七年级数学下册 期末复习六 数据与统计图表校本作业 (新版)浙教版

合集下载

浙教版七年级下册数学第六章 数据与统计图表含答案

浙教版七年级下册数学第六章 数据与统计图表含答案

浙教版七年级下册数学第六章数据与统计图表含答案一、单选题(共15题,共计45分)1、一次数学测试后,某班60名学生的成绩被分为5组,第一至第四组的频数分别为8、10、16、 14,则第五组的频率是()A.0.1B.0.2C.0.3D.0.42、为了解九年级1200名学生的身高情况,小李同学采用合理的方式随机抽查了200名学生的身高为样本进行统计,其中身高在170cm~175cm有80人,那么估计该校九年级同学身高在170cm~175cm的人数是()人.A.40B.400C.480D.5003、下列调查中,最适合采用普查方式的是()A.坐飞机前对乘客的安检B.了解兰州的猪肉市价格C.对黄河水质情况的调查D.兰州市对垃圾分类处理知晓率的调查4、某校七(1)班的全体同学最喜欢的球类运动用如图所示的统计图来表示,下面说法正确的是()A.从图中可以直接看出喜欢各种球类的具体人数B.从图中可以直接看出全班的总人数C.从图中可以直接看出全班同学一学期来喜欢各种球类的变化情况D.从图中可以直接看出全班同学现在最喜欢各种球类的人数的大小关系5、下列调查中,适宜采用全面调查方式的是()A.调查一架“歼20”战机各零部件的产品质量B.调查某品牌圆珠笔芯的使用寿命C.调查市场上酸奶的质量情况D.调查我市市民对上届巴西奥运会吉祥物的知晓度6、下列事件中,最适合采用全面调查的是()A.对全国中学生节水意识的调查B.对某批次灯泡的使用寿命的调查 C.对某个班级全体学生出生日期的调查 D.对春节联欢晚会收视率的调查7、小明想了解全校3000名同学对新闻、体育、音乐、娱乐、戏曲五类电视节目的喜爱况,从中抽取了一部分同学进行了一次抽样调查,利用所得数据绘制成下面的统计图:根据图中所给信息,全校喜欢娱乐类节目的学生大约有()人.A.1080B.900C.600D.1088、母亲节快到了,某校团委随机抽取本校部分同学,进行母亲生日日期了解情况调查,分“知道、不知道、记不清”三种情况。

七年级数学下册第6章数据与统计图表6.4频数与频率(第1课时)校本作业(B本)(新版)浙教版

七年级数学下册第6章数据与统计图表6.4频数与频率(第1课时)校本作业(B本)(新版)浙教版

6.4 频数与频率(第1课时)课堂笔记1. 相关概念组距:每一组数据的后一个边界值与前一个边界值的差叫做组距.频数:数据分组后落在各小组内的数据个数叫做频数.频数统计表:反映数据分布情况的统计表叫做频数统计表,也称频数表.有时还可以将发生事件按类别进行分组,这时,频数就是各类事件发生的次数.2. 绘制频数统计表的步骤:(1)选取组距,确定组数. 组数通常取大于最大值-最小值/组距的最小整数.(2)确定各组的边界值. 第一组的起始边界值通常取得比最小数据要小一些. 为了使数据不落在边界上,边界值可以比实际数据多取一位小数. 取定起始边界值后,就可以根据组距写出各组的边界值.(3)列表、填写组别和统计各组频数.分层训练A组基础训练1. 一组数据的最大值与最小值之差为80,若取组距为9,则分成的组数应是()A. 7B. 8C. 9D.102.某校学生会成员的年龄如下表所示,则出现频数最多的年龄是()A. 4B. 14C. 13或15D. 23. 将50个数据分成5组列出频数表,其中第一组的频数为6,第二组与第五组的频数和为20,则第三组与第四组的频数和为()A. 20B. 24C. 26D. 314.一个样本含有20个数据:35,31,33,35,37,39,35,38,40,39,36,34,35,37,36,32,34,35,36,34.在列频数统计表时,如果组距为2,那么应分成组,32.5~34.5这组的频数为.5. 已知样本:10,8,6,10,13,8,7,12,10,11,10,11,10,9,12,11,9,9,8,12. 那么在频数统计表中,若以5.5为最小的分界值,组距为2,则频数为8的组是 .6.为了了解某中学九年级250名学生升学考试的数学成绩,从中抽取了50名学生的数学成绩进行分析,下面是50名学生数学成绩的频数表.50名学生数学成绩频数表根据题中给出的条件回答下列问题:(1)在这次抽样分析的过程中,样本是;(2)频数表中的数据a=;(3)在这次升学考试中,该校九年级数学成绩在90.5~100.5分范围内的人数约为人.7.体育委员统计了全班同学60s跳绳的次数,并列出频数表如下:次数60≤x<80 80≤x<100100≤x<120120≤x<140140≤x<160160≤x<180频数 2 4 21 13 8 4(1)全班共有多少名学生?(2)组距是多少?组数是多少?(3)跳绳次数在120≤x<160范围内的学生有多少?8.近年来,中学生的身体素质普遍下降,某校为了提高本校学生的身体素质,对部分学生的每天锻炼时间进行了统计.以下是本次调查结果的统计表和统计图.组别 A B C D E时间(min)t<40 40≤t<60 60≤t<80 80≤t<100 t≥100频数12 30 a 24 12(1)求出本次被调查的学生人数;(2)求出统计表中a的值;(3)根据调查结果,请你估计该校2400名学生中每天体育锻炼不少于1h的学生人数.B组自主提高9. (台州中考)某家电商场五月份经销彩电共获利48000元. 下列图和表分别是各品牌彩电销售频数统计表和各品牌彩电所获利润的百分数的扇形统计图. 已知A品牌彩电每台可获利100元,B品牌彩电每台可获利144元,C品牌彩电每台可获利360元,请你根据以上信息,回答下列问题.(1)B品牌彩电售出多少台?(2)A品牌彩电占所获利润的百分比是多少?(3)C品牌彩电售出多少台?(4)该商场五月份共销售彩电多少台?10. 某次钓鱼比赛后,裁判员制作了一张如下的频数统计表.(1)请完成频数统计表;(2)分组时的组距为多少?(3)共有多少人参加这次比赛?(4)哪一个成绩段的参赛者最多?哪一个成绩段的参赛者最少?(5)钓到21条以上的参赛者有多少人?占总参赛人数的百分之几?(百分号前保留两位小数)C组综合运用11.某校九年级(1)班50名学生参加1min跳绳体育考试. 1min跳绳次数与频数经统计后绘制成下面的频数表(60~70表示为大于等于60并且小于70,其余类同)和扇形统计图.等级分数段(分)1min跳绳次数段频数A 120 254~300 0110~120 224~254 3B 100~110 194~224 990~100 164~194 mC 80~90 148~164 1270~80 132~148 nD 60~70 116~132 20~60 0~116 0(1)求m,n的值;(2)求该班1min跳绳成绩在80分以上(含80分)的人数占全班人数的百分比;(3)根据频数表估计该班学生1min跳绳考试的平均分.参考答案6.4 频数与频率(第1课时)【分层训练】1—3. CBB4. 5 45. 9.5~11.56. (1)抽取的50名学生的数学成绩(2)10 (3)857. (1)全班共有2+4+21+13+8+4=52(名)学生. (2)组距是80-60=20次,组数是6.(3)跳绳次数在120≤x <160范围内的学生有13+8=21(人). 8. (1)本次被调查的学生人数是12÷10%=120(人). (2)a =120-12-30-24-12=42. (3)每天体育锻炼不少于1h 的人数是2400 ×120122442++=1560(人).9. (1)48000×30%÷144=100台(2)48000100120⨯=25%(3)360120001440048000--=60台(4)120+100+60=280台 10. (1)(2)分组时的组距为5.5-0.5=5.(3)共有1+7+5+11+15+6=45(人)参加这次比赛.(4)成绩在20.5~25.5条的成绩段的参赛者最多,成绩在0.5~5.5条的成绩段的参赛者最少.(5)钓到21条以上的参赛者有21人,约占总参赛人数的46.67%.11. (1)由题意,得3+9+m +12+n +2=50,9+m =50×54%,解得m =18,n =6. (2)(3+9+18+12)÷50×100%=84%.(3)用各分数段的组中值(两个边界值的平均数)来代替该组分数,可得平均分为(115×3+105×9+95×18+85×12+75×6+65×2)÷50=92(分).。

2022年最新浙教版初中数学七年级下册第六章数据与统计图表专题练习试卷(精选)

2022年最新浙教版初中数学七年级下册第六章数据与统计图表专题练习试卷(精选)

初中数学七年级下册第六章数据与统计图表专题练习(2021-2022浙教考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、在频数分布直方图中,有11个小长方形,若中间一个小长方形的面积等于其它10个小长方形面积的和的14,且数据有160个,则中间一组的频数为()A.0.2B.0.25C.32D.402、为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A.280 B.240 C.300 D.2603、甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同D.乙超市在9月份的利润必超过甲超市4、如图是小明所在学校八年级各班学生人数分布图,则该校八年级学生总数为( )A.180人B.200人C.210人D.220人5、以下问题,不适合普查的是()A.了解一批灯泡的使用寿命B.学校招聘教师,对应聘人员的面试C.了解全班学生每周体育锻炼时间D.进入地铁站对旅客携带的包进行的安检6、某学习小组将要进行一次统计活动,下面是四位同学分别设计的活动序号,其中正确的是()A.实际问题→收集数据→表示数据→整理数据→统计分析合理决策B.实际问题→表示数据→收集数据→整理数据→统计分析合理决策C.实际问题→收集数据→整理数据→表示数据→统计分析合理决策D.实际问题→整理数据→收集数据→表示数据→统计分析合理决策7、下列调查中,调查方式选择最合理的是()A.调查“乌金塘水库”的水质情况,采用抽样调查B.调查一批飞机零件的合格情况,采用抽样调查C.检验一批进口罐装饮料的防腐剂含量,采用全面调查D.企业招聘人员,对应聘人员进行面试,采用抽样调查8、小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了直方图.根据图中信息,下列说法:①这栋居民楼共有居民140人②每周使用手机支付次数为28~35次的人数最多③有15的人每周使用手机支付的次数在35~42次④每周使用手机支付不超过21次的有15人其中正确的是()A.①②B.②③C.③④D.④9、下列调查中,适合采用全面调查(普查)方式的是()A.对綦江河水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.对某班50名同学体重情况的调查D.对某类烟花爆竹燃放安全情况的调查10、某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是()A.100B.被抽取的100名学生家长C.被抽取的100名学生家长的意见D.全校学生家长的意见二、填空题(5小题,每小题4分,共计20分)1、在数据25,23,21,29,28,25,22,26,28,26,26,27,25,21,29中,范围在2527(包括前边的数,不包括后边的数)这一组的频数是________.2、在对某班的一次数学测验成绩进行统计分析中,各分数段的人数如图所示.由图可知:(1)该班有________名学生;(2)69.5~79.5这一组的频数是________,频率是________.3、某校学生自主建立了一个学习用品义卖社团,已知八年级200名学生义卖所得金额的频数分布直方图如图所示,那么40~50元这个小组的组频率是__________.4、下列调查中,调查方式选择正确的是_____.①为了了解一批灯泡的使用寿命,选择抽样调查.②为了了解某公园全年的游客流量,选择抽样调查.③为了了解某1000枚炮弹的杀伤半径,选择全面调查.④为了了解一批袋装食品是否有防腐剂,选择全面调查.5、西双版纳,美丽家乡,某中学为了增强学生对家乡的了解和热爱,举行了西双版纳州情知识竞赛.该校随机抽取了部分学生的测试成绩,按优秀、良好、合格、不合格四个等级绘制了如图所示的两个统计图,则在扇形统计图中,测试等级“不合格”对应的圆心角应为 ______.三、解答题(5小题,每小题10分,共计50分)1、为提升学生的艺术素养,学校计划开设四门艺术选修课:A:书法;B,绘画;C,乐器;D.舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门),将数据进行整理,并绘制成如图两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)木次调查的学生共有人,扇形统计图中∠α的度数是;(2)请把条形统计图补充完整.2、判断下面这些抽样调查选取样本的方式是否合适,并说明理由.(1)为了了解某厂家生产的零件质量,在其生产线上每隔300个零件抽取1个检查;(2)为了了解某城市全年的降水情况,随机调查该城市某月的降水量.3、为了提高长跑成绩,小彬坚持锻炼并于每周日记录下1500m的成绩:小彬1500m成绩变化统计表如果要更清楚地看出小彬成绩的变化情况,你选择统计图还是统计表?如果要方便、准确地获得他锻炼5星期后的跑步成绩,你会如何选择?4、电视台调查某一节目的收视率,于是找了一些该节目的热心观众来作为调查的对象,用这样的方式得到的收视率准确吗?与实际收视率相比结果会怎样?5、某校数学兴趣小组的同学,为了了解初一学生上学期参加公益活动的情况,随机调查了学校部分初一学生,并用得到的数据绘制了下面两幅统计图(统计图不完整)根据统计图中的信息完成下列问题:(1)本次随机调查了名学生;(2)扇形统计图中的a=;(3)对于“参加公益活动为6天”的扇形,对应的圆心角为度.---------参考答案-----------一、单选题1、C【分析】由频率分布直方图分析可得“中间一个小长方形”对应的频率,再由频率与频数的关系,中间一组的频数.解:设中间一个小长方形的面积为x,其他10个小长方形的面积之和为y,则有x+y=1,x=14y,解得x=0.2∴中间一组的频数=160×0.2=32.【详解】解:设中间一个小长方形的面积为x,其他10个小长方形的面积之和为y,则有x+y=1, x=14y,解得x=0.2∴中间一组的频数=160×0.2=32.故选C.【点睛】本题是对频率、频数灵活运用的考查,各小组频数之和等于数据总和,各小组频率之和等于1.频率、频数的关系2、A【详解】由题可得,抽查的学生中参加社团活动时间在8∼10小时之间的学生数为100−30−24−10−8=28(人),∴1000×28100=280(人),即该校五一期间参加社团活动时间在8∼10小时之间的学生数大约是280人.故选A.3、D【分析】根据折线图中各月的具体数据对四个选项逐一分析可得.【详解】A、甲超市的利润逐月减少,此选项正确,不符合题意;B、乙超市的利润在1月至4月间逐月增加,此选项正确,不符合题意;C、8月份两家超市利润相同,此选项正确,不符合题意;D、乙超市在9月份的利润不一定超过甲超市,此选项错误,符合题意,故选D.【点睛】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.4、B【解析】【分析】根据扇形统计图先求出5班所占的百分比,再用5班的人数除以5班所占的百分比即可得出答案.【详解】解:根据题意得:42÷(1-20%-18%-21%-20%)=200(人),答:该校八年级学生总数为200人;故选B.【点睛】本题考查扇形统计图,掌握频数、频率和总数之间的关系是解题关键.5、A【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A. 了解一批灯泡的使用寿命,适合抽样调查,故A正确;B. 学校招聘教师,对应聘人员的面试适合普查,故B错误;C. 了解全班学生每周体育锻炼时间,适合普查,故C错误;D. 进入地铁站对旅客携带的包进行的安检适合普查,故D错误;故选A.【点睛】考查全面调查与抽样调查,掌握全面调查与抽样调查的特点是解题的关键.6、C【详解】统计调查一般分为以下几步:收集数据、整理数据、描述数据、分析数据,故选C.7、A【详解】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】A.了解“乌金塘水库”的水质情况,采用抽样调查,故A正确;B.了解一批飞机零件的合格情况,适合全面调查,故B错误;C.了解检验一批进口罐装饮料的防腐剂含量,调查范围广,适合抽样调查,故C错误;D.企业招聘人员,对应聘人员进行面试,适合全面调查,故D错误,故选A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8、B【分析】根据直方图表示的意义求得统计的总人数,以及每组的人数即可判断.本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解.【详解】解:①这栋居民楼共有居民3+10+15+22+30+25+20=125人,此结论错误;②每周使用手机支付次数为28~35次的人数最多,此结论正确;③每周使用手机支付的次数在35~42次所占比例为2511255,此结论正确;④每周使用手机支付不超过21次的有3+10+15=28人,此结论错误;故选B.【点睛】此题考查直方图的意义,解题的关键在于理解直方图表示的意义求得统计的数据9、C【详解】对綦江河水质情况的待查,只能是调查;对端午节期间市场上粽子质量情况的调查,和“对某类烟花爆竹燃放安全情况的调查”,根据调查的破坏性,只能是抽样调查;全面调查是所考察的全体对象进行调查. “对某班50名同学体重情况的调查”的容量较小适合采用全面调查方式;故选C10、C【分析】根据样本的定义,结合题意,即可得到答案.【详解】解:某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是:被抽取的100名学生家长的意见.故选C.【点睛】本题考查样本的定义,解题的关键是熟练掌握样本的定义.二、填空题1、6【分析】根据频数的定义:每个对象出现的次数求解即可.【详解】解:由题意知:范围在25~27这一组的频数是6,故答案为:6.【点睛】本题考查了频数的定义,属于基础问题.2、60 18 0.3【分析】(1)根据直方图的意义,将各组频数之和相加可得答案;(2)由直方图可以看出:频数为18,又已知总人数,相除可得其频率.【详解】解:(1)根据直方图的意义,总人数为各组频数之和=6+8+10+18+16+2=60(人),故答案是:60;(2)读图可得:69.5~79.5这一组的频数是18,频率=18÷60=0.3,故答案是:18,0.3.【点睛】本题主要考查频率和频数,频数直方图,读图时要全面细致,关键要充分运用数形结合思想来解决由统计图形式给出的数学实际问题.3、0.15【分析】求出40~50元的人数,再根据频率=频数÷总数进行计算即可.【详解】解:“40~50元”的人数为:200−10−30−50−80=30(人),“40~50元”的频率为:30÷200=0.15,故答案为:0.15.【点睛】本题考查频数分布直方图,掌握频率=频数÷总数是正确解答的关键.4、①②【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:①了解1000个灯泡的使用寿命,具有破坏性,适用于抽样调查,故①正确;②了解某公园全年的游客流量,工作量大,时间长,故需要用抽样调查,故②正确;③了解生产的一批炮弹的杀伤半径,具有破坏性的调查,适用于抽样调查,故③错误;④了解一批袋装食品是否含有防腐剂,具有破坏性的调查,,适用于抽样调查,故④错误;故答案为:①②.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5、18°【分析】用360°×“不合格”的人数÷总人数即可得到答案.【详解】解:由统计图可知,“不合格”的人数是4人,总人数是32+24+20+4=80人∴“不合格”的圆心角度数=360°×480=18°,故答案为:18°.【点睛】本题主要考查了扇形统计图与条形统计图信息相关联,解题的关键在于能够准确从统计图中获取数据求解.三、解答题1、(1)40,108︒;(2)画图见解析【分析】(1)由B 组8人,占比20%,列式可得总人数,由C 组的占比乘以360︒可得圆心角的度数;(2)先计算出C 组的人数,再补全图形即可.【详解】解:(1)由B 组8人,占比20%,可得总人数为:820%=40÷人,所以C 组所在扇形的圆心角为:()140%10%20%360=108.---⨯︒︒故答案为:40,108︒(2)C 组的人数为:30%4012⨯=人,补全图形如下:【点睛】本题考查的是从扇形图与条形图中获取信息,频数与频率,画条形统计图,计算扇形某部分的圆心角,掌握以上基础知识是解题的关键.2、(1)比较合适,可以保证样本的广泛性和代表性;(2)不合适,用某月的降水量代表全年的降水量不具有代表性【分析】根据调查应具有代表性分析解答.【详解】解:(1)比较合适,可以保证样本的广泛性和代表性;(2)不合适,用某月的降水量代表全年的降水量不具有代表性.【点睛】此题考查调查样本的选取,掌握样本的选取应具有代表性的特点是解题的关键.3、见解析.【分析】根据折线统计图的特点:能够清楚反映事物的变化情况,统计表的特点:可以将大量数据的分类结果清晰,一目了然的表达出来,由此进行求解即可.【详解】统计表和折线统计图都能反映出成绩的变化情况.相对而言,统计表反映的数据准确并且容易查找,但直观性不如统计图;统计图能直观地表示出变化情况,但从统计图中看出的数据往往不够准确,因此有的统计图会在相应的地方标上原始数据.在这个问题中,若想直观反映成绩变化,则选择折线统计图优势更明显;若想准确读出锻炼5星期后的成绩,则统计表更合适.【点睛】本题主要考查了统计图和统计表的选择,解题的关键在于能够熟练掌握二者的特点.4、总体包含热心观众、普通观众,其他人群等,若用热心观众来作为样本,不具备广泛性和代表性以及兼顾不同类型人群,往往会使得调查的结果比实际收视率高.【分析】根据总体包含的人群类型,用热心观众来作为样本,缺乏广泛性和代表性,兼顾不同类型人群即可得出结论.【详解】解:总体包含热心观众、普通观众,和其他人群,若用热心观众来作为样本,不具备广泛性和代表性,不能兼顾不同类型人群,用热心观众来作为调查的对象,用这样的方式得到的收视率不准确,往往会使得调查的结果比实际收视率高.【点睛】本题考查总体与样本,样本的选择要具有广泛性和代表性,兼顾不同类型人群是解题关键.5、(1)100;(2)25;(3)54.【分析】(1)根据4天的人数及百分比求出总人数即可;(2)先算出参加公益活动7天的人数,再用总人数减去其它天数的人数,求出参加公益活动为5天的人数,再用5天的人数除以总人数即可求出;(3)根据圆心角=360°×百分比计算即可.【详解】解:(1)本次随机调查的学生数是:30÷30%=100(名);故答案为:100;(2)7天的人数有:100×5%=5(名),5天的人数有:100﹣10﹣15﹣30﹣15﹣5=25(名),则扇形统计图中的a%=25100×100%=25%.即a=25;故答案为:25;(3)“参加公益活动为6天”的扇形,对应的圆心角为:360°×15100=54°;故答案为:54.【点睛】本题考查了条形统计图、扇形统计图等知识,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,扇形统计图直接反映部分占总体的百分比大小.。

七年级数学下册数据与统计图表期末复习卷浙教版

七年级数学下册数据与统计图表期末复习卷浙教版

14.空气质量指数简称AQI,如果AQI在0~50空 气质量类别为优,在51~100空气质量类别为良, 在101~150空气质量类别为轻度污染,按照某市 最近一段时间的AQI画出的频数分布直方图如图所 示.已知每天的AQI都是整数,那么空气质量类别
为优和良的天数占总天数的百分比为__8_0_____%.
7.某校八(1)班的全体同学最喜欢的球类运动 用如图所示的统计图来表示,下面说法正确的 是( D ) A.从图中可以直接看出 喜欢各种球类的具体人数 B.从图中可以直接看出全班的总人数
C.从图中可以直接看出全班同学初中三年来 喜欢各种球类的变化情况
D.从图中可以直接看出全班同学现在最喜欢 各种球类的人数的分布情况
根据以上信息解答下列问题: (1)参加调查的人数共有________人;在扇形图 中,表示“C”的扇形的圆心角为________度; (2)补全条形统计图,并计算扇形统计图中的m.
解:(1)参加调查的人数共有:69÷23%=300,在扇
形 图 中 , 表 示 “C” 的 扇 形 的 圆 心 角 为 :
25+6=106;
(2)全市 848 辆校车中环保不达标校车的百分比为
106 848
×100%=12.5%;
(3)全市需要进行维修的环保不达标校车维修费的总 和 为 500×42 + 1000×33 + 600×25 + 300×6 = 70800(元). (4)一次性维修全部不达标校车将会影响全市 80000 名学生乘校车上学的百分比是4080×001006 ×100%= 5.3%.
23.(12分)某软件科技公司20人负责研发与维 护游戏、网购、视频和送餐共4款软件.投入 市场后,游戏软件的利润占这4款软件总利润 的40%.如图是这4款软件研发与维护人数的扇 形统计图和利润的条形统计图.

七下第6章数据与统计图表6-1数据的收集与整理2新版浙教版

七下第6章数据与统计图表6-1数据的收集与整理2新版浙教版
你认为采用哪一种调查方法比较合适?
提炼概念
人们在研究某个自然现象或社会现象时,往往会遇到不方便、不 可能或不必要对所有的对象作调查的情况,于是从中抽取一部分对象 作调查分析,这就是抽样调查.
全面调查和抽样调查是两种重要的调查形式.
注意:抽样调查只是考察一部分对象,所以它具有调查的范围小、 节省时间、人力、物力的优点。缺点是不如全面调查得到的调查结 果精确,它得到的只是估计值.
试一试:要了解全国初中生的身高情况,丁丁同学设计了下面的调 查方案:①按东、西、南、北、中分片, ②每个区域各抽3所中学, ③对这15所中学的全部初中生1500人进行身高测量. 我们把所要考察的对象的全体叫做总体. (全国初中生的身高的全体 )
把组成总体的每一个考察对象叫做个体. (每一个初中生的身高)
练一练:指出下列调查哪些应作普查,哪些应作抽样调查: 1.日光灯管厂要检测一批灯管的寿命. 抽样 2.了解居民对废电池的处理情况. 抽样 3.了解现代大学生的主要娱乐方式. 抽样 4.防治某种突发性传染病期间,某校对学生测量体温. 普查 5.一锅水饺的味道. 抽样 6.旅客上飞机前的安全检查. 普查
抽样调查只调查了对象的一部分,必须要求所抽取的样本能够 代表总体,才能根据样本对总体作出推断,否则抽样调查的结果就 会偏离总体情况.
合理抽取样本要注意: ◆样本容量要适当;◆样本要具有代表性.
课堂练习
1. 要了解全校学生的课外作业负担情况,你认为以下抽样方法中比 较合理的是( D ) A.调查全体女生 B.调查全体男生 C.调查九年级全体学生 D.调查七、八、九年级各100名学生
典例精讲
例3 (1)电视台准备在某市调查一电视节目的收视率,需要对所有看电 视的人进行全面调查吗?对一所中学学生的调查结果能否作为 该节目的收视率? 解:电视台不可能对每个看电视的人进行全面调查. 对一所中学学生的调查结果不能作为该节目的收视率,因为 调查对象只有中学生,缺乏代表性.

(典型题)浙教版七年级下册数学第六章 数据与统计图表含答案

(典型题)浙教版七年级下册数学第六章 数据与统计图表含答案

浙教版七年级下册数学第六章数据与统计图表含答案一、单选题(共15题,共计45分)1、今年某市有30000名考生参加中考,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是()A.每位考生的数学成绩是个体B.30000名考生是总体C.这100名考生是总体的一个样本 D.1000名学生是样本容量2、为了了解我市城区某一天的气温变化情况,应选择()A.条形统计图B.折线统计图C.扇形统计图D.以上图形均可3、下图是某学校全体教职工年龄的频数分布直方图(统计中采用“上限不在内”的原则,如年龄为36岁统计在36≤x<38小组,而不在34≤x<36小组),根据图形提供的信息,下列说法中错误的是()A.该学校教职工总人数是50人B.年龄在40≤x<42小组的教职工人数占该学校总人数的20%C.教职工年龄的中位数一定落在40≤x<42这一组 D.教职工年龄的众数一定在38≤x<40这一组4、下列调查中,适合普查的事件是()A.调查华为手机的使用寿命B.调查市九年级学生的心理健康情况C.调查你班学生打网络游戏的情况D.调查中央电视台《中国舆论场》的节目收视率5、为节约用电,某市根据每户居民每月用电量分为三档收费.第一档电价:每月用电量低于240度,每度0.4883元;第二档电价:每月用电量为240~400度,每度0.5383元;第三档电价:每月用电量高于400度,每度0.7883元.小灿同学对该市有1000户居民的某小区居民月用电量(单位:度)进行了抽样调查,绘制了如图所示的统计图.下列说法不合理的是()A.本次抽样调查的样本容量为50B.该小区按第二档电价交费的居民有17户C.估计该小区按第一档电价交费的居民户数最多D.该小区按第三档电价交费的居民比例约为6%6、为了解某市参加中考的32000名学生的体质情况,抽查了其中1600名学生的体重进行统计分析.下面叙述正确的是()A.32000名学生是总体B.1600名学生的体重是总体的一个样本C.每名学生是总体的一个个体 D.以上调査是普查7、下列调查中,最适宜采用全面调查方式(普查)的是()A.对重庆市中学生每天学习所用时间的调查B.对全国中学生心理健康现状的调查C.对某班学生进行6月5日是“世界环境日”知晓情况的调查 D.对重庆市初中学生课外阅读量的调查8、某校为开展第二课堂,组织调查了本校300名学生各自最喜爱的一项体育活动,制成了如下扇形统计图,根据统计图判断下列说法,其中正确的一项是()A.在调查的学生中最喜爱篮球的人数是50人B.喜欢羽毛球在统计图中所对应的圆心角是144°C.其他所占的百分比是20%D.喜欢球类运动的占50%9、甲乙两家公司在去年1-8月份期间的赢利情况,统计图如图所示,下列结论不正确的是( )A.甲公司的赢利正在下跌B.乙公司的赢利在1-4月间上升C.在8月,两家公司获得相同的赢利D.乙公司在9月份的赢利定比甲的多10、在数字1001000100010000中,0出现的频率是( )A.0.75B.0.8C.0.5D.1211、为了解某校1500名学生的上学方式,随机抽取了300名学生进行调查,其中有150人乘车上学,50人步行,剩下的选择其他上学方式,该调查中的样本容量是( )A.1500B.300C.150D.5012、如图,是某中学七年级学生参加课外活动人数的扇形统计图,若参加舞蹈类的学生有42人,则参加球类活动的学生人数有( )A.145B.149C.147D.15113、嘉嘉将100个数据分成①~⑧组,如下表所示,则第⑤组的频率为( ) B.12 C. D.0.1214、下列调查中,适合用全面调查的是( )组号 ①② ③ ④ ⑤ ⑥ ⑦ ⑧ 频数 3 8 15 22 18 14 9A.调查某批次汽车的抗撞击能力B.对端午节期间市场上粽子质量情况的调查C.“神七”飞船发射前对重要零部件的检查D.鞋厂检测生产的鞋底能承受的弯折次数15、下列问题不适合用全面调查的是()A.旅客上飞机前的安检:B.调查春节联欢晚会的收视率:C.了解某班学生的身高情况:D.企业招聘,对应试人员进行面试.二、填空题(共10题,共计30分)16、调查神舟九号宇宙飞船各部件功能是否符合要求,这种调查适合用________ (填“普查”或“抽样调查”).17、一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球试验,将球搅匀后任意摸出一个球,记下颜色后放回、搅匀,通过多次重复试验,算得摸到红球的频率是,则袋中有________.18、某校九年级(1)班所有学生参加初中毕业生升学体育测试,根据测试评分标准,将他们的成绩进行统计后分为A、B、C、D四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)九年级(1)班参加体育测试的学生有________ 人;(2)将条形统计图补充完整________ ;(3)在扇形统计图中,等级B部分所占的百分比是________ ,等级C对应的圆心角的度数为________ ;(4)若该校九年级学生共有850人参加体育测试,估计达到A级和B级的学生共有________ 人.19、某同学为了解某火车站今年“春运”期间每天乘车人数,随机抽查了其中5天的乘车人数.所抽查的这5天中每天的乘车人数是这个问题的________.20、在开展“国学诵读”活动中,某校为了解全校1300名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1300名学生一周的课外阅读时间不少于7小时的人数是________.21、某校为了举办“庆祝建党90周年”的活动,调查了本校所有学生,调查的结果如图所示,根据图中给出的信息这所学校一共有________人.22、小明根据去年4﹣10月本班同学去电影院看电影的人数,绘制了如图所示的折线统计图,图中统计数据的中位数是________ 人.23、聪明的小明借助谐音用阿拉伯数字戏说爸爸舅舅喝酒:81979,87629,97829,8806,9905,98819,54949(大意是:爸邀舅吃酒,爸吃六两酒,舅吃八两酒,爸爸动怒,舅舅动武,舅把爸衣揪,误事就是酒),请问这组数据中,数字9出现的频率是________24、在扇形统计图中,其中一个扇形的圆心角是216°,则这部分扇形所表示的部分占总体的百分数是________.25、春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为________.三、解答题(共6题,共计25分)26、如图所示,把一个圆分成四个扇形甲、乙、丙、丁,请求出这四个扇形圆心角的度数.27、为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看3次的人数没有标出).根据上述信息,解答下列各题:(1)该班级女生人数是?女生收看“两会”新闻次数的中位数是?(2)对于某个群体,我们把一周内收看某热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低5%,试求该班级男生人数;(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).统计量平均数(次)中位数(次)众数(次)方差…该班级男生3 3 4 2 …根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.28、某中学举行了一次“奥运会”知识竞赛,赛后抽取部分参赛同学的成绩进行整理,并制作成图表如下:分数段频数频率第一组:60≤x<70 30 0.15第二组:70≤x<80 m 0.45第三组:80≤x<90 60 n第四组:90≤x<100 20 0.1请根据以图表提供的信息,解答下列问题:(1)写出表格中m和n所表示的数:m等于多少,n等于多少;(2)补全频数分布直方图;(3)抽取部分参赛同学的成绩的中位数落在第几组;(4)如果比赛成绩80分以上(含80分)可以获得奖励,那么获奖率是多少?29、中秋节是我国民间的一个传统节日,在中秋节吃月饼就成为了千古流传的习俗.在今年中秋节前夕,我校某班学生在班主任的带领下组织了一次制作“爱心月饼”活动,每个学生将自己制作的月饼全部送给敬老院的老人们.现统计全班学生制作月饼的个数,将制作月饼数量相同的学生分为一组,全班学生可分为A,B,C,D四个组,各组每人制作的月饼个数分别为4、5、6、7.根据图中提供的信息,请补全两个不完整的统计图并求出该班学生制作月饼个数的平均数.30、两名同学在调查时使用下面的两种提问方式,(1)难道你不认为科幻片比武打片更有意思吗?(2)你更喜欢哪一类电影,科幻片还是武打片?你认为哪个更好些?原因是什么?参考答案一、单选题(共15题,共计45分)1、A2、B3、D4、C5、B6、B7、C8、B10、A11、B12、C13、C14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共6题,共计25分)26、27、29、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期末复习六数据与统计图表复习目标必备知识与防范点一、必备知识:1.对所有的对象作调查,这种调查叫做.从考察对象中抽取一部分作调查叫做.2.在统计中,我们将要考察的对象的全体叫做.把组成总体的每一个考察对象叫做,从总体中抽取的一部分个体的集体叫做这个总体的一个,叫做样本的容量.3.常用的统计图有、、和.4.将数据分组后,每一组的后一个边界值与前一个边界值的差叫做.将数据分组后,落在各小组内的数据个数叫做.若数据按问题中事件类别分组,则频数就是各类事件发生的.反映数据分布的统计表叫做.5.每一组与的比叫做这一组数据(或事件)的频率.二、防范点:1.抽样调查选取样本时,样本中的个体要有代表性,样本容量要合适.2.正确理解总体、个体、样本、样本容量等概念,不要混淆,并注意样本容量无单位.3.制作统计表、统计图时不要遗漏标题.4.制作频数表、频数直方图时首先要确保频数数据的准确,其次注意频率一般用小数表示,不用百分数.例题精析考点一数据的收集与整理例1 (1)中考结束后,小明想了解今年杭州各普高的录取分数线,他需要通过什么方法获得这些数据?()A.测量B.查阅文献资料、互联网C.调查D.直接观察(2)下列调查方式,你认为最合适的是()A.日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式B.了解A市每天的流动人口数,采用抽样调查方式C.了解A市居民日平均用水量,采用全面调查方式D.旅客上飞机前的安检,采用抽样调查方式(3)为了了解B市2017年中考数学学科各分数段成绩分布情况,从中抽取300名考生数学成绩进行统计分析.在这个问题中,样本是指()A. 300B.被抽取的300名学生C.被抽取的300名学生的中考数学成绩D. B市2017年中考数学成绩反思:数据的收集可以采用直接或间接途径,直接途径可以用到观察、测量、调查或实验等手段,间接途径主要通过查阅文献资料、使用互联网等.调查又分为全面调查和抽样调查,当不方便、不可能或不必要对所有的对象进行调查时,往往选用抽样调查.抽样调查过程中的样本抽取要具有代表性,样本容量要适合.同时也要区分总体、样本、个体、样本容量四个概念.考点二条形、折线、扇形统计图例2 (1)要反映某地某月气温的变化情况最适合采用()A.条形统计图B.扇形统计图C.折线统计图D.频数直方图(2)如图是七年级(1)班参加课外兴趣小组人数的扇形统计图,则表示唱歌兴趣小组人数的扇形的圆心角度数是()A. 36° B. 72° C. 108° D. 180°(3)如图是某电脑店今年1~5月份电脑销售额统计图.根据图中信息,可以判断相邻两个月电脑销售额变化最大的是()A. 1月至2月 B. 2月至3月 C. 3月至4月 D. 4月至5月(4)为了解学生课外阅读的喜好,某校从七年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜好的书籍,如果没有喜欢的书籍,则作“其他”类统计.图1与图2是整理数据后绘制的两幅不完整的统计图.以下结论不正确的是()A.由这两个统计图可知喜欢“科普”的学生有90人B.若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普”的学生约有360名C.由这两个统计图不能确定喜欢“小说”的人数D.在扇形统计图中,“漫画”所在扇形的圆心角为72°(5)中华文明,源远流长;中华诗词,寓意深广. 为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分. 为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列统计图表:抽取的200名学生海选成绩分组表组别海选成绩xA组50≤x<60B组60≤x<70C组70≤x<80D组80≤x<90E组90≤x<100请根据所给信息,解答下列问题:①请把图1中的条形统计图补充完整;②在图2的扇形统计图中,记表示B组人数所占的百分比为a%,则a的值为,表示C组扇形的圆心角θ的度数为度;③规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?反思:三种统计图各有各的长处,条形统计图反映数据的具体数目,折线统计图反映数据的变化趋势,扇形统计图则反映个体占总体的百分比.解决实际问题过程中,有时要综合分析两个图形所提供的信息,而不要只考虑一个图形就作出了判断.考点三频数、频率分布表及频数直方图例3 (1)已知一个样本如下:63,65,67,69,66,64,66,64,65,68,对这些数据进行分组,其中64.5~66.5这一组的频数是()A. 0.4 B. 0.5 C. 4 D. 5(2)一个样本容量为80的样本,最大值是141,最小值是50,取组距为10,则可以分成()A. 10组 B. 9组 C. 8组D. 7组(3)一组数共含有40个,把它分成5组,若第2,3,4组的频数之和为28,第1,4,5组的频率之和为0.6,则第4组的频数是,频率是.(4)将一个有80个数据的一组数分成四组,绘制频数直方图,已知各小长方形的高的比为2∶4∶3∶1,则第一个小组的频率为,第二个小组的频数为.(5)某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费. 为更好地决策,自来水公司随机抽取了部分用户的用水量数据,并绘制了如下不完整的统计图(每组数据包括右端点但不包括左端点). 请你根据统计图解答下列问题:①此次抽样调查的样本容量是;②补全频数分布直方图,求扇形图中“15吨-20吨”部分的圆心角的度数;③如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?反思:频数是数据分组后落在各小组内的数据个数,于是所有频数之和就等于数据的总数. 而频率是每一组数据频数与总数的比,频率是个比值,是一个不带单位的数值,一般用小数表示. 频数和频率都是反映总体对象在实验过程中出现的频繁程度的量. 一般我们都用样本的频数分布情况来估计总体的频数分布情况,从而解决实际问题.校内练习1. 要了解某地区中学生的视力和用眼卫生情况,应采用调查(选填“全面”或“抽样”).2. 某校在开展庆“六·一”活动前夕,从该校七年级共400名学生中,随机抽取40名学生进行“你最喜欢的活动”问卷调查,调查结果如下表:你最喜欢的活动猜谜唱歌投篮跳绳其他人数 6 8 16 8 2请你估计该校七年级学生中,最喜欢“投篮”这项活动的约有人.3. 为了解七年级学生上学期参加社会实践活动的情况,随机抽查A市七年级部分学生参加社会实践活动的天数,并根据抽查结果制作了如下不完整的频数分布表和条形统计图.A市七年级部分学生参加社会实践活动天数的频数分布表天数频数频率3 20 0.104 30 0.155 60 0.306 a 0.257 40 0.20A市七年级部分学生参加社会实践活动天数的条形统计图根据以上信息,解答下列问题:(1)求出频数分布表中a的值,并补全条形统计图;(2)A市有七年级学生20000人,请你估计该市七年级学生参加社会实践活动不少于5天的人数.4. 为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).某校九年级50名学生跳高测试成绩的频数表组别(m)频数1.09~1.19 81.19~1.29 121.29~1.39 a1.39~1.49 10(1)求a的值,并把频数直方图补充完整;(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.5. 如图所示,图1表示的是某教育网站一周内连续7天日访问总量的情况,图2表示的是学生日访问量占访问总量的百分比情况,观察图1、2,解答下列问题:(1)若这7天的日访问总量一共约有10万人次,求星期三的日访问总量;(2)求星期日学生日访问总量;(3)请写出一条从统计图中得到的信息.参考答案期末复习六数据与统计图表【必备知识与防范点】1. 全面调查抽样调查2. 总体个体样本样本中个体的数目3. 条形统计图折线统计图扇形统计图频数直方图4. 组距频数次数频数表5. 频数 样本容量 【例题精析】例1 (1)B (2)B (3)C例2 (1)C (2)B (3)C (4)C (5)①补全统计图如下:②15 72 ③20070×2000=700人 答:该校参加这次海选比赛中成绩“优等”的约有700人.例3 (1)C (2)A (3)12 0.3 (4)0.2 32(5)①10÷10%=100. ②100-10-38-24-8=20户; 补全图如下:360°×1008243810100----=72°.答:扇形图中“15吨—20吨”部分的圆心角的度数为72°. ③6×100382010++=4.08(万)答:该地区6万用户中约有4.08万用户的用水全部享受基本价格. 【校内练习】 1. 抽样 2. 1603. (1)a=50,补全略,条形高度为50.(2)20000×200405060++=15000人答:估计该市七年级学生参加社会实践活动不少于5天的人数有15000人. 4. (1)a=50-8-12-10=20,补全图如图:(2)500×501020 =300(人). 5. (1)0.5万人次 (2)3×30%=0.9万人次(3)答案不唯一,如学生在周六、周日的访问量占总量的百分比较高.。

相关文档
最新文档