第七章空间解析几何与向量代数[作业No.40]班级_.

合集下载

高等数学 第七章 空间解析几何与向量代数 第一节 向量及其线性运算

高等数学 第七章 空间解析几何与向量代数 第一节 向量及其线性运算
a
2a
1 − a 2
首页
上页
返回
下页
结束
数与向量的乘积符合下列运算规律: (1)结合律:λ ( µ a ) = µ (λ a ) = (λµ )a (2)分配律: (λ + µ )a = λ a + µ a
λ (a + b ) = λ a + λ b
两个向量的平行关系
定理 设向量 a ≠ 0,那末向量 b 平行于 a 的充 分必要条件是:存在唯 一的实数 λ,使 b = λa .
1− − ←⎯ 1→ 有序数组 ( x , y , z ) ⎯ 空间的点
称为点M的坐标,x称为横坐标, y称为纵坐标, z称为竖坐标. 记为 M ( x , y , z ) 特殊点的表示: 坐标轴上的点 P , Q , R, 坐标面上的点 A, B , C ,
O ( 0, 0, 0 )
B ( 0, y , z )
第七章 空间解析几何与向量代数
y
• P ( x, y)
O x
平面解析几何
1--1
平面上的点P 有序实数对(x,y)的集合R2
平面曲线L
1--1
方程
y = f ( x)
为了把空间的几何问题代数化,把代数的问题用几 何方法直观表示,需要建立空间解析几何.
首页 上页 返回 下页 结束
§1. 向量及其线性运算 一、向量的概念
首页 上页 返回 下页 结束
r 在三个坐标轴上的分向量:
R(0,0, z )
z
xi , yj , zk .
o
r

M ( x, y, z )
y
Q(0, y,0)
显然,
首页
上页

微积分第七章空间解析几何与向量代数

微积分第七章空间解析几何与向量代数

第七章 空间解析几何与向量代数 为了学习多元函数微积分的需要,本章首先建立空间直角坐标系,并引进在工程技术 上有着广泛应用的向量,介绍向量的一些运算.然后以向量为工具来讨论空间的平面与直线 方程,最后介绍空间曲面与空间曲线及二次曲面.第一节 空间直角坐标系一、 空间直角坐标系众所周知,实数x 与数轴上的点是一一对应的,二元数组(x ,y )与坐标平面上的点是一一对应的,从而可以用代数的方法讨论几何问题.类似地,通过建立空间直角坐标系,把空间中的点与一个三元有序数组(x ,y ,z )建立一一对应关系,用代数的方法研究空间问题.1.空间直角坐标系的建立过空间定点O 作三条互相垂直的数轴,它们都以O 为原点,并且通常取相同的长度单位.这三条数轴分别称为x 轴、y 轴、z 轴.各轴正向之间的顺序通常按下述法则确定:以右手握住z 轴,让右手的四指从x 轴的正向以π/2的角度转向y 轴的正向,这时大拇指所指的方向就是z 轴的正向.这个法则叫做右手法则(图7-1).这样就组成了空间直角坐标系.O 称为坐标原点,每两条坐标轴确定的平面称为坐标平面,简称为坐标面.x 轴与y 轴所确定的坐标面称为xOy 坐标面.类似地有yOz 坐标面、zOx 坐标面.这些坐标面把空间分成八个部分,每一部分称为一个卦限(图7-2).x 、y 、z 轴的正半轴的卦限称为第Ⅰ卦限,从第Ⅰ卦限开始,从z 轴的正向向下看,按逆时针方向,先后出现的卦限依次称为第Ⅱ、Ⅲ、Ⅳ卦限,第Ⅰ、Ⅱ、Ⅲ、Ⅳ卦限下方的空间部分依次称为第Ⅴ、Ⅵ、Ⅶ、Ⅷ卦限。

图7-1 图7-22.空间中点的直角坐标设M 为空间的一点,若过点M 分别作垂直于三坐标轴的平面,与三坐标轴分别相交于P ,Q ,R 三点,且这三点在x 轴、y 轴、z 轴上的坐标依次为x ,y ,z ,则点M 唯一地确定了一个有序数组(x ,y ,z ).反之,设给定一个有序数组(x ,y ,z ),且它们分别在x 轴、y 轴和z 轴上依次对应于P ,Q 和R 点,若过P ,Q 和R 点分别作平面垂直于所在坐标轴,则这三个平面确定了唯一的交点M .这样,空间的点就与一个有序数组(x ,y ,z )之间建立了一一对应关系(图7-3).有序数组(x ,y ,z )就称为点M 的坐标,记为M (x ,y ,z ),它们分别称为横坐标、纵坐标和竖坐标.显然,原点O的坐标为(0,0,0),坐标轴上的点至少有两个坐标为0,坐标面上的点至少有一个坐标为0.例如,在x轴上的点,均有y=z=0;在xOy坐标面上的点,均有z =0.图7-3 图7-4二、空间两点间的距离公式设空间两点M1(x1, y1, z1)、M2 (x2, y2, z2),求它们之间的距离d=12M M.过点M 1,M2各作三个平面分别垂直于三个坐标轴,形成如图7-4所示的长方体.易知 2222121212()d M M M Q QM M QM==+∆是直角三角形222121()M P PQ QM M PQ=++∆是直角三角形222122M P P M QM''''=++()()()222212121x x y y z z=-+-+-所以d=(7-1-1 )特别地,点M(x,y,z)与原点O(0,0,0)的距离(图7-3)d OM==例1在z轴上求与两点A(-4,1,7)和B(3,5,-2)等距离的点.解因所求的点M在z轴上,故设该点坐标为M(0,0,z),依题意MA MB=,即=解得z=149,所求点为M ( 0,0,149).习题7-11.在空间直角坐标系中,定出下列各点的位置:A (1,3,2),B (1,2,-1),C (-1,-2,3),D(0,-2,0),E (-3,0,1).2. 求点(a ,b ,c )关于(1) 各坐标面;(2) 各坐标轴;(3) 坐标原点的对称点的坐标.3. 自点P 0(x 0, y 0, z 0)分别作各坐标面和坐标轴的垂线,写出各垂足的坐标.4. 求点M (4,-3,5)到各坐标轴间的距离.5. 在y Oz 面上,求与三个已知点A (3,1,2),B (4,-2,2)和C (0,5,1)等距离的点.6. 试证明以三点A (4,1,9),B (10,-1,6),C (2,4,3)为顶点的三角形是等腰直角三角形.第二节 向量及其运算一、 向量的概念在物理学和工程技术中经常会碰到一些既有大小又有方向的量,如力、速度等,我们把这类量称为向量(或矢量).空间中的向量常用具有一定长度且标有方向的线段(称为有向线段)来表示。

高数第四版第七章(人民大学出版社)

高数第四版第七章(人民大学出版社)

高数第四版第七章(人民大学出版社)第七章空间解析几何与向量代数习题7-1★★1.填空题:(1)要使(2)要使★2.设ua?b?a?b设立,向量a,b应当满足用户a?ba?b?a?b成立,向量a,b应满足a//b,且同向ab2c,va3bc,试用a,b,c则表示向量2u?3v知识点:向量的线性运算求解:2u?3v?2a?2b?4c?3a?9b?3c?5a?11b?7c★3.设p,q两点的向径分别为r1,r2,点r在线段pq上,且prrq?m,证明点r的向径为nr?nr1?mr2m?n知识点:向量的线性运算证明:在?opq中,根据三角形法则oq?op?pq,又pr?mmpq?(r2?r1),m?nm?n∴or?op?pr?r1?nr?mr2m(r2?r1)?1m?nm?n★★4.未知菱形abcd的对角线ac?a,bd?b,试用向量a,b表示ab,bc,cd,da。

知识点:向量的线性运算解:根据三角形法则,ab?bc?ac?a,ad?ab?bd?b,又abcd为菱形,ad?bc(民主自由向量),a?b????????????b?a?cd??dc??ab?∴2ab?ac?bd?a?b?ab?22?a?b??? a?b∴ad?bc?,da??22∴★★5.把?abc的bc边五等分,设分点依次为d1,d2,d3,d4,再把各分点与点a相连接,先行以ab?c,bc?a表示向量d1a,d2a,d3a和d4a。

知识点:向量的线性运算解:见图7-1-5,acbad1d2图7-1-5cd3d411bc?d1a??ad1??(c?a)55234同理:d2a??((c?a),d3a??(c?a),d4a??(c?a)555根据三角形法则,ab?bd1?ad1,bd1?习题7-2★1在空间直角坐标系则中,表示以下各点在哪个卦减半?a(2,?2,3);b(3,3,?5);c(3,?2,?4);d(?4,?3,2)请问:a(2,?2,3)在第四卦减半,b(3,3,?5)在第五卦减半,c(3,?2,?4)在第八卦减半, d(?4,?3,2)在第三卦限★2.在座标面上和坐标轴上的点的座标各存有什么特征?并表示以下各点的边线:a(2,3,0);b(0,3,2);c(2,0,0);d(0,?2,0)知识点:空间直角坐标答:在各坐标面上点的坐标有一个分量为零,坐标轴上点的坐标有两个分量为零,∴点a在xoy坐标面上;b在yoz坐标面上;c在x轴上;d在y轴上。

第七章 空间解析几何与向量代数

第七章 空间解析几何与向量代数
第六节 空间直线及其方程 <1> 空间直线的一般方程 L: <2> 点向式(对称式) 直线过点M0(x0、y0、z0),为L方向向量 则 L: <3>参数式L: t为参数
L1∥L2 ∥ L1⊥L2 ⊥
50直线与平面关系
<1> L∥π ⊥

<2> L⊥π ∥
<3> 点P到直线L的距离,L的方向向量,M0为L上一点
<4>平面束方程 直线L: 则 为过直线L的除平面外的平面束方程
四.例题
例1:已知三角形的顶点为A(1,2,3),B(7,10,3)和 C(-1,3,1)。试证明A角为钝角。
证:=
=
= 可见,>+由余弦定理,就可知A角为钝角。 例2:在z轴上,求与A(-4,1,7)和B(3,5,-2)两点等距离的点。 解:设M为所求的点,因为M在z轴上,故可设M的坐标为:(0, 0,z) 根据题意,及= 去根号,整理得:z=14/9 ∴ M(0,0,14/9)。 例3:试在xoy平面上求一点,使它到A(1,-1,5)、B(3,4,4)和C(4,6,1)各 点的距离相等。
∴ ={4,-2,1}
又∵ 平面的法向量:{4,-2,1}
∴ 直线与平面垂直,故选(B)。
例13:求过点P(2,-1,3)且与直线1:垂直相交的直线的方程。
解:不妨设两直线交点为M(x0,y0,z0),
由于M在1上,故:,其中t为参变量。
由于直线与直线1垂直:
பைடு நூலகம்
其中直线1的方向向量为,而直线的方向向量为:
又∵ Ax0+By0+Cz0=-D ∴ d= 如:P1(-1,1,2)到平面:3x-2y+z-1=0的距离为d= 例10 求直线l: 的点向式方程。

(完整版)空间解析几何与向量代数习题与答案

(完整版)空间解析几何与向量代数习题与答案

第七章 空间解析几何与向量代数A一、1、平行于向量)6,7,6(-=a 的单位向量为______________.2、设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模,方向余弦和方向角.3、设k j i p k j i n k j i m 45,742,853-+=--=++=,求向量p n m a -+=34在x 轴上的投影,及在y 轴上的分向量. 二、1、设k j i b k j i a -+=--=2,23,求(1)b a b a b a b a 23)2)(2(⨯⋅-⨯⋅及;及(3)a 、b 的夹角的余弦.2、知)3,1,3(),1,3,3(),2,1,1(321M M M -,求与3221,M M M M 同时垂直的单位向量.3、设)4,1,2(),2,5,3(=-=b a ,问μλ与满足_________时,轴z b a ⊥+μλ. 三、1、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________.2、方程0242222=++-++z y x z y x 表示______________曲面. 3、1)将xOy 坐标面上的x y 22=绕x 轴旋转一周,生成的曲面方程为_______________,曲面名称为___________________.2)将xOy 坐标面上的x y x 222=+绕x 轴旋转一周,生成的曲面方程 _____________,曲面名称为___________________.3)将xOy 坐标面上的369422=-y x 绕x 轴及y 轴旋转一周,生成的曲面方 程为_____________,曲面名称为_____________________.4)在平面解析几何中2x y =表示____________图形。

在空间解析几何中2x y =表示______________图形.5)画出下列方程所表示的曲面 (1))(4222y x z += (2))(422y x z += 四、1、指出方程组⎪⎩⎪⎨⎧==+319y 4x 22y 在平面解析几何中表示____________图形,在空间解 析几何中表示______________图形.2、求球面9222=++z y x 与平面1=+z x 的交线在xOy 面上的投影方程. 3、求上半球2220y x a z --≤≤与圆柱体)0(22>≤+a ax y x 的公共部分在xOy 面及xOz 面上的投影. 五、1、求过点(3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.2、求过点(1,1,-1),且平行于向量a =(2,1,1)和b =(1,-1,0)的平面方程.3、求平行于xOz 面且过点(2,-5,3)的平面方程.4、求平行于x 轴且过两点(4,0,-2)和(5,1,7)的平面方程. 六、1、求过点(1,2,3)且平行于直线51132-=-=z y x 的直线方程. 2、求过点(0,2,4)且与两平面12=+z x ,23=-z y 平行的直线方程.3、求过点(2,0,-3)且与直线⎩⎨⎧=+-+=-+-012530742z y x z y x 垂直的平面方程.4、求过点(3,1,-2)且通过直线12354zy x =+=-的平面方程. 5、求直线⎩⎨⎧=--=++003z y x z y x 与平面01=+--z y x 的夹角.6、求下列直线与直线、直线与平面的位置关系 1)直线⎩⎨⎧=++-=-+7272z y x z y x 与直线11321-=--=-zy x ; 2)直线431232--=+=-z y x 和平面x+y+z=3. 7、求点(3,-1,2)到直线⎩⎨⎧=-+-=+-+04201z y x z y x 的距离.B1、已知0=++c b a (c b a ,,为非零矢量),试证:a c c b b a ⨯=⨯=⨯.2、),(},1,1,1{,3b a b a b a ∠=⨯=⋅求.3、已知和为两非零向量,问取何值时,向量模||tb a +最小?并证明此时)(tb a b +⊥.4、求单位向量,使a n ⊥且x n ⊥轴,其中)8,6,3(=a .5、求过轴,且与平面052=-+z y x 的夹角为3π的平面方程. 6、求过点)2,1,4(1M ,)1,5,3(2--M ,且垂直于07326=++-z y x 的平面.7、求过直线⎩⎨⎧=--+=-+-022012z y x z y x ,且与直线:211zy x =-=平行的平面.8、求在平面:1=++z y x 上,且与直线⎩⎨⎧-==11z y L :垂直相交的直线方程.9、设质量为kg 100的物体从空间点)8,1,3(1M ,移动到点)2,4,1(2M ,计算重力所做的功(长度单位为).10、求曲线⎩⎨⎧==-+30222z x z y 在xoy 坐标面上的投影曲线的方程,并指出原曲线是什么曲线?11、已知k j OB k i OA 3,3+=+=,求OAB ∆的面积 12、.求直线⎩⎨⎧=---=+-0923042z y x z y x 在平面14=+-z y x 上的投影直线方程.C1、设向量c b a ,,有相同起点,且0=++c b a γβα,其中0=++γβα,γβα,,不全为零,证明:c b a ,,终点共线.2、求过点)1,2,1(0-M ,且与直线:121122=--=+y x 相交成3π角的直线方程. 3、过)4,0,1(-且平行于平面01043=-+-z y x 又与直线21311zy x =-=+相交的直线方程. 4、求两直线:1101-=-=-z y x 与直线:0236+=-=z y x 的最短距离. 5、柱面的准线是xoy 面上的圆周(中心在原点,半径为1),母线平行于向量}1,1,1{=g ,求此柱面方程.6、设向量a,b 非零,3),(,2π==b a b ,求xaxb a x -+→0lim.7、求直线⎪⎩⎪⎨⎧--==)1(212:y z y x L 绕y 轴旋转一周所围成曲面方程. 第七章 空间解析几何与向量代数习 题 答 案A一、1、⎩⎨⎧⎭⎬⎫-±116,117,116 2、21M M =2,21cos ,22cos ,21cos ==-=γβα,3,43,32πγπβπα=== 3、在x 轴上的投影为13,在y 轴上的分量为7j 二、1、1)3)1()2(2)1(13=-⋅-+⋅-+⋅=⋅b ak j i k j i b a 75121213++=---=⨯(2)18)(63)2(-=⋅-=⋅-b a b a ,k j i b a b a 14210)(22++=⨯=⨯ (3)2123),cos(^=⋅⋅=b a b a b a 2、}2,2,0{},1,4,2{3221-=-=M M M Mk j i kj iM M M M a 4462201423221--=--=⨯= }1724,1724,1726{--±=±a a 即为所求单位向量。

《高等数学》第七章 空间解析几何与向量代数

《高等数学》第七章 空间解析几何与向量代数

首页
上页
返回
下页
结束
关于向量的投影定理(2)
两个向量的和在轴上的投影等于两个向量在 该轴上的投影之和. (可推广到有限多个)
Pr j(a1 a2 ) Pr ja1 Pr ja2 .
A a1 B a2
C
u
A
B
C
首页
上页
返回
下页
结束
关于向量的投影定理(3)
Pr
ju a
M 2M 3 (5 7)2 (2 1)2 (3 2)2 6
M1M3 (5 4)2 (2 3)2 (3 1)2 6
M 2M3 M1M3
M1
M3
即 M1M 2M3 为等腰三角形 .
M2
首页
上页
返回
下页
结束
2. 方向角与方向余弦
设有两非零向量
M B
o
A
中点公式:
B
x1
2
x2
,
y1
2
y2
,
z1 z2 2
M
首页
上页
返回
下页
结束
五、向量的模、方向角、投影
1. 向量的模与两点间的距离公式
设 r (x , y , z ), 作 OM r, 则有 r OM OP OQ OR
由勾股定理得
r OM
z R
解 a 4m 3n p


4(3i 5 j 8k ) 3(2i 4 j 7k )


(5i j 4k ) 13i 7 j 15k,
在x 轴上的投影为ax
13,

《高等数学》课件第7章 空间解析几何与向量代数

《高等数学》课件第7章 空间解析几何与向量代数
右手定则,即以右手握住z 轴,当右手的四个手指从 x轴正向以 角度转向 y 轴正向时,大拇指的指向就是z
2 轴的正向.

yOz面

xOy面
x
Ⅶ Ⅷ
z zOx面


•O
y
Ⅵ Ⅴ
二、空间两点间的距离公式
空间两点间的距离:P1( x1, y1, z1 )、P2( x2 , y2 , z2 )
z
P2
P1
ki j,
j i k, k j i , i k j.
(a ybz azby )i (azbx axbz ) j (axby a ybx )k
设 a ax i ay j az k , b bx i by j bz k , 则 ( ax i ay j az k ) (bx i by j bz k ) i j jk ki 0
(2) 结合律 ( a ) b a ( b ) ( a b )
向量积的坐标表达式

a
axi
ay j
azk,
b bxi by j bzk
ab
(a
x
i
a
y
j
az k
)
(bxi
by
j
bzk )
i i j j k k 0,
i j k,
jk i,
第 七 章 向空 量间 代解 数析 几 何 与
目录
第一节 空间直角坐标系 第二节 向量及其线性运算 第三节 向量的坐标 第四节 向量的数量积与向量积 第五节 平面及其方程 第六节 空间直线及其方程 第七节 常见曲面的方程及图形
第一节 空间直角坐标系
一、空间直角坐标系简介
三条垂直相交且具有相同长度单位的数轴,构成一 个空间直角坐标系,交点O称为坐标原点,这三条轴分别 叫做z 轴(横轴)、y 轴(纵轴)和x轴(竖轴).

第七章空间解析几何与向量代数

第七章空间解析几何与向量代数
2 2 2
x 2 11 ,
下页 返回
上页
例2、 设点P在x轴上, 且它到点P1 (0, 2, 3)的距离为 到点P2 (0, 1, 1)的距离的两倍, 求点P的坐标.
解:由点P在x轴上可设点P的坐标为( x, 0, 0),
2 x 11 , 则 PP1 (0 x ) ( 2 0) ( 3 0) 2 2 2 2 PP2 (0 x ) (1 0) ( 1 0) x 2 . PP1 2 PP2 ,
上页
下页
返回
二、 空间两点的距离公式 如图, 设M1 ( x1, y1, z1 )、M 2 ( x2, y2, z2 )为空间两点, z 在直角三角形M1 NM 2中, 有
M 1 M 2 M 1 N NM 2 在直角三角形M1 PN中, 有
M 1 N M 1 P PN , 2 2 2 2 M 1 M 2 M 1 P PN NM 2


x


上页
下页 返回
设M为空间一点, 过点M作三个平面分别垂直于 x轴、 y轴和z轴, 交点依次为P、 Q、 R, 它们是点M在x轴、 y 轴和z轴上的投影, 且有向线段的值 OP、 OQ、 OR对应 的实数为x、 y、 z. 4、 空间点的坐标: 上述x、 y、 z称为点M的坐标, z 记为M ( x, y, z ). 6、 卦限中点的坐标的符号 5、 特殊点的坐标 Ⅰ:+ + + R B Ⅱ:- + + O(0, 0, 0) P ( x, 0, 0) Ⅲ:- - + M C Q(0, y, 0) Ⅳ:+ - + y Ⅴ:+ + o Q R(0, 0, z) Ⅵ:- + A A( x, y, 0) x P Ⅶ:- - B(0, y, z) Ⅷ:+ - C ( x, 0, z)

第七章 空间解析几何与向量代数(完整资料).doc

第七章  空间解析几何与向量代数(完整资料).doc

【最新整理,下载后即可编辑】第七章空间解析几何与向量代数1.求点(2,-3,-1)关于:(1)各坐标面;(2)各坐标轴;(3)坐标原点的对称点.解答:(1)xOy面:()---,zOx面:()2,3,12,3,1-;2,3,1-,yOz面:()(2)x轴:()2,3,1,y轴:()2,3,1--;--,z轴:()2,3,1(3)()-2,3,1.所属章节:第七章第一节难度:一级2.求点(4,-3,5)到坐标原点和各坐标轴的距离.解答:点(4,-3,5)到坐标原点的距离为=点(4,-3,5)到x=点(4,-3,5)到y=点(4,-3,5)到z5=.所属章节:第七章第一节难度:一级3.把两点(1,1,1)和(1,2,0)间的线段分成两部分,使其比等于2:1,试求分点的坐标.解答:设分点坐标为(,,)x y z ,则由条件11121201x y z x y z ---===---,解得511,,33x y z ===,即所求分点坐标为511,,33⎛⎫⎪⎝⎭.所属章节:第七章第一节 难度:一级4.设立方体的一个顶点在原点,三条棱分别在三条坐标轴的正半轴上,已知棱长为a ,求各顶点的坐标. 解答:各顶点的坐标为:()()()()()()()()0,0,0,,0,0,0,,0,0,0,,,,,,,0,,0,,0,,.a a a a a a a a a a a a所属章节:第七章第一节 难度:一级5.在yOz 平面上求一点,使它与点A (3,1,2),点B (4,-2,-2)和点C (0,5,1)的距离相等.解答:设所求点为(0,,)P y z ,则由条件有PA PB PC ==,故==,解得1,2y z ==-.即所求点为(0,1,2)-. 所属章节:第七章第一节 难度:一级6.在z 轴上求一点,使它到点A (-4,1,7)和点B (3,5,-2)的距离相等.解答:设所求点为(0,0,)P z ,则由条件有PA PB =,故=解得149z =.即所求点为14(0,0,)9. 所属章节:第七章第一节 难度:一级7.已知向量a 和b 的夹角为60°,且5,8,==a b 试求+a b 和.-a b 解答:由于222((2cos 129θ+=+⋅+++=a b a b)a b)=a b a b ,代入已知条件,即可得+=a b又由于222((2cos 49θ-=-⋅-+-=a b a b)a b)=a b a b ,故7-=a b .所属章节:第七章第三节 难度:二级8.设向量a 和b 的夹角为2π3,且3,4,==a b 试求: (1)⋅a b(2)()()322-⋅+a b a b解答:(1)2cos 34cos 63θπ⋅⋅⋅=⨯⨯=-a b =a b ;(2)22(32)(2)34461-⋅+=-+⋅-a b a b a b a b =. 所属章节:第七章第三节 难度:二级9.设23,3,=+=-A a b B a b 其中2,1,==a b 向量a 和b 的夹角为π3,试求⋅A B 及Pr oj B A . 解答:2222(23)(3)637637cos 28θ⋅=+⋅-=-+⋅=-+⋅⋅=A B a b a b a b a b a b a b ;由于22222(3)(3)9696cos 31θ=⋅-⋅-=+-⋅=+-⋅⋅=B B B =a b a b a b a b a b a b ,所以Pr oj31B ⋅===A B A B . 所属章节:第七章第三节 难度:二级10.设2,,1,2,k =+=+==A a b B a b a b 且,⊥a b 问: (1)k 为何值时,;⊥A B(2)k 为何值时,A 与B 为邻边的平行四边形面积为6.解答:(1) 要使⊥A B ,则⋅=A B ,即22(2)()2(2)0k k k +⋅+=+++⋅=a b a b a b a b ,代入条件即240k +=,解得2k =-;(2)要使以A 与B 为邻边的平行四边形面积为6,即6⨯=A B ,代入条件即23k -=,解得1k =-或 5.k = 所属章节:第七章第四节 难度:二级11.已知向量a +3b 垂直于向量7a -5b ,向量a -4b 垂直于向量7a -2b ,试求向量a 与b 的夹角.解答:因为a +3b ⊥7a -5b ,a -4b ⊥7a -2b ,所以 (a +3b )⋅(7a -5b )=0, (a -4b )⋅(7a -2b )=0,即 7|a |2+16a ⋅b -15|b |2 =0, 7|a |2-30a ⋅b +8|b |2 =0, 由以上两式可得 b a b a ⋅==2||||,于是21||||) ,cos(^=⋅⋅=b a b a b a ,3) ,(^π=b a . 所属章节:第七章第三节 难度:二级12.设[],,2,=a b c 求:()()(),,.+++⎡⎤⎣⎦a b b c c a 解答:()()()[],,[()()]()()()2,,4+++=+⨯+⋅+=⨯+⨯⋅+==⎡⎤⎣⎦a b b c c a a b b c c a a b a c c a a b c .所属章节:第七章第四节 难度:二级13.设{}{}3,2,6,2,1,0,=-=-a b 试求下列各向量的坐标: (1);+a b (2)1;2-b (3)1.3+a b 解答:(1){}{}{}3,2,62,1,01,1,6+---a b =+=; (2){}1112,1,01,,0222⎧⎫----⎨⎬⎩⎭b ==;(3){}{}1113,2,62,1,01,,2333⎧⎫+-+-=-⎨⎬⎩⎭a b =. 所属章节:第七章第二节 难度:一级14.求向量=++a i k 的模以及它与坐标轴之间的夹角.解答:2==a ;与坐标轴的夹角余弦分别为1111cos ,cos 222αβγ======a a a , 故与坐标轴的夹角分别为°°°60,45 ,60αβγ===.所属章节:第七章第二节 难度:一级15.已知一向量的起点是A (2,-2,5),终点是B (-1,6,7),试求: (1)向量AB 在各坐标轴上的投影; (2)向量AB 的模和方向余弦; (3)AB 的单位向量. 解答:由于向量{}3,8,2AB =-,所以(1)向量AB 在各坐标轴上的投影为382-,,;(2)向量AB 的模(3)-=,方向余弦为cosαβγ===;(3)AB 的单位向量AB AB ⎧=⎨⎩. 所属章节:第七章第二节 难度:一级16.已知向量{}3,1,2-的起点坐标为(2,0,-5),求它的终点坐标.解答:终点坐标为()()()3,1,22,0,55,1,3-+-=--. 所属章节:第七章第二节 难度:一级17. 已知向量的终点为B (2,-1,7),它在坐标轴上的投影依次为4、-4和7,求该向量起点A 的坐标. 解答:起点A 的坐标()()()2,1,74,4,72,3,0---=-. 所属章节:第七章第二节 难度:一级18.已知向量{}{}1,1,5,2,3,5,==-a b 求与3-a b 同向的单位向量. 解答:由于{}{}{}31,1,532,3,55,10,10-=--=--a b ,单位化,与3-a b 同向的单位向量为{}311225,10,10,,315333-⎧⎫=--=--⎨⎬-⎩⎭a b a b . 所属章节:第七章第二节 难度:一级19.设向量{}{},5,1,3,,,l l m =-=a b 且//a b ,试求l 与m 的值. (题目与解答不统一)如果题目中向量为{}{},5,1,3,1,l m =-=a b ,则答案为115,.5l m ==-即原参考答案,下面按原题解答. 参考答案:115,.5l m ==-解答:由于//a b ,所以513l l m-==,解得l m ==或5l m ==.所属章节:第七章第二节 难度:一级20.已知向量32,23,=++=--a i j k b i j k 试求⋅a b 与.⨯a b 解答:321(3)2(1)1⋅=⨯+⨯-+⨯-=a b ;{}3125,7,11231⨯==---ij ka b .所属章节:第七章第四节 难度:一级21.已知()()()1,2,34,4,32,4,3A B C ---、、和()8,6,6D ,试求向量AB 在向量CD 上的投影.解答:{}3,2,6AB =--,{}6,2,3CD =,4Pr oj 7CD AB CD AB CD⋅==-. 所属章节:第七章第四节 难度:一级22.设直线L 通过点(-2,1,3)和(0,-1,2),求点(10,5,10)到直线L 的距离.解答:设(2,1,3),(0,1,2),(10,5,10)A B P --,点P 到直线L 的距离为d ,则{}{}{}12,4,7,10,6,8,2,2,1PA PB AB =---=---=--利用12PAB S PA PB ∆=⨯,12PAB S AB d ∆=⨯,解得d =所属章节:第七章第四节 难度:二级23.求点(1,-3,2)关于点(-1,2,1)的对称点. 解答:设(1,3,2),(1,2,1)A B --,所求点为(,,)C x y z ,由题意知AB BC →→=,即{}{}2,5,11,2,1x y z --=+--,解得(3,7,0)C -. 所属章节:第七章第四节 难度:一级24.求以向量25,33,25=+=+=-a i j b j k c j k 为相邻三棱的平行六面体的体积.解答:由于25[,,]03342025==--a b c ,所以所求六面体的体积为[,,]42V ==a b c .所属章节:第七章第四节 难度:三级25.试证()()()2,1,2,1,2,1,2,3,0A B C --和()5,0,6D -四点共面. 解答:由题意{}{}{}1,3,3,0,4,2,3,1,4AB AC AD =-==-,由于133[,,]0420314AB AC AD -==-,所以,,,A B C D 四点共面. 所属章节:第七章第四节 难度:三级26.确定球面22224470x y z x y z ++-+--=的球心和半径. 参考答案:球心()1,2,2, 4.R -=(本题参考答案有误) 解答:将原方程22224470x y z x y z ++-+--=配方,得222(1)(2)(2)9x y z -+++-=,故球心为(1,2,2)-,半径为3R =.所属章节:第七章第五节 难度:一级27.一球面过坐标原点和()()()2,0,01,1,01,0,1A B C -、、三点,试确定该球面的方程. 参考答案:()2221 1.x y z -++=解答:设球面的方程为2222000()()()x x y y z z R -+-+-=,将它所经过的四个点的坐标代入,即可解得0001,0,1x y z R ====,即球面方程为()22211x y z -++=. 所属章节:第七章第五节 难度:二级28.试求与()()122,1,34,1,2M M --、距离相等的点的轨迹方程. 参考答案:44107.x y z +-=解答:设动点坐标为(,,)P x y z ,则由条件有12PM PM =,故有222222(2)(1)(3)(4)(1)(2)x y z x y z -+++-=-+-++,化简得44107x y z +-=. 所属章节:第七章第五节 难度:一级29.指出下列方程所表示的曲面:(1)22111;222x y ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭(2)221;49x y -=(3)221;49y z += (4)22z y =+解答:(1)母线平行于z 轴的圆柱面; (2)母线平行于z 轴的双曲柱面; (3)母线平行于x 轴的椭圆柱面; (4)母线平行于x 轴的抛物柱面. 所属章节:第七章第五节 难度:一级30.说明下列旋转曲面是如何形成的并写出其名称:(1)2221;4y x z +-=(2)224;x y z +=(3)2221;169z x y +-= (4)2224x y z +=解答:(1)旋转单叶双曲面,它是由双曲线221,40y x z ⎧-=⎪⎨⎪=⎩或221,40y z x ⎧-=⎪⎨⎪=⎩绕y 轴旋转而成;(2)旋转抛物面,它由抛物线24,0x z y ⎧=⎨=⎩或24,0y z x ⎧=⎨=⎩绕z 轴旋转而成;(3)旋转双叶双曲面,它是由双曲线221,1690z x y ⎧-=⎪⎨⎪=⎩或221,1690z y x ⎧-=⎪⎨⎪=⎩绕z 轴旋转而成;(4)圆锥面,它由相交的两条直线224,0x z y ⎧=⎨=⎩或224,y z x ⎧=⎨=⎩绕z 轴旋转而成.所属章节:第七章第五节 难度:一级31.建立下列旋转曲面的方程:(1)曲线25:,0z xL y ⎧=⎨=⎩绕x 轴旋转一周所生成的旋转曲面;(2)yOz 平面上的椭圆22149y z +=绕z 轴旋转一周所生成的曲面;(3)xOy 平面上的双曲线224936x y -=绕y 轴和x 轴旋转一周所生成的曲面; (4)直线2,0y xz =⎧⎨=⎩绕x 轴旋转一周所生成的曲面.解答:(1)225;y z x +=(2)2221;449x y z ++=(3)绕y 轴:22249436,x y z -+= 绕x 轴:22249936;x y z --= (4)22240.x y z --= 所属章节:第七章第五节 难度:一级32.指出下列方程所表示的曲线:(1)22225.3;x y z x ⎧++=⎨=⎩(2)()()2221425,10;x y z y ⎧-+++=⎪⎨+=⎪⎩(3)221;9420y z x ⎧-=⎪⎨⎪-=⎩(4)24;1x yz ⎧=⎨=⎩(5)2221;169420.x y z x ⎧++=⎪⎨⎪-=⎩解答:(1)平面x =3上的圆; (2)平面y =-1上的圆;(3)平面x =2上的双曲线; (4)平面z =1上的抛物线; (5)平面x =2上的椭圆. 所属章节:第七章第五节 难度:一级33.求曲线22236,2x y z z ⎧++=⎨=⎩在xOy 平面上的投影曲线.(原参考答案有误)解答:在所给方程中消去z ,得2212x y +=,加上0z =,即得22320x y z ⎧+=⎨=⎩. 所属章节:第七章第五节 难度:一级34.求曲线22,1z x y x y z ⎧=+⎨++=⎩在xOy 平面上的投影曲线.解答:在所给方程中消去z ,得22113222x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,加上0z =,即得221132220x y z ⎧⎛⎫⎛⎫+++=⎪ ⎪ ⎪⎨⎝⎭⎝⎭⎪=⎩. 所属章节:第七章第五节难度:一级35.求下列曲线在xOy 平面上的投影:(1)22222241,;x y z x y z ⎧++=⎪⎨=+⎪⎩(2)222224, 1.x y x y z ⎧+=⎪⎨-+=-⎪⎩解答:(1)在所给方程中消去z ,得22531x y -=,加上0z =,即得22531x y z ⎧-=⎨=⎩; (2)在所给方程中消去z ,得224x y +=,加上0z =,另外由2221x y z -+=-知2221y x z =++,故1y ≥,于是投影曲线为224x y z ⎧+=⎨=⎩ 且1y ≥.所属章节:第七章第五节 难度:二级36.求曲线()2222221,11x y z x y z ⎧++=⎪⎨++-=⎪⎩在各坐标面上的投影:? 解答:xOy面:223,,40x y z ⎧+=⎪⎨⎪=⎩yOz 面:210,z x -=⎧⎨=⎩且y ≤xOz 面:210,0z y -=⎧⎨=⎩且2x ≤所属章节:第七章第五节 难度:二级37.求下列各平面的方程:(1)平行与(于)Oy轴,且通过点(1,-5,1)和(3,2,-2);(2)通过Ox轴和点(4,-3,-1);(3)平行于xOz平面,且通过点(3,2,-7).解答:(1)由于所求平面平行于Oy轴,故可设方程为+-=;++=,将另外两点坐标代入即得3250x zAx Cz D(2)由于所求平面通过Ox轴,故可设方程为0+=,By Cz 将另一点坐标代入即得30-=;y z(3)由于所求平面平行于xOz平面,故可设方程为y=.-,故2By D+=,又通过点(3,2,7)所属章节:第七章第六节难度:一级38. 设点P(3,-6,2)为原点到一平面的垂足,求该平面的方程.解答:法向量为{}n OP→3,6,2==-,所求平面的方程为x y z--++-=,即3(3)6(6)2(2)0-+-=.x y z362490所属章节:第七章第六节难度:一级39.求通过两点(8,-3,1)和(4,7,2),且垂直于平面+--=的平面方程.35210x y z解答:由条件可设法向量为{}{}{}n=-⨯-=---,4,10,13,5,115,1,50由点法式方程得++-=.15501670x y z所属章节:第七章第六节难度:二级40.求通过点()1,2,1P且垂直于两平面0y z+=的平面方+=和50x y程.解答:由条件可设法向量为{}{}{}1,1,00,5,11,1,5n=⨯=-,由点法式方程得-+-=.x y z540所属章节:第七章第六节难度:二级41.求一个通过点()3,2,1-且平行y轴的平面方程.-和()1,5,1解答:由条件可设法向量为{}{}{}2,7,20,1,02,0,2n =-⨯=,由点法式方程得20x z +-=.所属章节:第七章第六节 难度:二级42.求a 和b 的值,使:(1)平面2350x ay z ++-=与620bx y z --+=平行; (2)平面3530x y az -+-=与3250x y z +++=垂直. 解答:(1)要使平面2350x ay z ++-=与620bx y z --+=平行,则两个法向量平行,故有2361a b ==--,解得218,3a b ==-; (2)要使平面3530x y az -+-=与3250x y z +++=垂直,必须两个法向量垂直,故有31(5)320a ⨯+-⨯+⨯=,解得6a =. 所属章节:第七章第六节 难度:一级43.求过点(2,-3,8)且平行于直线243325x y z --+==-的直线方程.解答:由于两直线平行,方向向量相同,故得所求直线方程238325x y z -+-==-. 所属章节:第七章第七节 难度:一级44.求过点(4,-2,3)且垂直于平面2310x y z +-+=的直线方程.解答:由于所求直线垂直于已知平面,它的方向向量与该平面的法向量相同,即{}1,2,3s =-,于是所求方程为423123x y z -+-==-. 所属章节:第七章第七节 难度:一级45.求过点(-1,2,1)且平行于直线210,210x y z x y z +--=⎧⎨+-+=⎩的直线方程.解答:已知直线的方向向量为{}{}{}1,1,21,2,13,1,1s =-⨯-=-,所求直线方向向量与它相同,于是所求直线方程为121311x y z +--==-. 所属章节:第七章第七节 难度:二级46.试求下列直线的标准方程:(1)240,3290;x y z x y z -+=⎧⎨--+=⎩(2)350;280.x z y z -+=⎧⎨-+=⎩解答:(1)令0x =,代入方程,求得直线上一点坐标为(0,1,4),方向向量为{}{}{}2,4,13,1,29,7,10s =-⨯--=, 于是标准方程为14;9710x y z --== (2)令0z =,代入方程,求得直线上一点坐标为(5,8,0)--,方向向量为{}{}{}1,0,30,1,23,2,1s =-⨯-=,于是标准方程为58.321x y z++== 所属章节:第七章第七节 难度:二级47.确定下列直线与平面的位置关系: (1)34273x y z++==-与42230;x y z ---=(2)327x y z ==--与641490.x y z -+-= 解答:(1)直线的方向向量{}2,7,3s =-,平面的法向量{}4,2,2n =--,易证s n ⊥,故所给直线与平面平行;(2)直线的方向向量{}3,2,7s =--,平面的法向量{}6,4,14n =-,易证sn ,故所给直线与平面垂直.所属章节:第七章第七节 难度:一级48.确定下列直线间的平行或垂直关系:(1)27,27x y z x y z +-=⎧⎨-++=⎩与3638,20.x y z x y z +-=⎧⎨--=⎩(2)21,21x y y z +=⎧⎨-=⎩与1,2 3.x y x z -=⎧⎨-=⎩解答:(1)直线27,27x y z x y z +-=⎧⎨-++=⎩的方向向量为{}11213,1,5211i j ks =-=-,直线3638,20.x y z x y z +-=⎧⎨--=⎩的方向向量为{}23639,3,15211i j ks =-=-----,由于它们平行,所以两条直线平行; (2)直线21,21x y y z +=⎧⎨-=⎩的方向向量为{}11202,1,2021ij ks ==--,直线1,2 3.x y x z -=⎧⎨-=⎩的方向向量为{}21102,2,1102ijk s =-=-,由于它们垂直,所以两条直线垂直. 所属章节:第七章第七节 难度:二级49.求直线221312x y z +-+==与平面23380x y z ++-=的交点和交角. 参考答案:()1,1,1,arcsin 154(参考答案有误?)解答:将直线方程221312x y z +-+==改写成参数形式32221x t y t z t =-⎧⎪=-+⎨⎪=-⎩,代入所给平面方程23380x y z ++-=,解得1t =,再代回直线方程,即得交点(1,1,1);由于直线的方向向量为{}3,1,2s =,平面的法向量{}2,3,3n =,所以交角的正弦为sin 15414s n s nϕ⋅===⋅⋅,于是交角为arcsin154.所属章节:第七章第七节 难度:二级50.求点(3,-1,-1)在平面23300x y z ++-=上的投影. 解答:过已知点()3,1,1--向已知平面作垂线311123x y z -++==,参数形式为32131x t y t z t =+⎧⎪=-⎨⎪=-⎩,代入已知平面解得参数167t =,于是交点也即所求投影点为372541,,777⎛⎫⎪⎝⎭. 所属章节:第七章第七节 难度:二级51.求点(2,3,1)在直线722123x y z +++==上的投影.解答:过已知点作垂直于已知直线的平面(2)2(1)3(1)0x y z -+-+-=,再将已知直线的参数方程72232x t y t z t =-⎧⎪=-⎨⎪=-⎩代入,即得参数2t =,两者交点即所求投影点为(5,2,4)-. 所属章节:第七章第七节 难度:二级52.在平面1x y z ++=上求作一直线,使它与直线1,1y z ==-垂直相交.解答:由于所求直线与直线1,1y z ==-垂直,故可作平面平行与该已知直线,得平面方程0x x =,联立已知平面方程1x y z ++=,得一条直线01x x x y z =⎧⎨++=⎩,又由于所求直线与直线1,1y z ==-相交,将1,1y z ==-代入直线方程01x x x y z =⎧⎨++=⎩,可得01x =,于是所求直线方程为11x x y z =⎧⎨++=⎩,即111011x y z --+==-. 所属章节:第七章第七节 难度:三级53.通过点(-1,0,4)作一直线,使它平行于平面34100,x y z -+-=且与直线13312x y z +-== 相交.解答:过点(-1,0,4)作一平面,使它平行于平面34100x y z -+-=,得3410x y z -+-=, 由于所求直线与已知直线13312x y z+-== 相交,将已知直线方程化为参数方程3132x t y t z t =-⎧⎪=+⎨⎪=⎩,代入平面方程3410x y z -+-=,得交点413732(,,)777,此为所求直线上另一点,过两点作出直线1448374x y z +-==,即为所求. 所属章节:第七章第七节 难度:三级54.求两异面直线11112x y z +-==和12134x y z +-==之间的距离. 解答:分别在两条已知直线上任取一点,如取(1,0,1),(0,1,2)P Q --,连接两点得向量{}1,1,1PQ →=-,作与两条已知直线都垂直的向量{}{}{}1,1,21,3,42,2,2s =⨯=--,则所求距离为Pr 312s PQ s d oj PQ s→→⋅====. 所属章节:第七章第七节 难度:三级55.一直线通过点(1,2,1)并与2xy z ==-相交,且垂直于直线11,321x y z -+==求它的方程. 解答:过已知点(1,2,1)P 作垂直于已知直线11321x y z -+==的平面,得:3280x y z π++-=,它与已知直线2x y z ==-交于点1688(,,)777Q -,连接,P Q ,即得所求直线121325x y z ---==-. 所属章节:第七章第七节 难度:二级56.求通过直线0,20x y x y z +=⎧⎨-+-=⎩且平行于直线x y z ==的平面方程.解答:过直线0,20x y x y z +=⎧⎨-+-=⎩的平面束为(2)0x y x y z λ++-+-=,即(1)(1)20x y z λλλλ++-+-=,由于它与直线x y z ==平行,故(1)(1)0λλλ++-+=,解得2λ=-,于是所求平面方程为3240x y z -+-=.所属章节:第七章第七节 难度:二级57.求通过直线240,3290x y z x y z -+=⎧⎨---=⎩且垂直于平面41x y z -+=的平面方程.解答:过直线2403290x y z x y z -+=⎧⎨---=⎩的平面束为24(329)0x y z x y z λ-++---=,即(23)(4)(12)90x y z λλλλ++--+--=,由于它垂直于平面41x y z -+=,故两者的法向量平行,解得1311λ=-,代回平面束方程,即得所求平面方程1731371170x y z +--=. 所属章节:第七章第七节 难度:二级58.过两平面0x y z +-=和20x y z ++=的交线,作两个互相垂直的平面,且使其中一个平面通过点A (0,1,-1).解答:过两平面0x y z +-=和20x y z ++=的交线的平面束方程为(2)0x y z x y z λ+-+++=,即(1)(12)(1)0x y z λλλ++++-+=,由于其中一个平面经过点(0,1,1)A -,将此点坐标代入平面束方程,得2λ=-,得到一个平面330x y z ++=,由于平面束中的另一个平面与上面平面垂直,利用法向量垂直,解得98110x y z +-=. 所属章节:第七章第七节 难度:三级。

第七章空间解析几何与向量代数-PPT精品文档

第七章空间解析几何与向量代数-PPT精品文档

设 AB , AD 例1 在平行四边形ABCD中, . a b 试用 a 和 b表示向量 MA 、MB 、 MC 和 MD ,
这里M是平行四边形对角线的角交点. D 解 由于平行四边形的对角线 互相平分 , 所以 C
M b a b AC 2 AM , 即 ( a b ) 2 AM , 于是 1 A B MA (ab). a 2 1 因为 MC (ab). MA , 所以 MC 1 2 又因 a b BD 2 MD , 所以MD (ba). 1 2 由于 MB 所以 MB (ab). MD ,
兰州交通大学数理与软件工程学院

yoz 面
z
zox 面
Ⅱ Ⅳ
xoy 面
Ⅶ Ⅷ
o
y Ⅰ
Ⅵ Ⅴ
x
空间直角坐标系共有八个卦限
兰州交通大学数理与软件工程学院
向量 r的坐标分解式: r OM x i y j z k 向径: 以原点为起点,M为终点的向量,例如 r.
空间的点 ,y ,z) 有序数组 (x 特殊点的表示: 坐标轴上的点 P , Q , R , 坐标面上的点 A , B , C , O ( 0 , 0 , 0 )
兰州交通大学数理与软件工程学院
2
设 e a 表示与非零向量 a同方向的单位向量,按照向量与数 的乘积的规定, a a |a |e ea . a |a |
上式表明:一个非零向量除以它的模的结果是一个与原向 量同方向的单位向量.
两个向量的平行关系 0 定理 设向量 a ,那么,向量 b 平行于 的充分必 a 要条件是:存在唯一的实数 ,使 b a.

(完整版)空间解析几何与向量代数习题与答案.doc

(完整版)空间解析几何与向量代数习题与答案.doc

第七章空间解析几何与向量代数A一、1、平行于向量 a (6,7, 6) 的单位向量为______________.2、设已知两点M 1 (4, 2 ,1)和M 2(3,0,2) ,计算向量M1M2 的模,方向余弦和方向角.3、设m 3i 5j 8k ,n 2i 4j 7k , p 5i j 4k ,求向量 a 4m 3n p 在x 轴上的投影,及在y 轴上的分向量.二、1、设a3i j 2k ,b i 2j k ,求(1) a b及 a b;(2)( 2a) 3b及 a 2b (3) a、b的.夹角的余弦(3,1,3) ,求与 M1M 2,M 2 M 3 同时垂直的单位向量.2、知M 1(1, 1,2), M 2 (3,3,1), M3.3、设a (3,5, 2), b ( 2,1,4) ,问与满足 _________时, a b z轴三、1、以点(1,3,-2) 为球心,且通过坐标原点的球面方程为__________________.2、方程x2 y 2 z 2 2x 4 y 2z 0 表示______________曲面.3、1) 将xOy 坐标面上的y2 2x 绕x 轴旋转一周,生成的曲面方程为_______________ ,曲面名称为___________________.2) 将xOy 坐标面上的x2 y 2 2x 绕x 轴旋转一周,生成的曲面方程_____________,曲面名称为___________________.3) 将xOy 坐标面上的4x2 9 y 2 36 绕x 轴及y 轴旋转一周,生成的曲面方程为 _____________,曲面名称为_____________________.4)在平面解析几何中y x2 表示 ____________ 图形。

在空间解析几何中y x 2表示______________图形.5)画出下列方程所表示的曲面(1) z2 4( x2 y 2 )(2) z 4( x2 y 2 )四、x 2 y 21在平面解析几何中表示1、指出方程组4 9 ____________图形,在空间解y 3析几何中表示 ______________图形 .2、求球面 x 2y 2z 29 与平面x 的交线在 xOy 面上的投影方程 .z 13、求上半球 0za 2x 2 y 2 与圆柱体 x 2 y 2 ax (a 0) 的公共部分在xOy 面及 xOz 面上的投影 . 五、1、求过点 (3,0,-1) 且与平面 3x-7y+5z-12=0 平行的平面方程 .2、求过点 (1,1,-1),且平行于向量 a=(2,1,1)和 b=(1,-1,0) 的平面方程 .3、求平行于 xOz 面且过点 (2,-5,3) 的平面方程 .4、求平行于 x 轴且过两点 (4,0,-2) 和(5,1,7) 的平面方程 .六、1、求过点 (1,2,3)且平行于直线xy 3 z 1的直线方程 .21 52、求过点 (0,2,4)且与两平面 x2z 1 , y 3z 2 平行的直线方程 .3、求过点 (2,0,-3) 且与直线4、求过点 (3,1,-2)且通过直线x2 y 4z 7 03x 5 y 2z 1 垂直的平面方程 .x 4 y 3 z的平面方程 .521x y 3z 0 y z 1 0 的夹角 .5、求直线y z与平面 xx 06、求下列直线与直线、直线与平面的位置关系1) 直线2) 直线x 2y y z 7 与直线 x 1y 3 z ;2x z 7 2 1 1x2 y 2 z 3和平面 x+y+z=3.3 14 7、求点 (3,-1,2)x y z 1 0 的距离 .到直线2x y z 4B1、已知 a b c 0 ( a, b, c 为非零矢量),试证 : a b b c c a .2、 a b3, a b {1,1,1}, 求 (a, b) .3、已知和为两非零向量,问取何值时,向量模| a tb |最小?并证明此时 b (a tb) .4、求单位向量,使n a 且 n x 轴,其中 a (3,6,8) .5、求过轴,且与平面 2xy5z 0 的夹角为的平面方程 .36、求过点 M 1 (4,1,2) , M 2 (3,5, 1) ,且垂直于 6x 2y 3z 7 0的平面 .7、求过直线x 2y z 1 0x y z平行的平面 .2x y z 2 ,且与直线:1 128、求在平面 : xy z 1上,且与直线 y 1L :垂直相交的直线方程 .z19、设质量为 100kg 的物体从空间点 M 1 (3,1,8) ,移动到点 M 2 (1,4,2) ,计算重力所做的功(长度单位为) .10、求曲线y 2 z 2 2x在 xoy 坐标面上的投影曲线的方程,并指出原曲线是什么曲z 3 线?11、已知 OA i 3k , OB j 3k ,求 OAB 的面积12、 . 求直线2x 4 y z 0y z 1上的投影直线方程 .3x y 2z 9在平面 4xC1、设向量 a, b, c 有相同起点 , 且 a bc 0 ,其中0 , , ,不全为零 ,证明 : a, b,c 终点共线 .2、求过点 M 0 (1,2, 1) ,且与直线:x2 y 12相交成 角的直线方程 .2 1 1 33、过 ( 1,0,4) 且平行于平面 3x 4 yz 10 0 又与直线x 1y 3z相交的直线方112程 .4、求两直线:x1 y z与直线:xyz 2的最短距离 .0 1163 05、柱面的准线是xoy 面上的圆周(中心在原点,半径为1),母线平行于向量 g {1,1,1} ,求此柱面方程 .6、设向量 a,b 非零, b2, (a,b),求 lima xbax.3xx 2 y 7、求直线 L :z1( y 1) 绕 y 轴旋转一周所围成曲面方程 .2第七章 空间解析几何与向量代数习题答案A一、 1、6,7,611 11 112、M 1M 2=2, cos1, cos2,cos1 ,2 ,3 ,3222343、在 x 轴上的投影为 13,在 y 轴上的分量为 7j 二、 1、 1) a b 3 1 ( 1) 2 ( 2) ( 1) 3ij k a b 3125ij 7k1 21( 2) ( 2a) 3b6(a b) 18 , a 2b2( ab) 10i2 j 14k^ a b 3( 3) cos(a, b)a b2 212、 M 1M 2{ 2,4, 1}, M 2M 3{ 0, 2,2}i j ka M 1M 2M 2M 3 2 41 6i 4 j 4k0 2 2a 6, 4, 4a{17 17 }2 2 2 17即为所求单位向量。

高等数学(同济五版)第七章-空间解析几何与向量代数-练习题册

高等数学(同济五版)第七章-空间解析几何与向量代数-练习题册

第七章 空 间 解 析 几 何第 一 节 作 业一、选择题(单选):1. 点M(2,-3,1)关于xoy 平面的对称点是:(A )(-2,3,1); (B )(-2,-3,-1); (C )(2,-3,-1); (D )(-2,-3,1) 答:( ) 2. 点M(4,-3,5)到x 轴距离为:(A ).54)(;54)(;5)3()(;5)3(4222222222+++-+-+D C B答:( ) 二、在yoz 面上求与A (3,1,2),B(4,-2,-2)和C(0,5,1)等距离的点。

第 二 节 作 业设.32,,.2,v u c b a c b a v c b a u ρρρρρρρρρρρρρ-+-=++=表示试用第 三 节 作 业一、选择题(单选): 已知两点:),0,3,1()2,2,2(2121的三个方向余弦为则和M M M M.22,21,21)(.22,21,21)(;22,21,21)(;22,21,21)(-------D C B A 答:( ) 二、试解下列各题:1. 一向量的终点为B (2,-1,7),它在x 轴,y 轴,z 轴上的投影依次为4,-4,4,求这向量的起点A 的坐标。

{}.6,7,6.3.34.45,42,353.2的单位向量求平行于向量轴上的分向量上的投影及在轴在求向量设-=-+=-+=-+=++=a y x p n m a k j i p k j i n k j i m ρρρρρρρρρρρρρρρρρ第 四 节 作 业一、选择题(单选):)()()()(:.1D C B A b a ρρρρρρρρρρ上的投影为在向量 答:( ).//)(;)(;)(;//)(:0,.2的必要但不充分条件的充要条件的充要条件的充要条件是则为非零向量与设b a D b a C b a B b a A b a b a ρρρρρρρρρρρρ=⊥=⋅ 答:( ).6321)(;14321)(;14321)(;6321)(:,321,,.3222222=++=++=++=++++====D C B A c b a s c b a 的长度为则两两垂直向量ρρρρρρρ答:( )二、试解下列各题:{}{}.,),3,1,3()1,3,3(),2,1,1(.4.,,4,1,2,2,5,3.3.,5,4,3,,2,85,3),(.13221321321321求与和已知的关系与求轴垂直与设求向量的数量积分别为与三向量设设M M M M M M M z b a b a x k j a k i a j i a k x j x i x x b a -+=-=+=+=+=++=-+===μλμλπρρρρρρρρρρρρρρρρρρρρ.,3,3.7.)()()(,2,3,32.6.,0,,.5的面积求已知和求已知求为单位向量且满足已知OAB k j k i c b a c b b a j i c k j i b k j i a a c c b b a c b a c b a ∆+=+=⋅⨯+⨯+-=+-=+-=⋅+⋅+⋅=++ρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρ第 五 节 作 业选择题(单选):1. 在xoy 面上的曲线4x 2-9y 2=36绕x 轴旋转一周,所得曲面方程为:(A )4(x 2+z 2)-9y 2=36; (B) 4(x 2+z 2)-9(y 2+z 2)=36 (C )4X 2-9(y 2+z 2)=36; (D) 4x 2-9y 2=36.答:( )2. 方程y 2+z 2-4x+8=0表示:(A )单叶双曲面; (B )双叶双曲面; (C )锥面; (D )旋转抛物面。

高等数学第7章 向量代数与空间解析几何

高等数学第7章 向量代数与空间解析几何

30
31
32
7.2.4 向量线性运算的坐标表示
33
34
35
36
7.2.5 向量数量积的坐标表达式 设有两个向量
37
38
39
40
41
42
43
44
习题7.2 A组 1.在空间直角坐标系中,指出下列各点在哪个卦 限.A(1,-2,3),B(2,3,-4),C(2,-3,-4), D( -2,-3,1)。 2.求点p( -3,2,-1)关于坐标面与坐标轴对称点 的坐标。 3.求点A( -4,3,5)在坐标面与坐标轴上的投影 点的坐标。
21
22
23
7.2 空间直角坐标系与向量的坐标表示
7.2.1 空间直角坐标系 在空间中任意选定一点O,过O点作三条相互垂直 且具有相同单位长度的数轴,分别称为x轴、y轴和z轴.x 轴、y轴和z轴要满足右手定则,即右手握住z轴,大拇 指指向z轴的正向,其余四个手指从x轴的正方向。
24
25
7.2.2 向量的坐标表示 设x轴、y轴、z轴正向的单位向量依次为i,j,k,如 图7.17所示。
第7章 向量代数与空间解析几何
空间解析几何是通过点与坐标的对应,把抽象的数 与空间的点统一起来,从而使得人们可以用代数的方法 研究几何问题,也可以用几何的方法解决代数问题.本章 首先介绍向量及其代数运算,然后以向量为工具研究空 间的直线与平面,最后讨论空间曲面与曲线的一般方程 和特点.
1
7.1 向量及其运算
12
13
(6)向量的数量积 1)数量积的概念在物理学中,如果物体受到恒力F 的作用,沿直线发生的位移s,设力F 与位移s的夹角为 θ,则力F对物体所做的功为 W =|F|·|s|·cosθ

高等数学第七章 向量代数与空间解析几何

高等数学第七章 向量代数与空间解析几何

第七章向量代数与空间解析几何空间解析几何是多元函数微积分学必备的基础知识.本章首先建立空间直角坐标系,然后引进有广泛应用的向量代数,以它为工具,讨论空间的平面和直线,最后介绍空间曲面和空间曲线的部分内容.第一节空间直角坐标系平面解析几何是我们已经熟悉的,所谓解析几何就是用解析的,或者说是代数的方法来研究几何问题.坐标法把代数与几何结合起来.代数运算的基本对象是数,几何图形的基本元素是点.正如我们在平面解析几何中所见到的那样,通过建立平面直角坐标系使几何中的点与代数的有序数之间建立一一对应关系.在此基础上,引入运动的观点,使平面曲线和方程对应,从而使我们能够运用代数方法去研究几何问题.同样,要运用代数的方法去研究空间的图形——曲面和空间曲线,就必须建立空间内点与数组之间的对应关系.一、空间直角坐标系空间直角坐标系是平面直角坐标系的推广.过空间一定点O,作三条两两互相垂直的数轴,它们都以O为原点.这三条数轴分别叫做x轴(横轴)、y轴(纵轴)、z轴(竖轴),统称坐标轴.它们的正方向按右手法则确定,即以右手握住z轴,右手的四个手指指向x轴的正向以π2角度转向y轴的正向时,大拇指的指向就是z轴的正向(图7-1),这样的三条坐标轴就组成了一空间直角坐标系Oxyz,点O叫做坐标原点.图7-1三条坐标轴两两分别确定一个平面,这样定出的三个相互垂直的平面:xOy,yOz,zOx,统称为坐标面.三个坐标面把空间分成八个部分,称为八个卦限,上半空间(z>0)中,从含有x 轴、y轴、z轴正半轴的那个卦限数起,按逆时针方向分别叫做Ⅰ,Ⅱ,Ⅲ,Ⅳ卦限,下半空间(z<0)中,与Ⅰ,Ⅱ,Ⅲ,Ⅳ四个卦限依次对应地叫做Ⅴ,Ⅵ,Ⅶ,Ⅷ卦限(图7-2).图7-2确定了空间直角坐标系后,就可以建立起空间点与数组之间的对应关系.设M为空间的一点,过点M作三个平面分别垂直于三条坐标轴,它们与x轴、y轴、z 轴的交点依次为P、Q、R(图7-3).这三点在x轴、y轴、z轴上的坐标依次为x,y,z.这样,空间的一点M就惟一地确定了一个有序数组(x,y,z),它称为点M的直角坐标,并依次把x,y和z叫做点M的横坐标,纵坐标和竖坐标.坐标为(x,y,z)的点M通常记为M(x,y,z).图7-3反过来,给定了一有序数组(x,y,z),我们可以在x轴上取坐标为x的点P,在y轴上取坐标为y的点Q,在z轴上取坐标为z的点R,然后通过P、Q与R分别作x轴,y轴与z 轴的垂直平面,这三个平面的交点M就是具有坐标(x,y,z)的点(图7-3).从而对应于一有序数组(x,y,z),必有空间的一个确定的点M.这样,就建立了空间的点M和有序数组(x,y,z)之间的一一对应关系.如图7-3所示x轴,y轴和z轴上的点的坐标分别为P(x,0,0),Q(0,y,0),R(0,0,z);xOy面,yOz面和zOx面上的点的坐标分别为A(x,y,0),B(0,y,z),C(x,0,z);坐标原点O的坐标为O(0,0,0).它们各具有一定的特征,应注意区分.二、空间两点间的距离设M1(x1,y1,z1)、M2(x2,y2,z2)为空间两点,为了用两点的坐标来表达它们间的距离d,我们过M1,M2各作三个分别垂直于三条坐标轴的平面.这六个平面围成一个以M1,M2为对角线的长方体(图7-4).根据勾股定理,有图7-4|M 1M 2|2=|M 1N |2+|NM 2|2=|M 1P |2+|M 1Q |2+|M 1R |2.由于|M 1P |=|P 1P 2|=|x 2-x 1|,|M 1Q |=|Q 1Q 2|=|y 2-y 1|,|M 1R |=|R 1R 2|=|z 2-z 1|,所以d =|M 1M 2|=212212212)()()(z z y y x x -+-+-,这就是两点间的距离公式.特别地,点M (x,y,z )与坐标原点O (0,0,0)的距离为d =|OM |=222z y x ++。

最新7章空间解析几何与向量代数汇总

最新7章空间解析几何与向量代数汇总

7章空间解析几何与向量代数第七章空间解析几何与向量代数教学目的:1、理解空间直角坐标系,理解向量的概念及其表示。

2、掌握向量的运算(线性运算、数量积、向量积、混合积),掌握两个向量垂直和平行的条件。

3、理解单位向量、方向数与方向余弦、向量的坐标表达式,熟练掌握用坐标表达式进行向量运算的方法。

4、掌握平面方程和直线方程及其求法。

5、会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题。

6、会求点到直线以及点到平面的距离。

7、理解曲面方程的概念,了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程。

8、了解空间曲线的参数方程和一般方程。

9、了解空间曲线在坐标平面上的投影,并会求其方程。

教学重点:1、向量的线性运算、数量积、向量积的概念、向量运算及坐标运算;2、两个向量垂直和平行的条件;3、平面方程和直线方程;仅供学习与交流,如有侵权请联系网站删除谢谢24、平面与平面、平面与直线、直线与直线之间的相互位置关系的判定条件;5、点到直线以及点到平面的距离;6、常用二次曲面的方程及其图形;7、旋转曲面及母线平行于坐标轴的柱面方程;8、空间曲线的参数方程和一般方程。

教学难点:1、向量积的向量运算及坐标运算;2、平面方程和直线方程及其求法;3、点到直线的距离;4、二次曲面图形;5、旋转曲面的方程;§7. 1 向量及其线性运算一、向量概念向量:在研究力学、物理学以及其他应用科学时,常会遇到这样一类量,它们既有大小,又有方向.例如力、力矩、位移、速度、加速度等,这一类量叫做向量.在数学上,用一条有方向的线段(称为有向线段)来表示向量.有向线段的长度表示向量的大«Skip Record If...»小,有向线段的方向表示向量的方向.向量的符号:仅供学习与交流,如有侵权请联系网站删除谢谢3以A为起点、B为终点的有向线段所表示的向量记作«Skip Record If...».向量可用粗体字母表示,也可用上加箭头书写体字母表示,例如,a、r、v、F或↔∑κιπPεχορδ Iφ...≈、↔∑κιπ Pεχορδ Iφ...≈、↔∑κιπ Pεχορδ Iφ...≈、↔∑κιπ Pεχορδ Iφ...≈.自由向量:由于一切向量的共性是它们都有大小和方向,所以在数学上我们只研究与起点无关的向量,并称这种向量为自由向量,简称向量.因此,如果向量a和b的大小相等,且方向相同,则说向量a和b是相等的,记为a =b.相等的向量经过平移后可以完全重合.向量的模:向量的大小叫做向量的模.向量a、↔∑κιπ Pεχορδ Iφ...≈、«Skip Record If...»的模分别记为|a|、↔∑κιπPεχορδ Iφ...≈、«Skip Record If...».单位向量:模等于1的向量叫做单位向量.零向量:模等于0的向量叫做零向量,记作0或«Skip Record If...».零向量的起点与终点重合,它的方向可以看作是任意的.向量的平行:两个非零向量如果它们的方向相同或相反,就称这两个向量平行.向量a与b平行,记作a // b.零向量认为是与任何向量都平行.当两个平行向量的起点放在同一点时,它们的终点和公共的起点在一条直线上.因此,两向量平行又称两向量共线.类似还有共面的概念.设有k(k≥3)个向量,当把它们的起点放在同一点时,如果k个终点和公共起点在一个平面上,就称这k个向量共面.仅供学习与交流,如有侵权请联系网站删除谢谢4仅供学习与交流,如有侵权请联系网站删除 谢谢5二、向量的线性运算1.向量的加法向量的加法: 设有两个向量a 与b , 平移向量使b 的起点与a 的终点重合, 此时从a 的起点到b 的终点的向量c 称为向量a 与b 的和, 记作a +b , 即c =a +b .三角形法则:上述作出两向量之和的方法叫做向量加法的三角形法则.平行四边形法则:当向量a 与b 不平行时, 平移向量使a 与b 的起点重合, 以a 、b 为邻边作一平行四边形, 从公共起点到对角的向量等于向量a 与b 的和a +b .向量的加法的运算规律:(1)交换律a +b =b +a ;(2)结合律(a +b )+c =a +(b +c ).由于向量的加法符合交换律与结合律, 故n 个向量a 1, a 2, ⋅ ⋅ ⋅, a n (n ≥3)相加可写成 a 1+a 2+ ⋅ ⋅ ⋅+a n ,并按向量相加的三角形法则, 可得n 个向量相加的法则如下: 使前一向量的终点作为次一向量的起点, 相继作向量a 1, a 2, ⋅ ⋅ ⋅, a n , 再以第一向量的起点为起点, 最后一向量的终点为终点作一向量, 这个向量即为所求的和.负向量:«S «S «A B CBC仅供学习与交流,如有侵权请联系网站删除 谢谢6设a 为一向量, 与a 的模相同而方向相反的向量叫做a 的负向量, 记为-a .向量的减法:我们规定两个向量b 与a 的差为b -a =b +(-a ).即把向量-a 加到向量b 上, 便得b 与a 的差b -a .特别地, 当b =a 时, 有a -a =a +(-a )=0.显然, 任给向量«Skip Record If...»及点O , 有«Skip Record If...»,因此, 若把向量a 与b 移到同一起点O , 则从a 的终点A 向b 的终点B 所引向量«Skip Record If...»便是向量b 与a 的差b -a .三角不等式:由三角形两边之和大于第三边的原理, 有|a +b |≤|a |+|b |及|a -b |≤|a |+|b |,其中等号在b 与a 同向或反向时成立.2.向量与数的乘法向量与数的乘法的定义: «S -«S«Skip «S «S «Skip仅供学习与交流,如有侵权请联系网站删除 谢谢7 向量a 与实数λ的乘积记作λa , 规定λa 是一个向量, 它的模|λa |=|λ||a |, 它的方向当λ>0时与a 相同, 当λ<0时与a 相反.当λ=0时, |λa |=0, 即λa 为零向量, 这时它的方向可以是任意的.特别地, 当λ=±1时, 有1a =a , (-1)a =-a .运算规律:(1)结合律 λ(μa )=μ(λa )=(λμ)a ;(2)分配律 (λ+μ)a =λa +μa ;λ(a +b )=λa +λb .例1. 在平行四边形ABCD 中, 设«Skip Record If...»=a , «Skip Record If...»=b . 试用a 和b 表示向量«Skip Record If...»、«Skip Record If...»、«Skip Record If...»、«Skip Record If...», 其中M 是平行四边形对角线的交点.解 由于平行四边形的对角线互相平分, 所以a +b «Skip Record If...», 即 -(a +b )«Skip Record If...»,于是 «Skip Record If...»(a +b ). 因为«Skip Record If...», 所以«又因-a +b «Skip Record If...», 所以« 由于«Skip Record If...», 所以«Skip Record If...»(a -b ).例1 在平行四边形ABCD 中, 设«Skip Record If...», «Skip Record If...». 试用a 和b 表BCD仅供学习与交流,如有侵权请联系网站删除 谢谢8示向量«Skip Record If...»、«Skip Record If...»、«Skip Record If...»、«Skip Record If...», 其中M 是平行四边形对角线的交点.解 由于平行四边形的对角线互相平分,«Skip Record If...»,于是«Skip Record If...»; «Skip Record If...».因为«Skip Record If...», 所以«Skip Record If...»; «Skip Record If...»向量的单位化:设a ≠0, 则向量«Skip Record If...»是与a 同方向的单位向量, 记为e a .于是a =|a |e a .向量的单位化:设a ≠0, 则向量«Skip Record If...»是与a 同方向的单位向量, 记为e a .于是a = | a | e a .定理1 设向量a ≠ 0, 那么, 向量b 平行于a 的充分必要条件是:存在唯一的实数λ, 使 b = λa .证明: 条件的充分性是显然的, 下面证明条件的必要性.设b // a . 取«Skip Record If...», 当b 与a 同向时λ取正值, 当b 与a 反向时λ取负值, 即b =λa . 这是因为此时b 与λa 同向, 且|λa |=|λ||a |«Skip Record If...».再证明数λ的唯一性. 设b =λa , 又设b =μa , 两式相减, 便得 B CD(λ-μ)a=0,即|λ-μ||a|=0.因|a|≠0,故|λ-μ|=0,即λ=μ.给定一个点及一个单位向量就确定了一条数轴.设点O及单位向量i确定了数轴Ox,对于轴上任一点P,对应一个向量«Skip Record If...»,由«Skip Record If...»//i,根据定理1,必有唯一的实数x,使«Skip Record If...»=x i(实数x叫做轴上有向线段«Skip Record If...»的值),并知«Skip Record If...»与实数x一一对应.于是点P↔向量«Skip Record If...»= x i↔实数x,从而轴上的点P与实数x有一一对应的关系.据此,定义实数x为轴上点P的坐标.由此可知,轴上点P的坐标为x的充分必要条件是«Skip Record If...»= x i.三、空间直角坐标系在空间取定一点O和三个两两垂直的单位向量i、j、k,就确定了三条都以O为原点的两两垂直的数轴,依次记为x轴(横轴)、y轴(纵轴)、z轴(竖轴),统称为坐标轴.它们构成一个空间直角坐标系,称为Oxyz坐标系.注: (1)通常三个数轴应具有相同的长度单位;(2)通常把x轴和y轴配置在水平面上,而z轴则是铅垂线;(3)数轴的的正向通常符合右手规则.坐标面:在空间直角坐标系中,任意两个坐标轴可以确定一个平面,这种平面称为坐标面. x轴及y轴所确定的坐标面叫做xOy面,另两个坐标面是yOz面和zOx面.仅供学习与交流,如有侵权请联系网站删除谢谢9卦限:三个坐标面把空间分成八个部分,每一部分叫做卦限,含有三个正半轴的卦限叫做第一卦限,它位于xOy面的上方.在xOy面的上方,按逆时针方向排列着第二卦限、第三卦限和第四卦限.在xOy面的下方,与第一卦限对应的是第五卦限,按逆时针方向还排列着第六卦限、第七卦限和第八卦限.八个卦限分别用字母I、II、III、IV、V、VI、VII、VIII表示.向量的坐标分解式:任给向量r,对应有点M,使«Skip Record If...».以OM为对角线、三条坐标轴为棱作长方体,有«Skip Record If...»,设 «Skip Record If...», «Skip Record If...», «Skip Record If...»,则 «Skip Record If...».上式称为向量r的坐标分解式,x i、y j、z k称为向量r沿三个坐标轴方向的分向量.显然,给定向量r,就确定了点M及«Skip Record If...», «Skip Record If...», «Skip Record If...»三个分向量,进而确定了x、y、z三个有序数;反之,给定三个有序数x、y、z也就确定了向量r与点M.于是点M、向量r与三个有序x、y、z之间有一一对应的关系«Skip Record If...».仅供学习与交流,如有侵权请联系网站删除谢谢10据此,定义:有序数x、y、z称为向量r(在坐标系Oxyz)中的坐标,记作r=(x,y,z);有序数x、y、z也称为点M(在坐标系Oxyz)的坐标,记为M(x,y,z).向量«Skip Record If...»称为点M关于原点O的向径.上述定义表明,一个点与该点的向径有相同的坐标.记号(x,y,z)既表示点M,又表示向量«Skip Record If...».坐标面上和坐标轴上的点,其坐标各有一定的特征.例如:点M在yOz面上,则x=0;同相,在zOx面上的点,y=0;在xOy面上的点,z=0.如果点M在x轴上,则y=z=0;同样在y轴上,有z=x=0;在z轴上的点,有x=y=0.如果点M为原点,则x=y=z=0.四、利用坐标作向量的线性运算设a=(a x,a y,a z),b=(b x,b y,b z)即a=a x i+a y j+a z k,b=b x i+b y j+b z k,则a+b=(a x i+a y j+a z k)+(b x i+b y j+b z k)=(a x+b x)i+(a y+b y)j+(a z+b z)k=(a x+b x,a y+b y,a z+b z).a-b=(a x i+a y j+a z k)-(b x i+b y j+b z k)=(a x-b x)i+(a y-b y)j+(a z-b z)k=(a x-b x,a y-b y,a z-b z).λa=λ(a x i+a y j+a z k)=(λa x)i+(λa y)j+(λa z)k=(λa x,λa y,λa z).利用向量的坐标判断两个向量的平行:设a=(a x,a y,a z)≠0,b=(b x,b y,b z),向量b//a⇔b=λa,即b//a⇔(b x,b y,b z)=λ(a x,a y,a z),于是«Skip Record If...».例2 求解以向量为未知元的线性方程组«Skip Record If...»,其中a=(2, 1, 2),b=(-1, 1,-2).解如同解二元一次线性方程组,可得x=2a-3b,y=3a-5b.以a、b的坐标表示式代入,即得x=2(2, 1, 2)-3(-1, 1,-2)=(7,-1, 10),y=3(2, 1, 2)-5(-1, 1,-2)=(11,-2, 16).例3 已知两点A(x1,y1,z1)和B(x2,y2,z2)以及实数λ≠-1,在直线AB上求一点M,使«Skip Record If...».解由于«Skip Record If...», «Skip Record If...»,因此 «Skip Record If...»,从而 «Skip Record If...». «Skip Record If...»,这就是点M的坐标.另解设所求点为M (x,y,z),则«Skip Record If...», «Skip Record If...».依题意有«Skip Record If...»«Skip Record If...»,即(x-x1,y-y1,z-z1)=λ(x2-x,y2-y,z2-z)(x,y,z)-(x1,y1,z1)=λ(x2,y2,z2)-λ(x,y,z),«Skip Record If...»,«Skip Record If...», «Skip Record If...», «Skip Record If...».点M叫做有向线段«Skip Record If...»的定比分点.当λ=1,点M的有向线段«Skip Record If...»的中点,其坐标为«Skip Record If...», «Skip Record If...», «Skip Record If...».五、向量的模、方向角、投影1.向量的模与两点间的距离公式设向量r=(x,y,z),作«Skip Record If...»,则«Skip Record If...»,按勾股定理可得«Skip Record If...»,设 «Skip Record If...», «Skip Record If...», «Skip Record If...»,有 |OP|=|x|, |OQ|=|y|, |OR|=|z|,于是得向量模的坐标表示式«Skip Record If...».设有点A(x1,y1,z1)、B(x2,y2,z2),则«Skip Record If...»=(x2,y2,z2)-(x1,y1,z1)=(x2-x1,y2-y1,z2-z1),于是点A与点B间的距离为«Skip Record If...»«Skip Record If...».例4 求证以M1(4, 3, 1)、M2 (7, 1, 2)、M3 (5, 2, 3)三点为顶点的三角形是一个等腰三角形.解因为 | M1M2|2 =(7-4)2+(1-3)2+(2-1)2 =14,| M2M3|2 =(5-7)2+(2-1)2+(3-2)2 =6,| M1M3|2 =(5-4)2+(2-3)2+(3-1)2 =6,所以|M2 M3|=|M1M3|,即∆M1 M2 M3为等腰三角形.例5 在z轴上求与两点A(-4, 1, 7)和B(3, 5,-2)等距离的点.解设所求的点为M(0, 0,z),依题意有|MA|2=|MB|2,即 (0+4)2+(0-1)2+(z-7)2=(3-0)2+(5-0)2+(-2-z)2.解之得«Skip Record If...»,所以,所求的点为«Skip Record If...».例6 已知两点A(4, 0, 5)和B(7, 1, 3),求与«Skip Record If...»方向相同的单位向量e.解因为«Skip Record If...»,«Skip Record If...»,所以 «Skip Record If...».2.方向角与方向余弦当把两个非零向量a与b的起点放到同一点时,两个向量之间的不超过π的夹角称为向量a与b的夹角,记作«Skip Record If...»或«Skip Record If...».如果向量a与b中有一个是零向量,规定它们的夹角可以在0与π之间任意取值.类似地,可以规定向量与一轴的夹角或空间两轴的夹角.非零向量r与三条坐标轴的夹角α、β、γ称为向量r的方向角.向量的方向余弦:设r=(x,y,z),则x=|r|cosα,y=|r|cosβ,z=|r|cosγ.cosα、cosβ、cosγ称为向量r的方向余弦.«Skip Record If...», «Skip Record If...», «Skip Record If...».从而 «Skip Record If...».上式表明,以向量r的方向余弦为坐标的向量就是与r同方向的单位向量e r.因此cos2α+cos2β+cos2γ=1.例3设已知两点«Skip Record If...»)和B(1, 3, 0),计算向量«Skip Record If...»的模、方向余弦和方向角.解 «Skip Record If...»;«Skip Record If...»;«Skip Record If...», «Skip Record If...», «Skip Record If...»;«Skip Record If...», «Skip Record If...», «Skip Record If...».3.向量在轴上的投影设点O及单位向量e确定u轴.任给向量r,作«Skip Record If...»,再过点M作与u轴垂直的平面交u轴于点M'(点M'叫作点M在u轴上的投影),则向量«Skip Record If...»称为向量r在u轴上的分向量.设«Skip Record If...»,则数λ称为向量r在u轴上的投影,记作Prj u r或(r)u.按此定义,向量a在直角坐标系Oxyz中的坐标a x,a y,a z就是a在三条坐标轴上的投影,即a x=Prj x a,a y=Prj y a,a z=Prj z a.投影的性质:性质1 (a)u=|a|cos ϕ (即Prj u a=|a|cos ϕ),其中ϕ为向量与u轴的夹角;性质2 (a+b)u=(a)u+(b)u (即Prj u(a+b)= Prj u a+Prj u b);性质3 (λa)u=λ(a)u (即Prj u(λa)=λPrj u a);§7. 2 数量积向量积一、两向量的数量积数量积的物理背景: 设一物体在常力F作用下沿直线从点M1移动到点M2. 以s表示位移«Skip Record If...». 由物理学知道, 力F所作的功为W = |F| |s| cosθ,其中θ为F与s的夹角.数量积: 对于两个向量a和b, 它们的模 |a|、|b| 及它们的夹角θ的余弦的乘积称为向量a和b的数量积, 记作a⋅b, 即a·b=|a| |b| cosθ.数量积与投影:由于|b| cosθ=|b|cos(a,^ b), 当a≠0时, |b| cos(a,^ b) 是向量b在向量a的方向上的投影, 于是a·b = |a| Prj a b.同理, 当b≠0时, a·b = |b| Prj b a.数量积的性质:(1) a·a = |a| 2.(2) 对于两个非零向量a、b, 如果a·b =0, 则a⊥b反之, 如果a⊥b, 则a·b =0.如果认为零向量与任何向量都垂直, 则a⊥b ⇔ a·b =0.数量积的运算律:(1)交换律: a·b =b·a(2)分配律: (a+b)⋅c=a⋅c+b⋅c.(3) (λa)·b =a·(λb) =λ(a·b),(λa)·(μb) =λμ(a·b), λ、μ为数.(2)的证明:分配律(a+b)⋅c=a⋅c+b⋅c的证明:因为当c=0时,上式显然成立;当c≠0时,有(a+b)⋅c=|c|Prj c(a+b)=|c|(Prj c a+Prj c b)=|c|Prj c a+|c|Prj c b=a⋅c+b⋅c.例1 试用向量证明三角形的余弦定理.证: −(ΔABC中, ∠BCA=θ (图7-24), |BC|=a, |CA|=b, |AB|=c,要证c 2=a 2+b 2-2 a b cos θ .记«Skip Record If...»=a, «Skip Record If...»=b, «Skip Record If...»=c, c=a-b,从而 |c|2=c⋅c=(a-b)(a-b)=a⋅a+b⋅b-2a⋅b=|a|2+|b|2-2|a||b|cos(a,^b),即c 2=a 2+b 2-2 a b cos θ .数量积的坐标表示:设a=(a x,a y,a z ), b=(b x,b y,b z ),则a·b=a x b x+a y b y+a z b z .提示:按数量积的运算规律可得a·b =( a x i +a y j +a z k)·(b x i +b y j +b z k)=a x b x i·i +a x b y i·j +a x b z i·k+a y b x j ·i +a y b y j ·j +a y b z j·k«Skip Record If...»+a z b x k·i +a z b y k·j +a z b z k·k= a x b x+ a y b y+ a z b z .两向量夹角的余弦的坐标表示:设θ=(a, ^ b),则当a≠0、b≠0时, «Skip Record If...».提示:a·b=|a||b|cosθ.例2 已知三点M (1, 1, 1)、A (2, 2, 1)和B (2, 1, 2), 求∠AMB.解从M到A的向量记为a,从M到B的向量记为b,则∠AMB就是向量a与b的夹角.a={1, 1, 0}, b={1, 0, 1}.因为a⋅b=1⨯1+1⨯0+0⨯1=1,«Skip Record If...»,«Skip Record If...».所以 «Skip Record If...».从而 «Skip Record If...».例3.设液体流过平面S上面积为A的一个区域, "∑(∧:⇓ ≠ A Γ: 8向量)v. −n为垂直于S的单位向量(图7-25(a)),计算单位时间内经过这区域流向n所指一方的液体的质量P(液体的密度为ρ).© YM⎫⎜A⋂∧:⇓"∑⊗ *β⎪:A、斜高为| v |的斜柱体(图7-25(b)).这柱体的斜高与底面的垂线的夹角就是v 与n的夹角θ , 所以这柱体的高为| v |cosθ, ∑⎪:A| v |cos θ=A v ·n.从而, YM⎫⎜∉⋂∧:⇓A n所指一方的液体的质量为P=ρA v ·n.二、两向量的向量积在研究物体转动问题时, 不但要考虑这物体所受的力, 还要分析这些力所产生的力矩.设O为一根杠杆L的支点.有一个力F作用于这杠杆上P点处. F与«Skip Record If...»的夹角为θ.由力学规定, 力F对支点O的力矩是一向量M, 它的模«Skip Record If...»,而M的方向垂直于«Skip Record If...»与F所决定的平面, M的指向是的按右手规则从«Skip Record If...»以不超过π的角转向F来确定的.向量积: 设向量c是由两个向量a与b按下列方式定出:c的模 |c|=|a||b|sin θ, 其中θ为a与b间的夹角c的方向垂直于a与b所决定的平面, c的指向按右手规则从a转向b来确定.那么, 向量c叫做向量a与b的向量积, 记作a⨯b, 即c =a⨯b.根据向量积的定义,力矩M等于«Skip Record If...»与F的向量积, 即«Skip Record If...».向量积的性质:(1) a⨯a =0;(2) 对于两个非零向量a、b, 如果a⨯b = 0, 则a//b; 反之, 如果a//b, 则a⨯b =0.如果认为零向量与任何向量都平行, 则a//b ⇔ a⨯b = 0.数量积的运算律:(1) 交换律a⨯b = -b⨯a;(2) 分配律: (a+b)⨯c = a⨯c + b⨯c.(3) (λa)⨯b = a⨯(λb) = λ(a⨯b) (λ为数).数量积的坐标表示: 设a = a x i +a y j +a z k, b = b x i +b y j +b z k. 按向量积的运算规律可得a⨯b = ( a x i +a y j +a z k) ⨯ ( b x i +b y j +b z k)= a x b x i⨯i +a x b y i⨯j +a x b z i⨯k+a y b x j⨯i +a y b y j⨯j +a y b z j⨯k+a z b x k⨯i +a z b y k⨯j +a z b z k⨯k.由于i⨯i = j⨯j = k⨯k = 0, i⨯j = k, j⨯k =i, k⨯i = j, 所以a⨯b = ( a y b z- a z b y) i + ( a z b x- a x b z) j + ( a x b y- a y b x) k.为了邦助记忆, 利用三阶行列式符号, 上式可写成«Skip Record If...»=a y b z i+a z b x j+a x b y k-a y b x k-a x b z j-a z b y i= ( a y b z- a z b y) i + ( a z b x- a x b z) j + ( a x b y- a y b x) k. .例4 设a=(2, 1,-1),b=(1,-1, 2), 计算a⨯b.解 «Skip Record If...»=2i-j-2k-k-4j-i=i-5j -3k.例5 已知三角形ABC的顶点分别是A (1, 2, 3)、B (3, 4, 5)、C (2, 4, 7), 求三角形ABC的面积.解根据向量积的定义, 可知三角形ABC的面积«Skip Record If...».由于«Skip Record If...»=(2, 2, 2), «Skip Record If...»=(1, 2, 4), 因此«Skip Record If...»«Skip Record If...» «Skip Record If...»=4i-6j+2k.于是 «Skip Record If...».例6 设刚体以等角速度ω绕l轴旋转, 计算刚体上一点M的线速度.解刚体绕l轴旋转时, 我们可以用在l轴上的一个向量ω表示角速度, 它的大小等于角速度的大小, 它的方向由右手规则定出: 即以右手握住l轴, 当右手的四个手指的转向与刚体的旋转方向一致时, 大姆指的指向就是ω的方向.设点M到旋转轴l的距离为a, 再在l轴上任取一点O作向量r =«Skip Record If...», 并以θ表示ω与r的夹角, 那么a = |r| sinθ.设线速度为v, 那么由物理学上线速度与角速度间的关系可知, v的大小为|v| =| ω|a= |ω| |r| sinθv的方向垂直于通过M点与l轴的平面, 即v垂直于ω与r, 又v的指向是使ω、r、v 符合右手规则. 因此有v = ω⨯r.§7. 3 曲面及其方程一、曲面方程的概念在空间解析几何中,任何曲面都可以看作点的几何轨迹.在这样的意义下,如果曲面S与三元方程F(x,y,z)=0有下述关系:(1) 曲面S上任一点的坐标都满足方程F(x,y,z)=0;(2) 不在曲面S上的点的坐标都不满足方程F(x,y,z)=0,那么,方程F(x,y,z)=0就叫做曲面S的方程,而曲面S就叫做方程F(x,y,z)=0的图形.常见的曲面的方程:例1 建立球心在点M0(x0,y0,z0)、半径为R的球面的方程.解设M(x,y,z)是球面上的任一点,那么|M0M|=R.即 «Skip Record If...»,或 (x-x0)2+(y-y0)2+(z-z0)2=R2.这就是球面上的点的坐标所满足的方程.而不在球面上的点的坐标都不满足这个方程.所以(x-x0)2+(y-y0)2+(z-z0)2=R2.就是球心在点M0(x0,y0,z0)、半径为R的球面的方程.特殊地,球心在原点O(0, 0, 0)、半径为R的球面的方程为x2+y2+z2=R2.例2 设有点A(1, 2, 3)和B(2,-1, 4),求线段AB的垂直平分面的方程.解由题意知道,所求的平面就是与A和B等距离的点的几何轨迹.设M(x,y,z)为所求平面上的任一点,则有|AM|=|BM|,即 «Skip Record If...».等式两边平方,然后化简得2x-6y+2z-7=0.这就是所求平面上的点的坐标所满足的方程,而不在此平面上的点的坐标都不满足这个方程,所以这个方程就是所求平面的方程.研究曲面的两个基本问题:(1) 已知一曲面作为点的几何轨迹时,建立这曲面的方程;(2) 已知坐标x、y和z间的一个方程时,研究这方程所表示的曲面的形状.例3 方程x2+y2+z2-2x+4y=0表示怎样的曲面?解通过配方,原方程可以改写成(x-1)2+(y+2)2+z2=5.这是一个球面方程,球心在点M0(1,-2, 0)、半径为«Skip Record If...».一般地,设有三元二次方程Ax2+Ay2+Az2+Dx+Ey+Fz+G=0,这个方程的特点是缺xy,yz,zx各项,而且平方项系数相同,只要将方程经过配方就可以化成方程(x-x0)2+(y-y0)2+(z-z0)2=R2.的形式,它的图形就是一个球面.二、旋转曲面以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面叫做旋转曲面,这条定直线叫做旋转曲面的轴.设在yO z坐标面上有一已知曲线C,它的方程为f (y,z) =0,把这曲线绕z轴旋转一周,就得到一个以z轴为轴的旋转曲面.它的方程可以求得如下:设M(x,y,z)为曲面上任一点,它是曲线C上点M1(0,y1,z1)绕z轴旋转而得到的.因此有如下关系等式«Skip Record If...», «Skip Record If...», «Skip Record If...»,从而得 «Skip Record If...»,这就是所求旋转曲面的方程.在曲线C的方程f(y,z)=0中将y改成«Skip Record If...»,便得曲线C绕z轴旋转所成的旋转曲面的方程«Skip Record If...».同理,曲线C绕y轴旋转所成的旋转曲面的方程为«Skip Record If...».例4 直线L绕另一条与L相交的直线旋转一周,所得旋转曲面叫做圆锥面.两直线的交点叫做圆锥面的顶点,两直线的夹角α(«Skip Record If...»)叫做圆锥面的半顶角.试建立顶点在坐标原点O,旋转轴为z轴,半顶角为α的圆锥面的方程.解在yO z坐标面内,直线L的方程为z=y cot α,将方程z=y cotα中的y改成«Skip Record If...»,就得到所要求的圆锥面的方程«Skip Record If...»,或z2=a2 (x2+y2),其中a=cot α.例5.将zOx坐标面上的双曲线«Skip Record If...»分别绕x轴和z轴旋转一周,求所生成的旋转曲面的方程.解绕x轴旋转所在的旋转曲面的方程为«Skip Record If...»;绕z轴旋转所在的旋转曲面的方程为«Skip Record If...».这两种曲面分别叫做双叶旋转双曲面和单叶旋转双曲面.三、柱面例6 方程x2+y2=R2表示怎样的曲面?解方程x2+y2=R2在xOy面上表示圆心在原点O、半径为R的圆.在空间直角坐标系中,这方程不含竖坐标z, 即不论空间点的竖坐标z怎样,只要它的横坐标x和纵坐标y能满足这方程,那么这些点就在这曲面上.也就是说,过xOy面上的圆x2+y2=R2,且平行于z轴的直线一定在x2+y2=R2表示的曲面上.所以这个曲面可以看成是由平行于z轴的直线l沿xOy面上的圆x2+y2=R2移动而形成的.这曲面叫做圆柱面,xOy面上的圆x2+y2=R2叫做它的准线,这平行于z轴的直线l叫做它的母线.例6 方程x2+y2=R2表示怎样的曲面?解 在空间直角坐标系中,过xOy面上的圆x2+y2=R2作平行于z轴的直线l,则直线l上的点都满足方程x2+y2=R2,因此直线l一定在x2+y2=R2表示的曲面上.所以这个曲面可以看成是由平行于z轴的直线l沿xOy面上的圆x2+y2=R2移动而形成的.这曲面叫做圆柱面,xOy面上的圆x2+y2=R2叫做它的准线,这平行于z轴的直线l叫做它的母线.柱面: 平行于定直线并沿定曲线C移动的直线L形成的轨迹叫做柱面,定曲线C叫做柱面的准线,动直线L叫做柱面的母线.上面我们看到,不含z的方程x2+y2=R2在空间直角坐标系中表示圆柱面,它的母线平行于z轴,它的准线是xOy面上的圆x2+y2=R2.一般地,只含x、y而缺z的方程F(x,y)=0,在空间直角坐标系中表示母线平行于z 轴的柱面,其准线是xOy面上的曲线C: F(x,y)=0.例如,方程y2=2x表示母线平行于z轴的柱面,它的准线是xOy面上的抛物线y2 =2x,该柱面叫做抛物柱面.又如,方程 x-y=0表示母线平行于z轴的柱面,其准线是xOy面的直线 x-y=0,所以它是过z轴的平面.类似地,只含x、z而缺y的方程G(x,z)=0和只含y、z而缺x的方程H(y,z)=0分别表示母线平行于y轴和x轴的柱面.例如,方程 x-z=0表示母线平行于y轴的柱面,其准线是zOx面上的直线 x-z=0. 所以它是过y轴的平面.四、二次曲面与平面解析几何中规定的二次曲线相类似,我们把三元二次方程所表示的曲面叫做二次曲面.把平面叫做一次曲面.怎样了解三元方程F(x,y,z)=0所表示的曲面的形状呢? 方法之一是用坐标面和平行于坐标面的平面与曲面相截,考察其交线的形状,然后加以综合,从而了解曲面的立体形状.这种方法叫做截痕法.研究曲面的另一种方程是伸缩变形法:设S 是一个曲面, 其方程为F (x , y , z )=0, S '是将曲面S 沿x 轴方向伸缩λ倍所得的曲面.显然, 若(x , y , z )∈S , 则(λx , y , z )∈S '; 若(x , y , z )∈S ', 则«Skip Record If...».因此, 对于任意的(x , y , z )∈S ', 有0) , ,1(=z y x F λ, 即«Skip Record If...»是曲面S '的方程. 例如,把圆锥面«Skip Record If...»沿y 轴方向伸缩«Skip Record If...»倍, 所得曲面的方程为«Skip Record If...», 即«Skip Record If...».(1)椭圆锥面由方程«Skip Record If...»所表示的曲面称为椭圆锥面.圆锥曲面在y 轴方向伸缩而得的曲面.把圆锥面«Skip Record If...»沿y 轴方向伸缩«Skip Record If...»倍, 所得曲面称为椭圆锥面«Skip Record If...».以垂直于z 轴的平面z =t 截此曲面, 当t =0时得一点(0, 0, 0); 当t ≠0时, 得平面z =t 上的椭圆«Skip Record If...».当t 变化时, 上式表示一族长短轴比例不变的椭圆, 当|t |从大到小并变为0时, 这族椭圆从大到小并缩为一点. 综合上述讨论, 可得椭圆锥面的形状如图.(2)椭球面由方程«Skip Record If...»所表示的曲面称为椭球面.球面在x轴、y轴或z轴方向伸缩而得的曲面.把x2+y2+z2=a2沿z轴方向伸缩«Skip Record If...»倍,得旋转椭球面«Skip Record If...»;再沿y轴方向伸缩«Skip Record If...»倍,即得椭球面«Skip Record If...».(3)单叶双曲面由方程«Skip Record If...»所表示的曲面称为单叶双曲面.把zOx面上的双曲线«Skip Record If...»绕z轴旋转,得旋转单叶双曲面«Skip Record If...»;再沿y轴方向伸缩«Skip Record If...»倍,即得单叶双曲面«Skip Record If...».(4)双叶双曲面由方程«Skip Record If...»所表示的曲面称为双叶双曲面.把zOx面上的双曲线«Skip Record If...»绕x轴旋转,得旋转双叶双曲面«Skip Record If...»;再沿y轴方向伸缩«Skip Record If...»倍,即得双叶双曲面«Skip Record If...».(5)椭圆抛物面由方程«Skip Record If...»所表示的曲面称为椭圆抛物面.把zOx面上的抛物线«Skip Record If...»绕z轴旋转,所得曲面叫做旋转抛物面«Skip Record If...»,再沿y轴方向伸缩«Skip Record If...»倍,所得曲面叫做椭圆抛物面«Skip Record If...»(6)双曲抛物面.由方程«Skip Record If...»所表示的曲面称为双曲抛物面.双曲抛物面又称马鞍面.用平面x=t截此曲面,所得截痕l为平面x=t上的抛物线«Skip Record If...»,此抛物线开口朝下,其项点坐标为«Skip Record If...».当t变化时,l的形状不变,位置只作平移,而l的项点的轨迹L为平面y=0上的抛物线«Skip Record If...».因此,以l为母线,L为准线,母线l的项点在准线L上滑动,且母线作平行移动,这样得到的曲面便是双曲抛物面.还有三种二次曲面是以三种二次曲线为准线的柱面:«Skip Record If...», «Skip Record If...», «Skip Record If...»,依次称为椭圆柱面、双曲柱面、抛物柱面.§7. 4 空间曲线及其方程一、空间曲线的一般方程空间曲线可以看作两个曲面的交线.设F(x,y,z)=0和G(x,y,z)=0是两个曲面方程,它们的交线为C.因为曲线C上的任何点的坐标应同时满足这两个方程,所以应满足方程组.«Skip Record If...»反过来,如果点M不在曲线C上,那么它不可能同时在两个曲面上,所以它的坐标不满足方程组.因此,曲线C可以用上述方程组来表示.上述方程组叫做空间曲线C的一般方程.例1 方程组«Skip Record If...»表示怎样的曲线?。

高等数学(同济五版)第七章-空间解析几何与向量代数-练习题册

高等数学(同济五版)第七章-空间解析几何与向量代数-练习题册

第七章 空 间 解 析 几 何第 一 节 作 业一、选择题(单选):1. 点M(2,-3,1)关于xoy 平面的对称点是:(A )(-2,3,1); (B )(-2,-3,-1); (C )(2,-3,-1); (D )(-2,-3,1) 答:( ) 2. 点M(4,-3,5)到x 轴距离为:(A ).54)(;54)(;5)3()(;5)3(4222222222+++-+-+D C B答:( ) 二、在yoz 面上求与A (3,1,2),B(4,-2,-2)和C(0,5,1)等距离的点。

第 二 节 作 业设.32,,.2,v u c b a c b a v c b a u ρρρρρρρρρρρρρ-+-=++=表示试用第 三 节 作 业一、选择题(单选):已知两点:),0,3,1()2,2,2(2121的三个方向余弦为则和M M M M.22,21,21)(.22,21,21)(;22,21,21)(;22,21,21)(-------D C B A 答:( ) 二、试解下列各题:1. 一向量的终点为B (2,-1,7),它在x 轴,y 轴,z 轴上的投影依次为4,-4,4,求这向量的起点A 的坐标。

.{}.6,7,6.3.34.45,42,353.2的单位向量求平行于向量轴上的分向量上的投影及在轴在求向量设-=-+=-+=-+=++=a y x p n m a k j i p k j i n k j i m ρρρρρρρρρρρρρρρρρ第 四 节 作 业一、选择题(单选):)()()()(:.1D C B A b a ρρρρρρρρρρ上的投影为在向量 答:( ).//)(;)(;)(;//)(:0,.2的必要但不充分条件的充要条件的充要条件的充要条件是则为非零向量与设b a D b a C b a B b a A b a b a ρρρρρρρρρρρρ=⊥=⋅ 答:( ).6321)(;14321)(;14321)(;6321)(:,321,,.3222222=++=++=++=++++====D C B A c b a s c b a 的长度为则两两垂直向量ρρρρρρρ答:( )二、试解下列各题:{}{}.,),3,1,3()1,3,3(),2,1,1(.4.,,4,1,2,2,5,3.3.,5,4,3,,2,85,3),(.13221321321321同时垂直的单位向量求与和已知的关系与求轴垂直与设求向量的数量积分别为与三向量设设M M M M M M M z b a b a x k j a k i a j i a k x j x i x x b a -+=-=+=+=+=++=-+===μλμλπρρρρρρρρρρρρρρρρρρρρ..,3,3.7.)()()(,2,3,32.6.,0,,.5的面积求已知和求已知求为单位向量且满足已知OAB k j k i c b a c b b a j i c k j i b k j i a a c c b b a c b a c b a ∆+=+=⋅⨯+⨯+-=+-=+-=⋅+⋅+⋅=++ρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρρ第 五 节 作 业选择题(单选):1. 在xoy 面上的曲线4x 2-9y 2=36绕x 轴旋转一周,所得曲面方程为:(A )4(x 2+z 2)-9y 2=36; (B) 4(x 2+z 2)-9(y 2+z 2)=36(C)4X2-9(y2+z2)=36; (D) 4x2-9y2=36.答:()2. 方程y2+z2-4x+8=0表示:(A)单叶双曲面;(B)双叶双曲面;(C)锥面;(D)旋转抛物面。

第7章 空间解析几何与向量代数

第7章 空间解析几何与向量代数

在空间引入一直角坐标系,为一个向量,为了讨论方便, a
OM OA AP PM OA OB OC
称向量OA, OB, OC为OM 在x轴、y轴、z轴上的分向量。 (又称基本单位向量)
记i, j , k分别为与x轴、y轴、z轴正向相同的单位向量。
设 Pr jx OM X , Pr j y OM Y , Pr jz OM Z 那么 OA X i , OB Y j , OC Z k 于是OM X i Y j Z k
cos X | OM | X X Y Z
2 2 2

而 Y Pr j y a | OM | cos , cos Y X 2 Y 2 Z2
同理 cos
Z X 2 Y 2 Z2
由于0 , , cos , cos , cos 唯一, 故称 cos , cos , cos为向量a 的方向余弦. 显然a
设向量 a, b 称 a b cos(a, b) 为向量 a, b 的数量积, 记作 a b 即a b a b cos(a, b)
由于 Pr ja b b cos(a, b) 所以 a b a Pr ja b b Pr jb a
点积的运算性质
(1) a a a
2
(2) cos(a, b)
a b ab
(3) a b a b 0
点积满足
交换律 a b b a
分配律 (a b) c a c b c ; ( a) b (a b)
5)向量与向量的向量积(又称为叉积)
设两个向量 a, b 称向量 a b sin(a, b) 为向量 a与b 的向量积, 记作 a b , 即 a b a b sin(a, b) 其中 是单位向量, 的方 向为按右手法则四指从a 的正向以不超过的角转动到b 的 正向时大拇指所指的方 . 向

大学数学微积分第七章 向量代数与空间解析几何平面与直线知识点总结

大学数学微积分第七章   向量代数与空间解析几何平面与直线知识点总结

第七章 向量代数与空间解析几何§7.2 平面与直线一、 空间解析几何1 空间解析几何研究的基本问题。

(1)已知曲面(线)作为点的几何轨迹,建立这曲面(线)的方程, (2)已知坐标x ,y 和z 间的一个方程(组),研究这方程(组)所表示的曲面(线)。

2 距离公式 空间两点()111,,A x y z 与()222,,B x y z 间的距离d 为d =3 定比分点公式(),,M x y z 是AB 的分点:AMMBλ=,点A,B 的坐标为()111,,A x y z ,()222,,B x y z ,则 121x x x λλ+=+,121y y y λλ+=+,121z z z λλ+=+ 当M 为中点时, 122x x x +=,122y y y +=,122z zz += 二、平面及其方程。

1 法向量: 与平面π垂直的非零向量,称为平面π的法向量,通常记成n 。

对于给定的平面π,它的法向量有无穷多个,但它所指的方向只有两个。

2 点法式方程: 已知平面π过()000,,M x y z 点,其法向量n ={A,B,C},则平面π的方程为 ()()()0000A x x B y y C z z -+-+-= 或()00n r r ⋅-=其中 {}{}0000,,,,,r x y z r x y z ==3 一般式方程:0Ax By Cz D +++=其中A, B, C 不全为零. x, y, z 前的系数表示π的法线方向数,n ={A,B,C}是π的法向量 特别情形: 0Ax By Cz ++=,表示通过原点的平面。

0Ax By D ++=,平行于z 轴的平面。

0Ax D +=,平行yOz 平面的平面。

x =0表示yOz 平面。

4 三点式方程:设()111,,A x y z ,()222,,B x y z ,()333,,C x y z 三点不在一条直线上。

则通过A,B,C 的平面方程为: 1112121213131310x x y y z z x x y y z z x x y y z z ------=--- 5 平面束:设直线L 的一般式方程为1111222200A x B y C z D A x B y C z D +++=⎧⎨+++=⎩,则通过L的所有平面方程为1K ()1111A xB yC zD ++++2K ()22220A x B y C z D +++=,其中()()12,0,0k k ≠6 有关平面的问题两平面为 1π:11110A x B y C z D +++= 2π:22220A x B y C z D +++=7 设平面π的方程为0Ax By Cz D +++=,而点()111,,M x y z 为平面π外的一点,则M 到平面π的距离d : d =三 直线及其方程1 方向向量:与直线平行的非零向量S ,称为直线L 的方向向量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章空间解析几何与向量代数[作业No.40] 班级§1空间直角坐标系§2向量及其加减法,向量与数的乗法姓名________一、概念题1、在空间直角坐标系中,指出下列各点在哪个卦限。

(】,-2, 3) ________ (2,- 3,- 4) _________ (- 1,- 3,- 5) _________ (-1, 5,- 3)____________ (2, 3,- 4)____________ (- 2,- 3, ]) _______________ (-5 , 3 , 1) _________ (3 , 4 , 6) _______________2、指出下列各点的位置。

A(3,4,0) ___________ B(0,4,3) ________ C(3,0,0) ___________ D(0,—1,0) ________ 3、指出当点的坐标适合下列条件之一时,该点所在的卦限。

点)在__________________ 上的对称点是15、点A (—4,3,5 )在%0『平面上的投影点为_________________________在ZOX平面上的投影点为 _______________在0X轴上的投影点为 _________________在oy轴上的投影点为__________________6、点P (—3,2,— 1)关于yoz平面的对称点为_______________________关于ZOX 平面的对称点为 ______________关于oy轴的对称点为_______________关于ox轴的对称点为_______________7、在y轴上与点A (1,—3,7 )和点B (5,7,—5 )等距离的点为_______________8、u a b 2 c, v a 3b c,用a, b, c 表示2u 3v = __________________二、计算题:1、求点M (4,—3,5 )到各坐标轴的距离。

2、把厶ABC 的BC 边五等分,设分点依次为 D 「D 2、D3、D 4,再把各分 点与点A 连接試以AB = c ,BC = a,表示向量 3.已知在空间直角坐标系下,立方体4个顶点为 A (-a ,— a ,— a ), B (a , — a , — a ), C (— a , a , — a )和 D (a , a , a ),则其余各顶点分别 是什么?三、证明题1 .若平面上一个四边形的对角线相互平分 2、试证明以三点 A (4 , 1 , 9), B (10,- 1 , 6), C (2 , 4 , 3)为 顶点的三角形是等腰直角三角形。

一、 填空题:DAD 2A ,D 3A 和 D 4A . ,试用向量证明它是平行四边形§ 3 .向量的坐标[作业No.41]班级姓名1、若三角形的顶点为M 1(3 , 2 , -5),M 2 (1,-4,3 )和皿3(-3 , 0 , 1),则各边的中点为 __________________ , ____________ , ________ .2、两点P 1(2,5,—3),P 2(3,-2,5),设在P 1P 2上一点P满足p i p 3pi P2,则P的坐标为__________________3、设向量r的模是4,它与轴u的夹角是60°,则Prj u r =__________________4、设a与三轴正向夹角依次为a,3,Y⑴ 当cos 3 =0时,a平行于_______________ 平面。

⑵ 当COS Y =1时,a垂直于 _______________ 平面。

⑶ 当COS a =COS 3 =0时,a垂直于____________ 平面, __________ 于z轴。

5、平行于向量a= 6 i+ 7 j —6 k的单位向量为______________ 。

6、已知M[(4, 2 , 1),皿2(3,0,2),向量M1M2的模为_______________ 方向余弦为____________ 方向角为 _______________7、a与各坐标轴之间夹角为a、3、丫,若a =60°, 3 =120°,则丫= __________二、计算题:1、一向量的终点为点B ( 2, —1,7),它在三坐标轴上的投影依次为4,-4,7, 求这向量的起点A的坐标。

2、设m=3i+5j+8k , n =2i —4j —7k和p=5i+j —4k,求向量a=4m+3n—p在x轴上的投影及在y轴上的分向量。

3、向量a= {3,—5,7},求平行于a且模为2 \ 83的向量4§4数量积、向量积[作业No.42]班级■生名一、概念题:1. 若a、b为平行的单位向量,则它们的数量积为_____________ 。

2. 向量a x b与二向量a与b的位置关系是__________________ 。

3•若向量a与b之间的交角为60°, | a | =5, | b | =8,则|a—b | = ______ ,I a+b | = _________4. 设a=3i —j —2k,b=i+2j —k,贝Ua b ___ ,a x b= ________, a x 2b= _____cos(a,b)= -------------- 。

5. 在直角坐标系中,两向量数量积为零的充要条件是至少其中一个向量为或它们相互__________ ;向量积为零的充要条件是至少其中一个向量为_ 或它们相互____________6. 向量a= {4 , —3 ,4}在向量b= {2 , 2 , 1} 上的投影为_________________ 。

二、计算题:1 .设a,b,c为单位向量,且满足a+b+c =0,求a b+bc+c a.2 .已知M1(1,-1,2),M 2(331)和M3(3,1,3),求与M,M2, M 2M 3同时垂直的单位向量。

3. 设质量为100kg的物体从点M[(3,1,8)沿直线移动到点M2(1,4,2)计算重力所作的功(长度单位为m,重力方向为z轴负方向)。

4. 已知OA=i+3k ,OB =j+3k,求△ OAB 的面积。

5. 已知向量a=2i —3j+k,b=i —j+3k 和c=i —2j,计算:⑴(a b)c —(a c)b ;⑵(a+b) x (b+c);⑶(a x b) c.§5 .曲面及其方程[作业No.43]班级■生名、概念题1. 一动点与两定点(2 ,3 , 1 )和(4 ,5 ,6 )等距离,则动点的轨迹方程为_________2. ___________________________________________________________ 以点(1,3 , -2 )为球心,且通过坐标原点的球面方程是________________________ 。

3•将xoz坐标面上的抛物线Z2=5X绕x轴旋转一周,所生成的旋转曲面的方程为 ___________________4•方程x= 2在平面解析几何中表示________________ 在空间解析几何中表示.2 2,方程x2+y2=4在平面解析几何中表示在空间解析几何中表示,方程x2-y2= 1在平面解析几何中表示 _____________ 在空间解析几何中表示________________ 。

5 .只含x,y而缺z的方程F(x,y)= 0,在空间直角坐标系中表示_________ 平行于______ 轴的柱面,其准线是 _____________ 。

二•计算题:1. 将xoz坐标面上的双曲线4x2—9y2=36分别绕x轴及y轴旋转一周,求所生成的旋转曲面的方程。

2. 求与坐标原点O及点(2 ,3 , 4 )距离之比为1 : 2的点的全体所组成的曲面的方程,它表示怎样的曲面。

§5 .曲面及其方程[作业No.43]班级■生名3. 画出方程所表示的曲面⑴ % - 2)2+y2=(2)2⑵ z=2 —x24. 指出下列旋转曲面的一条母线和旋转轴⑴ Z=2(x2+y2)⑵ z2=3(x2+y2)⑶ x2—y2—z2=i2⑷ x2—— +z2=14§6 .空间曲线及其方程§7 .平面及其方程[作业No.44]一、概念题班级________________ 姓名_________________y 5x 11. 方程组y 在平面解析几何中表示_________________ 在空间解y 2x 3析几何中表示 ________________、 2 22. 旋转抛物面z=x +y (0< z W 4)在xoy坐标面上的投影为 _________________ ,在yoz坐标面上的投影为 ______________ ,在zox坐标面上的投影为 _______3. 过点(3,0,-1)且与平面3x —7y+5z —12=0平行的平面方程为___________4. 过三点Mi(a,0,0),M2(0,b,0),M 3(0,0,c)的平面方程为__________ (其中a、b、c都不为零)5. 平面Ax+By+Cz= 0必通过_______________ (其中A、B、C不全为零)平面By+Cz+D= 0 _______ ox 轴,By+Cz= 0 ________ ox 轴。

6. 写出符合下列条件的平面方程⑴平行于xoz面且经过点(2 ,—5 ,3 ) ______________________⑵通过z轴和点(一3 , 1 ,—2 ) _________________________⑶平行于x轴且经过两点(4 ,0 ,—2 )和(5 , 1 , 7 )_________________7. 点(1,2 ,1 )到平面x+2y+2z —10=0的距离为 ________________8. 设有两平面n 1:A[X+B 仃+C 1Z+D[= 0 及n 2:A2X+B 2y+C2z+D2= 0,则它们夹角的余弦cos 0 = ______ , n 1平行n 2的充要条件是 ___________ , n 1垂直n 2的充要条件是__________________ ,n 1重合于n 2的充要条件3. 求平面2x—2y+z+5=0与各坐标面夹角的余弦。

4. 求上半球O w z< . a2x2y2与圆柱体x2+y2w ax(a>0)的公共部分在xoy面和xoz面上的投影。

5.—平面过点(1,0 ,—1 )且平行于向量a= {2 , 1,1}和b= {1 , —1,0} 试求这平面方程。

相关文档
最新文档