第2课时实数的运算-完整PPT课件
合集下载
八年级数学上册 3.3 实数 第2课时 实数的运算和大小比较课件 (新版)湘教版.pptx
(b+c)a = ba + ca (乘法对于加法的分配律) ;
(9)实数的减法运算规定为 a -b = a + (-b)
;
(10)实数的除法运算(除数b≠ a ÷ b = a·
0)1,规定为 b
;
(11)实数有一条重要性质:如果a≠0,b≠0,那么
ab
≠
0.
4
小提示
实数也可以比较大小:对于实数a,b,如果a-b>0, 则a大于b(或者b小于a),记作a>b(或b<a);
3.
9
2 5(精确到小数点6, 精确到小数点后面第二位得:3.16.
10
用正方形比较
不用计算器,估计 5 与2哪个大.
解: 5 ,2 分别是5,4的正方形的边长. 容易说明,面积大的正方形,它的边长也大. 因此, 5 > 2 .
5
2
11
小提示
在实数运算中,如果遇到无理数,并且要 求出结果的近似值时,可按要求的精确度用相 应的近似有限小数代替无理数,再进行计算.
12
练习
计算(精确到小数点后面第二位).
(1) 2 + 3; (2) 5 -1 ; (3) 5 .
≈1.414+1.732≈3.15.
≈2.236-1≈1.24. ≈2.236×3.14≈7.02.
同样地,如果a-b<0,则a<b.还可以得出:正实数大 于一切负实数;两个负实数,绝对值大的数反而小.
从而数轴上右边的点表示的实数比左边的点表示的 实数大.
负实数
原点
正实数
0
<
5
结论
每个正实数有且只有两个平方根,它们互 为相反数;
实数的运算PPT教学课件
回去我也做一个玩玩
再
见
你还能举出哪些平面图形和立体图形 的例子呢?
平面图形与立体图形的根本区别在于图形所表示
的对象是否在同一平面内。
如图,下列各几何图形哪些只能是平面图形?哪 画立体
些可以看作立体图形?
几何时,
我们常
把被遮
挡的轮
廓线画
(1)
(2)
(3)
成虚线。
(4)
(5)
图中你熟悉的物体类似于哪些几 何图形呢?
今天,在世界上几乎没有人不知道七巧 板和七巧图,它在国外被 称为“唐图” (Tangram),意思是中国图(不是唐代发 明的图)。
你能举出一些在日常生活中与上述几何体类似 的物体吗?
看看我们周围的世界,你会 找到许许多多的图形, 它们美 化了我们生活的空间. 下面我 们一起来观看一组美丽的图片, 请从中找出你熟悉的图形来。
观察下面的物体或情景,你看到了哪些面? 哪些面是平的?哪些面是曲的?
平面
(是无限伸展的)
曲面
一个长方体(如图)
(1)它有多少个面?多少条棱(线段)? 多少个顶点 ?
(2)从它的表面为几何图形 你能把下列几何图形分成两类吗?
(1)
(2)
(3)
(4)
(5)
(6)
立体图形:各个部分不在同一个平面内. (1), (6) 平面图形:各个部分都在同一个平面内. (2),(3),(4),(5)
七巧板是我们祖先的一项卓越创造,在19 世纪曾极为流行。七巧板虽然只由7块板 组成,但用它们可以拼出人、动物、交通 工具等各种图形 。
(1)从左图中,你能观察到哪 些你所熟悉的图形?
(2)你能用七巧板拼出下图吗?
(3)我们来看看用七巧板拼成 的各种图案
七年级数学下册:第六章实数6.3实数第2课时实数的运算教学课件(新版新人教版)
18、只要愿意学习,就一定能够学会。——列宁 19、如果学生在学校里学习的结果是使自己什么也不会创造,那他的一生永远是模仿和抄袭。——列夫·托尔斯泰
20、对所学知识内容的兴趣可能成为学习动机。——赞科夫 21、游手好闲地学习,并不比学习游手好闲好。——约翰·贝勒斯 22、读史使人明智,读诗使人灵秀,数学使人周密,自然哲学使人精邃,伦理学使人庄重,逻辑学使人善辩。——培根 23、我们在我们的劳动过程中学习思考,劳动的结果,我们认识了世界的奥妙,于是我们就真正来改变生活了。——高尔基 24、我们要振作精神,下苦功学习。下苦功,三个字,一个叫下,一个叫苦,一个叫功,一定要振作精神,下苦功。——毛泽东 25、我学习了一生,现在我还在学习,而将来,只要我还有精力,我还要学习下去。——别林斯基、学习外语并不难,学习外语就像交朋友一样,朋友是越交越熟的,天天见面,朋友之间就亲密无间了。——高士其 2、对世界上的一切学问与知识的掌握也并非难事,只要持之以恒地学习,努力掌握规律,达到熟悉的境地,就能融会贯通,运用自如了。——高士其 3、学和行本来是有联系着的,学了必须要想,想通了就要行,要在行的当中才能看出自己是否真正学到了手。否则读书虽多,只是成为一座死书库。——谢觉哉、你的假装努力,欺骗的只有你自己,永远不要用战术上的勤奋,来掩饰战略上的懒惰。 11、时间只是过客,自己才是主人,人生的路无需苛求,只要你迈步,路就在你的脚下延伸,只要你扬帆,便会有八面来风,启程了,人的生命才真正开始。 12、不管做什么都不要急于回报,因为播种和收获不在同一个季节,中间隔着的一段时间,我们叫它为坚持。 13、你想过普通的生活,就会遇到普通的挫折。你想过最好的生活,就一定会遇上最强的伤害。这个世界很公平,想要最好,就一定会给你最痛。
D. 8
11.计算: (1)3 3-5 3; (2)1- 2+ 3- 2; (3)2 3+3 2-5 3-3 2; (4)| 3-2|+| 3-1|.
20、对所学知识内容的兴趣可能成为学习动机。——赞科夫 21、游手好闲地学习,并不比学习游手好闲好。——约翰·贝勒斯 22、读史使人明智,读诗使人灵秀,数学使人周密,自然哲学使人精邃,伦理学使人庄重,逻辑学使人善辩。——培根 23、我们在我们的劳动过程中学习思考,劳动的结果,我们认识了世界的奥妙,于是我们就真正来改变生活了。——高尔基 24、我们要振作精神,下苦功学习。下苦功,三个字,一个叫下,一个叫苦,一个叫功,一定要振作精神,下苦功。——毛泽东 25、我学习了一生,现在我还在学习,而将来,只要我还有精力,我还要学习下去。——别林斯基、学习外语并不难,学习外语就像交朋友一样,朋友是越交越熟的,天天见面,朋友之间就亲密无间了。——高士其 2、对世界上的一切学问与知识的掌握也并非难事,只要持之以恒地学习,努力掌握规律,达到熟悉的境地,就能融会贯通,运用自如了。——高士其 3、学和行本来是有联系着的,学了必须要想,想通了就要行,要在行的当中才能看出自己是否真正学到了手。否则读书虽多,只是成为一座死书库。——谢觉哉、你的假装努力,欺骗的只有你自己,永远不要用战术上的勤奋,来掩饰战略上的懒惰。 11、时间只是过客,自己才是主人,人生的路无需苛求,只要你迈步,路就在你的脚下延伸,只要你扬帆,便会有八面来风,启程了,人的生命才真正开始。 12、不管做什么都不要急于回报,因为播种和收获不在同一个季节,中间隔着的一段时间,我们叫它为坚持。 13、你想过普通的生活,就会遇到普通的挫折。你想过最好的生活,就一定会遇上最强的伤害。这个世界很公平,想要最好,就一定会给你最痛。
D. 8
11.计算: (1)3 3-5 3; (2)1- 2+ 3- 2; (3)2 3+3 2-5 3-3 2; (4)| 3-2|+| 3-1|.
14.3 实数 - 第2课时课件(共16张PPT)
14.3 实数第2课时
第十四章 实数
学习目标
1.认识无理数存在的普遍性.2.知道实数与数轴上的点一一对应.3.理解实数绝对值、相反数、倒数的意义.
学习重难点
理解实数与数轴上的点一一对应.
难点
重点
能在数轴上找到无理数对应的点.
复习回顾
1.什么是相反数?2.什么是绝对值?3.什么是倒数?
实数
参照有理数的有关概念,谈谈实数的下列概念:1.实数的绝对值.2.互为相反数的实数.3.一个实数的倒数.
谈一谈
一个正实数的绝对值是它本身.一个负实数的绝对值是它的相反数.0的绝对值是0.
实数
有理数
无理数
实数
正实数
负实数
0
实数分类:
正有理数
负有理数
0
正无理数
负无理数
随堂练习
1.在数轴上,到原点距离为 的点所表示的数是 .
有理数
无理数
绝对值相等,符号不同的两数叫做相反数,其中一个是另一个的相反数.
数轴上表示数a的点到原点的距离叫做数a的绝对值,用︱a︱表示.
如果两个数的积是1,则这两个数互为倒数 .
问题引入
我们知道,任意一个有理数都可以用数轴上的一个点来表示.那么,无理下列各数填入相应横线上:正实数: .负实数: .有理数: .无理数: .
拓展提升
归纳小结
实数性质
实数与数轴上的点一一对应
思考二:
事实上,每个有理数或无理数都可以用数轴上的点来表示;反过来,数轴上的点表示的数是有理数或无理数.
实数和数轴上的点是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.
任意一个实数都有绝对值、相反数和倒数(0没有倒数),它们和有理数的绝对值、相反数和倒数的意义是一样的.
第十四章 实数
学习目标
1.认识无理数存在的普遍性.2.知道实数与数轴上的点一一对应.3.理解实数绝对值、相反数、倒数的意义.
学习重难点
理解实数与数轴上的点一一对应.
难点
重点
能在数轴上找到无理数对应的点.
复习回顾
1.什么是相反数?2.什么是绝对值?3.什么是倒数?
实数
参照有理数的有关概念,谈谈实数的下列概念:1.实数的绝对值.2.互为相反数的实数.3.一个实数的倒数.
谈一谈
一个正实数的绝对值是它本身.一个负实数的绝对值是它的相反数.0的绝对值是0.
实数
有理数
无理数
实数
正实数
负实数
0
实数分类:
正有理数
负有理数
0
正无理数
负无理数
随堂练习
1.在数轴上,到原点距离为 的点所表示的数是 .
有理数
无理数
绝对值相等,符号不同的两数叫做相反数,其中一个是另一个的相反数.
数轴上表示数a的点到原点的距离叫做数a的绝对值,用︱a︱表示.
如果两个数的积是1,则这两个数互为倒数 .
问题引入
我们知道,任意一个有理数都可以用数轴上的一个点来表示.那么,无理下列各数填入相应横线上:正实数: .负实数: .有理数: .无理数: .
拓展提升
归纳小结
实数性质
实数与数轴上的点一一对应
思考二:
事实上,每个有理数或无理数都可以用数轴上的点来表示;反过来,数轴上的点表示的数是有理数或无理数.
实数和数轴上的点是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.
任意一个实数都有绝对值、相反数和倒数(0没有倒数),它们和有理数的绝对值、相反数和倒数的意义是一样的.
实数的运算(41张PPT)数学
13
14
15
16
17
答案
解析
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
答案
解析
解析 由题意知b2-10=0,2a+b2=0,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
2b
解析 由数轴知b<0<a,且|b|>|a|,则a-b>0,所以原式=a-(a-b)+b=a-a+b+b=2b.故答案为2b.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
②原式=|-4|=4,符合题意;③原式=-3,不符合题意;④原式=-0.8,不符合题意;⑤原式=3,符合题意;⑥原式=3,不符合题意.故选C.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
5.以下是小明的计算过程,请你仔细观察,错误的步骤是( )
解析 若围成长方形,设长为20厘米,则宽为10厘米,长方形面积为200平方厘米;若围成正方形,正方形边长为60÷4=15(厘米),面积为225平方厘米;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
14
15
16
17
答案
解析
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
答案
解析
解析 由题意知b2-10=0,2a+b2=0,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
2b
解析 由数轴知b<0<a,且|b|>|a|,则a-b>0,所以原式=a-(a-b)+b=a-a+b+b=2b.故答案为2b.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
②原式=|-4|=4,符合题意;③原式=-3,不符合题意;④原式=-0.8,不符合题意;⑤原式=3,符合题意;⑥原式=3,不符合题意.故选C.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
5.以下是小明的计算过程,请你仔细观察,错误的步骤是( )
解析 若围成长方形,设长为20厘米,则宽为10厘米,长方形面积为200平方厘米;若围成正方形,正方形边长为60÷4=15(厘米),面积为225平方厘米;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
北师大版八年级上册数学解读课件:第2章 实数(共47张PPT)
二次根式乘法运算的最后结果必须是最简二次根式或有理式.
知识点 二次根式的除法法则
某餐桌的桌面为长方形,其面积为 m2,长为
m,求宽的
运算过程:
,就是利用了二次根式的除法法则 .
知识点 二次根式的除法法则
二次根式除法运算的最后结果中不能存在以下形式:根号中不能 含有分母,分母中不能含有根号,都要简化成最简二次根式.
这些条件就是算术平方根的概念及性质.
知识点 算术平方根
只有非负数才有算术平方根,负数没有算术平方根.
知识点 平方根
平方根节是数学爱好者的节日,这一天的月份和日期的数 字正好是当年年份最后两位数字的算术平方根,例如2009年的 3月3日,2016年的4月4日.
知识点 平方根
± √a 是求非负数的平方根, √a 是求非负数的算术平
式的形式呈现的.
知识点 最简二次根式
不是同类二次根式的二次根式不能进行合并.
知识点 二次根式的乘法法则
某一品牌手机的屏幕为长方形,其长、宽分别为 √80 cm, √45 cm,那么其面积为 √80 ×√45 = √80x45 cm2,运算过程
就利用了二次根式的乘法法则.
知识点 二次根式的乘法法则
知识点 二次根式的加减法
老师所使用的三角板的两条直角边长分别为 √8 和 √18 ,斜边 长为 √26,如果想求出两条直角边与斜边的长度之差,就要用到二次
根式的加减法运算.
知识点 二次根式的加减法
被开方数不相同的二次根式不能进行合并.
知识点 二次根式的混合运算
一个长方形游泳池的长为(
)m,宽为(
知识点 开立方
4阶魔方,又称“魔方的复仇”,由四层完全相同的64个小立方 体组成,求体积为64的4阶魔方边长的过程就是开立方运算.
知识点 二次根式的除法法则
某餐桌的桌面为长方形,其面积为 m2,长为
m,求宽的
运算过程:
,就是利用了二次根式的除法法则 .
知识点 二次根式的除法法则
二次根式除法运算的最后结果中不能存在以下形式:根号中不能 含有分母,分母中不能含有根号,都要简化成最简二次根式.
这些条件就是算术平方根的概念及性质.
知识点 算术平方根
只有非负数才有算术平方根,负数没有算术平方根.
知识点 平方根
平方根节是数学爱好者的节日,这一天的月份和日期的数 字正好是当年年份最后两位数字的算术平方根,例如2009年的 3月3日,2016年的4月4日.
知识点 平方根
± √a 是求非负数的平方根, √a 是求非负数的算术平
式的形式呈现的.
知识点 最简二次根式
不是同类二次根式的二次根式不能进行合并.
知识点 二次根式的乘法法则
某一品牌手机的屏幕为长方形,其长、宽分别为 √80 cm, √45 cm,那么其面积为 √80 ×√45 = √80x45 cm2,运算过程
就利用了二次根式的乘法法则.
知识点 二次根式的乘法法则
知识点 二次根式的加减法
老师所使用的三角板的两条直角边长分别为 √8 和 √18 ,斜边 长为 √26,如果想求出两条直角边与斜边的长度之差,就要用到二次
根式的加减法运算.
知识点 二次根式的加减法
被开方数不相同的二次根式不能进行合并.
知识点 二次根式的混合运算
一个长方形游泳池的长为(
)m,宽为(
知识点 开立方
4阶魔方,又称“魔方的复仇”,由四层完全相同的64个小立方 体组成,求体积为64的4阶魔方边长的过程就是开立方运算.
第二课时实数的性质及运算-七年级数学下册同步精品课件(人教版)
1
A.3与
3
B.2与(-2)2
3
C. ( − 1)2与 −1
D.5与/-5/
课堂练习
3.判断:
(1)
−=5
(× )
的绝对值是 −
(
×
)
(3) − 的相反数是
(
)
(2)
课堂练习
4.下列各组数中互为相反数的一组是( C )
A.3
与
C.
(−)
B.2与(-2)2
(2)指出 5 , 1 3 3 分别是什么数的相反数;
(3)求 −的绝对值
(4)已知一个数的绝对值是 3 ,求这个数.
解: (1)因为 ( 6) 6, (π 3.14) 3.14 π ,
所以 6, π 3.14 的相反数分别为 6, 3.14 π ;
(2)因为 ( 5) 5, ( 3 3 1) 1 3 3 ,
是
巩固练习
3.- 是 的相反数; - 的相反数
.
4.| -3|- |2- |的值是( C )
A.5
B.-1
C.5-2
-
D.2 -5
新知探究
实数的运算
ห้องสมุดไป่ตู้
判断下列等式是否成立.如果成立,这些等式用了什么运算律?这些运
算律在实数范围内能使用吗?
加法交换律
3 + 2= 2+ 3
乘法交换律
巩固练习
5.计算(-
)-
(-
【解析】原式=
)+
(-
(-
A.3与
3
B.2与(-2)2
3
C. ( − 1)2与 −1
D.5与/-5/
课堂练习
3.判断:
(1)
−=5
(× )
的绝对值是 −
(
×
)
(3) − 的相反数是
(
)
(2)
课堂练习
4.下列各组数中互为相反数的一组是( C )
A.3
与
C.
(−)
B.2与(-2)2
(2)指出 5 , 1 3 3 分别是什么数的相反数;
(3)求 −的绝对值
(4)已知一个数的绝对值是 3 ,求这个数.
解: (1)因为 ( 6) 6, (π 3.14) 3.14 π ,
所以 6, π 3.14 的相反数分别为 6, 3.14 π ;
(2)因为 ( 5) 5, ( 3 3 1) 1 3 3 ,
是
巩固练习
3.- 是 的相反数; - 的相反数
.
4.| -3|- |2- |的值是( C )
A.5
B.-1
C.5-2
-
D.2 -5
新知探究
实数的运算
ห้องสมุดไป่ตู้
判断下列等式是否成立.如果成立,这些等式用了什么运算律?这些运
算律在实数范围内能使用吗?
加法交换律
3 + 2= 2+ 3
乘法交换律
巩固练习
5.计算(-
)-
(-
【解析】原式=
)+
(-
(-
实数的运算PPT课件
加 -法 14-结13= 合③ 律: _24_② _+___36_(_=a__+__1__b_,)_+__c_=__a_+__(_b_+__c_)_,__如:34+56 乘法交换律:④_a_b_=__b_a__,
错 防 范
课 时 跟
乘法结合律:⑤_(_a_b_)·_c_=__a_·_(b_c_),
踪 检
课
零指数、负整数指数幂
对
前
接
必
中
读
1.若 a≠0,则 a0=○25 _1_;如:若(x-1)01=1,则 x○26 __≠_1. 考
网 络 构
2.若 a≠0,n 为正整数,则 a-n=○27 __a_n_;如:(-2)-2 1
易 错 防
建
=○28 _4__.
范
考
名师助学
点
课 时
梳 理
1.理解在 a-p=a1p,a0=1 中 a 为什么不等于 0;
网
易
络 构
右依次进行.
错 防
建
3.有理数的运算法则
范
考 点 梳 理
有理数加法、乘法、除法的运算法则可归纳为 下表:
课 时 跟 踪
检
测
上页 下页 返回
中考步步高
课 前 必 读
同号
异号
运算
符号 绝对值 符号 绝对值
与0的运算
对 接 中 考
网 络 构 建
加法 不变
相加
与绝对 值大的
相同
相减(大 减小)
0+a=⑫_a_
分配律:⑥_a_(_b_+__c_)_=__a_b_+__a_c__,如(-113)×6=
测
⑦_-__8_.
上页 下页 返回
中考数学专题复习课件(第2讲_实数的运算及大小比较)
D )
4.-23×(-2)2+2 的结果是( B ) A.18 B.-30 C.0
D.34
5.下列计算正确的是(
B
)
3 A. -27 =3 B.(π-3.14)0= 1 1- C.( ) 1=-2 D. 16 =± 4 2
目录 首页 上一页 下一页 末页
3 1- 6.设 a=20,b=(-3)2,c= -9,d=( ) 1,则 a、b、c、d 按由小到大的顺序排列正 2 确的是( A ) A.c<a<d< b B.b<d<a<c C.a<c<d<b D.b<c<a<d
)
(4)(2010· 毕节)若|m-3|+(n+2)2=0,则 m+2n 的值为( ) A.-4 B.-1 C.0 D.4 【点拨】本组题主要考查实数的简单运算及大小比较.(1)题画出数轴描出各点,最右边 1 的点表示的数即为最大的数;(2)题 A 选项结果为 1,C 选项结果为 ,D 选项结果为 3;(3) 3 题由图可知 a<0,b>0 且|a|>|b|,故 D 选项正确;(4)题因为 |m- 3|≥0,且(n+2)2≥0,又因为 |m-3|+(n+2) 2=0,所以 m-3= 0 且 n+2= 0.所以 m=3,n=- 2,所以 m+2n=3+2×(- 2)=-1.
下一页
末页
1.下列各数中,最大的数是( A.-1 B.0 C.1 D. 2
D )
2 2.如果□×(- )=1,则“□”内应填的实数是( 3 3 2 2 3 A. B. C.- D .- 2 3 3 2
3.下列各式,运算结果为负数的是( D A.-(-2)-(-3) B.(-2)×(-3) - - C.(-2) 2 D.(- 3) 3 )
【解答】(1)原式= 1-3+2- 1=- 1. 2 (2)原式=1+(- 3)-(2- 2)-2× 2 =1-3-2+ 2- 2=-4. (3)原式=3-1+ 3 2-4 2=2- 2. (4)原式=3+(- 2)- 2× 2 +1=3-2-1+1=1. 2
2015年广西中考数学总复习课件第2课时 实数的运算(共28张PPT)
第2课时
实数的运算
┃中考考点清单┃ 考点 实数的运算
1 1.零指数幂:a0=________(a≠0).如 ( 3-π )0=1. 1 -p 2.负整数指数幂:a =________(a≠0, p 为正整数).如 p a 1 -1 2015 = . 2015
3.(-1) =1(n 为偶数),如(-1)
1 -1 9- +(2- 2
2)0-2cos60°.
答案:1
第2课时
实数的运算
8.[2014²钦州] 计算:(-2) +(-3)³2- 9.
2
答案:-5
9.[2014²南宁] 计算:(-1) -4sin45°+|-3|+ 8.
2
答案:4
3 10.[2013²玉林] 计算: 8+2cos60°-(π -2-1)0.
3.设 26=a,则下列结论正确的是( B )
A.4.5<a<5.0 B.5.0<a<5.5 C.5.5<a<6.0 D.6.0<a<6.5
第2课时
实数的运算
2 4.若 x+2=2,则(x+2) 的平方根是( C )
A.16 B.±16 C.±4 D.±2
5.面积为 11 的正方形的边长为 x,则 x 的取值范围是( B )
B.0
C.-2
D.2
第2课时
实数的运算
4.下列各式中正确的是( A )
A. 16=±4 B. 64=4 C. -9=3 D.
5.下列计算正确的是(
3
1 1 25 =5 9 3
A )
A.31=0 B.-|-3|=-3 C. (-3)2=-3 D. 9=±3
1 6.已知 0<x<1,那么在 x, , x,x2 中最大的数是( C ) x
实数的运算
┃中考考点清单┃ 考点 实数的运算
1 1.零指数幂:a0=________(a≠0).如 ( 3-π )0=1. 1 -p 2.负整数指数幂:a =________(a≠0, p 为正整数).如 p a 1 -1 2015 = . 2015
3.(-1) =1(n 为偶数),如(-1)
1 -1 9- +(2- 2
2)0-2cos60°.
答案:1
第2课时
实数的运算
8.[2014²钦州] 计算:(-2) +(-3)³2- 9.
2
答案:-5
9.[2014²南宁] 计算:(-1) -4sin45°+|-3|+ 8.
2
答案:4
3 10.[2013²玉林] 计算: 8+2cos60°-(π -2-1)0.
3.设 26=a,则下列结论正确的是( B )
A.4.5<a<5.0 B.5.0<a<5.5 C.5.5<a<6.0 D.6.0<a<6.5
第2课时
实数的运算
2 4.若 x+2=2,则(x+2) 的平方根是( C )
A.16 B.±16 C.±4 D.±2
5.面积为 11 的正方形的边长为 x,则 x 的取值范围是( B )
B.0
C.-2
D.2
第2课时
实数的运算
4.下列各式中正确的是( A )
A. 16=±4 B. 64=4 C. -9=3 D.
5.下列计算正确的是(
3
1 1 25 =5 9 3
A )
A.31=0 B.-|-3|=-3 C. (-3)2=-3 D. 9=±3
1 6.已知 0<x<1,那么在 x, , x,x2 中最大的数是( C ) x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.3 实数
第2课时 实数的运算
有理数关于相反数和绝对值的意义是什么?
你能解答下列问题吗?
(1) 2 的相反数是 ,
π 的相反数是 ,
0 的相反数是
;(2) 2 =Fra bibliotek,-π =
,
0=
.
结合有理数相反数和绝对值的意义, 你能说说实数关于相反数和绝对值的意义吗?
数 a 的相反数是 a,
一个正实数的绝对 值是它本身; 一个负实数的绝对 值是它的相反数; 0的绝对值是0.
(1) 5 π ;(2) 3 2 .
解:(1) 5 π 2.236 3.142 5.38; (2) 3 2 1.7321.414 2.45 .
1 3 3 的相反数是 3 3 1. (3)3 64 的绝对值是4. (4) 绝对值是 3 的数是 3 或 3 .
例2 计算下列各式的值: (1) ( 3 2) 2
3 2 2(加法结合律)
3 0 3;
(2) 3 3 2 3
3 2 (3 分配律)
5 3.
例3 计算(结果保留小数点后两位):
a,当a 0时; a 0,当a 0时;
- a,当a 0时.
例1 (1)分别写出 6 ,π 3.14 的相反数; (2)指出 5,1 3 3 是什么数的相反数; (3)求 3 64 的绝对值; (4)已知一个数的绝对值是 3 ,求这个数.
解: (1) 6 的相反数是 6 ;
π 3.14 的相反数是 3.14 π . (2) 5 的相反数是 5 ;
第2课时 实数的运算
有理数关于相反数和绝对值的意义是什么?
你能解答下列问题吗?
(1) 2 的相反数是 ,
π 的相反数是 ,
0 的相反数是
;(2) 2 =Fra bibliotek,-π =
,
0=
.
结合有理数相反数和绝对值的意义, 你能说说实数关于相反数和绝对值的意义吗?
数 a 的相反数是 a,
一个正实数的绝对 值是它本身; 一个负实数的绝对 值是它的相反数; 0的绝对值是0.
(1) 5 π ;(2) 3 2 .
解:(1) 5 π 2.236 3.142 5.38; (2) 3 2 1.7321.414 2.45 .
1 3 3 的相反数是 3 3 1. (3)3 64 的绝对值是4. (4) 绝对值是 3 的数是 3 或 3 .
例2 计算下列各式的值: (1) ( 3 2) 2
3 2 2(加法结合律)
3 0 3;
(2) 3 3 2 3
3 2 (3 分配律)
5 3.
例3 计算(结果保留小数点后两位):
a,当a 0时; a 0,当a 0时;
- a,当a 0时.
例1 (1)分别写出 6 ,π 3.14 的相反数; (2)指出 5,1 3 3 是什么数的相反数; (3)求 3 64 的绝对值; (4)已知一个数的绝对值是 3 ,求这个数.
解: (1) 6 的相反数是 6 ;
π 3.14 的相反数是 3.14 π . (2) 5 的相反数是 5 ;