高三物理动量典型例题解析
高三二轮复习:动量定理、动量守恒

【练习5】高压采煤水枪出口的截面积为S,水的射速为v,水平射到煤层上后,水速度为零,若水的密度为ρ,求煤层对水的平均冲力的大小?
【答案】:ρSv2
【练习6】一质量为m,长为L的柔软绳自由悬垂,下端恰与一台秤秤盘接触。某时刻放开柔软绳上端,求台秤的最大示数。(重力加速度大小为g)
【练习3】在距地面h高处以v0水平抛出质量为m的物体,当物体着地时和地面碰撞时间为Δt,则这段时间内物体受到地面给予竖直方向的冲量为()
A. B.
C. D.
答案:B
【例3】一艘帆船在静水中由于风力的推动做匀速直线运动,帆面的面积为S,风速为v1,船速为v2(v2﹤v1),空气密度为ρ,帆船在匀速前进时帆面受到的平均风力大小为多少?(设空气碰到帆后随帆一起运动)
答案:AC
【练习10】如图所示,将质量为M1、半径为R且内壁光滑的半圆槽置于光滑水平面上,左侧靠墙角,右侧靠一质量为M2的物块.今让一质量为m的小球自左侧槽口A的正上方h高处从静止开始落下,与圆弧槽相切自A点进入槽内,则以下结论中正确的是()
A.小球在槽内运动的全过程中,小球与半圆槽在水平方向动量守恒
B.过程Ⅱ中钢珠所受阻力的冲量大小等于过程Ⅰ中重力冲量的大小
C.过程Ⅱ中阻力的冲量大小等于过程Ⅰ与过程Ⅱ重力冲量的大小
D.过程Ⅱ中钢珠的动量改变量等于阻力的冲量
解析:AC(在过程Ⅰ中,钢珠仅受重力的作用,钢球由静止开始自由下落,钢珠的末动量就是钢球动量的改变量。由动量定理可知它等于钢珠所受到的合外力的冲量,这个冲量就是重力的冲量。钢珠从开始下落直到它陷入泥潭后静止的全过程(即包括过程Ⅰ和过程Ⅱ),它动量的改变量为零,合外力的冲量为零,即全过程重力冲量的大小等于在泥潭中所受到阻力冲量的大小)
高三总复习物理检测题 动量 动量定理

动量 动量定理1.两只完全相同的鸡蛋A 、B 自同一高度由静止释放,分别落在海绵和石头上,鸡蛋A 完好(未反弹),鸡蛋B 碎了。
不计空气阻力,对这一结果,下列说法正确的是( )A .下落过程中鸡蛋B 所受重力的冲量更大一些B .下落过程中鸡蛋B 的末动量更大一些C .碰撞过程中鸡蛋B 动量减小得更多一些D .碰撞过程中鸡蛋B 的动量变化率更大解析:D 两鸡蛋从同一高度开始做自由落体运动,由h =12gt 2得t =2h g,则两鸡蛋下落过程所用的时间相同,由I G =mgt 知,两鸡蛋下落过程中重力的冲量相同,由v 2=2gh 得v =2gh ,则两鸡蛋下落过程的末速度相同,所以下落过程中两鸡蛋的末动量相同,A 、B 错误;碰撞过程中,两鸡蛋都从相同的速度减为0,则动量减小量相同,C 错误;碰撞过程中,由于两鸡蛋动量变化量相同,鸡蛋B 与石头作用时间短,则动量变化率Δp Δt更大,D 正确。
2.竖直放置的轻质弹簧,下端固定在水平地面上,一小球从弹簧正上方某一高度处自由下落,从小球开始接触弹簧到将弹簧压缩至最短的过程中,下列说法正确的是( )A .小球和弹簧组成的系统动量守恒B .小球的动量一直减小C .弹簧对小球冲量的大小大于重力对小球冲量的大小D .小球所受合外力对小球的冲量为0解析:C 小球和弹簧组成的系统合外力不为零,动量不守恒,A 错误;当小球重力与弹簧弹力平衡时,小球速度最大,动量也最大,所以小球动量先增大后减小,B 错误;从小球开始接触弹簧到将弹簧压缩至最短的过程中,因为小球动量变化的方向向上,所以合力的冲量向上,即弹簧对小球冲量的大小大于重力对小球冲量的大小,C 正确,D 错误。
3.(多选)如图所示,垫球是排球运动中通过手臂的迎击动作使来球从垫击面上反弹出去的一项击球技术。
若某次排球从垫击面上反弹出去竖直向上运动,之后又落回到原位置,设整个运动过程中排球所受空气阻力大小不变,则()A.球从击出到落回的时间内,重力的冲量为零B.球从击出到落回的时间内,空气阻力的冲量为零C.球上升阶段空气阻力的冲量小于下降阶段空气阻力的冲量D.若不计空气阻力,球上升阶段动量的变化等于下降阶段动量的变化解析:CD整个过程中,重力不为零,作用时间不为零,根据I G=mgt知,重力的冲量不为零,A错误;由于空气阻力的作用,上升阶段的平均速度大于下降阶段的平均速度,上升过程所用时间比下降过程所用时间少,空气阻力大小不变,根据I=F f t可知,上升阶段空气阻力的冲量小于下降阶段空气阻力的冲量,整个过程中空气阻力的冲量不为零,B错误,C正确;若不计空气阻力,并规定向上为正方向,设初速度为v0,则上升阶段,初速度为v0,末速度为零,动量变化量为Δp1=0-m v0=-m v0,下降阶段,初速度为零,末速度为-v0,动量变化量为Δp2=-m v0-0=-m v0,所以两者相等,D正确。
【K12学习】高三物理10 - 冲量与动量动量定理知识点解析解题方法考点突破例

高三物理10 - 冲量与动量动量定理知识点解析解题方法考点突破例【本讲主要内容】冲量与动量、动量定理认识冲量和动量概念,动量定理的理解和应用。
【知识掌握】【知识点精析】1. 动量和冲量动量按定义,物体的质量和速度的乘积叫做动量:P=mv 特点:①瞬时性:动量是描述运动的状态参量。
对比:状态量定义关系决定因素速度v P/m √2Ek/m 加速度 a 动能Ek 动量P mv 12mv 2P2/2m 总功W 2mEk 合外力冲量I 注意:高考题常需利用三个量间的关系求解。
讨论:在光滑水平面上有A、B两物体向同一方向运动,发生正碰前A、B动量分别为5kgm/s、7kgm/s,碰撞后A的动量变为3kgm/s。
A、B两物体质量关系如何?②相对性:与参照系的选取有关。
③矢量性:与速度的方向相同。
练习:质量为100g的网球以6m/s的速度垂直撞击墙面,之后以4m/s速度反弹。
则网球撞墙前后动量变化有多少?注意:计算动量的变化量应先选取正方向,矢量的正负表示方向。
冲量按定义,力和力的作用时间的乘积叫做冲量:I=Ft高中阶段只要求会用I=Ft计算恒力的冲量,对于变力的冲量,只能利用动量定理通过物体的动量变化来求。
特点:①时间性:冲量是描述力的时间积累效应的物理量,是过程量,它与时间相对应。
注意:冲量和功不同。
恒力在一段时间内可能不做功,但一定有冲量。
例:质量为m的小球高为H的光滑斜面顶端无初速滑到底端过程中,重力、弹力、合力的冲量各是多大?解析:力的作用时间都是t2H12gsinsin2H, g力的大小依次是mg、mgcosα和mgsinα,冲量依次是:IGm2gHm2gH,IN,I合m2gHsintan②绝对性:与参照系的选取无关。
③矢量性:冲量是矢量,它的方向力的方向决定。
如果力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。
2. 动量定理内容:物体所受合外力的冲量等于物体的动量变化。
即I=ΔP 或Ft =mv2-mvl 说明:①动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度,给出了冲量和动量变化间的互求关系。
高三物理动量守恒 多物体 多阶段运动问题

高三物理动量守恒多物体多阶段运动问题第 2 页第 3 页变式1.高空杂技表演中,固定在同一悬点的两根长均为L的轻绳分别系着男、女演员,他们在同一竖直面内先后从不同高度相向无初速摆下,在最低点相拥后,恰能一起摆到男演员的出发点。
已知男、女演员质量分别为M、m,女演员的出发点与最低点的高度差为L,重力加速度为g,不计空气阻力,男、女演2员均视为质点。
(1)求女演员刚摆到最低点时对绳的拉力大小。
(2)若两人接着从男演员的出发点一起无初速摆下,到达最低点时男演员推开女演员,为了使女演员恰能回到其最初出发点,男演员应对女演员做多少功?解(1)女演员下摆到最低点过程:在最低点时:联立,得:第 4 页根据牛顿第三定律:(2)男演员下摆到最低点过程:男、女演员在最低点时:他们上摆又下摆到最低点过程:在最低点时,男演员对女演员做功:女演员,恰好摆回初发点过程:联立,得:变式2.如图所示,质量为m的由绝缘材料制成的球与质量为M=19m的金属球并排悬挂.现将绝缘球拉至与竖直方向成θ=60°的位置自由释放,下摆后在最低点与金属球发生弹性碰撞.在平衡位置附近存在垂直于纸面的磁场.已知由于磁场的阻尼作用,金属球将于再次碰撞前停在最低点处.求经过几次碰撞后绝缘球偏离竖直方向的最大角度将小于45°.例二.如图所示,在光滑水平面上放置一个质第 5 页量为M的滑块,滑块的一侧是一个14弧形凹槽OAB,凹槽半径为R,A点切线水平。
另有一个质量为m的小球以速度υ0从A点冲上凹槽,重力加速度大小为g,不计摩擦。
下列说法中正确的是A.当υ0=√2gR时,小球能到达B点B.如果小球的速度足够大,球将从滑块的左侧离开滑块后落到水平面上C.当υ0=√2gR时,小球在弧形凹槽上运动的过程中,滑块的动能一直增大D.如果凹槽质量M大于小球质量m,小球在返回A点时速度水平向左过程受力运动(速度变化)能量变化动量变化小球m水平竖直水平竖直第 6 页上升M最高点时回到A 点这个例题中,你还能提出什么物理问题,并解答:变式1.如图所示,小车的上面是中突的两个对称的曲面组成,整个小车的质量为m,原来静止在光滑的水平面上.今有一个可以看作质点的小球,质量也为m,以水平速度v从左端滑上小车,恰好到达小车的最高点后,又从另一个曲面滑下.关于这个过程,下列说法正确的是()A.小球滑离小车时,小车又回到了原来的位置B.小球从滑上曲面到最高点的过程中,小车第 7 页的动量变化大小是零C.小球和小车作用前后,小车和小球的速度一定变化D.车上曲面的竖直高度不会大于v 24g变式2.如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上。
专题06 碰撞与动量守恒 高考物理经典问题妙解通解(解析版)

考点分类:考点分类见下表考点一应用动量定理求解连续作用问题机枪连续发射子弹、水柱持续冲击煤层等都属于连续作用问题.这类问题的特点是:研究对象不是质点(也不是能看成质点的物体),动量定理应用的对象是质点或可以看做质点的物体,所以应设法把子弹、水柱质点化,通常选取一小段时间内射出的子弹或喷出的水柱作为研究对象,对它们进行受力分析,应用动量定理,或者综合牛顿运动定律综合求解.考点二“人船模型”问题的特点和分析1.“人船模型”问题两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒.在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.这样的问题归为“人船模型”问题.2.人船模型的特点(1)两物体满足动量守恒定律:m1v1-m2v2=0.(2)运动特点:人动船动,人静船静,人快船快,人慢船慢,人左船右;人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即x1x2=v1v2=m2m1.(3)应用此关系时要注意一个问题:公式v1、v2和x 一般都是相对地面而言的.考点三 动量守恒中的临界问题1.滑块不滑出小车的临界问题如图所示,滑块冲上小车后,在滑块与小车之间的摩擦力作用下,滑块做减速运动,小车做加速运动.滑块刚好不滑出小车的临界条件是滑块到达小车末端时,滑块与小车的速度相同.#网2.两物体不相碰的临界问题两个在光滑水平面上做匀速运动的物体,甲物体追上乙物体的条件是甲物体的速度v 甲大于乙物体的速度v 乙,即v 甲>v 乙,而甲物体与乙物体不相碰的临界条件是v 甲=v 乙. 3.涉及物体与弹簧相互作用的临界问题对于由弹簧组成的系统,在物体间发生相互作用的过程中,当弹簧被压缩到最短时,弹簧两端的两个物体的速度相等.4.涉及最大高度的临界问题在物体滑上斜面体(斜面体放在光滑水平面上)的过程中,由于弹力的作用,斜面体在水平方向将做加速运动.物体滑到斜面体上最高点的临界条件是物体与斜面体沿水平方向具有共同的速度,物体在竖直方向的分速度等于零.考点四 弹簧类的慢碰撞问题慢碰撞问题指的是物体在相互作用的过程中,有弹簧、光滑斜面或光滑曲面等,使得作用不像碰撞那样瞬间完成,并存在明显的中间状态,在研究此类问题时,可以将作用过程分段研究,也可以全过程研究.典例精析★考点一:应用动量定理求解连续作用问题◆典例一:正方体密闭容器中有大量运动粒子,每个粒子质量为m ,单位体积内粒子数量n 为恒量.为简化问题,我们假定:粒子大小可以忽略;其速率均为v ,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变.利用所学力学知识,导出器壁单位面积所受粒子压力f 与m 、n 和v 的关系.(注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明) 【答案】f =13nmv2 【解析】◆典例二:一股水流以10 m/s 的速度从喷嘴竖直向上喷出,喷嘴截面积为0.5 cm2,有一质量为0.32 kg 的球,因受水对其下侧的冲击而停在空中,若水冲击球后速度变为0,则小球停在离喷嘴多高处?【答案】1.8 m【解析】小球能停在空中,说明小球受到的冲力等于重力F =mg ①小球受到的冲力大小等于小球对水的力.取很小一段长为Δl 的小水柱Δm ,其受到重力Δmg 和球对水的力F ,取向下为正方向.学*(F +Δmg)t =0-(-Δmv)②其中小段水柱的重力Δm·g 忽略不计,Δm =ρS·Δl★考点二:“人船模型”问题的特点和分析◆典例一:如图所示,长为L 、质量为M 的小船停在静水中,质量为m 的人从静止开始从船头走到船尾,不计水的阻力,求船和人相对地面的位移各为多少?【答案】m m +M L Mm +M L【解析】设任一时刻人与船的速度大小分别为v 1、v 2,作用前都静止.因整个过程中动量守恒,所以有mv 1=Mv 2.而整个过程中的平均速度大小为v 1、v 2,则有m v 1=M v 2.两边乘以时间t 有m v 1t =M v 2t ,即mx 1=Mx 2.且x 1+x 2=L ,可求出x 1=M m +M L ,x 2=mm +M L . ◆典例二:如图所示,一个倾角为α的直角斜面体静置于光滑水平面上,斜面体质量为M ,顶端高度为h ,今有一质量为m 的小物体,沿光滑斜面下滑,当小物体从斜面顶端自由下滑到底端时,斜面体在水平面上移动的距离是( )A.mh M +mB.Mh M +mC.mh +D.Mh +【答案】C★考点三:动量守恒中的临界问题◆典例一:两质量分别为M1和M2的劈A 和B,高度相同,放在光滑水平面上,A 和B 的倾斜面都是光滑曲面,曲面下端与水平面相切,如图所示.一质量为m 的物块位于劈A 的倾斜面上,距水平面的高度为h.物块从静止滑下,然后滑上劈B.求物块在B 上能够达到的最大高度.【答案】h′=1212()()M M M m M m ++h.◆典例二 甲、乙两个小孩各乘一辆冰车在水平冰面上游戏,甲和他的冰车的质量共为M=30 kg,乙和他的冰车的质量也是30 kg.游戏时,甲推着一个质量为m=15 kg 的箱子和他一起以大小为v0=2.0 m/s 的速度滑行,乙以同样大小的速度迎面滑来,如图所示.为了避免相撞,甲突然将箱子沿冰面推给乙,箱子滑到乙处时乙迅速把它抓住.若不计冰面的摩擦力,求甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞.【答案】5.2 m/s【解析】法一 取甲开始运动的方向为正方向,设甲推出箱子后的速度为v1,箱子的速度为v,以甲和箱子为系统,则由动量守恒定律得(m+M)v0=Mv1+mv.设乙抓住箱子后其速度为v2,以箱子和乙为系统,则由动量守恒定律得mv-Mv0=(m+M)v2.而甲、乙不相撞的条件是v2≥v1,当甲和乙的速度相等时,甲推箱子的速度最小,此时v1=v2.联立上述三式可得v=222222m mM M m mM+++v0=5.2 m/s.即甲至少要以对地5.2 m/s 的速度将箱子推出,才能避免与乙相撞.法二 若以甲、乙和箱子三者组成的整体为一系统,由于不相撞的条件是甲、乙速度相等,设为v1,则由动量守恒定律得(m+M)v0-Mv0=(m+2M)v1,代入具体数据可得v1=0.4 m/s.再以甲和箱子为一系统,设推出箱子的速度为v,推出箱子前、后系统的动量守恒(m+M)v0=Mv1+mv,代入具体数据得v=5.2 m/s.考点四 弹簧类的慢碰撞问题◆典例一:(2018·四川南充模拟)如图所示,质量为M 的滑块静止在光滑的水平桌面上,滑块的光滑弧面底部与桌面相切,一质量为m 的小球以速度v0向滑块滚来,设小球不能越过滑块,求:(1)小球到达最高点时小球和滑块的速度分别为多少? (2)小球上升的最大高度.【答案】v=0mv M m+,h=202()Mv M m g +1.【2016·全国新课标Ⅰ卷】(10分)某游乐园入口旁有一喷泉,喷出的水柱将一质量为M 的卡通玩具稳定地悬停在空中。
高三复习高中物理重点知识习题 动量守恒定律 - (含答案)

第七章动量守恒定律考点一:动量、动量变化量与冲量、动量定理1. (多选)如图所示,两个质量相等的物体在同一高度沿倾角不同的两个光滑斜面由静止开始自由下滑,不计空气阻力,在它们到达斜面底端的过程中()A.重力的冲量相同B.斜面弹力的冲量不同C.斜面弹力的冲量均为零D.合力的冲量不同答案BD2.(多选)质量为m的物块以初速度v0从光滑斜面底端向上滑行,到达最高位置后再沿斜面下滑到底端,则物块在此运动过程中()A.上滑过程与下滑过程中物块所受重力的冲量相同B.整个过程中物块所受弹力的冲量为零C.整个过程中物块合外力的冲量为零D.若规定沿斜面向下为正方向,则整个过程中物块合外力的冲量大小为2mv0 答案AD3.如图所示,质量为m的物体,在大小确定的水平外力F作用下,以速度v沿水平面匀速运动,当物体运动到A点时撤去外力F,物体由A点继续向前滑行的过程中经过B点,则物体由A点到B点的过程中,下列说法正确的是()A.v越大,摩擦力对物体的冲量越大,摩擦力做功越多B.v越大,摩擦力对物体的冲量越大,摩擦力做功与v的大小无关C.v越大,摩擦力对物体的冲量越小,摩擦力做功越少D.v越大,摩擦力对物体的冲量越小,摩擦力做功与v的大小无关答案D4. (多选)几个水球可以挡住一颗子弹?《国家地理频道》的实验结果是:四个水球足够!完全相同的水球紧挨在一起水平排列,子弹在水球中沿水平方向做匀变速直线运动,恰好能穿出第4个水球,则可以判断的是()A.子弹在每个水球中的速度变化相同B.子弹在每个水球中运动的时间不同C.每个水球对子弹的冲量不同D.子弹在每个水球中的动能变化相同答案BCD5. (多选)一质量为2 kg的物块在合外力F的作用下从静止开始沿直线运动。
F随时间t变化的图线如图所示,则() 答案ABA.t=1 s时物块的速率为1 m/sB.t=2 s时物块的动量大小为4 kg·m/sC.t=3 s时物块的动量大小为5 kg·m/sD.t=4 s时物块的速度为零6. (多选)一质点静止在光滑水平面上,现对其施加水平外力F,力F随时间按正弦规律变化,如图5所示,下列说法正确的是()A.第2 s 末,质点的动量为0B.第4 s 末,质点回到出发点C.在0~2 s 时间内,力F 的功率先增大后减小D.在1~3 s 时间内,力F 的冲量为0 答案 CD7.质量为1 kg 的物体做直线运动,其速度—时间图象如图所示。
高三物理圆周运动实例分析试题答案及解析

高三物理圆周运动实例分析试题答案及解析1.如图甲所示,轻杆一端固定在O点,另一端固定一小球,现让小球在竖直平面内做半径为R的圆周运动。
小球运动到最高点时,杆与小球间弹力大小为F,小球在最高点的速度大小为v,其F一v2图象如图乙所示。
不计空气阻力,则A.小球的质量为B.当地的重力加速度大小为C.v2=c时,杆对小球的弹力方向向下D.v2=2b时,小球受到的弹力与重力大小不相等【答案】AC【解析】A、在最高点,若v=0,则N=mg=a;若N=0,则,解得,,故A正确,B错误;C、由图可知:当v2<b时,杆对小球弹力方向向上,当v2>b时,杆对小球弹力方向向下,所以当v2=c时,杆对小球弹力方向向下,所以小球对杆的弹力方向向上,故C正确;D、若c=2b.则,解得N=a=mg,故D错误.【考点】圆周运动及牛顿定律的应用。
2.如图所示,质量M=2kg的滑块套在光滑的水平轨道上,质量m=1kg的小球通过长L=0.5m的轻质细杆与滑块上的光滑轴O连接,小球和轻杆可在竖直平面内绕O轴自由转动,开始轻杆处于="4" m/s,g取10m/s2。
水平状态,现给小球一个竖直向上的初速度v(1)若锁定滑块,试求小球通过最高点P时对轻杆的作用力大小和方向。
(2)若解除对滑块的锁定,试求小球通过最高点时的速度大小。
(3)在满足(2)的条件下,试求小球击中滑块右侧轨道位置点与小球起始位置点间的距离。
【答案】(1)2N(2)2m/s(3)【解析】(1)设小球能通过最高点,且此时的速度为,在上升过程中,因只有重力做功,小球的机械能守恒。
则①②设小球到达最高点时,轻杆对小球的作用力为F,方向向下,则③由②③式,得④由牛顿第三定律可知,小球对轻杆的作用力大小为,方向竖直向上。
(2)解除锁定后,设小球通过最高点时的速度为,此时滑块的速度为V。
在上升过程中,因系统在水平方向不受外力作用,水平方向的动量守恒。
以水平向右的方向为正方向,有⑤在上升过程中,因只有重力做功,系统的机械能守恒,则⑥由⑤⑥式,得⑦(3)设小球击中滑块右侧轨道的位置点与小球起始位置点间的距离为,滑块向左移动的距离为,任意时刻小球的水平速度大小为,滑块的速度大小为。
高三物理动量定理试题答案及解析

高三物理动量定理试题答案及解析1.如图所示,甲、乙两名宇航员正在离空间站一定距离的地方执行太空维修任务。
某时刻乙以大小为v0=2m/s的速度远离空间站向乙“飘”去,甲、乙和空间站在同一直线上且可当成质点。
甲和他的装备总质量共为M1=90kg,乙和他的装备总质量共为M2=135kg,为了避免直接相撞,乙从自己的装备中取出一质量为m=45kg的物体A推向甲,甲迅速接住后即不再松开,此后甲乙两宇航员在空间站外做相对距离不变通向运动,一线以后安全“飘”入太空舱。
(设甲乙距离太空站足够远,本题中的速度均指相对空间站的速度)①求乙要以多大的速度(相对空间站)将物体A推出②设甲与物体A作用时间为,求甲与A的相互作用力F的大小【答案】①②【解析】①甲、乙两宇航员在空间站外做相对距离不变的同向运动,说明甲乙的速度相等,以甲、乙、A三者组成的系统为研究对象,系统动量守恒,以乙的速度方向为正方向,由动量守恒定律得:,以乙和A组成的系统为研究对象,以乙的速度方向为正方向,由动量守恒定律得:,解得:;②以甲为研究对象,以乙的初速度方向为正方向,由动量定理得:,解得:;【考点】考查了动量守恒定律,动量定理2.如图所示,在光滑的水平面上宽度为L的区域内,有一竖直向下的匀强磁场.现有一个边长为向右滑动,穿过磁场后速度减为v,a (a<L)的正方形闭合线圈以垂直于磁场边界的初速度v那么当线圈完全处于磁场中时,其速度大小()A.大于B.等于C.小于D.以上均有可能【答案】B【解析】对线框进入或穿出磁场的过程,由动量定理可知,即,解得线框的速度变化量为;同时由可知,进入和穿出磁场过程中,因磁通量的变化量相等,故电荷量相等,由上可以看出,进入和穿出磁场过程中的速度变化量是相等的,即,解得,所以只有选项B正确;【考点】法拉第电磁感应定律3.如图所示,小球A系在细线的一端,线的另一端固定在O点,O点到水平面的距离为h.物块B 质量是小球的5倍,置于粗糙的水平面上且位于O点正下方,物块与水平面间的动摩擦因数为μ.现拉动小球使线水平伸直,小球由静止开始释放,运动到最低点时与物块发生正碰(碰撞时间极短),反弹后上升至最高点时到水平面的距离为小球与物块均视为质点,不计空气阻力,重力加速度为g,求物块在水平面上滑行的时间t.【答案】【解析】设小球的质量为m,运动到最低点与物块碰撞前的速度大小为v1,取小球运动到最低点重力势能为零,根据机械能守恒定律,有得v设碰撞后小球反弹的速度大小为v1′,同理有②得设碰后物块的速度大小为v2,取水平向右为正方向,根据动量守恒定律,有mv1=-mv1′+5mv2③得④物块在水平面上滑行所受摩擦力的大小F=5μmg⑤设物块在水平面上滑行的时间为t,根据动量定理,有-Ft=0-5mv2⑥得【考点】动量定理、动量守恒定律及其应用4.(20分)下图是放置在竖直平面内游戏滑轨的模拟装置的示意图。
应用动量定理分析解决流体类粒流类变质量问题高三物理一轮复习专题

一.必备知识精讲1.动量定理的理解(1)动量定理反映了力的冲量与动量变化之间的因果关系,即合力的冲量是原因,物体的动量变化是结果。
(2)动量定理中的冲量是所受合力的冲量,既是各力冲量的矢量和,也是合力在不同阶段冲量的矢量和。
(3)动量定理的表达式是矢量式,等号包含了大小相等、方向相同两方面的含义。
(4)由FΔt=p′-p,得F=p′-pΔt=ΔpΔt,即物体所受的合力等于物体的动量对时间的变化率。
2.用动量定理解释生活现象(1)Δp一定时,F的作用时间越短,力越大;时间越长,力越小。
(2)F一定时,力的作用时间越长,Δp越大;时间越短,Δp越小。
分析问题时,要明确哪个量一定,哪个量变化。
3.用动量定理解题的根本思路(1)确定研究对象。
在中学阶段用动量定理讨论的问题,其研究对象一般仅限于单个物体。
(2)对物体进行受力分析,求合冲量。
可先求每个力的冲量,再求各力冲量的矢量和;或先求合力,再求其冲量。
(3)抓住过程的初、末状态,选好正方向,确定各动量和冲量的正负号。
(4)根据动量定理列方程,如有必要还需要补充其他方程,最后代入数据求解。
对过程较复杂的运动,可分段用动量定理,也可对整个过程用动量定理。
4.对于液体、气体类的流体流体及其特点通常液体、气体等被广义地视为“流体〞,质量具有连续性,通常密度ρ分析步骤1建立“柱状〞模型,沿流速v的方向选取一段柱形流体,其横二.典型例题精讲:题型一:液体类例1.(·全国卷Ⅰ)某游乐园入口旁有一喷泉,喷出的水柱将一质量为M的卡通玩具稳定地悬停在空中。
为计算方便起见,假设水柱从横截面积为S的喷口持续以速度v0竖直向上喷出;玩具底部为平板(面积略大于S);水柱冲击到玩具底板后,在竖直方向水的速度变为零,在水平方向朝四周均匀散开。
忽略空气阻力。
水的密度为ρ,重力加速度大小为g。
求:(1)喷泉单位时间内喷出的水的质量;(2)玩具在空中悬停时,其底面相对于喷口的高度。
动量守恒之滑块木板模型高三物理一轮复习专题

一.必备知识精讲模型图示模型特点(1)假设滑块未从木板上滑下,当两者速度相等时木块或木板的速度最大,两者的相对位移取得极值(完全非弹性碰撞拓展模型)(2)系统的动量守恒,但机械能不守恒,摩擦力与两者相对位移的乘积等于系统减少的机械能(3)根据能量守恒,系统损失的动能ΔE k=Mm+ME k0,可以看出,滑块的质量越小,木板的质量越大,动能损失越多(4)该类问题既可以从动量、能量角度求解,相当于非弹性碰撞拓展模型,也可以从力和运动的角度借助图示求解二.典型例题精讲:题型一:图像题例1:. 如下图,足够长的木板Q放在光滑水平面上,在其左端有一可视为质点的物块P,P、Q间接触面粗糙。
现给P向右的速率v P,给Q向左的速率v Q,取向右为速度的正方向,不计空气阻力,那么运动过程中P、Q的速度随时间变化的图像可能正确的选项是()答案ABC解析开始时,木板和物块均在摩擦力作用下做匀减速运动,两者最终到达共同速度,以向右为正方向,P、Q组成的系统动量守恒,根据动量守恒定律得m P v P-m Q v Q=(m P+m Q)v;假设m P v P=m Q v Q,那么v=0,图像如图A所示;假设m P v P>m Q v Q,那么v>0,图像如图B所示;假设m P v P<m Q v Q,那么v<0,图像如图C所示。
故A、B、C正确,D错误。
题型二:计算题例2:如下图,在光滑水平面上有B 、C 两个木板,B 的上外表光滑,C 的上外表粗糙,B 上有一个可视为质点的物块A ,A 、B 、C 的质量分别为3m 、2m 、m .A 、B 以相同的初速度v 向右运动,C 以速度v 向左运动.B 、C 的上外表等高,二者发生完全非弹性碰撞但并不粘连,碰撞时间很短.A 滑上C 后恰好能到达C 的中间位置,C 的长度为L ,不计空气阻力.求:(1)木板C 的最终速度大小;(2)木板C 与物块A 之间的摩擦力F f 大小;(3)物块A 滑上木板C 之后,在木板C 上做减速运动的时间t .答案 (1)56v (2)m v 23L (3)3L 2v解析 (1)设水平向右为正方向,B 、C 碰撞过程中动量守恒:2m v -m v =(2m +m )v 1解得v 1=v 3A 滑到C 上,A 、C 动量守恒:3m v +m v 1=(3m +m )v 2解得v 2=56v ; (2)根据能量关系可知,在A 、C 相互作用过程中,木板C 与物块A 之间因摩擦产生的热量为Q =12(3m )v 2+12m v 12-12(3m +m )v 22 Q =F f · L 2联立解得F f =m v 23L; (3)在A 、C 相互作用过程中,以C 为研究对象,由动量定理得F f t =m v 2-m v 1解得t =3L 2v. 三.举一反三,稳固练习1.如下图,甲图表示光滑平台上,物体A 以初速度v 0滑到上外表粗糙的水平小车B 上,车与水平面间的动摩擦因数不计,乙图为物体A 与小车B 的v -t 图象,由此可知 ( )A .小车上外表长度B .物体A 与小车B 的质量之比C .物体A 与小车B 上外表间的动摩擦因数D .小车B 获得的动能答案:BC[解析] 由图象可知,A 、B 最终以共同速度v 1匀速运动,不能确定小车上外表长度,故A 错误;由动量守恒定律得m A v 0=(m A +m B )v 1,故可以确定物体A 与小车B 的质量之比,故B正确;由图象可知A 相对小车B 的位移Δx =12v 0t 1,根据动能定理得-μm A g Δx =12(m A +m B )v 21-12m A v 20,根据B 项中求得的质量关系,可以解出动摩擦因数,故C 正确;由于小车B 的质量无法求出,故不能确定小车B 获得的动能,故D 错误。
专题45验证动量守恒定律(解析版)—2023届高三物理一轮复习重难点突破

专题45验证动量守恒定律一、实验思路在一维碰撞中,测出相碰的两物体的质量m 1、m 2和碰撞前、后物体的速度v 1、v 2、v 1′、v 2′,算出碰撞前的动量p =m 1v 1+m 2v 2及碰撞后的动量p ′=m 1v 1′+m 2v 2′,看碰撞前、后动量是否相等。
二、三种实验方案方案一利用气垫导轨完成一维碰撞实验1.测质量:用天平测出滑块质量。
2.安装:正确安装好气垫导轨,如图所示。
3.实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前后的速度(①改变滑块质量;②改变滑块的初速度大小和方向)。
4.验证:一维碰撞中的动量守恒。
5.数据处理(1)滑块速度:v =ΔxΔt,式中Δx 为滑块挡光片的宽度(仪器说明书上给出,也可直接测量),Δt 为数字计时器显示的滑块(挡光片)经过光电门的时间。
(2)表达式:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′。
方案二利用长木板上两车碰撞完成一维碰撞实验1.测质量:用天平测出两小车的质量。
2.安装:将打点计时器固定在光滑长木板的一端,把纸带穿过打点计时器,连在小车的后面,在两小车的碰撞端分别装上撞针和橡皮泥,如图所示。
3.实验:接通电源,让小车A 运动,小车B 静止,两车碰撞时撞针插入橡皮泥中,把两小车连接成一个整体运动。
4.改变条件:改变碰撞条件,重复实验。
5.数据处理(1)速度的测量:v =ΔxΔt,式中Δx 是纸带上两计数点间的距离,可用刻度尺测量,Δt 为小车经过Δx 的时间,可由打点间隔算出。
(2)表达式:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′。
方案三利用等长摆球完成一维碰撞实验1.测质量和直径:用天平测出小球的质量m 1、m 2,用游标卡尺测出小球的直径d 。
2.安装:如图,把小球用等长悬线悬挂起来,并用刻度尺测量悬线长度l 。
3.实验:一个小球静止,拉起另一个小球,放下时它们相碰。
4.测角度:用量角器测量小球被拉起的角度和碰撞后两小球摆起的角度。
新高考物理模拟题分类汇编专题06-动量和动量定理(含答案)

专题06 动量和动量定理1.(2021·湖南高三一模)姚明是中国篮球史上最成功的运动员之一,他是第一个入选NBA 篮球名人堂的中国籍球员﹐如图所示是姚明在某场NBA 比赛过程中的一个瞬间,他在原地运球寻找时机,假设篮球在竖直方向运动,落地前瞬间的速度大小为8m/s ,弹起瞬间的速度大小为6m/s ,球与地面的接触时间为0.1s ,已知篮球质量为600g ,取210m /s g =,则地面对球的弹力大小为( )A .90NB .84NC .18ND .36N【答案】A【解析】设向上为正方向,根据动量定理可得()()0t F mg t mv mv -=--,代入数据得90F =N ,故选A 。
2.(2021·辽宁沈阳市高三一模)如图所示,篮球运动员接传过来的篮球时,通常要先伸出双臂迎接篮球,手接触到篮球后,双手迅速将篮球引全胸前,运用你所学的物理规律分析,这样做可以( )A .减小篮球对手冲量的大小B .减小篮球的动量变化量的大小C .减小篮球对手作用力的大小D .减小篮球对手的作用时间 【答案】C【解析】先伸出两臂迎接,手接触到球后,两臂随球引至胸前,这样可以增加球与手接触的时间,根据动量定理得0Ft mv -=-,则=mvF t,当时间增大时,动量的变化量不变,篮球对手冲量的大小不变,球对手的作用力减小,故C 正确,ABD 错误。
故选C 。
3.(2021·广东江门市高三一模)如图甲中的塔吊是现代工地必不可少的建筑设备,图乙为建筑材料被吊车竖直提升过程的运动图像(竖直向上为正方向),根据图像下列判断正确的是( )A.46s时材料离地面的距离最大B.前36s重力的冲量为零C.在30~36s钢索最容易发生断裂~材料处于失重状态D.3646s【答案】D【解析】A.36s时材料离地面的距离最大,36s后材料开始向下运动,所以A错误;B.前36s合外力的冲量为零,重力的冲量为mgt,所以B错误;C.在30~36s过程,材料做匀减速运动,此时钢索的拉力小~材料向下做匀加速运动,加速度向下,于材料的重力,所以钢索不容易发生断裂,则C错误;D.3646s则材料处于失重状态,所以D正确;故选D。
高三物理第二轮专题练习之动量含答案及解析

1.一粒钢珠从静止状态开始自由下落,然后陷人泥潭中。
若把在空中下落的过程称为过程Ⅰ,进人泥潭直到停止的过程称为过程Ⅱ,则A、过程I中钢珠的动量的改变量等于重力的冲量B、过程Ⅱ中阻力的冲量的大小等于过程I中重力的冲量的大小C、I、Ⅱ两个过程中合外力的总冲量等于零D、过程Ⅱ中钢珠的动量的改变量等于零2.如图5-7所示将一光滑的半圆槽置于光滑水平面上,槽的左侧有一固定在水平面上的物块。
今让一小球自左侧槽口A的正上方从静止开始落下,与圆弧槽相切自A点进入槽内,则以下结论中正确的是A.小球在半圆槽内运动的全过程中,只有重力对它做功B.小球在半圆槽内运动的全过程中,小球与半圆槽在水平方向动量守恒C.小球自半圆槽的最低点B向C点运动的过程中,小球与半圆槽在水平方向动量守恒D.小球离开C点以后,将做竖直上抛运动。
3.在质量为M的小车中挂着一个单摆,摆球的质量为m0,小车(和单摆)以恒定的速度u沿光滑的水平面运动,与位于正对面的质量为m的静止木块发生碰撞,碰撞时间极短,在此碰撞过程中,下列哪些说法是可能发生的A.小车、木块、摆球的速度都发生变化,分别变为v1、v2、v3,满足:(M+m0)u=Mv1+mv2+m o v3 B.摆球的速度不变,小车和木块的速度变为v1和v2,满足:Mu=Mv1+mv2C.摆球的速度不变,小车和木块的速度都变为v,满足:Mu=(M+m)vD.小车和摆球的速度都变为v1,木块的速度为v2,满足:(M+m0)u=(M+m0)v1+mv24.向空中发射一物体.不计空气阻力,当物体的速度恰好沿水平方向时,物体炸裂为a,b两块.若质量较大的a块的速度方向仍沿原来的方向则A.b的速度方向一定与原速度方向相反B.从炸裂到落地这段时间里,a飞行的水平距离一定比b的大C.a,b一定同时到达地面D.炸裂的过程中,a、b中受到的爆炸力的冲量大小一定相等5.从同样高度落下的玻璃杯,掉在水泥地上容易打碎,而掉在草地上不容易打碎,其原因是A .掉在水泥地上的玻璃杯动量大,而掉在草地上的玻璃杯动量小B .掉在水泥地上的玻璃杯动量改变大,掉在草地上的玻璃杯动量改变小C .掉在水泥地上的玻璃杯动量改变快,掉在草地上的玻璃杯动量改变慢D .掉在水泥地上的玻璃杯与地面接触时,相互作用时间短,而掉在草地上的玻璃杯与地面接触时间长。
7.2 动量、冲量与动量定理的应用-2017年高考物理热点+题型全突破含解析

一、动量与冲量概念的理解及大小的计算1.动量、动能、动量变化量的比较动量动能动量变化量定义物体的质量和速度的乘积物体由于运动而具有的能量物体末动量与初动量的矢量差定义式p=mvE k=错误!mv2Δp=p′-p标矢性矢量标量矢量特点状态量状态量过程量关联方程E k=p22m,E k=错误!pv,p=错误!,p=错误!联系(1)都是相对量,与参考系的选取有关,通常选取地面为参考系(2)若物体的动能发生变化,则动量一定也发生变化;但动量发生变化时动能不一定发生变化【典例1】关于动量的变化,下列说法正确的是()A.做直线运动的物体速度增大时,动量的增量Δp的方向与运动方向相同B.做直线运动的物体速度减小时,动量的增量Δp的方向与运动方向相反C.物体的速度大小不变时,动量的增量Δp为零D.物体做曲线运动时,动量的增量一定不为零【答案】ABD【解析】当运动物体的速度增大时,其末态动量p2大于初态动量p1,由矢量的运算法则可知Δp=p2-p1>0,与物体运动方向相同。
如图(a)所示,所以A 选项正确。
当物体速度减小时,p2〈p1,如图(b)所示,Δp与p1或p2方向相反,B选项正确。
当物体的速度大小不变时,其方向可能变化,也可能不变化,动量可能不变化即Δp=0,也可能动量大小不变而方向变化,此种情况Δp≠0,C选项不正确。
当物体做曲线运动时,动量的方向变化,即动量一定变化,Δp一定不为零,如图(c)所示,故D选项正确。
【典例2】(2017江西上高县第二中学高三下学期开学考试)物体的动量变化量的大小为5 kg·m/s,这说明( ) A。
物体的动量在减小B。
物体的动量在增大C。
物体的动量大小一定变化D。
物体的动量大小可能不变【答案】D2。
冲量的理解与计算(1)恒力的冲量计算恒力的冲量可直接根据定义式来计算,即由I=Ft而得.(2)对于在同一方向上随时间均匀变化的力,可以用平均力计算冲量。
(3)方向恒定的变力的冲量计算。
动量守恒之人船模型及类人船模型 高三物理一轮复习专题

一.必备知识精讲 1.人船模型如图所示,长为L 、质量为m 船的小船停在静水中,质量为m 人的人由静止开始从船的一端走到船的另一端,不计水的阻力。
以人和船组成的系统为研究对象,在人由船的一端走到船的另一端的过程中,系统水平方向不受外力作用,所以整个系统水平方向动量守恒,可得:m 船v 船=m 人v 人,因人和船组成的系统动量始终守恒, 故有:m 船x 船=m 人x 人, 由图可看出:x 船+x 人=L , 可解得:x 人=m 船m 人+m 船L ,x 船=m 人m 人+m 船L 。
2.类人船模型(1)人沿着静止在空中的热气球下面的软梯滑下或攀上,求热气球上升或下降高度的问题;(2)小球沿放在光滑水平地面上的弧形槽滑下,求弧形槽移动距离的问题等。
二.典型例题精讲:题型一:人船模型例1:有一只小船停靠在湖边码头,小船又窄又长(重一吨左右).一位同学想用一个卷尺粗略测定它的质量.他进行了如下操作:首先将船平行于码头自由停泊,轻轻从船尾上船,走到船头停下,而后轻轻下船.用卷尺测出船后退的距离d ,然后用卷尺测出船长L .已知他的自身质量为m ,水的阻力不计,则船的质量为( ) A.m L +dd B.m L -dd C.mL dD.m L +dL答案 B解析 设船的质量为M ,人走动的时候船的速度为v ,人的速度为v ′,人从船头走到船尾用时为t ,人的位移为L -d ,船的位移为d ,所以v =d t ,v ′=L -dt.以船后退的方向为正方向,根据动量守恒有:Mv -mv ′=0,可得:M d t =m L -d t ,小船的质量为:M =m L -dd,故B 正确.题型二:类“人船模型”例2:载人气球静止于高h 的空中,气球的质量为M ,人的质量为m ,若人沿绳梯滑至地面,则绳梯至少为多长?答案:M +mMh解析:气球和人原来静止在空中,说明系统所受合力为零,故系统在人下滑过程中动量守恒,人着地时绳梯至少应接触地面,设绳梯长为L ,人沿绳梯滑至地面,人的位移大小为x人,气球的位移大小为x 球,它们的位移状态图如图所示, 由动量守恒定律有:0=Mx 球-mx 人, 又有x 球+x 人=L ,x 人=h ,故L =M +mMh 。
高三物理二轮高频考点突破专题36-验证动量守恒定律

图中的 D 点,设其水平初速度为 v1' , m2 的落点是图中的 F 点,设其水平初速度为 v2 ,设斜面 BC 与水平面
的倾角为
,由平抛运动规律得
LD
sin
1 gt 2
2
解得 v1'
LD cos v1't
gLD (cos )2 2 sin
同理可解得 v1
gLE (cos)2 2sin
1 6
mA、13
mA、12
mA
的
B
球。将
A
球三次从斜
轨上位置 P 静止释放,分别与三个质量不同的 B 球相碰,用刻度尺分别测量出每次实验中落点痕迹距离 O
点的距离 OD、OE、OF ,记为 x1、x2、x3 。将三组数据标在 x1 x3 图中。从理论上分析,图 2 中能反映两球
相碰为弹性碰撞的是____________。
g 2H
m2
2g
l
d 2
1
cos
5.某实验小组利用如图所示的实验装置验证动量守恒定律。将质量为 m1 的球 1 用细线悬挂于 O 点,O 点 下方桌子的边缘有一竖直立柱,将球 2 置于立柱上。实验时,调节悬点,使球 1 静止时恰与立柱上的球 2 接触且两球等高。将球 1 拉离平衡位置,保持细线拉直,用量角器测量出细线与竖直方向的夹角为 ,由静 止释放球 1,当它摆到悬点正下方时与质量为 m2 的球 2 发生对心碰撞。碰后球 1 反弹,球 2 落到水平地面 上。测量出球 2 到地面的高度 H 和球 2 做平抛运动的水平位移 s,然后再测出有关数据,即可验证 1、2 两 球碰撞时动量守恒。已知重力加速度为 g,两球均可以看成质点。
⑤用毫米刻度尺量出各个落点位置到斜槽末端点 B 的距离,图中 D、E、F 点是该同学记下的小球在斜面上 的几个落点位置,到 B 点的距离分别为 LD、LE、LF。
高三物理:用动量定理解释生活中的现象的两道例题

⾼三物理:⽤动量定理解释⽣活中的现象的两道例题⽤动量定理可以对⽣活中的⼀些⼒学现象进⾏解释。
先看⼀道引例。
重物和纸带之间的摩擦⼒为滑动摩擦⼒,只和正压⼒和粗糙程度有关,故在缓慢拉动和快速拉
动的时候,滑动摩擦⼒⼤⼩相同。
不同的是滑动摩擦⼒的冲量不同,冲量I=ft,快速拉动时,纸带对重物的作⽤时间短,冲量⼩;
缓慢拉动时,纸带对重物的作⽤时间长,冲量⼤。
正确答案为CD.
再看⼀道例题。
结合上⾯第⼀道例题的解析,可以知道,⽤不同的速度拉纸带,纸带对铁块的冲量不同。
再对铁块⽤动量定理,mv-0=I。
可以冲量I越⼤,末速度v就越⼤。
由于第⼆次拉纸带速度⽐第⼀次⼤,故第⼆次纸带对铁块的作
⽤时间短,冲量⼩,铁块动量改变就⼩,故会落在P点的左侧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例题五
• 用质量为M的铁锤沿水平方向将质量为m、长为l的铁 钉敲入木板,铁锤每次以相同的速度v0击钉,随即与 钉一起运动并使钉进入木板一定距离。在每次受击进 入木板的过程中,钉所受的平均阻力为前一次受击进 入木板过程所受平均阻力的k倍(k>1)。
• (1)若敲击三次后钉恰好全部进入木板,求第一次进入 木板过程中钉所受到的平均阻力。
l l1
1K 1K 12K 13 K1n111 K 1 1n
1 11
KK
l1
l1
1 K
例题六
• 一辆质量m=2kg的平板车左端放有质量M=3kg的小 滑块,滑块与平板车之间的摩擦因数μ=0.4。开始时 平向右板运车动和,滑并块与共竖同直以墙v0=壁2发m生/s的碰速撞度,在设光碰滑撞水时平间面极上短 且碰撞后平板车速度大小保持不变,但方向与原来相 反。平板车足够长,以致滑块不会滑到平板车右端。 (取g=10m/s2)求:
F合=ma=m(V2-V1)/ Δ t=mΔV/Δt=ΔPΔ/t
物体的动量变化率不变就是它所受合外力不变
作业2
• 跳远比赛中,运动员跳到松软的沙坑内, 这是为了减少运动员( C )
• A.着地过程中受到的冲量 • B.着地过程中动量的变化 • C.着地过程中受到的冲力 • D.着地时的速度
作业3
• 在光滑水平面上,动能为E0、动量的大 小为p0的小钢球1与静止小钢球2发生碰 撞,碰撞后球1的动能和动量的大小分别
高三物理动量典型例题解析
例题分析与解答
• (1)研究一个雨滴, • 着地时为初态,V1=3m/s;
• 反弹离地时为终态,V2= 2 gh =1m/s
ΔP=mV2-mV1, 以向上为正方向,ΔP=4m=4×10-4㎏m/s. I=ΔP=4×10-4Ns,方向向上。
(2)
• 研究紧靠地面的一个立方米内的雨滴, • 这些雨滴的动量的变化量为ΔP总=N×ΔP=40Ns, • 这些雨滴全部与地面发生相互作用需要的时间是t=1/3
• (2)若第一次敲击使钉进入木板深度为l1,问至少敲击 多少次才能将钉全部敲入木板?并就你的解答讨论要 将钉全部敲入木板,l1必须满足的条件。
例题分析与解答
• (1)M与m组成的系统在碰撞中动量守恒,
• V=MV0/(M+m),碰撞后系统的总动能为
• EK=MV02/2(M+m),
• 第一次打击, F1ΔX1=EK
秒, • 这些雨滴的总质量是M=10㎏, • 设 地 面 对 雨 滴 的 作 用 力 为 F , 则 (F-Mg)t=ΔP 总 。
F=220N, • 地 面 的 受 力 面 积 为 1㎡ , 所 以 雨 滴 对 地 面 的 压 强 为
p=220Pa。
(3)
• 雨滴的质量越大; • 雨滴的终极速度越大; • 反弹高度越大; • 单位体积中雨滴的数目越多; • 则雨滴对地面的压强越大。
• (1)平板车第一次与墙壁碰撞后向左运动的最大距离;
• (2)平板车第二次与墙壁碰撞前瞬间的速度v;
• (3)为使滑块始终不会滑到平板车右端,平板车至少 多长?
例题分析与解答
• (1)小车第一次碰撞后 • 向左作初速度为2m/s的加速度为-6m/s2的匀变
速运动。向左的位移最大时有何特点?
• V=0时向左的位移最大, • Sm=1/3m。 • (2)碰撞后总动量守恒,向右为正
• MV0-mV0=(M+m)V1, • V1=0.4m/s. • (3)摩擦力与相对位移的乘积等于系统减少的动
能,等于摩擦产生的热量。
• μMgS=,S=5/6m,取L≥S=0.833m即可。
作业1
• 某物体质量一定,已知其动量的变化率 保持不变,则(AB )
• A.物体可能做匀变速直线运动 • B.物体可能做匀变速曲线运动 • C.物体可能做匀速圆周运动 • D.物体可能做简谐运动
• 第二次打击F2ΔX2=EK
• •
第 ΔX三1次+Δ打X击2+FΔ3ΔXX3=3=EFEK 1 K, FE1KKFE1KK2
=l
F1=
2M M0V 2ml1K 1K12
(2)
• F1l1=Ek,
• F2l2=Ek
因•• 为lF1l+13=ll32E=F+K1Elk3+……F=nlE nF =K l11×E1k 1 .K 1K 1K 1 2 K 1 2 K1 n 1K 1n l1l
例水柱,将一个质量为m的小铁 盒开口向下倒顶在空中,如图 所示。已知水(密度为ρ)以 恒定速率v0从横截面积为S的水 枪中持续喷出,向上运动并冲 击小铁盒后,以不变的速率竖 直返回,求稳定状态下小铁盒 距水枪口的高度。
例题分析与解答
• 先研究m, mg=F冲 。 • 再为研在究出对水象口,取这一段段水长柱为的L质=量V0为Δt的圆柱形水作 • M小=铁ρ盒LS碰=ρ撞S,V以0Δ向t。上这为些正水方上向升,了则高度H以后与 • F冲Δt=M(-Vt-Vt)=-2MVt,即 • F冲Δt=-2ρS V0ΔtVt, • Vt=mg/2ρSV0,水柱上升过程中机械能守恒 • MV02/2=MgH+MVt2/2, • H=V02/2g-Vt2/2g= V02/2g-m2g/8ρ2S2V02。
例题三
• 如图所示,具有一定质量的小球 A固定在轻杆一端,杆的另一端 挂在小车支架的O点。现将小球 拉起使轻杆水平,由静止释放小 球,小球摆到最低点与固定在车 上的泥团撞击后粘合一起,则此 后小车的运动为( C )
• A.向右运动 • B.向左运动 • C.静止不动 • D.无法判断
例题四
• 如图所示,质量为m2、m3的两物体静止 在光滑的水平面上,它们之间有压缩着 的轻质弹簧。一质量为m1的物体以速度 v0向右冲来,为防止冲撞,弹簧将m2、 m3向右、左弹开,m3与m1相碰后即粘合 在一起。问m3的速度至少为多大,才能 使以后m3和m2不发生碰撞?
v0
m1
m3
m2
例题分析与解答
• 本题有两个过程:
• 弹簧将m2m3分离的过程, • m2V2+m3V3=0; • m1与m3碰撞的过程,以向右为正方向 • m1V1- m3V3=(m1+m3)V13 • m2与m3不再碰撞的条件是什么? • 只要V13≤V2,m2与m3就不会再碰撞。得 • V3≥m1m2V0/(m1m2+2m2m3)。