如何求数列通项公式:对数法和倒数法

合集下载

(完整版)求数列的通项公式方法总结

(完整版)求数列的通项公式方法总结

题型四:求数列的通项公式一.公式法:当题中已知数列是等差数列或等比数列,在求其通项公式时我们就可以直接利用等差或等比数列的公式来求通项,只需求得首项及公差公比。

二.当题中告诉了数列任何前一项和后一项的递推关系即:n a 和a n-1的关系时我们可以根据具体情况采用下列方法1、叠加法:一般地,对于型如)(1n f a a n n +=+类的通项公式,且)()2()1(n f f f +++Λ的和比较好求,我们可以采用此方法来求n a 。

即:11221()()()n n n n n a a a a a a a ---=-+-++-L 1a +(2)n ≥;【例1】已知数列{}n a 满足11211,2n n a a a n n +==++,求数列{}n a 的通项公式。

解:(1)由题知:121111(1)1n n a a n n n n n n +-===-+++ 112211()())n n n n n a a a a a +(a -a a ---∴=-+-++……1111111()()()121122n n n n =-+-++-+---…… 312n=- 2、叠乘法:一般地对于形如“已知a 1,且n1n a a +=f (n )(f (n )为可求积的数列)”的形式可通过叠乘法求数列的通项公式。

即:121121n n n n n a a a a a a a a ---=⋅⋅⋅⋅L (2)n ≥; 【例2】在数列{n a }中,1a =1, (n+1)·1+n a =n ·n a ,求n a 的表达式。

解:由(n+1)·1+n a =n ·n a 得11+=+n n a a n n , 1a a n =12a a ·23a a ·34a a …1-n n a a =n n n 11433221=-⋅⋅Λ 所以n a n 1= 3、构造法:当数列前一项和后一项即n a 和a n-1的递推关系较为复杂时,我们往往对原数列的递推关系进行变形,重新构造数列,使其变为我们学过的熟悉的数列(等比数列或等差数列)。

求数列通项公式的十种方法 (2)

求数列通项公式的十种方法 (2)

总述:求数列通项的方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、一、累加法适用于:1()n n a a f n +=+转换成1()n n a a f n +-=,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项na .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若③若④若例1解:由n a 例2解;由n a 3221((2333(1)3(1)3n a a a n n =++-=++⨯=++++-+=-+==练习1.已知数列{}n a的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a的通项公式.答案:12+-n n练习2.已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.答案:裂项求和n a n 12-=二、累乘法1.适用于:1()n n a f n a +=----------这是广义的等比数列2.若1()n n a f n a +=,则31212(1)(2)()n na aaf f f n a a a +===,,, 两边分别相乘得,1111()nn k a a f k a +==⋅∏ 例4例4.已知数列{}n a 满足321=a ,n n a n na 11+=+,求n a 。

解:由条件知1=+n a n ,分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式三.。

例2n 满足S n 点评②数列{a 基本思路是转化为等差数列或等比数列,而数列的本质是一个函数,其定义域是自然数集的一个函数。

1.形如(,1≠+=+c d ca a n n ,其中a a =1)型(1)若c=1时,数列{n a }为等差数列; (2)若d=0时,数列{na }为等比数列;(3)若01≠≠且d c 时,数列{na }为线性递推数列,其通项可通过待定系数法构造辅助数列来求.待定系数法:设)(1λλ+=++n n a c a ,得λ)1(1-+=+c ca a n n ,与题设,1d ca a n n +=+比较系数得d c =-λ)1(,所以)0(,1≠-=c cd λ所以有:)1(11-+=-+-c d a c c d a n n {+a n dn +-1,式.a 例6解法一:2n n a a -=又{}112,1n a a +=∴+是首项为2,公比为2的等比数列12n n a ∴+=,即21n n a =-练习.已知数列}{n a 中,,2121,211+==+n n a a a 求通项n a 。

(完整版)求数列通项公式常用的七种方法

(完整版)求数列通项公式常用的七种方法

求数列通项公式常用的七种方法一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+=或11-=n n q a a 进行求解.例1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式.分析:设数列{}n a 的公差为d ,则⎩⎨⎧-=+=+54111d a d a 解得⎩⎨⎧-==231d a∴ ()5211+-=-+=n d n a a n二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a . 例2:已知数列{}n a 的前n 项和12-=n n s ,求通项n a . 分析:当2≥n 时,1--=n n n s s a =()()32321----n n=12-n而111-==s a 不适合上式,()()⎩⎨⎧≥=-=∴-22111n n a n n三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a . 例3:已知数列{}n a 的前n 项和n s 满足n n s a 311=+,其中11=a ,求n a . 分析: 13+=n n a s ① ∴ n n a s 31=- ()2≥n ② ①-② 得 n n n a a a 331-=+ ∴ 134+=n n a a即 341=+n n a a ()2≥n 又1123131a s a ==不适合上式∴ 数列{}n a 从第2项起是以34为公比的等比数列 ∴ 222343134--⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=n n n a a ()2≥n ∴()()⎪⎩⎪⎨⎧≥⎪⎭⎫ ⎝⎛==-23431112n n a n n注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1-n a 与1-n s 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项.四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就可以用这种方法.例4:()12,011-+==+n a a a n n ,求通项n a分析: 121-=-+n a a n n ∴ 112=-a a 323=-a a 534=-a a┅ 321-=--n a a n n ()2≥n以上各式相加得()()211327531-=-+++++=-n n a a n ()2≥n又01=a ,所以()21-=n a n ()2≥n ,而01=a 也适合上式, ∴ ()21-=n a n ()*∈Nn五、累乘法:它与累加法类似 ,当数列{}n a 中有()1nn a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法.例5:111,1n n na a a n -==- ()2,n n N *≥∈ 求通项n a分析:11n n n a a n -=- ∴11n n a n a n -=- ()2,n n N *≥∈故3241123123411231n n n a a a a na a n a a a a n -===- ()2,n n N *≥∈ 而11a =也适合上式,所以()n a n n N *=∈ 六、构造法:㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:一般化方法:设()1n n a m k a m -+=+ 则()11n n a ka k m -=+- 而1n n a ka b -=+ ∴()1b k m =- 即1b m k =- 故111n n b b a k a k k -⎛⎫+=+ ⎪--⎝⎭∴数列11n b a k -⎧⎫+⎨⎬-⎩⎭是以k 为公比的等比数列,借助它去求n a例6:已知111,21n n a a a -==+ ()2,n n N *≥∈ 求通项n a分析:121n n a a -=+ ∴()1112221n n n a a a --+=+=+∴数列{}1n a +是以2为首项,2为公比的等比数列 ∴()111122n n n a a -+=+⋅= 故21n n a =- ㈡、取倒数法:这种方法适用于11n n n ka a ma p--=+()2,n n N *≥∈(,,k m p 均为常数0m ≠), 两边取倒数后得到一个新的特殊(等差或等比)数列或类似于1n n a ka b -=+的式子. 例7:已知11122,2n n n a a a a --==+ ()2,n n N *≥∈ 求通项n a1122n n n a a a --=+ ∴111211122n n n n a a a a ---+==+ 即11112n n a a --= ()2,n n N *≥∈ ∴ 数列1n a ⎧⎫⎨⎬⎩⎭是以12为首项,以12为公差的等差数列∴()1111222n n n a =+-⋅= ∴2n a n= ㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数) 例8:已知()2113,2n n a a a n -==≥ 求通项n a分析:由()2113,2n n a a a n -==≥知0n a >∴在21n n a a -=的两边同取常用对数得 211lg lg 2lg n n n a aa --==即1lg 2lg nn a a -= ∴数列{}lg n a 是以lg 3为首项,以2为公比的等比数列故112lg 2lg3lg3n n n a --== ∴123n n a -=七、“m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a .例9:设数列{}n a 的前n 项和为n s ,已知*11,3,N n s a a a n n n ∈+==+,求通项n a . 解:n n n s a 31+=+ 113--+=∴n n n s a ()2≥n两式相减得 1132-+⋅+=-n n n n a a a 即 11322-+⋅+=n n n a a上式两边同除以13+n 得92332311+⋅=++n n n n a a (这一步是关键) 令nnn a c 3=得 92321+=+n n c c ⎪⎭⎫⎝⎛-=-∴+3232321n n c c ()2≥n (想想这步是怎么得来的) ∴数列⎭⎬⎫⎩⎨⎧-32n c 从第2项起,是以93322-=-a c 为首项,以32为公比的等比数列故 ()n n n n n a a c c 32332933232322222----=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-=-()323232+-=∴-n n n a c 又n n n a c 3=,所以()123223--⋅+⋅-=n n n a a a a =1 不适合上式 ()()()⎩⎨⎧≥⋅+⋅-==∴--23223112n a n a a n n n 注:求m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项公式的方法是等式的两边同除以1+n c ,得到一个“1n n a ka b -=+”型的数列,再用上面第六种方法里面的“一次函数法”便可求出n n ca 的通式,从而求出n a .另外本题还可以由n n n s a 31+=+得到nn n n s s s 31+=-+即 n n n s s 321+=+,按照上面求n a 的方法同理可求出n s ,再求n a .您不不妨试一试.除了以上七种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这七种方法是经常用的,将其总结到一块,以便于学生记忆和掌握.。

求数列通项的方法

求数列通项的方法

求数列通项的方法数列通项是指数列中每一项与其索引之间的关系,通过通项公式可以求得任意位置上的项。

求数列通项的方法有多种,下面将详细介绍其中的几种常见方法。

一、等差数列的通项1. 直接法:对于等差数列an = a1 + (n-1)d,其中a1为首项,d为公差,n 为项数,我们可以根据已知条件将其表示为an = a1 + (n-1)d,这就是等差数列的通项公式。

2. 差分法:如果一个数列满足an+1 - an = d,其中d为常数,则称该数列为等差数列。

我们可以通过观察数列的差分结果,如果差分结果是一个常数序列,则可以得出原数列的通项公式,具体过程为反复进行差分操作,直到得到一个常数序列为止。

3. 递推法:递推法是通过数列中的递推关系推导出通项公式。

对于等差数列来说,通常可以通过考虑数列的前一项和后一项之间的关系,建立递推方程,由此可得到数列的通项公式。

二、等比数列的通项1. 直接法:等比数列的通项公式为an = a1 * r^(n-1),其中a1为首项,r为公比,n为项数。

这是等比数列通项较为常见的表示方法。

2. 对数法:如果一个数列满足an+1 / an = r,其中r为常数,则称该数列为等比数列。

对于等比数列,我们可以通过取对数的方式将其转化为等差数列,然后再应用等差数列通项公式。

具体过程为对数变换,将等比数列转化为以项数为自变量的函数,然后应用等差数列通项公式。

三、斐波那契数列的通项斐波那契数列是指数列中每一项都是前两项的和,其通项公式为an = a(n-1) + a(n-2),其中a1 = 1,a2 = 1。

可以看出,斐波那契数列的通项公式涉及到前两项的值,因此需要通过递推的方式来计算数列的每一项。

四、其他方法除了上述常见的数列通项求解方法外,还有一些其他特殊数列的求解方法,例如:1. 常数数列的通项为an = a(常数)。

2. 等差几何数列的通项可以通过等差数列和等比数列通项的组合来求解。

求数列通项公式常用的八种方法

求数列通项公式常用的八种方法

求数列通项公式常用八种方法一、 公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+= 或11-=n n q a a 进行求解.二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a .(分3步)三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a .(分3步)四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就可以用这种方法.五、累乘法:它与累加法类似 ,当数列{}n a 中有()1n n a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法.六、构造法:㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:------+常数P㈡、取倒数法:这种方法适用于11c --=+n n n Aa a Ba ()2,n n N *≥∈(,,k m p 均为常数 0m ≠),两边取倒数后得到一个新的特殊(等差或等比)数列或类似于 1n n a ka b -=+的式子.㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数)例8:已知()2113,2n n a a a n -==≥ 求通项n a分析:由()2113,2n n a a a n -==≥知0n a >∴在21n n a a -=的两边同取常用对数得211lg lg 2lg n n n a a a --== 即1lg 2lg n n a a -= ∴数列{}lg n a 是以lg 3为首项,以2为公比的等比数列故112lg 2lg3lg3n n n a --==∴123n n a -=七、“1p ()n n a a f n +=+(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a . 可以先在等式两边 同除以f(n)后再用累加法。

求数列通项公式的十种方法

求数列通项公式的十种方法

求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11种方法:累加法、 累乘法、 待定系数法、 阶差法(逐差法)、 迭代法、 对数变换法、 倒数变换法、换元法(目的是去递推关系式中出现的根号)、 数学归纳法、不动点法(递推式是一个数列通项的分式表达式)、 特征根法二。

四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。

等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。

三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。

四.求数列通项的基本方法是:累加法和累乘法。

五.数列的本质是一个函数,其定义域是自然数集的一个函数。

一、累加法1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。

2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。

例2 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。

数列通项公式常见求法

数列通项公式常见求法

数列通项公式常见求法数列通项公式是数列的通项公式,用来表示数列中的一般项。

求数列通项公式是数列的重要性质之一,能够帮助我们了解数列的规律以及计算数列中的任意项。

在数学中,存在许多常见的方法来求解数列的通项公式,下面将介绍几种常见的方法。

1. 直接法:数列如果具有明显的规律性,我们可以直接观察并找出数列的通项公式。

例如,对于等差数列an=a1+(n-1)d,其中a1为第一项,d为公差,n为项数,我们可以通过观察数列的前几项发现,每一项与前一项之间的差值都相等,因此可以得到等差数列的通项公式。

2. 递推法:数列的递推法是一种常见的求解通项公式的方法。

该方法通过观察数列中相邻项之间的关系,构造递推公式从而求得通项公式。

例如,对于斐波那契数列an=an-1+an-2,其中a0=0,a1=1,通过观察数列可以发现每一项都是前两项之和,因此可以通过递推公式求得斐波那契数列的通项公式。

3. 换元法:有时候我们可以通过引入一个新的变量来求解数列的通项公式。

例如,对于幂次数列an=2^n,我们可以通过引入变量k=log2(n)来将问题转化为求解k与n之间的关系,从而得到数列的通项公式。

4. 差分法:差分法是一种常用的求解递推数列通项公式的方法。

该方法通过将数列中相邻项之间的差值构造成新的数列,然后再对新的数列进行求解。

例如,对于等差数列an,可以构造新的数列bn=an-an-1,然后再对数列bn进行观察和求解,最终得到等差数列an的通项公式。

5.等比数列的通项公式:对于等比数列an=a1*r^(n-1),其中a1为第一项,r为公比,n为项数。

求解等比数列的通项公式可以采用多种方法,如利用等比数列的性质进行观察,或采用对数换元法等。

6. 转化法:有时候我们可以将原始数列通过一些变换转化为已知的数列,然后再利用已知数列的通项公式求解原始数列的通项公式。

例如,对于等差数列an,我们可以通过将数列an进行平移或缩放变换,转化为已知的等差数列或等比数列,然后再求解通项公式。

求数列通项公式的十种方法

求数列通项公式的十种方法

求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11种方法:累加法、 累乘法、 待定系数法、 阶差法(逐差法)、 迭代法、 对数变换法、 倒数变换法、换元法(目的是去递推关系式中出现的根号)、 数学归纳法、不动点法(递推式是一个数列通项的分式表达式)、 特征根法二。

四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。

等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。

三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。

四.求数列通项的基本方法是:累加法和累乘法。

五.数列的本质是一个函数,其定义域是自然数集的一个函数。

一、累加法1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。

2.若1()n n a a f n +-=(2)n ³,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=L L两边分别相加得111()nn k a a f n +=-=å例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++?+?+=-+-++++-+-=+-+=-++=L L L 所以数列{}n a 的通项公式为2n a n =。

例2 已知数列{}n a 满足112313nn n a a a +=+?=,,求数列{}n a 的通项公式。

初中数学求数列通项公式的十种方法

初中数学求数列通项公式的十种方法
例4已知数列 满足 ,求数列 的通项公式。
解:因为 ,所以 ,则 ,故
所以数列 的通项公式为
例5.设 是首项为1的正项数列,且 ( =1,2,3,…),则它的通项公式是 =________.
解:已知等式可化为:
( ) (n+1) ,即
时,
= = .
评注:本题是关于 和 的二次齐次式,可以通过因式分解(一般情况时用求根公式)得到 与 的更为明显的关系式,从而求出 .
练习2.已知数列 满足
,求数列 的通项
说明:(1)若方程 有两不同的解s , t,
则 , ,
由等比数列性质可得 , ,
由上两式消去 可得 .
(2)若方程 有两相等的解 ,则

,即 是等差数列,
由等差数列性质可知 ,
所以 .
例26、数列 满足 ,且 求数列 的通项。
解: ……①
令 ,解得 ,将它们代回①得,
分析:把已知关系通过 转化为数列 或 的递推关系,然后采用相应的方法求解。
例19已知数列 的各项均为正数,且前n项和 满足 ,且 成等比数列,求数列 的通项公式。
解:∵对任意 有
∴当n=1时, ,解得 或
当n≥2时, ⑵
-⑵整理得:
∵ 各项均为正数,∴
当 时, ,此时 成立
当 时, ,此时 不成立,故 舍去
令 ,则可化为 .然后转化为类型5来解,
.待定系数法:目的是把所求数列构造成等差数列
设 .通过比较系数,求出 ,转化为等比数列求通项.
注意:应用待定系数法时,要求p q,否则待定系数法会失效。
例7已知数列 满足 ,求数列 的通项公式。
解法一(待定系数法):设 ,比较系数得 ,

如何求数列通项公式对数法和倒数法

如何求数列通项公式对数法和倒数法

如何求数列通项公式对数法和倒数法数列通项公式是指通过已知数列的前几项,求出数列的通项公式,即根据数列的规律确定若干项之间的关系。

常见的求解数列通项公式的方法有数列分解法、差数列法、通项公式递推法、逐差法、对数法和倒数法等。

本文将重点介绍对数法和倒数法求解数列通项公式的方法。

对数法求解数列通项公式:对数法是一种通过对数函数来求解数列的通项公式的方法。

当数列中的每一项与它的位置n之间存在对数关系时,可以考虑使用对数函数来推导数列的通项公式。

步骤:1.观察数列中的每一项与它的位置n之间是否存在对数关系。

一般而言,数列中每一项都是指数函数或指数运算的形式,并且指数函数中的底数与位置n之间存在着对应的关系。

2.如果存在对数关系,可以尝试将数列各项进行对数运算,得到新的数列。

3.对新的数列进行观察和分析,通过推导和求解,找到新数列通项公式。

4.将新数列通项公式恢复成原数列的通项公式。

举例1:求数列1,3,9,27...的通项公式。

观察数列可发现,每一项都是3的指数形式,可以尝试进行对数运算。

对数值运算后,得到新数列0,1,2,3...,然后进行观察和分析。

我们发现新数列的通项公式为n,将其恢复成原数列的通项公式,即为3的n次幂,通项公式为3^n。

因此,数列1,3,9,27...的通项公式为3^n。

倒数法求解数列通项公式:倒数法是一种通过数列的倒数与位置n之间的关系来求解数列通项公式的方法。

当数列中的每一项与它的倒数存在比例关系时,可以考虑使用倒数来推导数列的通项公式。

步骤:1.观察数列中的每一项与它的倒数之间是否存在比例关系。

一般而言,数列中的每一项都是分式形式,并且分式中的分母与位置n之间存在比例关系。

2.如果存在比例关系,可以尝试将数列的每一项取倒数,得到新的数列。

3.对新的数列进行观察和分析,通过推导和求解,找到新数列通项公式。

4.将新数列通项公式恢复成原数列的通项公式。

举例2:求数列1,1/2,1/3,1/4...的通项公式。

高中数学解题方法系列:数列中求通项的10种方法

高中数学解题方法系列:数列中求通项的10种方法

高中数学解题方法系列:数列中求通项的10种方法一、公式法例1 已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求数列{}n a 的通项公式。

解:1232n n n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2n na 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222n n a n =-。

二、累加法 )(1n f a a n n =--例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=L L L 所以数列{}n a 的通项公式为2n a n =。

例3已知数列{}n a 满足1132313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。

解:13231n n n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++, 则111213333n n n n n a a +++-=+ 三、累乘法 )(1n f a a n n =- 例4 已知数列{}n a 满足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式。

八种通项公式求解方法

八种通项公式求解方法

求数列通项公式的八种方法总述:一.利用递推关系式求数列通项的8种方法:累加法、累乘法、待定系数法、阶差法(逐差法)、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号)、数学归纳法、二.等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。

三.求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。

四.求数列通项的基本方法是:累加法和累乘法。

五.数列的本质是一个函数,其定义域是自然数集的一个函数。

一、累加法1.适用于:----------这是广义的等差数列累加法是最基本的二个方法之一。

2.若,则两边分别相加得例1已知数列满足,求数列的通项公式。

解:由得则所以数列的通项公式为。

例2已知数列满足,求数列的通项公式。

解法一:由得则所以解法二:两边除以,得,则,故因此,则评注:已知,,其中f(n)可以是关于n的一次函数、二次函数、指数函数、分式函数,求通项.若f(n)是关于n的一次函数,累加后可转化为等差数列求和;若f(n)是关于n的二次函数,累加后可分组求和;若f(n)是关于n的指数函数,累加后可转化为等比数列求和;若f(n)是关于n的分式函数,累加后可裂项求和。

例3.已知数列中,且,求数列的通项公式.解:由已知得,化简有,由类型(1)有,又得,所以,又,,则二、累乘法1.适用于:----------这是广义的等比数列累乘法是最基本的二个方法之二。

2.若,则两边分别相乘得,∏=+=nk n k f a a 111)(例4已知数列满足,求数列的通项公式。

解:因为,所以,则,故所以数列的通项公式为例5.设是首项为1的正项数列,且(=1,2,3,…),则它的通项公式是=________.解:已知等式可化为:()(n+1),即时,==.评注:本题是关于和的二次齐次式,可以通过因式分解(一般情况时用求根公式)得到与的更为明显的关系式,从而求出.三、待定系数法适用于基本思路是转化为等差数列或等比数列,而数列的本质是一个函数,其定义域是自然数集的一个函数。

数列通项公式的十种求法

数列通项公式的十种求法

数列通项公式的十种求法方法一:直接法对于一些简单的数列,可以通过观察数列的规律,直接写出通项公式。

例如,对于等差数列an=3n+1,可以观察到每一项都是前一项加上3,因此可以直接写出通项公式。

方法二:递推法递推法是通过数列前一项和通项之间的关系式来推导通项公式。

例如,对于斐波那契数列an=an-1+an-2,可以通过给出前两项的值,然后通过关系式不断求解后续项的值,得到通项公式。

方法三:代数法对于一些特殊的数列,可以通过代数方式求解通项公式。

例如,对于等比数列an=2^n,可以通过代数方法得到通项公式。

方法四:数学归纳法数学归纳法是通过证明法来得到通项公式。

首先证明数列的前几项符合一些表达式,然后假设n=k时表达式成立,再证明n=k+1时也成立,从而得到通项公式。

方法五:求和法有些数列的通项公式可以通过求和公式得到。

例如,对于等差数列an=3n+1,可以通过求和公式求得前n项和Sn=3n(n+1)/2,然后推导出通项公式。

方法六:线性递推法对于一些特殊的数列,可以通过线性递推法求解通项公式。

线性递推法是通过设定通项公式的形式,然后求解出相应的系数。

例如,对于一阶等差数列an=ax+b,可以通过线性递推法求解出通项公式。

方法七:矩阵法矩阵法是通过将数列表示成矩阵的形式,然后通过矩阵运算求解出通项公式。

例如,对于数列an=2n+1,可以将其表示为一个2×2的矩阵,然后通过矩阵运算得到通项公式。

方法八:生成函数法生成函数法是通过定义一个函数来表示数列,然后通过函数运算求解出通项公式。

例如,对于斐波那契数列an=an-1+an-2,可以定义一个生成函数F(x)=a0+a1x+a2x^2+...,然后通过函数运算得到通项公式。

方法九:离散动力系统法离散动力系统法是通过建立数列的动力系统方程,然后求解出通项公式。

例如,对于一阶等差数列an=ax+b,可以将其表示为一个离散动力系统方程xn+1=axn+b,然后通过求解方程得到通项公式。

求数列通项公式必备的方法和技巧

求数列通项公式必备的方法和技巧

求数列通项公式的方法和技巧一、已知数列是等差(比)数列,用公式法求通项 (基本量法) (1).等差数列{}n a 通项公式:1(1)n a a n d =+-(d 为公差); (2).等比数列{}n a 通项公式:11n n a a q-=(q 为公比)例1、n S 为等差数列{}n a 的前项和,且17=128.a S =,记[]=lg n n b a ,其中[]x 表示不超过的最大整数,如[][]0.9=0lg99=1,.(Ⅰ)求111101b b b ,,; (Ⅱ)求数列{}n b 的前1 000项和.例2、已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足a n b n +1-a n +1b n +2b n +1b n =0.(1)令c n =a nb n,求数列{c n }的通项公式; (2)若b n =3n -1,求数列{a n }的前n 项和S n .变式练习1、设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S = .2、等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .3、 已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列. (1)求数列{a n }的通项公式; (2)令b n =(-1)n -14na n a n +1,求数列{b n }的前n 项和T n .4、设数列{a n }满足a 1=0且111111n na a +-=--.(1)求{a n }的通项公式;二、已知数列的前n 项和S n 或S n 与a n 的关系求通项公式 (公式法)说明:已知{}n a 的前n 项和n s 与n a 的关系,则先求1a ,再由()12n n n a s s n -=-≥求n a 或n a 与其它项的关系,进而转化为等差(比)数列求通项n a ,并验算此时的n a 在1n =时是否成立。

求数列通项公式的十种方法,例题答案详解

求数列通项公式的十种方法,例题答案详解

求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11种方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号) 、数学归纳法、不动点法(递推式是一个数列通项的分式表达式) 、特征根法二。

四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。

等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。

三.求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。

四.求数列通项的基本方法是:累加法和累乘法。

五.数列的本质是一个函数,其定义域是自然数集的一个函数。

一、累加法1.适用于:%+ =% + f(n) -------- 这是广义的等差数列累加法是最基本的二个方法之一。

2.若an+ -a n = f (n) (n >2),a2 -4=f(1)则出一包="2)III IHa n 1 -a n = f (n)两边分别相加得a n1._.a1 == f (n)k 4例1已知数列{a n}满足an4 =a n +2n +1, & =1,求数列{a n}的通项公式。

解:由an_1 =an+2n+1 得an邛一an = 2n+1 则n n n na n =(a n -a n。

(a n」- a n- IM (a3 -a2)(a2 -a1)&= [2(n-1) 1] [2(n-2) 1] |H (2 2 1) (2 1 1) 1= 2[(n -1) (n -2) ||| 2 1] (n -1) 1= 2(n 21)n (n -1) 1=(n -1)(n 1) 12 二n所以数列{a n}的通项公式为a n =n2。

例2已知数列{a n}满足a n+ =a n +2父3n +1, a1 =3 ,求数列{a n}的通项公式。

常见求数列通项的方法总结

常见求数列通项的方法总结

常见求数列通项的方法总结求数列通项是高中数学中的重点内容之一,也是解决数列相关问题的基础。

常见的求数列通项的方法有递推公式法、通项公式法和逆向代入法等,下面将对这些方法进行详细总结。

一、递推公式法递推公式法是通过利用数列中前几项之间的关系,找出递推公式进而求得通项的方法。

递推公式是指数列中的每一项都可以通过前一项得到的关系式。

1.等差数列等差数列是最简单的一类数列,其中每一项与前一项之间的差值都为常数,称为公差。

求数列通项的递推公式为:an = a1 + (n-1)d,其中an为第n项,a1为首项,d为公差。

2.等比数列等比数列是指数列中每一项与前一项之比都相等的数列。

求数列通项的递推公式为:an = a1 * r^(n-1),其中an为第n项,a1为首项,r为公比。

3.斐波那契数列斐波那契数列的定义是:F(1)=1,F(2)=1,F(n)=F(n-1)+F(n-2)。

通过递推公式可以求得通项公式:Fn = (phi^n - (1-phi)^n) / sqrt(5),其中phi=(1+sqrt(5))/2二、通项公式法通项公式法是通过观察数列的规律,找到数列的通项公式进行推导。

通项公式是指可以通过项数n直接求得数列中第n项的公式。

1.平方数列平方数列是指数列中每一项都是前一项的平方。

通项公式为:an = n^2,其中an为第n项。

2.立方数列立方数列是指数列中每一项都是前一项的立方。

通项公式为:an = n^3,其中an为第n项。

3.等差数列的通项公式对于已知的等差数列,可以通过解线性方程组来求得通项公式。

假设已知仅知道前几项的数列为an = a1 + (n-1)d,可以通过解方程组来求得首项a1和公差d。

4.等比数列的通项公式对于已知的等比数列,可以通过解对数方程来求得通项公式。

假设已知仅知道前几项的数列为an = a1 * r^(n-1),可以通过取对数来求得首项a1和公比r。

三、逆向代入法逆向代入法是通过已知数列中的一些特殊项,利用通项公式进行求解其他项的方法。

(完整版)求数列通项公式的十种方法

(完整版)求数列通项公式的十种方法

求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11 种方法:累加法、累乘法、待定系数法、阶差法(逐差法) 、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号) 、数学归纳法、不动点法(递推式是一个数列通项的分式表达式) 、特征根法二。

四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。

等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。

三.求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。

四.求数列通项的基本方法是:累加法和累乘法。

五.数列的本质是一个函数,其定义域是自然数集的一个函数。

、累加法1.适用于:a n 1 a n f (n) ------------------ 这是广义的等差数列累加法是最基本的二个方法之一。

2.若a n 1 a n f (n) (n 2) ,a2 a1 f (1)a3 a2 f (2) LLa n 1 a n f ( n)n两边分别相加得a n 1 a1 f (n )k1例1已知数列{a n }满足a n 1a n 2n 1, a i 1,求数列{a n }的通项公式。

解:由 a n 1 a n 2n 1 得 a n 1 a n 2n 1 则a n (a n a n 1) (a n 1 a n 2) L @3a 2) (a 2 aja 1 [2( n 1) 1] [2( n 2) 1]L (2 21) (2 11) 12[(n 1) (n 2) L 2 1] (n 1) 1 (n 1)n 2 (n 1) 12(n 1)( n 1) 1 2n2所以数列{a n }的通项公式为a n n 。

例2已知数列{a n }满足a n 1 a n 2 3n 1,印3,求数列 佝}的通项公式。

解法一:由a n 1 a n n 2 31 得 a n 1a n n2 31则a n (a * an 1)(a n 1 a n 2) L(a 3 a 2) (a 2 a 1) a 1n (2 3 1 1) (2 3n 21)L (2 32 31 1) (2 31) 312(33n2L 32 ;31)(n 1)3「(1 3n1)2(n 1) 31 3n3 3 n 133 n1所以a n 3n n 1.解法二:时3an 2 3 1两边除以3n1,得鄴J 3 3a n 2 n3 32132)3 32 3a3na n 3a n 1)a n 1(an 1a n 1a n 2) (a n 2(尹z a2 q 色(3231)33n )1)12门22(n 1)313n 3n13n2Lan 13n22答案:n数、分式函数,求通项 an .① 若f(n)是关于n 的一次函数,累加后可转化为等差数列求和 ② 若f(n)是关于n 的二次函数,累加后可分组求和 ; ③ 若f(n)是关于n 的指数函数,累加后可转化为等比数列求和 ④ 若f(n)是关于n 的分式函数,累加后可裂项求和。

求数列通项公式的11种方法0001

求数列通项公式的11种方法0001

求数列通项公式的11种方法方法总述:一.利用递推关系式求数列通项的11种方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号)数学归纳法(少用)不动点法(递推式是一个数列通项的分式表达式)特征根法二.四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。

等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。

三.求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等级差数列或等比数列。

四.求数列通项的基本方法是:累加法和累乘法。

五.数列的本质是一个函数,其定义域是自然数集的一个函数。

、累加法1.适用于: a n+ =a n 中f (n) 这是广义的等差数列累加法是最基本的二个方法之一。

2.若寺十―a n = f(n) (n >2),a2 —a i = f(1) a3 —a2 = f (2) 川IIIan+ —a n = f (n)n两边分别相加得a n十-a1 =送f (n)k=1例1已知数列{a n }满足an+ =a n +2n +1 a, =1,求数列{a .}的通项公式。

解:由 an +=an +2n +1 得 a n + -a^2n +1 贝Uan= (a n -an 」)+ (a n J - 3n _2)+ I I I + (a3 - a2 ) + (a 2 - a1 ) + a 1=[2(n -1) + 1]+[2(n-2) +1]+川 +(2咒2 + 1) + (21 + 1) + 1 = 2[( n -1) + ( n - 2)+111+ 2+1] + (n-1) + 1 =2 导+ (n-1) + 1 =(n -1)(n +1)+1 =n 2所以数列{a n }的通项公式为a n =n2。

例2已知数列{a n }满足an+ =a n +2x 3n+1, a i =3,求数列{K }的通项公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档