初二升初三数学试卷及问题详解91482
八升九数学测试卷解析
清大“八升九”数学测试卷(满分120分,时间100分钟)一、填空题(本题共15小题,每小题3分,共45分)1.若代数式35xx--有意义,则x的取值范围是______________2.若反比例函数y=3kx-在每个象限内y随x增大而增大,则k取值范围_______3.如果把xyx y+中的x与y都扩大为原来的10倍,那么这个代数式的值___ ______4.今年某初中有近1千名考生参加中考,为了了解这些考生的数学成绩,从中抽取50名考生的数学成绩进行统计分析,个体是样本容量是 _______5.下列说法是随机事件的是_______①.抛掷一枚硬币,硬币落地时正面朝上②.任意打开数学教科书八年级下册,正好是第50页③.把4个球放入三个抽屉中,其中必有一个抽屉中至少有2个球④.在一个不透明的袋子中,有5个除颜色外完全一样的小球,其中2个红球,3个白球,从中任意摸出1个小球,正好是黄球.6.如图,菱形ABCD的两条对角线相交于点O,若AC=8,BD=6,过点D作DE⊥AB,垂足为E,则DE的长是 ____7.已知,则的值为_________8.如图,在正方形ABCD中,AB=4,P是线段AD上的动点,PE⊥AC于点E,PF⊥BD于点F,则PE+PF的值为 _______9.如图,四边形OABC、BDEF是面积分别为S1、S2的正方形,点A在x轴上,点F在BC上,点E在反比例函数y=的图象上,若S1﹣S2=2,则k值为 ______10.若实数a、b满足|a+2|,则=________.11.若a<1,化简等于_ ___.12.若的小数部分为m,则代数式m(m+4)的值为___ ___.13.如图,BD是△ABC的角平分线,DE∥BC,交AB于点E,DF∥AB,交BC于点F,当△ABC满足条件___时,四边形BEDF是正方形.14.若关于x的方程=+1无解,则a的值是__ __.15.如图,在平面直角坐标系xOy中,四边形OABC是正方形,点A,C的坐标分别为(2,0),(0,2),D是x轴正半轴上的一点(点D在点A的右边),以BD为边向外作正方形BDEF(E,F两点在第一象限),连接FC交AB的延长线于点G.若反比例函数y=的图象经过点E,G两点,则k的值为____.二、解答题:16 (10分)(1)=1﹣;(2)+=;17(6分).先化简,再求值:,其中x满足x2﹣x﹣1=0.18(6分).已知实数a,b,c在数轴上的位置如图所示,化简:﹣|a+c|+﹣|﹣b|.19(8分)某项工程,若由甲队单独施工,刚好如期完成;若由乙队单独施工,则要超期3天完成.现由甲、乙两队同时施工2天后,剩下的工程由乙队单独做,刚好如期完成.问规定的工期是多少天?20(8分).如图,在Rt△ABC中,∠ACB=90°,∠B=30°, D、E分别为AB,AC边上的中点,连接DE,将△ADE绕点E旋转180°得到△CFE,连接AF,AC.(1)求证:四边形ADCF是菱形;(2)若AC=6,求四边形ABCF的面积.21(6分).如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点分别为A(﹣2,2),B(0,5),C(0,2).(1)画△A1B1C,使它与△ABC关于点C成中心对称;(2)平移△ABC,使点A的对应点A2坐标为(﹣2,﹣6),画出平移后对应的△A2B2C2;(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,则旋转中心的坐标为______.22(9分).如图,在平面直角坐标系中,正比例函数y=3x与反比例函数y=的图象交于A,B两点,点A的横坐标为2,AC⊥x轴,垂足为C,连接BC.(1)求反比例函数的表达式;(2)求△ABC的面积;(3)若点P是反比例函数y=图象上的一点,△OPC与△ABC面积相等,请直接写出点P的坐标.23(10分).如图,菱形ABCD的边长为48cm,∠A=60°,动点P从点A出发,沿着线路AB﹣BD做匀速运动,动点Q从点D同时出发,沿着线路DC﹣CB﹣BA做匀速运动.(1)求BD的长;(2)已知动点P、Q运动的速度分别为8cm/s、10cm/s.经过12秒后,P、Q分别到达M、N两点,试判断△AMN的形状,并说明理由,同时求出△AMN的面积;(3)设问题(2)中的动点P、Q分别从M、N同时沿原路返回,动点P的速度不变,动点Q的速度改变为a cm/s,经过3秒后,P、Q分别到达E、F两点,若△BEF为直角三角形,试求a的值.24.(12分)如图1,已知点A(a,0),B(0,b),且a、b满足,▱ABCD的边AD与y 轴交于点E,且E为AD中点,双曲线经过C、D两点.(1)求k的值;(2)点P在双曲线上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,试求满足要求的所有点P、Q的坐标;(3)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,M是HT的中点,MN⊥HT,交AB于N,当T在AF上运动时,的值是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.清大“八升九”数学测试卷(含答案)一、填空题(本题共15小题,每小题3分,共45分)1.若代数式35xx--有意义,则x的取值范围是_____x≥3且x≠5____________2.若反比例函数y=3kx-在每个象限内y随x增大而增大,则k取值范围___k>3______3.如果把xyx y+中的x与y都扩大为原来的10倍,那么这个代数式的值___扩大10倍______4.今年某初中有近1千名考生参加中考,为了了解这些考生的数学成绩,从中抽取50名考生的数学成绩进行统计分析,个体是每一名考生的数学成绩样本容量是 505.下列说法是随机事件的是__①__②_____①.抛掷一枚硬币,硬币落地时正面朝上②.任意打开数学教科书八年级下册,正好是第50页③.把4个球放入三个抽屉中,其中必有一个抽屉中至少有2个球④.在一个不透明的袋子中,有5个除颜色外完全一样的小球,其中2个红球,3个白球,从中任意摸出1个小球,正好是黄球.6.如图,菱形ABCD的两条对角线相交于点O,若AC=8,BD=6,过点D作DE⊥AB,垂足为E,则DE的长是 ______7.已知,则的值为8.如图,在正方形ABCD中,AB=4,P是线段AD上的动点,PE⊥AC于点E,PF⊥BD于点F,则PE+PF的值为9.如图,四边形OABC、BDEF是面积分别为S1、S2的正方形,点A在x轴上,点F在BC上,点E在反比例函数y=的图象上,若S1﹣S2=2,则k值为-210.若实数a、b满足|a+2|,则=___1___.11.若a<1,化简等于__-a____.12.若的小数部分为m,则代数式m(m+4)的值为___1___.13.如图,BD是△ABC的角平分线,DE∥BC,交AB于点E,DF∥AB,交BC于点F,当△ABC满足条件__∠ABC=90°_时,四边形BEDF是正方形.14.若关于x的方程=+1无解,则a的值是___a=2或a=1___.15.如图,在平面直角坐标系xOy中,四边形OABC是正方形,点A,C的坐标分别为(2,0),(0,2),D 是x轴正半轴上的一点(点D在点A的右边),以BD为边向外作正方形BDEF(E,F两点在第一象限),连接FC交AB的延长线于点G.若反比例函数y=的图象经过点E,G两点,则k的值为__5____.二、解答题:16.(10分)(1)=1﹣;(2)+=;解:(1)去分母得:2x=x﹣2+1,解得:x=﹣1,经检验x=﹣1是分式方程的解;17(6分).先化简,再求值:,其中x满足x2﹣x﹣1=0.18(6分).已知实数a,b,c在数轴上的位置如图所示,化简:﹣|a+c|+﹣|﹣b|.解:由图可知,a<0,c<0,b>0,且|c|<|b|,所以,a+c<0,c﹣b<0,﹣|a+c|+﹣|﹣b|,=﹣a+a+c+b﹣c﹣b,=0.19(8分)某项工程,若由甲队单独施工,刚好如期完成;若由乙队单独施工,则要超期3天完成.现由甲、乙两队同时施工2天后,剩下的工程由乙队单独做,刚好如期完成.问规定的工期是多少天?解:设规定的工期是x天,由题意得+=1,解得x=6,经检验x=6是原方程的解且符合题意.答:规定的工期是6天.20(8分).如图,在Rt△ABC中,∠ACB=90°,∠B=30°, D、E分别为AB,AC边上的中点,连接DE,将△ADE绕点E旋转180°得到△CFE,连接AF,AC.(1)求证:四边形ADCF是菱形;(2)若AC=6,求四边形ABCF的面积.(1)证明:∵将△ADE绕点E旋转180°得到△CFE,∴AE=CE,DE=EF,∴四边形ADCF是平行四边形,∵D、E分别为AB,AC边上的中点,∴DE是△ABC的中位线,∴DE∥BC,∵∠ACB=90°,∴∠AED=90°,∴DF⊥AC,∴四边形ADCF是菱形;(2)解:在Rt△ABC中,∠B=30°,∴AB=2AC,由勾股定理得:BC2=AB2-AC2=(2AC)2-AC2=3AC2=362∴BC=6∵D是AB边上的中点,∴S△ADC=S△BDC,∵菱形ADCF是轴对称图形,∴S△ADC=S△ACF,∴四边形ABCF的面积为1.5S△ABC=1.50.5AC BC=1.50.566=2721(6分).如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点分别为A(﹣2,2),B(0,5),C(0,2).(1)画△A1B1C,使它与△ABC关于点C成中心对称;(2)平移△ABC,使点A的对应点A2坐标为(﹣2,﹣6),画出平移后对应的△A2B2C2;(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,则旋转中心的坐标为____(0,-2)__.22(9分).如图,在平面直角坐标系中,正比例函数y=3x与反比例函数y=的图象交于A,B两点,点A的横坐标为2,AC⊥x轴,垂足为C,连接BC.(1)求反比例函数的表达式;(2)求△ABC的面积;(3)若点P是反比例函数y=图象上的一点,△OPC与△ABC面积相等,请直接写出点P的坐标.解:(1)把x=2代入y=3x中,得y=2×3=6,∴点A坐标为(2,6),∵点A在反比例函数y=的图象上,∴k=2×6=12,∴反比例函数的解析式为y=;(2)∵AC⊥OC,∴OC=2,∵A、B关于原点对称,∴B点坐标为(﹣2,﹣6),∴B到OC的距离为6,∴S△ABC =2S△ACO=2××2×6=12,(3)∵S△ABC=12,∴S△OPC=12,设P点坐标为(x,),则P到OC的距离为||,∴×||×2=12,解得x=1或﹣1,∴P点坐标为(1,12)或(﹣1,﹣12).23(10分).如图,菱形ABCD 的边长为48cm ,∠A=60°,动点P 从点A 出发,沿着线路AB ﹣BD 做匀速运动,动点Q 从点D 同时出发,沿着线路DC ﹣CB ﹣BA 做匀速运动.(1)求BD 的长;(2)已知动点P 、Q 运动的速度分别为8cm/s 、10cm/s .经过12秒后,P 、Q 分别到达M 、N 两点,试判断△AMN 的形状,并说明理由,同时求出△AMN 的面积;(3)设问题(2)中的动点P 、Q 分别从M 、N 同时沿原路返回,动点P 的速度不变,动点Q 的速度改变为a cm/s ,经过3秒后,P 、Q 分别到达E 、F 两点,若△BEF 为直角三角形,试求a 的值.解:(1)∵四边形ABCD 是菱形, ∴AB=BC=CD=AD=48, ∵∠A=60°,∴△ABD 是等边三角形,∴BD=AB=48,即BD 的长是48cm ;(2)如图1,12秒后点P 走过的路程为8×12=96,则12秒后点P 到达点D ,即点M 与D 点重合,12秒后点Q 走过的路程为10×12=120,而BC +CD=96,所以点Q 到B 点的距离为120﹣96=24,则点Q 到达AB 的中点,即点N 为AB 的中点,∵△ABD 是等边三角形,而MN 为中线,∴MN ⊥AB ,∴△AMN 为直角三角形,∴S △AMN =S △ABD =××482=288(cm 2); (3)∵△ABD 为等边三角形,∴∠ABD=60°,经过3秒后,点P 运动的路程为24cm 、点Q 运动的路程为3acm ,∵点P 从点M 开始运动,即DE=24cm ,∴点E 为DB 的中点,即BE=DE=24cm ,当点Q 运动到F 点,且点F 在NB 上,如图1,则NF=3a ,∴BF=BN ﹣NF=24﹣3a ,∵△BEF 为直角三角形,而∠FBE=60°,∴∠EFB=90°(∠FEB 不能为90°,否则点F 在点A 的位置),∴∠FEB=30°,∴BF=BE ,∴24﹣3a=×24,∴a=4;当点Q运动到F点,且点F在BC上,如图2,则NF=3a,∴BF=BN﹣NF=3a﹣24,∵△BEF为直角三角形,而∠FBE=60°,若∠EFB=90°,则∠FEB=30°,∴BF=BE,∴3a﹣24=×24,∴a=12;若∠EFB=90°,即FB⊥BD,而DE=BE,∴点F在BD的垂直平分线上,∴此时点F在点C处,∴3a=24+48,∴a=24,综上所述,若△BEF为直角三角形,a的值为4或12或24.28.(12分)如图1,已知点A(a,0),B(0,b),且a、b满足,▱ABCD的边AD与y 轴交于点E,且E为AD中点,双曲线经过C、D两点.(1)求k的值;(2)点P在双曲线上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,试求满足要求的所有点P、Q的坐标;(3)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,M是HT的中点,MN⊥HT,交AB于N,当T在AF上运动时,的值是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.解:(1)∵+(a+b+3)2=0,且≥0,(a+b+3)2≥0,∴,解得:,∴A(﹣1,0),B(0,﹣2),∵E为AD中点,∴x D=1,设D(1,t),又∵DC∥AB,∴C(2,t﹣2),∴t=2t﹣4,∴t=4,∴k=4;(2)∵由(1)知k=4,∴反比例函数的解析式为y=,∵点P在双曲线上,点Q在y轴上,∴设Q(0,y),P(x,),①当AB为边时:如图1所示:若ABPQ为平行四边形,则=0,解得x=1,此时P1(1,4),Q1(0,6);如图2所示;若ABQP为平行四边形,则=,解得x=﹣1,此时P2(﹣1,﹣4),Q2(0,﹣6);②如图3所示;当AB为对角线时:AP=BQ,且AP∥BQ;∴=,解得x=﹣1,∴P3(﹣1,﹣4),Q3(0,2);故P1(1,4),Q1(0,6);P2(﹣1,﹣4),Q2(0,﹣6);P3(﹣1,﹣4),Q3(0,2);(3)连NH、NT、NF,∵MN是线段HT的垂直平分线,∴NT=NH,∵四边形AFBH是正方形,∴∠ABF=∠ABH,在△BFN与△BHN中,∵,∴△BFN≌△BHN,∴NF=NH=NT,∴∠NTF=∠NFT=∠AHN,四边形ATNH中,∠ATN+∠NTF=180°,而∠NTF=∠NFT=∠AHN,所以,∠ATN+∠AHN=180°,所以,四边形ATNH内角和为360°,所以∠TNH=360°﹣180°﹣90°=90°.∴MN=HT,∴=.。
初二升初三初中数学试卷
姓名:__________________ 班级:_______ 学号:_______ 日期:_______一、选择题(每题3分,共30分)1. 下列数中,是整数的是()A. √4B. -√9C. 3.14D. √252. 下列图形中,具有对称轴的是()A. 等腰三角形B. 正方形C. 长方形D. 等边三角形3. 下列代数式中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^24. 下列方程中,有唯一解的是()A. 2x + 5 = 3x - 1B. 3x + 4 = 2x + 7C. 4x - 2 = 2x + 6D. 5x - 3 = 2x + 95. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x^2D. y = 3x6. 在直角坐标系中,点A(-2,3)关于原点对称的点是()A.(2,-3)B.(-2,-3)C.(3,2)D.(-3,2)7. 下列图形中,面积最大的是()A. 正方形B. 长方形C. 平行四边形D. 梯形8. 下列式子中,计算错误的是()A. (a + b)(a - b) = a^2 - b^2B. (a + b)^2 = a^2 + 2ab + b^2C. (a - b)^2 = a^2 - 2ab + b^2D. a^2 - b^2 = (a + b)(a - b)9. 下列等式中,正确的是()A. a^2 = b^2 → a = bB. a^2 = b^2 → a = b 或 a = -bC. a^2 + b^2 = c^2 → a, b, c 构成直角三角形D. a^2 + b^2 = c^2 → a, b, c 构成等腰三角形10. 下列函数中,是奇函数的是()A. y = x^2B. y = 2xC. y = -x^3D. y = |x|二、填空题(每题5分,共20分)11. 计算:3^2 + 2^3 - 4^2 = _______12. 等腰三角形的底边长为6cm,腰长为8cm,求三角形的面积。
初二升初三试卷数学及答案
#### 一、选择题(每题5分,共25分)1. 下列选项中,不是一元一次方程的是:A. 2x + 3 = 7B. 3x - 5 = 2x + 1C. x^2 - 4 = 0D. 4x = 122. 若a、b是方程x^2 - (a + b)x + ab = 0的两个根,则a + b的值是:A. 0B. aC. bD. a + b3. 在直角坐标系中,点A(2,3)关于y轴的对称点坐标是:A. (2,-3)B. (-2,3)C. (-2,-3)D. (2,-3)4. 若一个三角形的两边长分别为3和4,则第三边的长度可能是:A. 5B. 6C. 7D. 85. 下列函数中,是反比例函数的是:A. y = 2x + 3B. y = 3/xC. y = x^2D. y = x^3#### 二、填空题(每题5分,共25分)6. 若a = 2,b = 3,则a^2 + b^2的值是______。
7. 在直角坐标系中,点P(-3,4)到原点O的距离是______。
8. 一个等腰三角形的底边长为8,腰长为6,则这个三角形的面积是______。
9. 若一个数的3倍与它的4倍的和是48,则这个数是______。
10. 若sin A = 1/2,则角A的度数是______。
#### 三、解答题(每题10分,共30分)11. 解方程:2x - 5 = 3x + 1。
12. 已知等腰三角形ABC中,AB = AC,AD是BC的中线,求证:BD = DC。
13. 已知函数y = 2x - 3,求函数的图像与x轴的交点坐标。
#### 答案:一、选择题1. C2. D3. B4. A5. B二、填空题6. 137. 58. 249. 1210. 30°三、解答题11. 解:2x - 5 = 3x + 1移项得:2x - 3x = 1 + 5合并同类项得:-x = 6系数化为1得:x = -612. 证明:在等腰三角形ABC中,AB = AC,因为AD是BC的中线,所以BD = DC,所以三角形ABC是等腰三角形。
初二升初三试卷数学及答案
一、选择题(每题3分,共30分)1. 下列数中,有理数是()A. √-1B. √2C. πD. 0.1010010001…2. 已知a > 0,b < 0,则下列不等式中正确的是()A. a > bB. a < bC. -a > -bD. -a < -b3. 下列函数中,自变量的取值范围是全体实数的是()A. y = √(x - 1)B. y = x² - 1C. y = log₂xD. y = √(2 - x)4. 若m² + 4 = 0,则m的值为()A. 2B. -2C. 2 或 -2D. 无解5. 下列图形中,属于相似图形的是()A. 等腰三角形B. 正方形C. 等边三角形D. 长方形6. 已知等腰三角形底边长为8cm,腰长为10cm,则该三角形的周长为()A. 26cmB. 24cmC. 22cmD. 18cm7. 下列方程中,无解的是()A. 2x + 3 = 5B. 2x - 3 = 5C. 2x + 3 = -5D. 2x - 3 = -58. 下列命题中,正确的是()A. 若a > b,则a² > b²B. 若a > b,则a - b > 0C. 若a > b,则a + b > 0D. 若a > b,则a - b < 09. 下列函数中,单调递增的是()A. y = 2x + 3B. y = -2x + 3C. y = 2x - 3D. y = -2x - 310. 下列数中,绝对值最小的是()A. -1B. 0C. 1D. -3二、填空题(每题3分,共30分)11. 已知x² - 5x + 6 = 0,则x的值为______。
12. 若a² + b² = 1,则ab的最大值为______。
13. 下列函数中,自变量的取值范围是全体实数的是______。
初二升初三数学练习题
初二升初三数学练习题题目一:有一辆汽车,其初始速度为20m/s,每隔2秒速度增加5m/s,求汽车行驶5秒后的速度。
解题步骤:1. 计算汽车每次速度增加的幅度。
每隔2秒速度增加5m/s,表示速度每2秒+5m/s。
所以每次速度增加的幅度为5m/s。
2. 计算汽车的变化速度。
汽车从初始速度20m/s开始,每2秒增加一次速度。
所以在5秒钟内,共经过2次速度增加,它的变化速度为2 * 5m/s = 10m/s。
3. 计算汽车的最终速度。
汽车的初始速度为20m/s,变化速度为10m/s。
所以汽车行驶5秒钟后的速度为20m/s + 10m/s = 30m/s。
所以,汽车行驶5秒后的速度为30m/s。
题目二:小明每天步行上学,他的上学路程为2公里,他用时20分钟。
如果他以相同的速度骑自行车上学,他需要多长时间?解题步骤:1. 将步行的时间转换成小时。
小明步行用时20分钟,换算成小时为20/60 = 1/3小时。
2. 计算步行的速度。
步行上学的路程为2公里,步行时间为1/3小时,所以步行的速度为2/(1/3) = 6公里/小时。
3. 计算骑自行车的时间。
小明骑自行车的速度与步行时保持一致,即6公里/小时。
所以骑自行车上学所需的时间为2/6 = 1/3小时,换算成分钟为(1/3) * 60 = 20分钟。
所以,小明骑自行车上学需要20分钟。
综上所述,根据给定的题目,我们通过计算得出了初二升初三数学练习题的答案。
这些练习题涉及到了速度和时间的计算,是初中数学中常见的应用题类型。
通过解题步骤的分析,我们可以培养学生的逻辑思维和数学运算能力。
希望同学们能够根据这个例子,继续进行更多的数学练习,提高自己的解题能力。
初二初三数学试卷含答案
一、选择题(每题5分,共30分)1. 下列各数中,有理数是()A. √2B. πC. √9D. 无理数答案:C2. 下列代数式中,同类项是()A. x^2yB. 2xyC. x^2D. 3y答案:B3. 如果a > b,那么下列不等式中正确的是()A. a + 1 > b + 1B. a - 1 > b - 1C. a + 2 < b + 2D. a - 2 < b - 2答案:A4. 已知等腰三角形底边长为6cm,腰长为8cm,则该三角形的周长为()A. 16cmB. 18cmC. 20cmD. 22cm答案:C5. 下列函数中,定义域为全体实数的是()A. y = √xB. y = x^2C. y = 1/xD. y = |x|答案:B二、填空题(每题5分,共25分)6. 若a = 3,b = -2,则a^2 + b^2 = ________。
答案:137. 若x - 3 = 0,则x = ________。
答案:38. 若等边三角形边长为a,则其周长为 ________。
答案:3a9. 若一个数的平方等于4,则这个数是 ________。
答案:±210. 若一个数的倒数等于1/3,则这个数是 ________。
答案:3三、解答题(每题15分,共60分)11. (15分)计算下列各式的值:(1)(2a - 3b) + (5a + 2b)(2)(x + 2)(x - 1)(3)(3x^2 - 2x + 1) ÷ (x - 1)答案:(1)7a - b(2)x^2 + x - 2(3)3x + 112. (15分)已知等腰三角形底边长为10cm,腰长为13cm,求该三角形的面积。
答案:面积 = (底边长× 高) / 2 = (10 × 12) / 2 = 60cm²13. (15分)解下列方程:(1)2x + 3 = 11(2)5(x - 2) = 3x + 10答案:(1)x = 4(2)x = 1014. (15分)已知函数y = 2x - 3,求x = 5时的函数值。
初二升初三数学试题及答案
D CBA 、B 、C 、D 、初二升初三数学测试题一、选择题(每小题有且只有一个答案正确,每小题4分,共40分) 1、如图,两直线a ∥b ,与∠1相等的角的个数为( ) A 、1个 B 、2个 C 、3个 D 、4个2、不等式组x>3x<4⎧⎨⎩的解集是( )A 、3<x<4B 、x<4C 、x>3D 、无解 3、如果a>b ,那么下列各式中正确的是( ) A 、a 3<b 3-- B 、a b<33C 、a>b --D 、2a<2b -- 4、如图所示,由∠D=∠C,∠BAD=∠ABC 推得△ABD ≌△BAC ,所用的的判定定理的简称是( ) A 、AAS B 、ASA C 、SAS D 、SSS5、已知一组数据1,7,10,8,x ,6,0,3,若x =5,则x 应等于( ) A 、6 B 、5 C 、4 D 、26、下列说法错误的是( )A 、长方体、正方体都是棱柱;B 、三棱住的侧面是三角形;C 、六棱住有六个侧面、侧面为长方形;D 、球体的三种视图均为同样大小的图形; 7、△ABC 的三边为a 、b 、c ,且2(a+b)(a-b)=c ,则( ) A 、△ABC 是锐角三角形; B 、c 边的对角是直角; C 、△ABC 是钝角三角形; D 、a 边的对角是直角;8、为筹备班级的初中毕业联欢会,班长对全班学生爱吃哪几种水果作了民意调查,那么最终买什么水果,下面的调查数据中最值得关注的是( )A 、中位数;B 、平均数;C 、众数;D 、加权平均数;9、如右图,有三个大小一样的正方体,每个正方体的六个面上都按照相同的顺序,依次标有1,2,3,4,5,6这六个数字,并且把标有“6”的面都放在左边,那么它们底面所标的3个数字之和等于( )A 、8B 、9C 、10D 、1110、为鼓励居民节约用水,北京市出台了新的居民用水收费标准:(1)若每月每户居民用水不超过4立方米,则按每立方米2米计算;(2)若每月每户居民用水超过4立方米,则超过部分按每立方米4.5米计算(不超过部分仍按每立方米2元计算)。
八年级升九年级数学试卷
八年级升九年级数学试卷一、选择题(每题3分,共36分)( )1、若点A (3-m ,m 31-)在第三象限,则m 的取值范围是A .31>m B .3<m C .3>m D . 331<<m ( )2、关于x 的方程5-)1(x a -=x 8-x a )3(-的解为负数,则a 的取值范围A 、4-<aB 、5>aC 、5->aD 、5-<a( )3、如果等腰三角形一个底角是o30,那么顶角是A 、o60 B 、o150 C 、o120 D 、o75( )4、用 表示三种不同的物体,现放在天平上比较两次,情况如图所示,那么这三种物体按质量从大到小的顺序排列应为 A . BC . D不等式组的解集表示在数轴上,正确的是( )5、把A 、B 、C 、D 、( )6 在函数23-=x y ,x y -=21 ,231x y +=, 52xy =中,y 随x 的增加而增加的有A 、1个B 、2个C 、3个D 、4个( )7、下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是A 、B 、C 、D 、( )8、反比例函数1y x=的图象位于 A .第一、二象限 B .第一、三象限 C .第二、四象限 D .第三、四象限a c ca b c a c b bb ac a b c a b c a b c ab c 第4题图( )9、如图,长方体的底面边长分别为2和4,高为5.若一只蚂蚁从P 点开始经过4个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为A.13cmB.12cmC.10cmD.8cm ( )10、如图,P (x ,y )是反比例函数xy 3=的图象在第一象限分支上的一个动点,PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,随着自变量x 的增大,矩形OAPB 的面积A . 不变B .增大C .减小D .无法确定( )11、若点(-3,y 1)、(-2,y 2)、(1,y 3)在反比例函数的图像xy 2=上,则下列结论正确的是A .321y y y >>B .312y y y >>C .213y y y >>D .123y y y >>( )12、 二次函数k x x y ++-=22的部分图象如图所示,则关于x 的一元二次方程k x x y ++-=22的一个解31=x ,另一个解=2xA 、1B 、-1C 、-2D 、0、二、填空题(每空2分,共20分)1、一次函数13+-=x y 的图象不经过第 象限.2、抛物线362+-=x x y 的顶点坐标是________.3、小颖同学想用“描点法”画二次函数2(0)y ax bx c a =++≠的图象,取自变量x 的5个值,分别计算出对应的y 值,如下表:x… 2-1-0 1 2 … y…112-125…由于粗心,小颖算错了其中的一个y 值,请你指出这个算错的y 值所对应的=x _ ___. 4、(1)一组数据5 7 7 x 中位数与平均数相等,则x 的值为 。
初二升初三数学试卷答案
一、选择题(每题3分,共30分)1. 下列数中,哪个是质数?A. 18B. 19C. 28D. 30答案:B2. 下列方程中,哪个方程的解是x=2?A. 2x + 3 = 9B. 3x - 1 = 5C. 4x + 2 = 8D. 5x - 3 = 7答案:A3. 下列图形中,哪个是轴对称图形?A. 正方形B. 长方形C. 等腰三角形D. 等边三角形答案:D4. 下列分数中,哪个是最简分数?A. $\frac{12}{18}$B. $\frac{15}{25}$C. $\frac{18}{27}$D. $\frac{20}{30}$答案:B5. 下列数中,哪个是偶数?A. 13B. 14C. 15D. 16答案:B6. 下列函数中,哪个是反比例函数?A. y = 2x + 3B. y = 3x - 2C. y = $\frac{3}{x}$D. y = 2x^2 + 1答案:C7. 下列几何图形中,哪个图形的面积是πr^2?A. 圆柱B. 圆锥C. 球D. 立方体答案:C8. 下列方程中,哪个方程的解是x=0?A. 2x + 4 = 8B. 3x - 6 = 0C. 4x + 8 = 16D. 5x - 10 = 20答案:B9. 下列数中,哪个是立方数?A. 8B. 27C. 64D. 81答案:B10. 下列图形中,哪个是中心对称图形?A. 正方形B. 长方形C. 等腰三角形D. 等边三角形答案:A二、填空题(每题5分,共50分)11. 如果a=3,那么a^2 + a + 1的值是______。
答案:1312. 分数$\frac{4}{5}$与$\frac{8}{10}$是______。
答案:同分母分数13. 圆的直径是10cm,那么圆的半径是______cm。
答案:514. 一个等腰三角形的底边长是6cm,腰长是8cm,那么这个三角形的周长是______cm。
答案:2215. 下列数列中,下一个数是______。
初二升初三测试卷数学
一、选择题(每题5分,共25分)1. 下列选项中,不是二次方程的是()A. x^2 - 3x + 2 = 0B. x^2 + 2x - 3 = 0C. x^2 - 4 = 0D. 2x^2 + 3x - 1 = 02. 下列选项中,不是一元二次方程的是()A. x^2 - 2x + 1 = 0B. x^2 - 3x + 4 = 0C. x^2 + 2x - 3 = 0D. 2x^2 + 3x - 1 = 03. 下列选项中,不是一元一次方程的是()A. 2x + 3 = 0B. 3x - 4 = 0C. 2x^2 + 3x - 1 = 0D. 5x - 7 = 04. 下列选项中,不是方程的是()A. 2x + 3 = 0B. 3x - 4 = 0C. 2x^2 + 3x - 1 = 0D. 5x - 7 = 05. 下列选项中,不是一元一次方程的解集是()A. x = 2C. x = -1D. x = 3二、填空题(每题5分,共25分)6. 一元二次方程x^2 - 3x + 2 = 0的解为:x1 = __,x2 = __。
7. 一元一次方程2x - 5 = 0的解为:x = __。
8. 若a > 0,则不等式ax > 0的解集为:x > __。
9. 若a < 0,则不等式ax > 0的解集为:x < __。
10. 若a > 0,则不等式ax < 0的解集为:x < __。
三、解答题(每题10分,共30分)11. (10分)解下列方程:(1)2x^2 - 5x + 2 = 0;(2)3x^2 - 2x - 1 = 0。
12. (10分)已知一元二次方程x^2 - 4x + 3 = 0,求:(1)该方程的解;(2)该方程的判别式。
13. (10分)已知一元一次方程2x - 5 = 0,求:(1)该方程的解;(2)该方程的系数。
四、应用题(每题10分,共20分)14. (10分)某工厂生产一批产品,计划每天生产50个,实际每天生产60个。
初二升初三数学入学测试卷(含答案)
初二升初三入学测试卷(含答案)一、选择题、1、下列说法正确的是( ) A.0)2(π是无理数B.33是有理数 C.4是无理数 D.38-是有理数2、下列各曲线中不能表示y 是x 的函数的是( ).A .B .C .D . 3、如图,在△ABC 中,AB =AC =5,BC =6,点M 为BC 的中点,MN ⊥AC 于点N ,则MN 等于( )A 、65B 、95C 、125D 、1654、,04412=+-x x 那么x2的值是( )A.2B.1C.-2D.-15、已知:如图,无盖无底的正方体纸盒ABCD EFGH -,P ,Q 分别为棱FB ,GC 上的点,且12,2FP PB GQ QC ==,若将这个正方体纸盒沿折线AP PQ QH --裁剪并展开,得到的平面图形是( )A .一个六边形B .一个平行四边形C .两个直角三角形D . 一个直角三角形和一个直角梯形QPHGFED C BA二、填空题、6、如图6,已知△ABC 的周长是22,OB 、OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD=3,△ABC 的面积是_____________.N MB C A 图6DBC7、.当=m 时,关于x 的方程313292-=++-x x x m 有增根. 8、如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF ;④S △FGC =3.其中正确个数是 。
三、解答题、9、计算:36 -(-2)2 +(214)2+|3.14-π|10、如图,在梯形ABCD 中,DC ‖AB ,AD=BC , BD 平分,60.ABC A ∠∠=o过点D 作DE AB ⊥,过点C 作CF BD ⊥,垂足分别为E 、F ,连接EF ,求证:DEF △为等边三角形.10题图11、如图,直线6y kx =+与x 轴y 轴分别交于点E 、F ,点E 的坐标为(-8,0), 点A 的坐标为(-6,0).(1)求k 的值;(2)若点P (x ,y )是第二象限内的直线上的一个动点,在点P 的运动过程中,试写出△OPA 的面积S 与x 的函数关系式,并写出自变量x 的取值范围;(3)探究:当点P 运动到什么位置时,△OPA 的面积为278,并说明理由.12、以四边形ABCD 的边AB 、BC 、CD 、DA 为斜边分别向外侧作等腰直角三角形,直角顶点分别为E 、F 、G 、H ,顺次连结这四个点,得四边形EFGH .(1)如图1,当四边形ABCD 为正方形时,我们发现四边形EFGH 是正方形;如图2,当四边形ABCD 为矩形时,请判断:四边形EFGH 的形状(不要求证明); (2)如图3,当四边形ABCD 为一般平行四边形时,设∠ADC =α(0°<α<90°), ① 试用含α的代数式表示∠HAE ; ② 求证:HE =HG ;③ 四边形EFGH 是什么四边形?并说明理由.A BCDHEFG(第12题图2)E BFGD HAC(第12题图3)(第12题图1)A BCDH EFG初二升初三数学答案 1~5DBCBB 6、33 7、6或12 8、3个9、解:3.11+π10、证明:因为DC ‖AB ,,60AD BC A =∠=o ,所以60ABC A ∠=∠=o .又因为BD 平分ABC ∠,所以130.2ABD CBD ABC ∠=∠=∠=o因为DC ‖AB ,所以30BDC ABD ∠=∠=o,所以,CBD CDB ∠=∠所以.CB CD =因为CF BD ⊥,所以F 为BD 中点, 又因为DE AB ⊥,所以.DF BF EF == 由30ABD ∠=o,得60BDE ∠=o, 所以DEF △为等边三角形.11、解:(1)把点E 的坐标为(-8,0)代入6y kx =+,得0=-8k+634k =;(2)∵点A 的坐标为(-6,0), ∴OA=6.∵点P (x ,y )是第二象限内的直线上的一个动点,E (-8,0);∴-8<x <0, >0. ∴△OPA 的面积 ∴(3)把S=278代入9184S x =+,得364y x =+364y x =+119366182244S OA y x x ⎛⎫=⨯=⨯⨯+=+ ⎪⎝⎭918(80)4S x x =+-<<132x =-. 再把132x =-代入 ,得98y =∴当P 点的坐标为139,28⎛⎫- ⎪⎝⎭时,△OPA 的面积为278.12、(1)四边形EFGH 是正方形. (2) ①∠HAE=90°+a .在□ABCD 中,AB ∥CD ,∴∠BAD=180°-∠ADC=180°-a ; ∵△HAD 和△EAB 都是等腰直角三角形,∴∠HAD=∠EAB=45°,∴∠HAE=360°-∠HAD -∠EAB -∠BAD =360°-45°-45°-(180°-a )=90°+a .②∵△AEB 和△DGC 都是等腰直角三角形,∴AE=2AB ,DG=2CD ,在□ABCD 中,AB=CD ,∴AE=DG ,∵△HAD 和△GDC 都是等腰直角三角形, ∴∠DHA=∠CDG= 45°,∴∠HDG=∠HAD +∠ADC +∠CDG =90°+a =∠HAE . ∵△HAD 是等腰直角三角形,∴HA=HD ,∴△HAE ≌△HDG ,∴HE=HG . ③四边形EFGH 是正方形.由②同理可得:GH=GF ,FG=FE ,∵HE=HG (已证),∴GH=GF=FG=FE , ∴四边形EFGH 是菱形;∵△HAE ≌△HDG (已证),∴∠DHG=∠AHE , 又∵∠AHD=∠AHG +∠DHG=90°,∴∠EHG=∠AHG +∠AHE =90°, ∴四边形EFGH 是正方形.364y x =+。
初二初三数学试卷含答案
一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是()A. -2B. 1C. 0D. -12. 若a=2,b=-3,则a²+b²的值为()A. 1B. 5C. 13D. 173. 下列图形中,是轴对称图形的是()A. 正方形B. 等边三角形C. 平行四边形D. 长方形4. 已知一元二次方程x²-5x+6=0,则方程的解为()A. x=2, x=3B. x=1, x=6C. x=2, x=4D. x=3, x=55. 下列函数中,是反比例函数的是()A. y=x²B. y=x+1C. y=1/xD. y=2x6. 在△ABC中,若∠A=60°,∠B=45°,则∠C的度数为()A. 75°B. 105°C. 120°D. 135°7. 若等差数列的前三项分别为1,4,7,则该数列的公差为()A. 2B. 3C. 4D. 58. 已知二次函数y=ax²+bx+c(a≠0)的图象开口向上,且顶点坐标为(2,-3),则a的值为()A. 1B. 2C. 3D. 49. 下列不等式中,正确的是()A. 2x > 4B. 2x < 4C. 2x ≥ 4D. 2x ≤ 410. 若x=3,则代数式2x²-5x+2的值为()A. 1B. 4C. 7D. 10二、填空题(每题5分,共25分)11. 若m=5,n=-3,则m²-n²的值为______。
12. 在△ABC中,若AB=AC,则∠B与∠C的关系是______。
13. 等差数列{an}的前10项和为100,公差为2,则第5项an的值为______。
14. 已知二次函数y=ax²+bx+c(a≠0)的图象与x轴的交点坐标为(-1,0)和(3,0),则该函数的表达式为______。
15. 若不等式2x-3>5,则x的取值范围为______。
初二升初三数学试题
八年级下学期期末数学试题(全卷共五个大题,满分150分,考试时间120分钟)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内. 1.不等式21>+x 的解集是A.1>xB.1<xC.1≥xD.1≤x 2.多项式22y x -分解因式的结果是A.2)(y x +B.2)(y x -C.))((y x y x -+D.))((x y x y -+3.函数23-=x y 的自变量的取值范围是 A.2>x B.2≠x C.2≥x D.2-≠x4.如图,点C 是线段AB 的黄金分割点)(BC AC >,下列结论错误的是 A.ACBC AB AC = B.BC AB BC ⋅=2C.215-=AB AC D.618.0≈AC BC 5.若ABC ∆∽DEF ∆,若050=∠A ,060=∠B ,则F ∠的度数是 A.050 B.060 C.070 D.080 6.下列调查中,适宜采用普查方式的是A.调查中国第一艘航母各零件的使用情况B.调查重庆市中学生对利比亚局势的看法C.调查一箱牛奶是否含有三聚氰胺D.调查重庆一中所有学生每天跳绳的时间7.若0=+-c b a ,则关于x 的一元二次方程)0(02≠=++a c bx ax 有一根是 A.1=x B.1-=x C.0=x D.无法判断 8. 已知反比例函数xy 1-=图像上有三个点的坐标分别为),(11y x A 、),(22y x B 、),(33y x C ,若当3210x x x <<<时,则1y 、2y 、3y 的大小关系是A.321y y y <<B.123y y y <<C.213y y y <<D.312y y y << 9. 如图1,已知AC AB =,D 为BAC ∠的角平分线上面一点,连接BD ,CD ;如图2,4题图10题图 A B CD ABCD EAB CDE F12题图A BCDEFM NxyPA O 15题图已知AC AB =,D 、E 为BAC ∠的角平分线上面两点,连接BD ,CD ,BE ,CE ;如图3,已知AC AB =,D 、E 、F 为BAC ∠的角平分线上面三点,连接BD ,CD ,BE ,CE ,BF ,CF ;……,依次规律,第n 个图形中有全等三角形的对数是A.nB.12-nC.2)1(+n n D.)1(3+n 10.如图,正方形ABCD 中,E 为AD 的中点,CE DF ⊥于M ,交AC 于N ,交AB 于F ,连接EN 、BM .有如下结论: ①DCE ADF ∆≅∆;②FN MN =;③AN CN 2=;④5:2:=∆CNFB AD N S S 四边形;⑤BMF ADF ∠=∠.其中正确结论的个数是 A.2个 B.3个 C.4个 D.5个二、填空题:(本大题6个小题,每小题4分,共24分)在每小题中,请将答案直接填在答题卷中对应的横线上.11.分解因式:=+-2422x x .12.如图,DE 是ABC ∆的中位线,则ADE ∆与ABC ∆的面积比为 .13.重庆一中初2012级举行了丰富多彩的综合实践活动,在刚刚结束的跳绳比赛中, 初2012级某6个班跳绳个数分别是:570,600,552,482,481,486. 则这组数据的中位数是 . 14. 若一元二次方程022=++k x x 有两个实数根,则k 的取值范围是 . 15.如图,在平面直角坐标系xOy 中,P 是反比例函数图象上一点,过点P 作x PA ⊥轴于点A ,1=∆AOP S ,则这个反比例函数的解析式是 .16.一个水池装一个进水管和三个同样的出水管,先打开进水管,等水池存一些水后 再打开出水管(进水管不关闭).若同时打开2个出水管,那么8分钟后水池空;如果同时打开3个出水管,则5分钟后水池空.那么出水管比进水管晚开 分钟.三、解答题:(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上. 17.解不等式212-<-x x ,并把解集在数轴上表示出来.图1图2图3第9题图AB CDE18.解分式方程32121---=-xxx .19.解一元二次方程03622=-+x x .20.如图,在ABC ∆中,BC DE //,DE 交AC 于E 点,DE 交AB 于D 点,若5=AE ,2=CE ,3=DE .求BC 的长.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.21.先化简,再求值:aa a a a a 4)4822(222-÷-+-+,其中a 满足方程0142=++a a .22.如图,已知一次函数b x k y +=1的图象分别与x 轴、y 轴的正半 轴交于A 、B 两点,且与反比例函数xk y 2=交于C 、E 两 点,点C 在第二象限,过点C 作CD ⊥x 轴于点D , 1==OB OA ,2=CD .(1)求反比例函数与一次函数的解析式; (2)求BOC ∆的面积.23.重庆一中初2012级上周刚刚举行了初二下期体育期末考试,现随机抽取了部分学生的成绩为样本,按A (优秀)、B (良好)、C (及格)、D (不及格)四个等级进行统计,并将统计结果制成如下统计图.如图,请你结合图表所给信息解答下列问题: (1) 本次调查共随机抽取了 名学生; (2) 将条形统计图在图中补充完整;(3) 扇形统计图中“A ”部分所对应的圆心角的度数是 ; (4) 若随机抽取一名学生的成绩在等级C 的概率是 ;(5) 初2012级目前举行了四次体育期末考试,分别是初一上期体育期末考试、初一20题图ABC D EF人数成绩DCBA20103040AD40%B C下期体育期末考试、初二上期体育期末考试、初二下期体育期末考试.学生小欣初一下期体育期末考试成绩为25分,初二下期体育期末考试成绩为36分,若每次体育期末考试小欣体育成绩的增长率相同,求出这个增长率.24.如图,梯形ABCD 中,CD AB //,BC DC AD ==,060=∠DAB ,E 是对角线AC 延长线上一点,F 是AD 延长线上的一点,且AB EB ⊥,AF EF ⊥. (1) 当1=CE 时,求BCE ∆的面积; (2) 求证:CE EF BD +=.五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上. 25.某商店今年61-月份经营A 、B 两种电子产品,已知A 产品每个月的销售数量y (件)与月份x (61≤≤x 且x 为整数)之间的关系如下表: 月份x 1 2 3 4 5 6 销量y 600 300 200 150 120 100A 产品每个月的售价z (元)与月份x 之间的函数关系式为:x z 10=; 已知B 产品每个月的销售数量m (件)与月份x 之间的关系为:622+-=x m ,B 产品每个月的售价n (元)与月份x 之间存在如图所示的变化趋势:(1) 请观察题中表格,用所学过的一次函数或反比例函数的有关知识,直接写出y 与x 的函数关系式;24题图 23题图x (月)1 n (元)O 6230 40图(2)MNOBPCA Q图(1)QACPBON(2) 请观察如图所示的变化趋势,求出n 与x 的函数关系式;(3) 求出此商店61-月份经营A 、B 两种电子产品的销售总额w 与月份x 之间的函数关系式;(4) 今年7月份,商店调整了A 、B 两种电子产品的价格,A 产品价格在6月份基础上增加%a ,B 产品价格在6月份基础上减少%a ,结果7月份A 产品的的销售数量比6月份减少%2a ,B 产品的销售数量比6月份增加%2a .若调整价格后7月份的销售总额比6月份的销售总额少2000元,请根据以下参考数据估算a 的值。
初二升初三数学试卷及解析
一、选择题(每题5分,共50分)1. 已知等腰三角形ABC中,AB=AC,∠B=40°,则∠C的度数是()A. 40°B. 50°C. 60°D. 70°2. 下列各数中,有理数是()A. √2B. πC. -√2D. -π3. 若x=2,则x²-3x+2的值为()A. 1B. 2C. 3D. 44. 已知一次函数y=kx+b(k≠0)的图象经过点(1,2),则下列选项中正确的是()A. k=2,b=1B. k=1,b=2C. k=2,b=2D. k=1,b=15. 已知正方形的边长为4,则其对角线的长度为()A. 2B. 4C. 6D. 86. 下列各式中,正确的是()A. a²+b²=c²(a,b,c为任意实数)B. (a+b)²=a²+2ab+b²(a,b为任意实数)C. (a-b)²=a²-2ab+b²(a,b为任意实数)D. (a+b)²=a²-b²(a,b为任意实数)7. 已知一元二次方程x²-5x+6=0,则其解为()A. x=2,x=3B. x=1,x=6C. x=2,x=4D. x=3,x=58. 下列图形中,是轴对称图形的是()A. 等边三角形B. 等腰三角形C. 正方形D. 长方形9. 已知平行四边形ABCD中,AB=6,AD=8,则对角线BD的长度为()A. 10B. 12C. 14D. 1610. 下列函数中,是奇函数的是()A. y=x²B. y=x³C. y=x²+1D. y=x³+1二、填空题(每题5分,共50分)11. 若x=3,则x²-4x+3的值为________。
12. 已知等腰三角形ABC中,AB=AC,∠B=50°,则∠A的度数是________。
升初三数学试题及答案
升初三数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 3.14159B. √2C. 0.333...D. 1.52. 如果一个正数的平方根等于它本身,那么这个数是:A. 0B. 1C. -1D. 23. 一个数的绝对值是其本身,这个数可能是:A. 正数B. 负数C. 0D. 正数或04. 以下哪个不是二次根式?A. √3B. -√2C. √(-1)D. √(2x)5. 一个三角形的内角和等于:A. 90°B. 180°C. 360°D. 270°6. 一个数的立方等于它自身,这个数是:A. 0B. 1C. -1D. 27. 以下哪个是整式?A. 3x² + 2x + 1B. √xC. 3x²/2D. 3x² + √x8. 一个数的倒数是它自身,这个数是:A. 0B. 1C. -1D. 29. 下列哪个是一元一次方程?A. x² + 2x = 5B. x + 2 = 3xC. 2x - 3 = 0D. 3x + 2y = 510. 以下哪个是二次方程?A. x² + 2x + 1 = 0B. x + 2 = 3C. 2x - 3 = 0D. 3x + 2y = 5二、填空题(每题2分,共20分)11. 一个数的平方根是4,这个数是______。
12. 一个数的绝对值是5,这个数可能是______。
13. 一个三角形的外角和等于______。
14. 如果一个数的立方等于8,那么这个数是______。
15. 一个数的倒数是1/2,这个数是______。
16. 一个一元一次方程的一般形式是______。
17. 一个二次方程的一般形式是______。
18. 一个正数的平方根是2,这个数是______。
19. 一个数的立方根是3,这个数是______。
20. 一个数的绝对值是它自身,这个数是______。
数学初二升初三(9)
初二升初三复习衔接综合训练〔9〕根底稳固1、当x=2时,反比例函数y=与正比例函数y=k2x的值相等,那么k1:k2的值是〔〕A.B.1 C.2 D. 42、如图,数轴上点A对应的数为2,AB⊥OA于A,且AB=1,以OB为半径画圆,交数轴于点C,那么OC的长为〔〕A.3 B.C.D.3、如图,反比例函数y=〔x<0〕的图象经过点A〔﹣1,1〕,过点A作AB⊥y 轴,垂足为B,在y轴的正半轴上取一点P〔0,t〕,过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B′在此反比例函数的图象上,那么t的值是〔〕A.B.C.D.4、如图,四边形ABCD中,AB=AD,AD∥BC,∠ABC=60°,∠BCD=30°,BC=6,那么△ACD的面积是〔〕A.B.C.2D.5、如图是二次函数y=ax2+bx+c图象的一局部,其对称轴是x=﹣1,且过点〔﹣3,0〕,以下说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④假设〔﹣5,y1〕,〔3,y2〕是抛物线上两点,那么y1<y2,其中说法正确的选项是〔〕A.①②B.②③C.①②④D.②③④6、假设代数式6265 x2-+-x x的值等于0 ,那么x=_________.7、在全国初中数学竞赛中,都匀市有40名同学进入复赛,把他们的成绩分为六组,第一组一第四组的人数分别为10,5,7,6,第五组的频率是0.2,那么第六组的频率是8、如图,以▱ABCO的顶点O为原点,边OC所在直线为x轴,建立平面直角坐标系,顶点A、C的坐标分别是〔2,4〕、〔3,0〕,过点A的反比例函数y=的图象交BC于D,连接AD,那么四边形AOCD的面积是.9、如图,点M〔﹣3,m〕是一次函数y=x+1与反比例函数y=〔k≠0〕的图象的一个交点.〔1〕求反比例函数表达式;〔2〕点P是x轴正半轴上的一个动点,设OP=a〔a≠2〕,过点P作垂直于x轴的直线,分别交一次函数,反比例函数的图象于点A,B,过OP的中点Q作x 轴的垂线,交反比例函数的图象于点C,△ABC′与△ABC关于直线AB对称.①当a=4时,求△ABC′的面积;②当a的值为时,△AMC与△AMC′的面积相等.10、E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE成立.试探究以下问题:〔1〕如图1,假设点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?〔请直接答复“成立〞或“不成立〞〕,不需要证明〕〔2〕如图2,假设点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?假设成立,请写出证明过程,假设不成立,请说明理由;〔3〕如图3,在〔2〕的根底上,连接AE和BF,假设点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形〞中的哪一种,并证明你的结论.拓展提升1、在一个不透明的布袋中,红球、黑球、白球共有假设干个,除颜色外,形状、大小、质地等完全一样,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色,…如此大量摸球实验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此实验,他总结出以下结论:①假设进展大量摸球实验,摸出白球的频率稳定于30%,②假设从布袋中任意摸出一个球,该球是黑球的概率最大;③假设再摸球100次,必有20次摸出的是红球.其中说法正确的选项是〔〕A.①②③B.①②C.①③D.②③2、给出以下命题及函数y=x,y=x2和y=①如果,那么0<a<1;②如果,那么a>1;③如果,那么﹣1<a<0;④如果时,那么a<﹣1.那么〔〕A.正确的命题是①④B.错误的命题是②③④C.正确的命题是①②D.错误的命题只有③3、如图,△ABC为等边三角形,AB=2,点D为边AB上一点,过点D作DE∥AC,交BC于E点;过E点作EF⊥DE,交AB的延长线于F点.设AD=x,△DEF 的面积为y,那么能大致反映y与x函数关系的图象是〔〕A.B.C.D.4、观察以下各式及其展开式:〔a+b〕2=a2+2ab+b2〔a+b〕3=a3+3a2b+3ab2+b3〔a+b〕4=a4+4a3b+6a2b2+4ab3+b4〔a+b〕5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜测〔a+b〕10的展开式第三项的系数是〔〕A.36 B.45 C.55 D.665、如图,汽车在东西向的公路l上行驶,途中A,B,C,D四个十字路口都有红绿灯.AB之间的距离为800米,BC为1000米,CD为1400米,且l上各路口的红绿灯设置为:同时亮红灯或同时亮绿灯,每次红〔绿〕灯亮的时间一样,红灯亮的时间与绿灯亮的时间也一样.假设绿灯刚亮时,甲汽车从A路口以每小时30千米的速度沿l向东行驶,同时乙汽车从D路口以一样的速度沿l向西行驶,这两辆汽车通过四个路口时都没有遇到红灯,那么每次绿灯亮的时间可能设置为〔〕6、如图,等边△ABC内有一点P,假设点P到顶点A,B,C的距离分别为3,4,5,那么∠APB= 度.〔提示:如图将△ABP绕顶点A旋转到△ACP′〕.7、如图,正方形ABCD的边长为5,内部有6个大小一样的小正方形,小正方形的顶点E、F、G、H分别落在边AD、AB、BC、CD上,那么小正方形的边长为.8、如图,是抛物线y=ax2+bx+c〔a≠0〕图象的一局部.抛物线的对称轴为x=2,与x轴的一个交点是〔﹣1,0〕.有以下结论:①abc>0;②4a﹣2b+c<0;③4a+b=0;④抛物线与x轴的另一个交点是〔5,0〕;⑤点〔﹣3,y1〕,〔6,y2〕都在抛物线上,那么有y1<y2.其中正确的选项是.〔填序号即可〕农民收入大幅度增加.某农户生产经销一种农产品,这种产品的本钱价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=80-x.设这种产品每天的销售利润为w元.2+〔1〕求w与x之间的函数关系式.〔2〕该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?〔3〕如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?10、如图,抛物线y=ax2+bx+c〔a≠0〕的图象过点M〔﹣2,〕,顶点坐标为N 〔﹣1,〕,且与x轴交于A、B两点,与y轴交于C点.〔1〕求抛物线的解析式;〔2〕点P为抛物线对称轴上的动点,当△PBC为等腰三角形时,求点P的坐标;〔3〕在直线AC上是否存在一点Q,使△QBM的周长最小?假设存在,求出Q 点坐标;假设不存在,请说明理由.答案详解根底稳固1、D2、D3、如图,反比例函数y=〔x<0〕的图象经过点A〔﹣1,1〕,过点A作AB⊥y 轴,垂足为B,在y轴的正半轴上取一点P〔0,t〕,过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B′在此反比例函数的图象上,那么t的值是〔〕A.B.C.D.解答:解:如图,∵A点坐标为〔﹣1,1〕,∴k=﹣1×1=﹣1,∴反比例函数解析式为y=﹣,∵OB=AB=1,∴△OAB为等腰直角三角形,∴∠AOB=45°,∵PQ⊥OA,∴∠OPQ=45°,∵点B和点B′关于直线l对称,∴PB=PB′,BB′⊥PQ,∴∠BPQ=∠B′PQ=45°,即∠B′P B=90°,∴B′P⊥y轴,∴B点的坐标为〔﹣,t〕,∵PB=PB′,∴t﹣1=|﹣|=,整理得t2﹣t﹣1=0,解得t1=,t2=〔舍去〕,∴t的值为.应选A.4、如图,四边形ABCD中,AB=AD,AD∥BC,∠ABC=60°,∠BCD=30°,BC=6,那么△ACD的面积是〔〕A.B.C.2D.解答:解:如图,过点A作AE⊥BC于E,过点D作DF⊥BC于F.设AB=AD=x.又∵AD∥BC,∴四边形AEFD是矩形形,∴AD=EF=x.在Rt△ABE中,∠ABC=60°,那么∠BAE=30°,∴BE=AB=x,∴DF=AE==x,在Rt△CDF中,∠FCD=30°,那么CF=DF•cot30°=x.又BC=6,∴BE+EF+CF=6,即x+x+x=6,解得x=2∴△ACD的面积是:AD•DF=x×x=×22=,应选:A.5、如图是二次函数y=ax2+bx+c图象的一局部,其对称轴是x=﹣1,且过点〔﹣3,0〕,以下说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④假设〔﹣5,y1〕,〔3,y2〕是抛物线上两点,那么y1<y2,其中说法正确的选项是〔〕A.①②B.②③C.①②④D.②③④解答:解:∵抛物线开口向上,∴a>0,∵抛物线对称轴为直线x=﹣=﹣1,∴b=2a>0,那么2a﹣b=0,所以②正确;∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc<0,所以①正确;∵x=2时,y>0,∴4a+2b+c>0,所以③错误;∵点〔﹣5,y1〕离对称轴的距离与点〔3,y2〕离对称轴的距离相等,∴y1=y2,所以④不正确.应选A.6、假设代数式6265 x2-+-x x的值等于0 ,那么x=_________.解答:解:由分式的值为零的条件得x2﹣5x+6=0,2x﹣6≠0,由x2﹣5x+6=0,得x=2或x=3,由2x﹣6≠0,得x≠3,∴x=2,故答案为2.7、在全国初中数学竞赛中,都匀市有40名同学进入复赛,把他们的成绩分为六组,第一组一第四组的人数分别为10,5,7,6,第五组的频率是0.2,那么第六组的频率是0.1【解答】解:∵都匀市有40名同学进入复赛,把他们的成绩分为六组,第一组一第四组的人数分别为10,5,7,6,第五组的频率是0.2,∴第五组的频数为40×0.2=8,第六组的频数为40﹣〔10+5+7+6+8〕=4,∴第六组的频率是4÷40=0.1.故答案为0.1.8、如图,以▱ABCO的顶点O为原点,边OC所在直线为x轴,建立平面直角坐标系,顶点A、C的坐标分别是〔2,4〕、〔3,0〕,过点A的反比例函数y=的图象交BC于D,连接AD,那么四边形AOCD的面积是9.【解答】解:∵四边形ABCD是平行四边形,A、C的坐标分别是〔2,4〕、〔3,0〕,∴点B的坐标为:〔5,4〕,把点A〔2,4〕代入反比例函数y=得:k=8,∴反比例函数的解析式为:y=;设直线BC的解析式为:y=kx+b,把点B〔5,4〕,C〔3,0〕代入得:,解得:k=2,b=﹣6,∴直线BC的解析式为:y=2x﹣6,解方程组得:,或〔不合题意,舍去〕,∴点D的坐标为:〔4,2〕,即D为BC的中点,∴△ABD的面积=平行四边形ABCD的面积,∴四边形AOCD的面积=平行四边形ABCO的面积﹣△ABD的面积=3×4﹣×3×4=9;故答案为:99、如图,点M〔﹣3,m〕是一次函数y=x+1与反比例函数y=〔k≠0〕的图象的一个交点.〔1〕求反比例函数表达式;〔2〕点P是x轴正半轴上的一个动点,设OP=a〔a≠2〕,过点P作垂直于x轴的直线,分别交一次函数,反比例函数的图象于点A,B,过OP的中点Q作x 轴的垂线,交反比例函数的图象于点C,△ABC′与△ABC关于直线AB对称.①当a=4时,求△ABC′的面积;②当a的值为3时,△AMC与△AMC′的面积相等.解答:解:〔1〕把M〔﹣3,m〕代入y=x+1,那么m=﹣2.将〔﹣3,﹣2〕代入y=,得k=6,那么反比例函数解析式是:y=;〔2〕①连接CC′交AB于点D.那么AB垂直平分CC′.当a=4时,A〔4,5〕,B〔4,1.5〕,那么AB=3.5.∵点Q为OP的中点,∴Q〔2,0〕,∴C〔2,3〕,那么D〔4,3〕,∴CD=2,∴S△ABC=AB•CD=×3.5×2=3.5,那么S△ABC′=3.5;②∵△AMC与△AMC′的面积相等,∴=,解得a=3.故答案是:3.10、E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE成立.试探究以下问题:〔1〕如图1,假设点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?〔请直接答复“成立〞或“不成立〞〕,不需要证明〕〔2〕如图2,假设点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?假设成立,请写出证明过程,假设不成立,请说明理由;〔3〕如图3,在〔2〕的根底上,连接AE和BF,假设点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形〞中的哪一种,并证明你的结论.解答:解:〔1〕上述结论①,②仍然成立,理由为:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,,∴△ADF≌△DCE〔SAS〕,∴AF=DE,∠DAF=∠CDE,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE;〔2〕上述结论①,②仍然成立,理由为:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,,∴△ADF≌△DCE〔SAS〕,∴AF=DE,∠E=∠F,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE;〔3〕四边形MNPQ是正方形.理由为:如图,设MQ,DE分别交AF于点G,O,PQ交DE于点H,∵点M,N,P,Q分别为AE,EF,FD,AD的中点,∴MQ=PN=DE,PQ=MN=AF,MQ∥DE,PQ∥AF,∴四边形OHQG是平行四边形,∵AF=DE,∴MQ=PQ=PN=MN,∴四边形MNPQ是菱形,∵AF⊥DE,∴∠AOD=90°,∴∠HQG=∠AOD=90°,∴四边形MNPQ是正方形.拓展提升1、在一个不透明的布袋中,红球、黑球、白球共有假设干个,除颜色外,形状、大小、质地等完全一样,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色,…如此大量摸球实验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此实验,他总结出以下结论:①假设进展大量摸球实验,摸出白球的频率稳定于30%,②假设从布袋中任意摸出一个球,该球是黑球的概率最大;③假设再摸球100次,必有20次摸出的是红球.其中说法正确的选项是〔〕A.①②③B.①②C.①③D.②③解答:解:∵在一个不透明的布袋中,红球、黑球、白球共有假设干个,其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,∴①假设进展大量摸球实验,摸出白球的频率稳定于:1﹣20%﹣50%=30%,故此选项正确;∵摸出黑球的频率稳定于50%,大于其它频率,∴②从布袋中任意摸出一个球,该球是黑球的概率最大,故此选项正确;③假设再摸球100次,不一定有20次摸出的是红球,故此选项错误;故正确的有①②.应选:B.2、给出以下命题及函数y=x,y=x2和y=①如果,那么0<a<1;②如果,那么a>1;③如果,那么﹣1<a<0;④如果时,那么a<﹣1.那么〔〕A.正确的命题是①④B.错误的命题是②③④C.正确的命题是①②D.错误的命题只有③解答:解:易求x=1时,三个函数的函数值都是1,所以,交点坐标为〔1,1〕,根据对称性,y=x和y=在第三象限的交点坐标为〔﹣1,﹣1〕,①如果,那么0<a<1正确;②如果,那么a>1或﹣1<a<0,故本小题错误;③如果,那么a值不存在,故本小题错误;④如果时,那么a<﹣1正确.综上所述,正确的命题是①④.应选A.3、如图,△ABC为等边三角形,AB=2,点D为边AB上一点,过点D作DE∥AC,交BC于E点;过E点作EF⊥DE,交AB的延长线于F点.设AD=x,△DEF 的面积为y,那么能大致反映y与x函数关系的图象是〔〕A.B.C.D.解答:解:∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2﹣x,∵∠DEF=90°,∠F=30°,∴EF=ED=〔2﹣x〕.∴y=ED•EF=〔2﹣x〕•〔2﹣x〕,即y=〔x﹣2〕2,〔x<2〕,应选A.4、观察以下各式及其展开式:〔a+b〕2=a2+2ab+b2〔a+b〕3=a3+3a2b+3ab2+b3〔a+b〕4=a4+4a3b+6a2b2+4ab3+b4〔a+b〕5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜测〔a+b〕10的展开式第三项的系数是〔〕A.36 B.45 C.55 D.66解答:解:解:〔a+b〕2=a22+2ab+b2;〔a+b〕3=a3+3a2b+3ab2+b3;〔a+b〕4=a4+4a3b+6a2b2+4ab3+b4;〔a+b〕5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;〔a+b〕6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6;〔a+b〕7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7;第8个式子系数分别为:1,8,28,56,70,56,28,8,1;第9个式子系数分别为:1,9,36,84,126,126,84,36,9,1;第10个式子系数分别为:1,10,45,120,210,252,210,120,45,10,1,那么〔a+b〕10的展开式第三项的系数为45.应选B.5、如图,汽车在东西向的公路l上行驶,途中A,B,C,D四个十字路口都有红绿灯.AB之间的距离为800米,BC为1000米,CD为1400米,且l上各路口的红绿灯设置为:同时亮红灯或同时亮绿灯,每次红〔绿〕灯亮的时间一样,红灯亮的时间与绿灯亮的时间也一样.假设绿灯刚亮时,甲汽车从A路口以每小时30千米的速度沿l向东行驶,同时乙汽车从D路口以一样的速度沿l向西行驶,这两辆汽车通过四个路口时都没有遇到红灯,那么每次绿灯亮的时间可能设置为〔〕A.50秒B.45秒C.40秒D.35秒解答:解:∵甲汽车从A路口以每小时30千米的速度沿l向东行驶,同时乙汽车从D路口以一样的速度沿l向西行驶,∴两车的速度为:=〔m/s〕,∵AB之间的距离为800米,BC为1000米,CD为1400米,∴分别通过AB,BC,CD所用的时间为:=96〔s〕,=120〔s〕,=168〔s〕,∵这两辆汽车通过四个路口时都没有遇到红灯,∴当每次绿灯亮的时间为50s时,∵=1,∴甲车到达B路口时遇到红灯,故A选项错误;∴当每次绿灯亮的时间为45s时,∵=3,∴乙车到达C路口时遇到红灯,故B选项错误;∴当每次绿灯亮的时间为40s时,∵=5,∴甲车到达C路口时遇到红灯,故C选项错误;∴当每次绿灯亮的时间为35s时,∵=2,=6,=10,=4,=8,∴这两辆汽车通过四个路口时都没有遇到红灯,故D选项正确;那么每次绿灯亮的时间可能设置为:35秒.应选:D.6、如图,等边△ABC内有一点P,假设点P到顶点A,B,C的距离分别为3,4,5,那么∠APB= 150 度.〔提示:如图将△ABP绕顶点A旋转到△ACP′〕.解答:解:∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,∴将△ABP绕顶点A逆时针旋转60°得到△ACP′,如图,连结PP′,∴AP=AP′=3,∠P AP′=60°,P′C=PB=4,∠APB=∠AP′C,∴△APP′为等边三角形,∴∠PP′A=60°,PP′=AP=3,在△PP′C中,∵PP′=3,P′C=4,PC=5,∴PP′2+P′C2=PC2,∴△PP′C为直角三角形,∠PP′C=90°,∴∠AP′C=∠PP′A+∠PP′C=60°+90°=150°.∴∠APB=150°.故答案为150.7、如图,正方形ABCD的边长为5,内部有6个大小一样的小正方形,小正方形的顶点E、F、G、H分别落在边AD、AB、BC、CD上,那么小正方形的边长为.解答:解:∵正方形ABCD的对边AD∥BC,∴∠AEG=∠CGE,∴∠DEH=∠BGF,∵6个小正方形大小一样,∴EH=GF,在△DEH和△BGF中,,∴△DEH≌△BGF〔AAS〕,∴DE=BG,过点G作GK⊥AD于K,那么四边形ABGK是矩形,所以,AK=BG,KG=AB=5,∵∠DEH+∠KEG=90°,∠KEG+∠KGE=90°,∴∠DEH=∠KGE,又∵∠D=∠EKG=90°,∴△DEH∽△KGE,∴==,∴DE=KG=×5=1,∴EK=AD﹣DE﹣AK=5﹣1﹣1=3,在Rt△KEG中,由勾股定理得,EG==,所以,小正方形的边长为.故答案为:.8、如图,是抛物线y=ax2+bx+c〔a≠0〕图象的一局部.抛物线的对称轴为x=2,与x轴的一个交点是〔﹣1,0〕.有以下结论:①abc>0;②4a﹣2b+c<0;③4a+b=0;④抛物线与x轴的另一个交点是〔5,0〕;⑤点〔﹣3,y1〕,〔6,y2〕都在抛物线上,那么有y1<y2.其中正确的选项是①③④.〔填序号即可〕解答:解:∵抛物线的对称轴为x=2,∴﹣=2,b=﹣4a,4a+b=0,故③正确;∵抛物线开口向上,∴a>0,b<0;由图象知c<0,∴abc>0,故①正确;由抛物线的单调性知:当x=﹣2时,y>0,即4a﹣2b+c>0,故②错误;∵=2,而对称轴方程为x=2,∴抛物线与x轴的另一个交点是〔5,0〕,故④正确.∵当时,m=7,而6<7,∴点〔6,y2〕在点〔7,y3〕的下方,由抛物线的对称性及单调性知:y1<y2,故⑤错误;故答案为:①③④.9、为了落实国务院的指示精神,某地方政府出台了一系列“三农〞优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,这种产品的本钱价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=802+-x.设这种产品每天的销售利润为w元.〔1〕求w与x之间的函数关系式.〔2〕该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?〔3〕如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?解答:解:⑴ w=(x-20)∙y=(x-20)〔80-x〕2+=-160012022-+x x ∴w 与x 的函数关系式为:w =-160012022-+x x⑵w =-160012022-+x x =-2()200302+-x ∵-2<0,∴当30=x 时,w 有最大值.w 最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元. ⑶当w 150=时,可得方程-2()200302+-x =150. 解得 251=x ,352=x .∵35>28 ∴352=x 不符合题意,应舍去. 答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元10、如图,抛物线y=ax 2+bx+c 〔a≠0〕的图象过点M 〔﹣2,〕,顶点坐标为N〔﹣1,〕,且与x 轴交于A 、B 两点,与y 轴交于C 点. 〔1〕求抛物线的解析式;〔2〕点P 为抛物线对称轴上的动点,当△PBC 为等腰三角形时,求点P 的坐标; 〔3〕在直线AC 上是否存在一点Q ,使△QBM 的周长最小?假设存在,求出Q 点坐标;假设不存在,请说明理由.解答:解:〔1〕由抛物线顶点坐标为N 〔﹣1,〕,可设其解析式为y=a 〔x+1〕2+,将M 〔﹣2,〕代入,得=a 〔﹣2+1〕2+, 解得a=﹣,故所求抛物线的解析式为y=﹣x2﹣x+;〔2〕∵y=﹣x2﹣x+,∴x=0时,y=,∴C〔0,〕.y=0时,﹣x2﹣x+=0,解得x=1或x=﹣3,∴A〔1,0〕,B〔﹣3,0〕,∴BC==2.设P〔﹣1,m〕,显然PB≠PC,所以当CP=CB时,有CP==2,解得m=±;当BP=BC时,有BP==2,解得m=±2.综上,当△PBC为等腰三角形时,点P的坐标为〔﹣1,+〕,〔﹣1,﹣〕,〔﹣1,2〕,〔﹣1,﹣2〕;〔3〕由〔2〕知BC=2,AC=2,AB=4,所以BC2+AC2=AB2,即BC⊥AC.连结BC并延长至B′,使B′C=BC,连结B′M,交直线AC于点Q,∵B、B′关于直线AC对称,∴QB=QB′,∴QB+QM=QB′+QM=MB′,又BM=2,所以此时△QBM的周长最小.由B〔﹣3,0〕,C〔0,〕,易得B′〔3,2〕.设直线MB′的解析式为y=kx+n,将M〔﹣2,〕,B′〔3,2〕代入,得,解得,即直线MB′的解析式为y=x+.同理可求得直线AC的解析式为y=﹣x+.由,解得,即Q〔﹣,〕.所以在直线AC上存在一点Q〔﹣,〕,使△QBM的周长最小.【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注,我们将会做得更好】。
初二升初三数学试卷及答案
初二数学试卷一、选择题 本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中.只有一项是符合题目要求的,请将选择题的答案写在答题纸相应的位置上.1.若二次根式2x -有意义,则x 的取值范围是 A .x<2 B .x ≠2 C .x ≤2 D .x ≥22.正三角形、正方形、等腰直角三角形、平行四边形中,既是轴对称图形又是中心对称图形的是 A .正三角形B .正方形C .等腰直角三角形D .平行四边形 3.对于函数y =6x,下列说法错误的是 A .它的图像分布在第一、三象限 B .它的图像与直线y =-x 无交点 C .当x>0时,y 的值随x 的增大而增大D .当x<0时,y 的值随x 的增大而减小 4.下列运算正确的是A .x y x y x y x y ---=-++B .()222a b a b a b a b --=+- C .21111x x x -=-+ D .()222a b a b a b a b -+=-- 5.下列各根式中与是同类二次根式的是A .9B .13C .18D .306.关于频率与概率有下列几种说法:①“明天下雨的概率是90%”表示明天下雨的可能性很大;②“抛一枚硬币正面朝上的概率为12”表示每抛两次就有一次正面朝上;③“某彩票中奖的概率是1%”表示买10张该种彩票不可能中奖;④“抛一枚硬币正面朝上的概率为12”表示随着抛掷次数的增加,“抛出正面朝上”这一事件发生的频率稳定在12附近,正确的说法是 A .①④B .②③C .②④D .①③ 7.如图,点F 是□ABCD 的边CD 上一点,直线BF 交AD 的延长线于点E ,则下列结论错误的是A .ED DF EAAB = B .DE EF BC FB = C .BC BF DE BE = D .BF BC BE AE = 8.如图,矩形AOBC 中,顶点C 的坐标(4,2),又反比例函数y =k x的图像经过矩形的对角线的交点P ,则该反比例函数关系式是 A .y =8x(x>0) B .y =2x (x>0) C .y =4x (x>0) D .y =1x (x>0) 9.计算2221146450--的值为A.0 B.25 C.50 D.8010.如图,在△ABC中,∠C=90°,B C=6,D,E分别在AB,AC上,将△ADE沿DE翻折后,点A落在点A'处,若A'为CE的中点,则折痕DE的长为A.1 B.2 C.4 D.6二、填空题本大题共8小题.每小题3分,共24分.把答案直接填在答题纸相对应的位置上.11.若分式21a+有意义,则a的取值范围是▲.12.袋中共有2个红球,2个黄球,4个紫球,从中任取—个球是白球,这个事件是▲事件.13.化简121+=▲.14.小丽同学想利用树影测量校园内的树高,她在某一时刻测得小树高为时,其影长为m,此时她测量教学楼旁的一棵大树影长为5m,那么这棵大树高约▲m.15.如图,在△ABC中,∠ACB=90°,∠A=35°,若以点C为旋转中心,将△ABC旋转θ°到△DEC的位置,使点B恰好落在边DE上,则θ值等于▲.16.如图,等腰梯形ABC D中,AD∥BC,AD=2,BC=4,高DF=2.腰DC的长等于▲.17.如图,点A、B在反比例函数y=kx(k>0,x>0)的图象上,过点A、B作x轴的垂线,垂足分别为M、N,延长线段AB交x轴于点C,若OM=MN=NC,S△BNC=2,则k的值为▲.18.已知n是正整数,189n是整数,则n的最小值是▲.三、解答题本大题共11小题,共76分.把解答过程写在答题纸相对应的位置上.解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.19.(本题满分8分,每小题4分)计算:(1)226912414421x x xx x x-+-÷+++(2)222412a aa a a---÷+20.(本题满分8分,每小题4分)计算:(1)5231512⎛⎫-⨯⎪⎪⎝⎭(2)()2182284022xx x x x x+--≥21.(本题满分5分)解方程:42511x xx x+-=--.22.(本题满分5分)如图,E、F分别是□ABCD的边BC、AD上的点,且BE=DF(1)求证:四边形AECF是平行四边形;(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.23.(本题满分5分)如图,“优选1号”水稻的实验田是边长为a m(a>1)的正方形去掉一个边长为1m 的正方形蓄水池后余下的部分;“优选2号”水稻的实验田是边长为(a-1)m的正方形,两块试验田的水稻都收了600 kg.(1)优选▲号水稻的单位面积产量高;(2)“优选2号”水稻的单位面积产量是“优选1号”水稻的单位面积产量的多少倍?24.(本题满分6分)如图,在□ABCD中,点E在BC上,∠CDE=∠DAE.(1)求证:△ADE∽△DEC;(2)若AD=6,DE=4,求BE的长.25.(本题满分6分)“初中生骑电动车上学”的现象越来越受到社会的关注,某校利用“五一”假期,随机抽查了本校若干名学生和部分家长对“初中生骑电动车上学”现象的看法,统计整理制作了的统计图,请回答下列问题:(1)这次抽查的家长总人数是多少?(2)请补全条形统计图和扇形统计图;(3)从这次接受调查的学生中,随机抽查一个学生,则抽到持哪一类态度学生的可能性大?26.(本题满分8分)已知320m n -+-=(1)求16m n+的值; (2)将如图等腰三角形纸片沿底边BC 上的高AD 剪成两个三角形,其中AB =AC =m ,BC =n .用这两个三角形你能拼成多少种平行四边形?分别求出它们对角线的长(画出所拼成平行四边形的示意图)27.(本题满分8分)如图,在平面直角坐标系中,双曲线经过点B ,连结OB .将OB 绕点O 按顺时针方向旋转90°并延长至A ,使OA =2OB ,且点A 的坐标为(4,2).(1)求过点B 的双曲线的函数关系式;(2)根据反比例函数的图像,指出当x<-1时,y 的取值范围;(3)连接AB ,在该双曲线上是否存在一点P ,使得S △ABP =S △ABO ,若存在,求出点P 坐标;若不存在,请说明理由.28.(本题满分8分)喝绿茶前需要烧水和泡茶两个工序,即需要将电热水壶中的水烧到100℃,然后停止烧水,等水温降低到适合的温度时再泡茶,烧水时水温y(℃)与时间x(min)成一次函数关系;停止加热过了1分钟后,水壶中水的温度y (℃)与时间x (min )近似于反比例函数关系(如图).已知水壶中水的初始温度是20℃,降温过程中水温不低于20℃.(1)分别求出图中所对应的函数关系式,并且写出自变量x的取值范围;(2)从水壶中的水烧开(100℃)降到80℃就可以进行泡制绿茶,问从水烧开到泡茶需要等待多长时间?29.(本题满分9分)如图①,两个菱形ABCD 和EFGH 是以坐标原点O 为位似中心的位似图形,对角线均在坐标轴上,已知菱形E FGH 与菱形ABCD 的相似比为1:2,∠BAD =120°,其中AD =4.(1)点D 坐标为 ▲ ,点E 坐标为 ▲ ;(2)固定图①中的菱形ABCD ,将菱形EFCH 绕O 点顺时针方向旋转α度角(0°<α<90°),并延长OE 交AD 于P ,延长OH 交CD 于Q ,如图②所示,①当α=30°时,求点P 的坐标;②试探究:在旋转的过程中是否存在某一角度α,使得四边形AFEP 是平行四边形?若存在,请推断出α的值;若不存在,说明理由;。