费之和为28元的概率.解:(1)记“一次停车不超过1小时”为事件A ,“一次停车1到2小时”为事件B ,“一次停车2到3小时”为事件C ,“一次停车3到4小时”为事件D .由已知得P (B )=13,P (C +D )=512. 又事件A ,B ,C ,D 互斥,所以P (A )=1-13-512=14. 所以甲的停车费为6元的概率为14. (2)易知甲、乙停车时间的基本事件有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个;而“停车费之和为28元”的事件有(1,3),(2,2),(3,1),共3个,所以所求概率为316. [能力提升综合练]1.下列是古典概型的是( )A .任意掷两枚骰子,所得点数之和作为基本事件时B .求任意的一个正整数平方的个位数字是1的概率,将取出的正整数作为基本事件时C .从甲地到乙地共n 条路线,求某人正好选中最短路线的概率D .抛掷一枚均匀硬币首次出现正面为止解析:选C A 项中由于点数的和出现的可能性不相等,故A 不是;B 项中的基本事件是无限的,故B 不是;C 项满足古典概型的有限性和等可能性,故C 是;D 项中基本事件可能会是无限个,故D 不是.2.(2015·广东高考)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为( )A .0.4B .0.6C .0.8D .1解析:选B 5件产品中有2件次品,记为a ,b ,有3件合格品,记为c ,d ,e ,从这5件产品中任取2件,有10种结果,分别是(a ,b ),(a ,c ),(a ,d ),(a ,e ),(b ,c ),(b ,d ),(b ,e ),(c ,d ),(c ,e ),(d ,e ),恰有一件次品,有6种结果,分别是(a ,c ),(a ,d ),(a ,e ),(b ,c ),(b ,d ),(b ,e ),设事件A ={恰有一件次品},则P (A )=610=0.6,故选B. 3.(2015·新课标全国卷Ⅰ)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A.310B.15C.110D.120解析:选C 从1,2,3,4,5中任取3个不同的数共有如下10个不同的结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),其中勾股数只有(3,4,5),所以概率为110.故选C. 4.从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( ) A.49 B.13 C.29 D.19解析:选D 分类讨论法求解.个位数与十位数之和为奇数,则个位数与十位数中必一个奇数一个偶数,所以可以分两类.(1)当个位为奇数时,有5×4=20个符合条件的两位数.(2)当个位为偶数时,有5×5=25个符合条件的两位数.因此共有20+25=45个符合条件的两位数,其中个位数为0的两位数有5个,所以所求概率为P =545=19. 5.(2016·石家庄高一检测)一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机地选择一条路径,则它能获得食物的概率为________.解析:该树枝的树梢有6处,有2处能找到食物,所以获得食物的概率为26=13. 答案:136.从三男三女共6名学生中任选2名(每名同学被选中的概率均相等),则2名都是女同学的概率等于________.解析:用A ,B ,C 表示三名男同学,用a ,b ,c 表示三名女同学,则从6名同学中选出2人的所有选法为:AB ,AC ,Aa ,Ab ,Ac ,BC ,Ba ,Bb ,Bc ,Ca ,Cb ,Cc ,ab ,ac ,bc,2名都是女同学的选法为:ab ,ac ,bc ,故所求的概率为315=15. 答案:157.(2015·天津高考)设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的方法从这三个协会中抽取6名运动员组队参加比赛.(1)求应从这三个协会中分别抽取的运动员的人数.(2)将抽取的6名运动员进行编号,编号分别为A 1,A 2,A 3,A 4,A 5,A 6.现从这6名运动员中随机抽取2人参加双打比赛.①用所给编号列出所有可能的结果;②设A 为事件“编号为A 5和A 6的两名运动员中至少有1人被抽到”,求事件A 发生的概率.解:(1)应从甲、乙、丙三个协会中抽取的运动员人数分别为3,1,2.(2)①从6名运动员中随机抽取2人参加双打比赛的所有可能结果为{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},{A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共15种.②编号为A 5和A 6的两名运动员中至少有1人被抽到的所有可能结果为{A 1,A 5},{A 1,A 6},{A 2,A 5},{A 2,A 6},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共9种.因此,事件A 发生的概率P (A )=915=35. 8.(2014·山东高考)海关对同时从A ,B ,C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示. 工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6件样品中来自(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.解:(1)因为样本容量与总体中的个体数的比是650+150+100=150, 所以样本中包含三个地区的个体数量分别是:50×150=1,150×150=3,100×150=2. 所以A ,B ,C 三个地区的商品被选取的件数分别为1,3,2.(2)设6件来自A ,B ,C 三个地区的样品分别为:A ;B 1,B 2,B 3;C 1,C 2.则从6件样品中抽取的这2件商品构成的所有基本事件为:{A,B1},{A,B2},{A,B3},{A,C1},{A,C2},{B1,B2},{B1,B3},{B1,C1},{B1,C2},{B2,B3},{B2,C1},{B2,C2},{B3,C1},{B3,C2},{C1,C2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D:“抽取的这2件商品来自相同地区”,则事件D包含的基本事件有:{B1,B2},{B1,B3},{B2,B3},{C1,C2},共4个.所以P(D)=415,即这2件商品来自相同地区的概率为415.。

人教版高中数学必修三第三章第3节 3.3.1 几何概型 课件(共17张PPT)

人教版高中数学必修三第三章第3节 3.3.1 几何概型  课件(共17张PPT)

【变式2】:圆O是边长为2的正方
形的内切圆 , 向这个正方形中随机
地投一点M,设M落在正方形中任一
点的可能性是相同的,试求点M落圆
O中的概率.
O
4
•M
知识探究(二):几何概型的概率
【变式3】一只小虫在一个棱长为20cm盛满 水的正方体容器中游动, 假设小虫出现在容 器中的任意一个位置均为等可能的, 记“它 所在的位置距离正方体中心不超过10cm”为 事件A, 那么事件A发生的概率是多少?
B
N
N
B
B
N
BB
N
N
B
知识探究(一):几何概型的概念
思考 3:上述每个扇形区域对应的圆弧的长度(或 扇形的面积)和它所在位置都是可以变化的,从 结论来看,甲获胜的概率与字母 B 所在扇形区域 的哪个因素有关?
B
N
N
B
B
N
BB
N
N
B
与扇形的弧长(或面积)有关.
知识探究(一):几何概型的概念 思考 4:如果每个事件发生的概率只与构成该事 件区域的长度(面积或体积)成比例,则称这样 的概率模型为几何概型. 参照古典概型的特性, 几何概型有哪两个基本特征?
所有基本事件构成 的区域是什么?
事件A构成的区域 是什么?
在线段AB上任取一
3m

A
B
3m
取到线段AB上某一点 A
B
3m
线段AB(除两端外) A
B
线段CD
1m
AC DB
知识探究(二):几何概型的概率
【变式1】:在等腰直角三角形 ABC中,在斜边AB上任取一点M,
求AM的长大于AC的长的概率.
知识探究(二):几何概型的概率

高中数学必修3《古典概型》教案

高中数学必修3《古典概型》教案
画树状图是列举法的基本方法,数形结合和分类讨论思想渗透其中。使学生明白如何列举才能不重不漏,从而突破了没有学习排列组合而学习概率这一教学困惑。
教学设计
教学内容
师生活动
设计意图





思考交流:观察对比5等分转盘摇奖试验、掷硬币试验和例1的试验有什么共同的特点?
(提示:从试验的基本事件的个数和基本事件的概率特点两个方面入手)
古典概型
一、教材分析
教材的地位和作用:本节课是高中数学必修3第三章概率的第二节,古典概型的第一课时。本节课在教材中起着承前启后的作用。古典概型的引入避免了大量的重复试验,而且得到的概率是精确值。古典概型是一种最基本的概率模型,在概率论中占有相当重要的地位。学好古典概型为后续学习几何概型奠定了知识和方法基础,同时有助于理解概率的概念,有利于计算一些事件的概率,并解释生活中的一些概率问题。
3.课堂提问与课后作业为补偿性教学提供依据。
.1任意角
课前预习学案
一、预习目标
1、认识角扩充的必要性,了解任意角的概念,与过去学习过的一些容易混淆的概念相区分;
2、能用集合和数学符号表示终边相同的角,体会终边相同角的周期性;
3、能用集合和数学符号表示象限角;
4、能用集合和数学符号表示终边满足一定条件的角.
由特殊到一般,水到渠成的引出古典概型的定义,从而使学生对古典概型由感性认识上升到理性认识。
三个问题的设计是为了让学生更加准确的把握古典概型的两个本质特征:结果的有限性和等可能性,以突破古典概型识别的难点。其中,问题2破坏了古典概型的等可能性,问题3破坏了古典概型的有限性特征,为后续学习几何概型埋下伏笔。
用动画演示摇奖试验,由教师提出问题。

2019-2020学年高中数学人教B版必修3教学案:第三章 3.1 3.1.1 & 3.1.2 随机现象 事件与基本事件空

2019-2020学年高中数学人教B版必修3教学案:第三章 3.1 3.1.1 & 3.1.2 随机现象 事件与基本事件空

3.1.1 & 3.1.2随机现象事件与基本事件空间预习课本P91~94,思考并完成以下问题(1)必然现象和随机现象是如何定义的?(2)事件分为哪三类?(3)基本事件和基本事件空间是如何定义?[新知初探]1.随机现象与随机事件(1)必然现象与随机现象:(2)事件:①不可能事件:在同样的条件下重复进行试验时,始终不会发生的结果.②必然事件:在同样的条件下重复进行试验时,每次试验中一定会发生的结果.③随机事件:在同样的条件下重复进行试验时,可能发生,也可能不发生的结果.2.基本事件与基本事件空间(1)基本事件:试验中不能再分的最简单的,且其他事件可以用它们来描绘的随机事件.(2)基本事件空间:①定义:所有基本事件构成的集合称为基本事件空间.②表示:基本事件空间常用大写希腊字母Ω表示.[小试身手]1.下列现象是必然现象的是( )A.一天中进入某超市的顾客人数B.一顾客在超市中购买的商品数C.一颗麦穗上长着的麦粒数D.早晨太阳从东方升起答案:D2.下列事件:①长度为3,4,5的三条线段可以构成一个直角三角形;②经过有信号灯的路口,遇上红灯;③下周六是晴天.其中,是随机事件的是( )A.①②B.②③C.③①D.②解析:选B①为必然事件;②③为随机事件.3.“李晓同学一次掷出3枚骰子,3枚全是6点”的事件是( )A.不可能事件B.必然事件C.可能性较大的随机事件D.可能性较小的随机事件解析:选D掷出的3枚骰子全是6点,可能发生,但发生的可能性较小.4.先后抛掷两枚质地均匀的硬币,所有可能的结果为________.答案:(正,正)、(正,反)、(反,正)、(反,反)必然现象、随机现象[典例](1)将三个小球全部放入两个盒子中,其中有一个盒子里有一个以上的球;(2)一个射击运动员每次射击命中的环数;(3)三角形的内角和为180°;(4)二次函数y=ax2+bx+c(a≠0)的开口方向.[解](1)三个小球全部放入两个盒子,其中有一个盒子里有一个以上的球,这个结果一定发生,故为必然现象;(2)射击运动员每次射击命中的环数可能为1环,2环等,因此是随机现象;(3)三角形的内角和一定是180°,是确定的,故为必然现象;(4)二次函数y=ax2+bx+c(a≠0)的开口方向与a的取值有关,当a>0时,开口向上,当a<0时,开口向下,故在a≠0的条件下开口可能向上也可能向下,故是随机现象.判断是必然现象还是随机现象关键点是看给定条件下的结果是否一定发生,若一定发生,则为必然现象,若不确定,则其为随机现象,即随机现象事先难以预料,而必然现象事先就能知道结果.[活学活用]判断下列现象是必然现象还是随机现象.(1)在一个装有1个白球,9个黄球的不透明袋子中,任意摸出两球,至少有一个黄球;(2)一个不透明的袋子中装有5个白球,2个黑球,3个红球,大小形状完全相同,搅拌均匀后,从中任取一球为红球.解:(1)袋中装有1个白球、9个黄球,从中任取2个,一定至少有一个黄球,故是必然现象.(2)袋中有5个白球,2个黑球,3个红球,从中任取一个,可能是白球,可能是黑球,也可能是红球,故是随机现象.事件类型的判断[典例](1)某人购买福利彩票一注,中奖500万元;(2)三角形的两边之和大于第三边;(3)没有空气和水,人类可以生存下去;(4)从分别标有1,2,3,4的四张标签中任取一张,抽到1号标签;(5)科学技术达到一定水平后,不需任何能量的“永动机”将会出现.[解](1)购买一注彩票,可能中奖,也可能不中奖,所以是随机事件.(2)所有三角形的两边之和都大于第三边,所以是必然事件.(3)空气和水是人类生存的必要条件,没有空气和水,人类无法生存,所以是不可能事件.(4)任意抽取,可能得到1,2,3,4号标签中的任一张,所以是随机事件.(5)由能量守恒定律可知,不需任何能量的“永动机”不会出现,所以是不可能事件.对事件分类的两个关键点(1)条件:在条件S下事件发生与否是与条件相对而言的,没有条件,无法判断事件是否发生;(2)结果发生与否:有时结果较复杂,要准确理解结果包含的各种情况.[活学活用]指出下列事件是必然事件、不可能事件,还是随机事件.(1)我国东南沿海某地明年将受到3次冷空气的侵袭;(2)抛掷硬币10次,至少有一次正面向上;(3)同一门炮向同一目标发射多枚炮弹,其中50%的炮弹击中目标;(4)没有水分,种子发芽.解:(1)我国东南沿海某地明年可能受到3次冷空气侵袭,也可能不是3次,是随机事件.(2)抛掷硬币10次,也可能全是反面向上,也可能有正面向上,是随机事件.(3)同一门炮向同一目标发射,命中率可能是50%,也可能不是50%,是随机事件.(4)没有水分,种子不可能发芽,是不可能事件.基本事件与基本事件空间[典例] y,结果为(x,y).(1)写出这个试验的基本事件空间;(2)求这个试验的基本事件的总数;(3)“x+y=5”这一事件包含哪几个基本事件?“x<3且y>1”呢?(4)“xy=4”这一事件包含哪几个基本事件?“x=y”呢?[解](1)Ω={(1,1),(1,2),(1, 3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}.(2)基本事件的总数为16.(3)“x+y=5”包含以下4个基本事件:(1,4),(2,3),(3,2),(4,1);“x<3且y>1”包含以下6个基本事件:(1,2),(1,3),(1,4),(2,2),(2,3),(2,4).(4)“xy=4”包含以下3个基本事件:(1,4),(2,2),(4,1);“x=y”包括以下4个基本事件:(1,1),(2,2),(3,3),(4,4).确定基本事件空间的方法(1)必须明确事件发生的条件;(2)根据题意,按一定的次序列出问题的答案.特别要注意结果出现的机会是均等的,按规律去写,要做到既不重复也不遗漏.[活学活用]甲、乙两人做出拳游戏(锤、剪、布).(1)写出基本事件空间;(2)写出事件“甲赢”;(3)写出事件“平局”.解:(1)Ω={(锤,剪),(锤,布),(锤,锤),(剪,锤)(剪,剪),(剪,布),(布,锤),(布,剪),(布,布)}.(2)记“甲赢”为事件A,则A={(锤,剪),(剪,布),(布,锤)}.(3)记“平局”为事件B,则B={(锤,锤),(剪,剪),(布,布)}.[层级一学业水平达标]1.同时投掷两枚大小相同的骰子,用(x,y)表示结果,记A为“所得点数之和小于5”,则事件A包含的基本事件的个数是( )A.3 B.4C.5 D.6解析:选D有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)共6个基本事件.2.在25件同类产品中,有2件次品,从中任取3件产品,其中不可能事件为( )A.3件都是正品B.至少有1件次品C.3件都是次品D.至少有1件正品解析:选C25件产品中只有2件次品,所以不可能取出3件都是次品.3.写出下列试验的基本事件空间:(1)甲、乙两队进行一场足球赛,观察甲队比赛结果(包括平局)________;(2)从含有6件次品的50件产品中任取4件,观察其中次品数________.解析:(1)对于甲队来说,有胜、平、负三种结果;(2)从含有6件次品的50件产品中任取4件,其次品的个数可能为0,1,2,3,4,不能再有其他结果.答案:(1)Ω={胜,平,负} (2)Ω={0,1,2,3,4}4.做试验“从0,1,2这3个数字中,不放回地取两次,每次取一个数字,构成有序数对(x,y),x为第1次取到的数字,y为第2次取到的数字”.(1)写出这个试验的基本事件空间;(2)求这个试验基本事件的总数;(3)写出“第1次取出的数字是2”这一事件.解:(1)这个试验的基本事件空间Ω={(0,1),(0,2),(1,0),(1,2),(2,0),(2,1)}.(2)易知这个试验的基本事件的总数是6.(3)记“第1次取出的数字是2”这一事件为A,则A={(2,0),(2,1)}.[层级二应试能力达标]1.下面事件:①某项体育比赛出现平局;②抛掷一枚硬币,出现反面;③全球变暖会导致海平面上升;④一个三角形的三边长分别为1,2,3.其中是不可能事件的是( ) A.①B.②C.③D.④解析:选D三角形的三条边必须满足两边之和大于第三边.2.在1,2,3,…,10这10个数字中,任取3个数字,那么“这三个数字的和大于6”这一事件是( ) A.必然事件B.不可能事件C.随机事件D.以上选项均不正确解析:选C若取1,2,3,则和为6,否则和大于6,所以“这三个数字的和大于6”是随机事件.3.已知集合A={-9,-7,-5,-3,-1,0,2,4,6,8},从集合A中任取不相同的两个数作为点P的坐标,则事件“点P落在x轴上”包含的基本事件共有( )A.7个B.8个C.9个D.10个解析:选C“点P落在x轴上”包含的基本事件的特征是纵坐标为0,横坐标不为0,因A中有9个非零数,故选C.4.已知集合A是集合B的真子集,下列关于非空集合A,B的四个命题:①若任取x∈A,则x∈B是必然事件;②若任取x∉A,则x∈B是不可能事件;③若任取x∈B,则x∈A是随机事件;④若任取x∉B,则x∉A是必然事件.其中正确的命题有( )A.1个B.2个C.3个D.4个解析:选C∵集合A是集合B的真子集,∴A中的任意一个元素都是B中的元素,而B中至少有一个元素不在A中,因此①正确,②错误,③正确,④正确.5.下列给出五个事件:①某地2月3日下雪;②函数y=a x(a>0,且a≠1)在定义域上是增函数;③实数的绝对值不小于0;④在标准大气压下,水在1 ℃结冰;⑤a,b∈R,则ab=ba.其中必然事件是________;不可能事件是________;随机事件是________.解析:由必然事件、不可能事件、随机事件的定义即可得到答案.答案:③⑤④①②6.从1,2,3,4,5中随机取三个不同的数,则其和为奇数这一事件包含的基本事件数为________.解析:从1,2,3,4,5中随机取三个不同的数有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种情况,其中(1,2,4),(1,3,5),(2,3,4),(2,4,5)中三个数字之和为奇数.答案:47.设集合A={x|x2≤4,x∈Z},a,b∈A,设直线3x+4y=0与圆(x-a)2+(y-b)2=1相切为事件M,用(a,b)表示每一个基本事件,则事件M所包含的基本事件为___________.解析:A ={-2,-1,0,1,2},由直线与圆相切知,|3a +4b|5=1, 所以3a +4b =±5,依次取a =-2,-1,0,1,2,验证知,只有⎩⎪⎨⎪⎧ a =-1,b =2,⎩⎪⎨⎪⎧ a =1,b =-2满足等式. 答案:(-1,2),(1,-2)8.将一枚质地均匀且四个面上分别标有1,2,3,4的正四面体先后抛掷两次,其底面落于桌面上,记第一次朝下面的数字为x ,第二次朝下面的数字为y .用(x ,y )表示一个基本事件.(1)请写出所有的基本事件.(2)满足条件“x y为整数”这一事件包含哪几个基本事件? 解:(1)先后抛掷两次正四面体的基本事件:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).共16个基本事件.(2)用A 表示满足条件“x y为整数”的事件, 则A 包含的基本事件有:(1,1),(2,1),(2,2),(3,1),(3,3),(4,1),(4,2),(4,4),共8个基本事件.9.设有一列北上的火车,已知停靠的站由南至北分别为S 1,S 2,…,S 10站.若甲在S 3站买票,乙在S 6站买票,设基本事件空间Ω表示火车所有可能停靠的站,令A 表示甲可能到达的站的集合,B 表示乙可能到达的站的集合.(1)写出该事件的基本事件空间Ω;(2)写出事件A 、事件B 包含的基本事件;(3)铁路局需为该列车准备多少种北上的车票?解:(1)Ω={S 1,S 2,S 3,S 4,S 5,S 6,S 7,S 8,S 9,S 10};(2)A ={S 4,S 5,S 6,S 7,S 8,S 9,S 10};B ={S 7,S 8,S 9,S 10}.(3)铁路局需要准备从S 1站发车的车票共计9种,从S 2站发车的车票共计8种,……,从S 9站发车的车票1种,合计共9+8+…+2+1=45(种).。

高中数学 第三章 概率 2.2 建立概率模型教案 北师大版必修3-北师大版高一必修3数学教案

高中数学 第三章 概率 2.2 建立概率模型教案 北师大版必修3-北师大版高一必修3数学教案

2.2 建立概率模型整体设计教学分析本节教材通过例2的四种模型的所有可能结果数越来越少,调动起学生思考探究的兴趣;教师在教学中要注意通过引导学生体会不同模型的特点以及对各种方法进行比较,提高学生分析和解决问题的能力.三维目标1.使学生能建立概率模型来解决简单的实际问题,提高学生分析问题和解决问题的能力.2.通过学习建立概率模型,培养学生的应用能力.重点难点教学重点:建立古典概型.教学难点:建立古典概型.课时安排1课时教学过程导入新课思路1.计算事件发生概率的大小时,要建立概率模型,把什么看成一个基本事件是人为规定的.今天我们学习如何建立概率模型,教师点出课题.思路2.解决实际应用问题时,要转化为数学问题来解决,即建立数学模型,这是高中数学的重点内容之一,也是高考的必考内容,同样解决概率问题也要建立概率模型,教师点出课题.推进新课新知探究提出问题1.回顾解应用题的步骤?2.什么样的概率属于古典概型?讨论结果:1.解应用题的一般程序:①读:阅读理解文字表达的题意,分清条件和结论,理顺数量关系,这一关是基础.②建:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型.熟悉基本数学模型,正确进行建“模”是关键的一关.③解:求解数学模型,得到数学结论.一要充分注意数学模型中元素的实际意义,更要注意巧思妙作,优化过程.④答:将数学结论还原给实际问题的结果.2.同时满足以下两个条件的概率属于古典概型:①试验的所有基本事件只有有限个,每次试验只出现其中一个基本事件;②每一次试验中,每个基本事件出现的可能性相等.应用示例思路1例1 口袋里装有2个白球和2个黑球,这4个球除颜色外完全相同,4个人按顺序依次从中摸出一球.试计算第二个人摸到白球的概率.分析:我们只需找出4个人按顺序依次摸球的所有可能结果数和第二个人摸到白球的可能结果数.为此考虑用列举法列出所有可能结果.解法一:用A 表示事件“第二个人摸到白球”.把2个白球编上序号1,2;2个黑球也编上序号1,2.于是,4个人按顺序依次从袋中摸出一球的所有可能结果,可用树状图直观地表示出来(如图1).图1树状图是进行列举的一种常用方法.从上面的树状图可以看出,试验的所有可能结果数为24.由于口袋内的4个球除颜色外完全相同,因此,这24种结果的出现是等可能的,试验属于古典概型.在这24种结果中,第二个人摸到白球的结果有12种,因此“第二个人摸到白球”的概率P(A)=2412=21, 这与第一节的模拟结果是一致的.还可以建立另外的模型来计算“第二个人摸到白球”的概率.如果建立的模型能使得试验的所有可能结果数变少,那么我们计算起来就更简便.解法二:因为是计算“第二个人摸到白球”的概率,所以我们可以只考虑前两人摸球的情况.前两人依次从袋中摸出一球的所有可能结果可用树状图列举出来(如图2).图2从上面的树状图可以看出,这个模型的所有可能结果数为12,因为口袋里的4个球除颜色外完全相同,因此,这12种结果的出现是等可能的,这个模型也是古典概型.在上面12种结果中,第二个人摸到白球的结果有6种,因此“第二个人摸到白球”的概率P(A)=126=21. 这里,我们是根据事件“第二个人摸到白球”的特点,利用试验结果的对称性,只考虑前两人摸球的情况,从而简化了模型.还可以从另外一个角度来考虑这个问题.因为口袋里的4个球除颜色外完全相同,因此,可以对2个白球不加区别,对2个黑球也不加区别,这样建立的模型的所有可能结果数就会更少,由此得到例2的另一种解法.解法三:只考虑球的颜色,4个人按顺序依次从袋中摸出一球的所有可能结果可用树状图列举出来(如图3).图3试验的所有可能结果数为6,并且这6种结果的出现是等可能的,这个模型是古典概型.在这6种结果中,第二个人摸到白球的结果有3种,因此“第二个人摸到白球”的概率P(A)=63=21. 下面再给出一种更为简单的解法.解法四:只考虑第二个人摸出的球的情况,他可能摸到这4个球中的任何一个,这4种结果出现的可能性是相同的.第二个人摸到白球的结果有2种,因此“第二个人摸到白球”的概率P(A)=42=21. 点评:画树状图进行列举是计算结果个数的基本方法之一.解法一利用树状图列出了4个人依次从袋中摸出一球的所有可能结果,共有24种,其中第二个人摸到白球的结果有12种,因此算得“第二个人摸到白球”的概率为21. 解法二利用试验结果的对称性,只考虑前两人摸球的情况,所有可能结果减少为12种,简化了模型.解法三只考虑球的颜色,对2个白球不加区别,对2个黑球也不加区别,所有可能结果只有6种.解法四只考虑第二个人摸出的球的情况,所有可能结果变为4种,这个模型最简单.尽管解法二,三,四建立的模型在解决该问题时比解法一简便,但解法一也有它的优势,利用解法一可以计算出4个人顺次摸球的任何一个事件的概率,而解法二,三,四却不能做到.教师要提醒学生,本章古典概率的计算,解法一是最基本的方法.对于一个实际问题,有时从不同的角度考虑,可以建立不同的古典概型来解决.变式训练小明和小刚正在做掷骰子游戏,两人各掷一枚骰子,当两枚骰子点数之和为奇数时,小刚得1分,否则小明得1分.这个游戏公平吗?分析:计算双方获胜的概率,来判断游戏是否公平.解:设(x,y)表示小明抛掷骰子点数是x ,小刚抛掷骰子点数是y ,则该概率属于古典概型.所有的基本事件是:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3), (4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3), (6,4),(6,5),(6,6),即有36种基本事件.其中点数之和为奇数的基本事件有:(1,2),(1,4),(1,6),(2,1),(2,3),(2,5),(3,2),(3,4),(3,6),(4,1),(4,3),(4,5),(5,2),(5,4),(5,6),(6,1),(6,3),(6,5).即有18种.所以小刚得1分的概率是3618=21. 则小明得1分的概率是1-21=21. 则小明获胜的概率与小刚获胜的概率相同,游戏公平.思路2例1 (2007广东高考,文8)在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是( ) A.103 B.51 C.101 D.121 分析:用(x,y)(x≠y)表示从这5个球中随机取出2个小球上数字的结果,其结果有: (1,2)、(1,3)、(1,4)、(1,5)、(2,3)、(2,4)、(2,5)、(3,4)、(3,5)、(4,5),即共有10种,取出的小球标注的数字之和为3或6的结果有:(1,2)、(1,5)、(2,4),共有3种,所以取出的小球标注的数字之和为3或6的概率为P(A)= 103. 答案:A点评:求古典概型的概率的步骤:①利用枚举法计算基本事件的总数;②利用枚举法计算所求事件所含基本事件的个数;③代入古典概型的概率计算公式求得.变式训练1.(2007全国高考卷Ⅰ,文13)从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):该自动包装机包装的食盐质量在497.5 g —501.5 g 之间的概率约为___________.分析:观察表格可得在497.5 g —501.5 g 之间的食盐有:498,501,500,501,499共5袋,则食盐质量在497.5 g —501.5 g 之间的概率P(A)=205=0.25. 答案:0.252.某校要从高一、高二、高三共2 007名学生中选取50名组成访问团,若采用下面的方法选取:先用分层抽样的方法从2 007人中剔除7人,剩下的2 000人再按简单随机抽样的方法进行,则每人入选的概率( ) A.不全相等 B.均不相等C.都相等且为200750D.都相等且为401 分析:按分层抽样抽取样本时,每个个体被抽到的概率是相等的,都等于200750. 答案:C知能训练1.袋中有4个红球,5个白球,2个黑球,从里面任意摸2个小球,不是基本事件.( )A.{正好2个红球}B.{正好2个黑球}C.{正好2个白球}D.{至少一个红球}分析:至少一个红球包含:一红一白或一红一黑或2个红球,所以{至少一个红球}不是基本事件,其他事件都是基本事件.答案:D2.抛掷一枚质地均匀的硬币,如果连续抛掷10 000次,那么第9 999次出现正面朝上的概率是( )A.99991B.100001C.100009999D.21 答案:D3.有4条线段,长度分别为1、3、5、7,从这四条线段中任取三条,则所取三条线段能够成一个三角形的概率是( )A.41B.31C.21D.52 答案:A4.(2007全国高考卷Ⅱ,文13)一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为____________.分析:按简单随机抽样抽取样本时,每个个体被抽到的概率是相等的,都等于1005,即201. 答案:201 5.某小组有5名女生,3名男生,现从这个小组中任意选出一名组长,则其中一名女生小丽当选为组长的概率是__________.答案:81 6.袋中有6个球,其中4个白球,2个红球,从袋中任意取出两球,求下列事件的概率:(1)事件A :取出的两球都是白球;(2)事件B :取出1个是白球,另1个是红球.分析:首先应求出任取两球的基本事件的总数,然后需分别求出事件A 的个数和事件B 的个数,运用公式求解即可.解:设4个白球的编号为1,2,3,4,两个红球的编号为5,6.从袋中的6个小球中任取两个的基本事件有:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)共15个.(1)取出的全是白球的基本事件,共有6个,即为(1,2),(1,3),(1,4), (2,3),(2,4),(3,4),∴取出的两个球都是白球的概率为P(A)=156. (2)取出一个红球,而另一个为白球的基本事件,共有8个,即为(1,5),(1,6), (2,5),(2,6), (3,5),(3,6), (4,5),(4,6),∴取出的两个球一个是白球,另一个是红球的概率为P(B)=158. 拓展提升1.连续掷两次骰子,以先后得到的点数m,n 为点P(m,n)的坐标,设圆Q 的方程为x 2+y 2=17.(1)求点P 在圆Q 上的概率;(2)求点P 在圆Q 外部的概率.解:m 的值的所有可能是1,2,3,4,5,6,n 的值的所有可能是1,2,3,4,5,6,所以,点P(m ,n)的所有可能情况有6×6=36种,且每一种可能出现的可能性相等,本问题属古典概型问题.(1)点P 在圆Q 上只有P(1,4),P(4,1)两种情况,根据古典概型公式,点P 在圆Q 上的概率为181362=. (2)点P 在圆Q 内的坐标是:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),共有8点,所以点P 在圆Q 外部的概率为1-18133682=+. 2.将一枚质地均匀的硬币连续投掷3次,求以下事件的概率:(1)3次正面向上;(2)2次正面向上,1次反面向上.解:(1)将一枚质地均匀的硬币连续投掷3次的基本事件总数为8,又事件“3次正面向上”共有基本事件数为1,设事件“3次正面向上”为A, ∴P(A)=81. ∴事件“3次正面向上”发生的概率为81. (2)又事件“2次正面向上,1次反面向上”共有基本事件数为3,设事件“2次正面向上,1次反面向上”为B,∴P(B)=83. ∴事件“2次正面向上,一次反面向上”发生的概率为83. 课堂小结本节课学习了同一个古典概型的概率计算问题,可以建立不同的概率模型来解决. 作业习题3-2 A 组 7、8.设计感想本节教学设计过程中,注重培养学生的应用能力,以及古典概型的计算方法.在实际教学过程中,教师要根据学生的实际,重点指导学生如何建立古典概型.。

高中数学 第三章概率教案 新人教版必修3

高中数学 第三章概率教案 新人教版必修3

第三章概率一、课时学习目标知识与技能1、掌握随机事件、必然事件、不可能事件的概念。

2、正确理解事件A出现的频率的意义。

3、正确理解概率的概率和意义,明确事件A发生的频率f n〔A〕与事件A发生的概率P〔A〕的区别与联系。

4、利用概率知识,正确理解现实生活中的实际问题。

过程与方法通过在抛硬币、抛骰子的试验中获取数据的过程,培养探索、归纳的能力和自主学习的能力。

情感、态度与价值观1、通过自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系。

2、培养辩证唯物主义观点,增强科学意识。

二、课前预习导学请同学们阅读P108—112,完成以下问题1、事件的有关概念〔1〕必然条件:在条件S下,_________会发生的事件,叫做相对于条件S的必然事件,简称必然事件;〔2〕不可能事件:在条件S下,__________会发生的事件,叫做相对于条件S的不可能事件,简称不可能事件;〔3〕确定事件:__________事件与___________事件统称为相对于条件S的确定事件,简称确定事件;〔4〕随机事件:在条件S下,___________的事件叫做相对于条件S的随机事件,简称随机事件。

〔5〕_________事件与________事件统称为事件,一般用________表示。

2、概率与频率〔1〕频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的_________,称事件A出现的比例fn〔A〕=nAn为事件A出现的__________,显然频率的取值X围是____________。

〔2〕概率:在大量重复试验后,随着试验次数的增加,事件A发生的频率如果逐渐________在区间[0,1]中的某个______上,这个便称为事件A的概率,用P〔A〕表示,显示概率的取值X围是[0,1],且不可能事件的概率为_________,必然事件的概率为___________。

高中数学 第三章《直线与方程》3.1直线的倾斜角和斜率教学设计高一数学教案

高中数学 第三章《直线与方程》3.1直线的倾斜角和斜率教学设计高一数学教案


究直线及其几何性质(如直线的位置关系、夹角、点到直线的距离等)的基础。

通过本节内容的学习,帮助学生初步了解直角坐标系内几何要素代数化的过程和意义,初步

渗透解析几何的基本思想和基本研究方法,进一步培养学生对函数、数形结合、分类讨论思想的

应用知识。本课有着开启全章,奠定基调,渗透方法的作用。

用坐标法解决几何问题是解析几何的主要目标,其本质是抽象的代数语言和直观的集合语言
何对应关系? 新
程的解和直线 程的概念学

上的点的关系。 习 需 要 一 个
为 后 面 分 类 讨 过程,直线的
当学生归纳出方程的解和直线上的点存 论作准备。
方程和方程
在一一对应关系时,师生共同总结出直线的方
(2)学生准 的 直 线 概 念

程和方程的直线(幻灯片):
确说出方程的 的描述中体
以一个方程的解为坐标的点都是某条直
知 定的,那么,如何用两点的坐标来表示直线 P1P2
(2)斜率公 问题(2)
的斜率呢?
式表明,直线对 引 导 学 生 从
于 x 轴的倾斜 不同的角度
第一步:提出两个问题
程 度 可 以 通 过 计算斜率,并
(1)如何求斜率 K?
直线上任意两 对学生进行
(当 时,由 k tan [0, ) ) 2
2 同学们还能定义别的表示直线倾斜程度 的量吗?
了,直线的方向 也就确定了,倾 斜角不同,直线
破。 3. 函 数
的应用应与
3 应用哪一个三角函数更能合理地表示直 线的倾斜程度?
的倾斜程度也 不同。那么所用 函数尽可能是
实际研究问 题的需要相 结合。只有这

2020_2021学年高中数学第三章概率3.1.2概率的意义学案含解析新人教A版必修3

2020_2021学年高中数学第三章概率3.1.2概率的意义学案含解析新人教A版必修3

高中数学:3.1.2 概率的意义[目标] 1.通过实例,进一步理解概率的意义;2.会用概率的意义解释生活中的实例;3.了解“极大似然法”和遗传机理中的统计规律.[重点] 概率的意义及应用.[难点] 概率意义的理解.知识点一 概率的正确理解[填一填] 随机事件在一次试验中发生与否是随机的,但是随机性中含有规律性.认识了这种随机性中的规律性,就能使我们比较准确地预测随机事件发生的可能性.概率只是度量事件发生的可能性的大小,不能确定是否发生.[答一答]1.掷一枚均匀的硬币,正面向上的概率是12,那么在掷一百次试验中,是否一定有50次正面向上?提示:不一定,但正面向上的次数应是50次左右.知识点二 游戏的公平性[填一填]尽管随机事件发生具有随机性,但是当大量重复这一过程时,它又呈现出一定的规律性,因此利用概率知识可以解释和判断一些游戏规则的公平性、合理性.[答一答]2.在生活中,有时要用抽签的方法来决定一件事情,这样做是否公平呢?提示:我们看到在抽签时虽然有先有后,但每个抽签者中签的概率是相等的,也就是说,不会因为抽签的顺序影响其公平性.例如,在n 张相同的票中只有1张奖票,n 个人依次从中各抽1张,那么每个人抽到奖票的概率都是1n,也就是说,抽到奖票的概率与抽票的顺序无关.知识点三决策中的概率思想[填一填]如果我们面临的是从多个可选答案中挑选正确答案的决策任务,那么“使样本出现的可能性最大”可以作为决策的准则,这种判断问题的方法称为极大似然法,是决策中的概率思想.[答一答]3.如果掷一枚硬币100次,结果只有两次正面向上,如果只考虑硬币是否均匀,你的判断更倾向于什么?提示:更倾向于硬币不均匀.如果硬币是均匀的,那么出现正面向上或反面向上的次数应相差不大.知识点四天气预报的概率解释[填一填]天气预报的“降水概率”是随机事件的概率,是指明了“降水”这个随机事件发生的可能性的大小.[答一答]4.某地气象局预报说,明天本地降水概率为70%,请你结合概率的意义作出正确的解释.提示:“明天本地降水概率为70%”是指本地降水的可能性是70%,而不是本地70%的区域会降水.当然,降水是一个随机事件,随机事件在一定条件下可能发生,也可能不发生,因此降水概率为70%是指降水的可能性为70%,本地不一定下雨,也不一定不下雨.天气预报是气象专家根据观测到的气象资料和经验,经过分析推断得到的.如果本地不下雨,并不能说天气预报是错误的.知识点五试验与发现及遗传机理中的统计规律[填一填]概率知识在科学发展中起着非常重要的作用,奥地利遗传学家孟德尔利用杂交豌豆所做的试验中,得到了显性与隐性的比例接近31,分析找出了遗传规律,成为近代遗传学的奠基人.可见,利用概率统计知识,对数据加以分析,有时可以得到意想不到的结论.[答一答]5.孟德尔试验得到的显性与隐性的比例是多少?其遗传机理是什么?提示:当这两种豌豆杂交时,下一代是从父母辈中各随机地选取一个特征,于是第一代收获的豌豆的特征是Yy.以此类推,第二代收获的是YY ,Yy ,Yy ,yy ,如图,Y 是显性因子,y 是隐性因子,当显性因子与隐性因子组合时,表现出显性因子的特征,即YY ,Yy 呈黄色;当两个隐性因子组合时才表现隐性因子的特征,即yy 呈绿色.由于下一代的两个特征是从父母辈中各随机选取的,因此在第二代中的YY ,yy 出现的概率都是14,Yy 出现的概率是12,所以黄色豌豆(YY 或Yy)绿色豌豆(yy)≈3 1.类型一 概率的正确理解[例1] 下列说法正确的是( )A .由生物学知道生男生女的概率约为0.5,一对夫妇先后生两个小孩,则一定为一男一女B .一次摸奖活动中,中奖概率为0.2,则摸5张票,一定有一张中奖C .10张票中有1张奖票,10人去摸,谁先摸则谁摸到奖票的可能性大D .10张票中有1张奖票,10人去摸,无论谁先摸,摸到奖票的概率都是0.1[解析] 一对夫妇生两个小孩可能是(男,男),(男,女),(女,男),(女,女),所以A 不正确;中奖概率为0.2是说中奖的可能性为0.2,当摸5张票时,可能都中奖,也可能中一张、两张、三张、四张,或者都不中奖,所以B 不正确;10张票中有1张奖票,10人去摸,每人摸到的可能性是相同的,即无论谁先摸,摸到奖票的概率都是0.1,所以C 不正确,D 正确.[答案] D随机事件在一次试验中发生与否是随机的,但随机中含有规律性,而概率恰是其规律性在数量上的反映,概率是客观存在的,它与试验次数,哪一个具体的试验都没有关系,运用概率知识,可以帮助我们澄清日常生活中人们对一些现象的错误认识.[变式训练1] 每道选择题有4个选择支,其中只有1个选择支是正确的.某次考试共有12道选择题,某人说:“每个选择支正确的概率是14,我每题都选择第一个选择支,则一定有3题选择结果正确”这句话( B )A .正确B .错误C .不一定D .无法解释解析:解答一个选择题作为一次试验,每次试验选择的正确与否都是随机的,经过大量的试验其结果呈随机性,即选择正确的概率是14.做12道选择题,即进行了12次试验,每个结果都是随机的,不能保证每题的结果选择正确,但有3题选择结果正确的可能性比较大.同时也有可能都选错,亦或有2题,4题,甚至12个题都选择正确.类型二 游戏的公平性[例2] 有一个转盘游戏,转盘被平均分成10等份(如图),转动转盘,当转盘停止后,指针指向的数字即为转出的数字.游戏规则如下:两个人参加,先确定猜数方案,甲转动转盘,乙猜,若猜出的结果与转盘转出的数字所表示的特征相符,则乙获胜,否则甲获胜.猜数方案从以下三种方案中选一种:A .猜“是奇数”或“是偶数”B .猜“是4的整数倍数”或“不是4的整数倍数”C .猜“是大于4的数”或“不是大于4的数”请回答问题:(1)如果你是乙,为了尽可能获胜,你将选择哪种猜数方案,并且怎样猜?为什么?(2)为了保证游戏的公平性,你认为应选哪种猜数方案?为什么?(3)请你设计一种其他的猜数方案,并保证游戏的公平性.[解](1)可以选择B.猜“不是4的整数倍数”或C.猜“是大于4的数”.“不是4的整数倍数”的概率为810=0.8,“是大于4的数”的概率为610=0.6,它们都超过了0.5,故应可以尽可能地获胜.(2)为了保证游戏的公平性,应当选择A方案.方案A.猜“是奇数”或“是偶数”的概率均为0.5,因而该游戏是公平的.(3)可以设计为D.猜“是大于5的数”或“不是大于5的数”,也可以保证游戏的公平性(答案不唯一).利用概率的意义可以制定游戏的规则,在各类游戏中,如果每人获胜的概率相等,那么游戏就是公平的,这就是说游戏是否公平只要看获胜的概率是否相等.如体育比赛中决定发球权的方法应该保证比赛双方先发球的概率相等,这样才公平.再如每个购买彩票的人中奖的概率应是相等的,这样对每个人才是公平的.[变式训练2]元旦就要到了,某校将举行庆祝活动,每班派1人主持节目.高一(2)班的小明、小华和小利实力相当,又都争着要去,班主任决定用抽签的方式决定,机灵的小强给小华出主意,要小华先抽,说先抽的机会大,你是怎样认为的?说说看.解:其实抽签不必分先后,先抽后抽,中签的机会是一样的.我们取三张卡片,上面标上1、2、3,抽到1就表示中签,设抽签的次序为甲、乙、丙,则可以把情况填入下表:从上表可以看出:甲、乙、丙依次抽签,一共有六种情况,第一、二两种情况,甲中签;第三、五两种情况,乙中签;第四、六两种情况,丙中签.甲、乙、丙中签的可能性都是相同的,即甲、乙、丙的机会是一样的,先抽后抽,机会是均等的,不必争先恐后.类型三极大似然法的应用[例3]设有外形完全相同的两个箱子,甲箱有99个白球1个黑球,乙箱有1个白球99个黑球.今随机地抽取一箱,要从取出的一箱中抽取一球,结果取得白球.问这球从哪一个箱子中取出?[分析]由题目可获取以下主要信息:①已知试验的结果与试验过程大致情况;②由试验结果推断具体的试验过程.解答本题可利用极大似然法.[解]甲箱中有99个白球1个黑球,故随机地取出一球,得白球的可能性是99100.乙箱中有1个白球和99个黑球,从中任取一球,得到白球的可能性是1100.由此看到,这一白球从甲箱中抽出的概率比从乙箱中抽出的概率大得多.由极大似然法,既然在一次抽样中抽到白球,当然可以认为是由概率大的箱子中抽出的.所以我们作出统计推断该白球是从甲箱中抽出的.在一次试验中,概率大的事件比概率小的事件出现的可能性更大,这正是能够利用极大似然法来进行科学决策的理论依据.因此,在分析、解决有关试验问题时,要善于灵活地运用极大似然法这一思想方法来进行科学地决策.[变式训练3]深入研究之后,人们发现英文中各个字母被使用的频率相当稳定,例如,下面就是一份统计表.试举例说明这一研究的重要用途是什么?解:在英语中某些字母出现的频率远远高于另外一些字母,从表中我们可以看出,空格的使用频率最高,鉴于此,这一研究在键盘的设计、信息的编码、密码的破译等方面都是十分有用的.比如,人们在设计键盘时,在方便的地方安排使用频率较高的字母键,空格键不仅所占面积最大,而且放在使用最方便的位置.1.已知某种彩票中奖率为11 000,某人买了1 000份该彩票,则其( D ) A .一定中奖B .恰有一份中奖C .至少有一份中奖D .可能没有中奖解析:彩票中奖是一个随机事件,中奖率是中奖的可能性,并非一定中奖.2.下列说法一定正确的是( D )A .一名篮球运动员,号称“百发百中”,若他罚球三次,不会出现三投都不中的情况B .一个骰子掷一次得到2的概率是16,则掷6次一定会出现一次2 C .若买彩票中奖的概率为万分之一,则买一万张彩票一定会中奖D .随机事件发生的概率与试验次数无关3.某医院治疗某种疾病的治愈率为1‰ .在2008年医院收治的398个病人中,无一治愈,那么2009年该医院收治的第一个病人可能被治愈.(填“可能”或“不可能”)4.利用简单随机抽样的方法抽查了某校200名学生,其中戴眼镜的同学有123人,若在这个学校随机调查一名学生,则他戴眼镜的概率是0.615.解析:根据频率与概率的关系及概率的意义知,这名学生戴眼镜的概率为123200=0.615. 5.李东是高一(18)班的一名学生,该班有学生55人,在将要举行的“五四”晚会上,每班要随机抽一名同学作为嘉宾参与电视台节目录制,李东认为他被抽到的概率为155,你认为有道理吗?解:有道理,因为从55位同学中抽取一名同学作为嘉宾,这是一个随机事件,因此,李东被抽到的概率为155.——本课须掌握的两大问题1.概率是从数量上反映随机事件发生的可能性大小的一个数学概念.对大量重复试验来说存在的一种统计规律性,对单次试验来说,随机事件发生与否是随机的.2.生活中的概率(1)在各类游戏中,如果每人获胜的概率相等,那么游戏就是公平的,这就是说,游戏是否公平只要看每人获胜的概率是否相等即可.(2)正确理解随机事件概率的意义,掌握日常生活中偶然事件发生的规律,用概率的意义来解释一些日常生活中偶然事件即随机事件发生的概率,可以澄清日常生活中的一些错误认识.但是在用概率思想指导实践活动时,要注意概率是根据大量的随机试验得到的一个相应的期望值,它说明一个事件发生的可能性的大小,并不说明一个事件一定发生或一定不发生,因此应当抱着一种平常的心态对待它.(3)如果我们的判断结论能够使得样本出现的可能性最大,那么判断正确的可能性也最大,这种判断问题的方法称为极大似然法.。

新课标人教A版高中数学必修3全册教案(word版)

新课标人教A版高中数学必修3全册教案(word版)

第一章算法初步一、课标要求:1、本章的课标要求包括算法的含义、程序框图、基本算法语句,通过阅读中国古代教学中的算法案例,体会中国古代数学世界数学发展的贡献。

2、算法就是解决问题的步骤,算法也是数学及其应用的重要组成部分,是计算机科学的基础,利用计算机解决问需要算法,在日常生活中做任何事情也都有算法,当然我们更关心的是计算机的算法,计算机可以解决多类信息处理问题,但人们必须事先用计算机熟悉的语言,也就是计算能够理解的语言(即程序设计语言)来详细描述解决问题的步骤,即首先设计程序,对稍复杂一些的问题,直接写出解决该问题的程序是困难的,因此,我们要首先研究解决问题的算法,再把算法转化为程序,所以算法设计是使用计算机解决具体问题的一个极为重要的环节。

3、通过对解决具体问题的过程与步骤的分析(如二元一次方程组的求解等问题),体会算法的思想,了解算法的含义。

理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构。

理解并掌握几种基本的算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句。

进一步体会算法的基本思想。

4、本章的重点是体会算法的思想,了解算法的含义,通过模仿、操作、探索,经过通过设计程序框图解决问题的过程。

点是在具体问题的解决过程中,理解三种基本逻辑结构,经历将具体问题的程序框图转化为程序语句的过程,理解几种基本的算法语句。

二、编写意图与特色:算法是数学及其应用的重要组成部分,是计算科学的重要基础。

随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。

需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。

在本模块中,学生将在义务教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力。

高中数学必修3 第三章概率教案 苏教版 教案

高中数学必修3 第三章概率教案 苏教版 教案

某某大学附属中学高中数学必修3 第三章概率教案3.1随机事件及其概率教学目标:1、知识与技能:(1)了解随机事件、必然事件、不可能事件的概念;(2)正确理解事件A出现的频率的意义;(3)正确理解概率的概念和意义,明确事件A发生的频率与事件A发生的概率的区别与联系;(4)利用概率知识正确理解现实生活中的实际问题.2、过程与方法:(1)发现法教学,通过在抛硬币、抛骰子的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高;(2)通过对现实生活中的“掷币”,“游戏的公平性”,“彩票中奖”等问题的探究,感知应用数学知识解决数学问题的方法,理解逻辑推理的数学方法.3、情感态度与价值观:(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;(2)培养学生的辩证唯物主义观点,增强学生的科学意识.教学重点:事件的分类;概率的定义以及和频率的区别与联系教学难点:用概率的知识解释现实生活中的具体问题.教学过程:一、问题情境1.足球比赛用抛掷硬币的方式决定场地,这是否公平?2.某班的50名学生中,有两名学生的生日相同的可能性有多大?3.路口有一红绿灯,东西方向的红灯时间为45s,绿灯时间为60s.从东向西行驶的一辆汽车通过该路口,遇到红灯的可能性有多大?日常生活中,与此相关的问题还有很多。

例如:(1)在标准大气压下水加热到100℃,沸腾;(2)导体通电,发热;(3)同性电荷,互相吸引;(4)实心铁块丢入水中,铁块浮起;(5)买一X福利彩票,中奖;(6)掷一枚硬币,正面向上.二、建构数学在一定条件下,事先就能断定发生或不发生某种结果,这种现象就是确定性现象.在一定条件下,某种现象可能发生,也可能不发生,事先不能断定出现哪种结果,这种现象就是随机现象.对于某个现象,如果能让其条件实现一次,就是进行了一次试验.而试验的每一种可能的结果,都是一个事件.在一定的条件下,必然会发生的事件叫做必然事件.在一定条件下,肯定不会发生的事件叫做不可能事件.在一定条件下,可能发生也可能不发生的事件叫做随机事件.必然事件与不可能事件反映的就是在一定条件下的确定性现象,而随机事件反映的则是随机现象.以后我们用A,B,C等大写英文字母表示随机事件,简称为事件.我们已经学习了用概率表示一个事件在一次试验或观测中发生的可能性的大小,它是0~1之间的一个数.将这个事件记为A,用P(A)表示事件A发生的概率.对于任意一个随机事件A,P(A)必须满足如下基本要求:0≤P(A)≤1.1.奥地利遗传学家孟德尔用豌豆进行杂交试验,通过进一步研究,他发现了生物遗传的基本规律;2.抛掷硬币的模拟试验;3. 的前n位小数中数字6出现的频率统计;4.鞋厂某种成品鞋质量检验结果优等品频率的统计.从以上几个实例可以看出:在相同条件下,随着试验的次数的增加,随机事件发生的频率会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画该随机事件发生的可能性大小,而将频率作为其近似值.一般地,如果随机事件A在n次试验中发生了m次,当试验的次数n很大时,我们可以将事件A发生的频率mn作为事件A发生的概率的近似值,即:()mP An.三、数学运用1.例题例1 试判断下列事件是随机事件、必然事件还是不可能事件:(1)我国东南沿海某地明年将3次受到热带气旋的侵袭;(2)若a为实数,则|a|≥0;(3)某人开车通过10个路口都将遇到绿灯;(4)抛一石块,下落;(5)一个正六面体的六个面分别写有数字1,2,3,4,5,6,将它抛掷两次,向上的面的数字之和大于12.例2 某市统计近几年新生儿出生数及其中男婴数(单位:人)如下:(1)试计算男婴各年出生频率(精确到0.001);(2)该市男婴出生的概率约是多少?例3 某射手在同一条件下进行射击,结果如下表所示:(1)填写表中击中靶心的频率;(2)这个射手射击一次,击中靶心的概率约是什么?2.练习课本第88页练习 1,2,3课本第91页练习 1,2,3课本第92页习题 1,2备用:1.将一枚硬币向上抛掷10次,其中正面向上恰有5次是()A.必然事件 B.随机事件C.不可能事件 D.无法确定2.下列说法正确的是()A.任一事件的概率总在(0.1)内B.不可能事件的概率不一定为0C.必然事件的概率一定为1 D.以上均不对3.下表是某种油菜子在相同条件下的发芽试验结果表,请完成表格并回答题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.1 随机事件的概率1、基本概念:(1)必然事件: ; (2)不可能事件: ; (3)确定事件: ; (4)随机事件: ;(5)频数与频率:在 下重复 试验,观察 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的 ;称事件A 出现的比例f n (A)=nn A为事件A 出现的频率。

对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A)稳定在 ,把这个常数记作P (A ),称为事件A 的 。

(6)似然法与极大似然法:例1 判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件? (1)“抛一石块,下落”. (2)“在标准大气压下且温度低于0℃时,冰融化”; (3)“某人射击一次,中靶”; (4)“如果a >b ,那么a -b >0”; (5)“掷一枚硬币,出现正面”; (6)“导体通电后,发热”; (7)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”; (8)“某电话机在1分钟内收到2次呼叫”;(9)“没有水份,种子能发芽”; (10)“在常温下,焊锡熔化”.例2 某射手在同一条件下进行射击,结果如下表所示:(1)填写表中击中靶心的频率;(2)这个射手射击一次,击中靶心的概率约是什么?例3 某人进行打靶练习,共射击10次,其中有2次中10环,有3次环中9环,有4次中8环,有1次未中靶,试计算此人中靶的概率,假设此人射击1次,试问中靶的概率约为多大?中10环的概率约为多大?课堂练习1.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( )A .必然事件B .随机事件C .不可能事件D .无法确定 2.下列说法正确的是( )A .任一事件的概率总在(0.1)内B .不可能事件的概率不一定为0C .必然事件的概率一定为1D .以上均不对3.下列事件中随机事件的个数为 ( ) (1) 物体在重力作用下自由下落。

(2) 方程2230x x -+=有两个不相等的实根(3) 下周日下雨(4) 某剧院明天的上座率不低于60%A、1B、2C、3D、44.下列试验中可以构成事件的是()A、掷一次硬币B、射击一次C、标准大气压下,水烧至100 0CD、摸彩票中头奖(1)完成上面表格:(2)该油菜子发芽的概率约是多少?(1)填写表中男婴出生的频率(结果保留到小数点后第3位);(2)这一地区男婴出生的概率约是多少?3.1.3 概率的基本性质1、基本概念:(1)事件的包含、并事件、交事件、相等事件(2)若A∩B为不可能事件,即A∩B=ф,那么称事件A与事件B ;(3)若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为;(4)当事件A与B互斥时,满足加法公式:P(A∪B)= ;若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)= ,于是有P(A)= .例1 一个射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件?事件A:命中环数大于7环;事件B:命中环数为10环;事件C:命中环数小于6环;事件D:命中环数为6、7、8、9、10环.例2 抛掷一骰子,观察掷出的点数,设事件A 为“出现奇数点”,B 为“出现偶数点”,已知P(A)=21,P(B)=21,求出“出现奇数点或偶数点”.例3 如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A )的概率是41,取到方块(事件B )的概率是41,问: (1)取到红色牌(事件C )的概率是多少? (2)取到黑色牌(事件D )的概率是多少?例4 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为31,得到黑球或黄球的概率是125,得到黄球或绿球的概率也是125,试求得到黑球、得到黄球、得到绿球的概率各是多少?课堂练习:1.下列说法正确的是( )A .任一事件的概率总在(0.1)内B .不可能事件的概率不一定为0C .必然事件的概率一定为1D .以上均不对 2.下列事件中,属于随机事件的是 ( )A . 掷一枚硬币一次,出现两个正面;B 、同性电荷互相排斥;C 、当a 为实数时,|a|<0;D 、2009年10月1日天津下雨3.从一堆产品(其中正品和次品都多于2个)中任取2个,其中:①恰有1件次品和恰有2件次品;②至少有1件次品和全是次品;③至少有1件正品和至少有1 件次品;④至少有1件次品和全是正品;上述事件中,是互斥事件的是( )A ①④B ②③C ①②③D ①②③④3、袋中装有大小相同且分别写有1、2、3、4、5五个号码的小球各一个,现从中有放回地任取三球,三个号码全不相同的概率为( ) A 、53 B 、51 C 、2512 D 、1253 4.抛掷一粒骰子,观察掷出的点数,设事件A 为出现奇数,事件B 为出现2点,已知P (A )=21,P (B )=61,求出现奇数点或2点的概率之和。

5.某射手在一次射击训练中,射中10环、8环、7环的概率分别为0.21,0.23,0.25,0.28,计算该射手在一次射击中:(1)射中10环或9环的概率;(2)少于7环的概率。

6.一个盒中装有8只球,其中4红.3黑.1白,现从中取出2只球(无放回),求:(1)全是红球或全是黑球的概率;(2)至少有一个红球的概率。

3.2 古典概型1、基本概念:(1)基本事件、古典概率模型。

(2)古典概型的概率计算公式:P(A)=.(3)古典概型的特点:1)试验中所有可能出现的结果个;2)每个基本事件出现的相等.例1将一颗骰子先后抛掷两次,观察向上的点数,问:(1)共有多少种不同的结果?(2)两数的和是3的倍数的结果有多少种?(3)两数和是3的倍数的概率是多少?例2 从含有两件正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率。

例3 现有一批产品共有10件,其中8件为正品,2件为次品:(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率; (2)如果从中一次取3件,求3件都是正品的概率.例4 豌豆的高矮性状的遗传由其一对基因决定,其中决定高的基因记为D ,决定矮的基因记为d ,则杂交所得第一子代的一对基因为Dd ,若第二子代的,D d 基因的遗传是等可能的,求第二子代为高茎的概率(只要有基因D 则其就是高茎,只有两个基因全是d 时,才显现矮茎).课堂练习: 1.在40根纤维中,有12根的长度超过30mm ,从中任取一根,取到长度超过30mm 的纤维的概率是( ) A .4030 B .4012 C .3012D .以上都不对 2.盒中有10个铁钉,其中8个是合格的,2个是不合格的,从中任取一个恰为合格铁钉的概率是 A .51 B .41 C .54 D . 101 3.据人口普查统计,育龄妇女生男生女是近似等可能的,如果允许生育二胎,则某一育龄妇女两胎均是女孩的概率约是( )A .12 B.13 C .14 D .154.在大小相同的5个球中,2个是红球,3个是白球,若从中任取2个,则所取的2个球中至少有一个红球的概率是 。

5.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为 .6. 判断下列命题正确与否.(1)掷两枚硬币,可能出现“两个正面”,“两个反面”,“一正一反”3种结果;(2)某袋中装有大小均匀的三个红球,两个黑球,一个白球,那么每种颜色的球被摸到的可能性相同; (3)从-4,-3,-2,-1,0,1,2中任取一数,取到的数小于0与不小于0的可能性相同; 7.抛掷2颗质地均匀的骰子,求点数和为8的概率。

8.有甲,乙,丙三位同学分别写了一张新年贺卡然后放在一起,现在三人均从中抽取一张. (1)求这三位同学恰好都抽到别人的贺卡的概率. (2)求这三位同学恰好都抽到自己写的贺卡的概率.9.已知集合A={}9,7,5,3,1,0,2,4,6,8-----,在平面直角坐标系中,点M 的坐标为(),x y ,其中,x A y A ∈∈,且x y ≠,计算:(1)点M 不在x 轴上的概率;(2)点M 在第二象限的概率.3.3 几何概型1、基本概念:(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的 成比例,则称这样的概率模型为几何概率模型; (2)几何概型的概率公式: P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ;(3)几何概型的特点:1)试验中所有可能出现的结果 个;2)每个基本事件出现的 相等.例1在等腰直角三角形ABC 中,在斜边AB 上任取一点M ,求AM 小于AC 的概率.("测度"为长度)例2.有一个半径为5的圆,现在将一枚半径为1硬币向圆投去,如果不考虑硬币完全落在圆外的情况,试求硬币完全落入圆内的概率.例3 在1万平方千米的海域中有40平方千米的大陆架储藏着石油,假设在海域中任意一点钻探,钻到油层面的概率是多少?例4.取一个边长为2a 的正方形及其内切圆(如图),随机地向正方形内丢一粒豆子,求豆子落入圆内的概率.课堂练习:1.在500ml 的水中有一个草履虫,现从中随机取出2ml 水样放到显微镜下观察,则发现草履虫的概率是( )A .0.5B .0.4C .0.004D .不能确定1、如图,有一圆盘其中的阴影部分的圆心角为45,若向圆内投镖,如果某人每次都投入圆内,那么他投中阴影部分的概率为 ( )A .18B .14C .12D .342、在区间[0,10]中任意取一个数,则它与2之和大于10的概率是_____________3、两根相距6m 的木杆上系一根绳子,并在绳子上挂一盏灯,求灯与两端距离都大于2m 的概率.4.射箭比赛的箭靶涂有五个彩色得分环,从外向内为白色、黑色、蓝色、红色,靶心为金色。

金色靶心叫“黄心”。

奥运会的比赛靶面直径为122cm ,靶心直径为12.2cm ,运 动员在70m 外射。

假设射箭都能中靶,且射中 靶面内任意一点都是等可能的,那么射中黄心的 概率有多大?5.一只蚂蚁在一边长为6的正方形区域内随机地爬行,求其恰在离四个顶点距离都大于3的地方的概率.6.两人相约8点到9点在某地会面,先到者等候另一人20分钟,过时就可离去,试求这两人能会面的概率.m。

相关文档
最新文档