第六章酶与细胞固定化直接应用
酶与细胞的固定化
发酵液中含菌体少,有利于产品的分离纯化,提高产品质量等
第五节 固定化酶和固定化细胞的表征
• 缺点:酶与载体相互作用力弱,酶易脱落等 1)引入功能团和间隔臂;
第五节 固定化酶和固定化细胞的表征
酶被物理吸附于不溶性载体的一种固定化方 固定化后酶的哪些主要性质发生了变化?变化的趋势及原因分析.
常见非共价法?常见共价法?
法。 少量的持续不断的配基的脱落;
交联法由于不需要活化基团,所以条件比较温和,酶活的回收率比较高? 活力回收:指固定化后固定化酶(或细胞)所显示的活力占被固定的等当量游离酶(细胞)总活力的百分比. 第五节 固定化酶和固定化细胞的表征
颗粒、线条、薄膜和酶管等形状。颗粒状占 绝大多数,它和线条主要用于工业发酵生产 ,薄膜主要用于酶电极。酶管机械强度较大 ,主要用于工业生产。
固定化酶的优势:
① 极易将固定化酶与底物、产物分开;产物溶 液中没有酶的残留,简化了提纯工艺;
② 可以在较长时间内进行反复分批反应和装柱 连续反应
③ 酶反应过程能够加以严格控制; ④ 较游离酶更适合于多酶反应; ⑤ 在大多数情况下,能够提高酶的稳定性; ⑥ 可以增加产物的收率,提高产物的质量; ⑦ 酶的使用效率提高、成本降低。
在中性pH下优先与a-氨基反应,因此有一定的选择性 缺点:在包埋过程发生的化学反应同样会导致酶的失活。
• 优点:酶活性中心不易被破坏,酶高级结构 二、载体活化程度和固定化配基密度的测定
固定化过程中,酶分子空间构象会有所变化,甚至影响了活性中心的氨基酸;
用此法制备的固定化酶有蛋白酶、脲酶、核糖核酸酶等。
酶工程 第六章酶与细胞固定化 第二节酶和菌体固定化
第二节 酶和菌体固定化
半透膜包埋法制成的固定化酶小球,直径—般只有几 ㎛至几百㎛,称为微胶囊。制备时,—般是将酶液分散在 与水互不相溶的有机溶剂中,再在酶液滴表面形成半透膜, 将酶包埋在微胶囊之中。例如:将欲固定化的酶及亲水性 单体(如已二胺等)溶于水制成水溶液,另外将疏水性单体 (如癸二酰氯等)溶于与水不相混溶的有机溶剂中,然后将 这两种互不相溶的液体混和在一起,加入乳化剂(如司盘 -85等)进行乳化,使酶液分散成小液滴,此时亲水性的 已二胺与疏水住的癸二酰氯就在两相的界面上聚合成半透 膜,将酶包理在小球之内。再加进吐温-20(Tween-20), 使乳化破坏,用离心分离即可得到用半透膜包埋的微胶囊 型的固定化酶。
第二节 酶和菌体固定化
用离子键结合法进行酶固定化,条件温和,操作简便。 只需在一定的pH值、温度和离子强度等条件下,将酶液 与载体混合搅拌几个小时,或者将酶液缓慢地流过处理好 的离于交换柱,就可使酶结合在离于交换剂上,制备得到 固定化酶。例如:将处理成-OH型的DEAE-葡聚糖凝胶加 至含有氨基酰化酶的0.1mo1/L的pH7.0磷酸缓冲液中,于 37℃条件下,搅拌5h,氨基酰化酶就可与DEAE-葡聚糖 凝胶通过离子键结合,制成固定化氨基酰化酶。或者将处 理过的DEAE-葡聚糖凝胶装进离子交换柱,用氢氧化钠处 理,使之成为-OH型,用无离子水冲洗,再用pH 7.0的 0.1mo1/L磷酸缓冲液平衡备用。另将一定量的氨基酰化酶 溶于pH7.0的0.1mol/L磷酸缓冲液中配成一定浓度的酶液, 在37℃的条件下,让酶液慢慢流过离子交换柱,就可制备 成固定化氨基酰化酶。用于拆分乙酰—DL—氨基酸,生 产L—氨基酸
酶工程
第六章 酶与细胞固定化
第二节 酶和菌体固定化
将酶与水不溶性的载体结合,制备固定化酶的过程称 为酶的固定化。
固定化技术应用-酶和细胞的固定化
固定化技术应用-酶和细胞的固定化试题中出现固定酶能不能催化一系列反应,查找资料,没有权威资料认为已经存在催化系列反应的酶,应该是研究方向。
选修知识的考查已经出现应用方向,也拓展到了技术的前景。
也就是说,需要在教学中创设情境适当扩大知识面,结合试题进行教学会收到很好的效果,如固定化酶技术可以拓展到固定化细胞。
问题:固定化技术以及发展前景如何?什么是固定化酶?什么是固定化细胞?011.固定化酶技术固定化酶技术是用物理或化学手段。
将游离酶封锁住固体材料或限制在一定区域内进行活跃的、特有的催化作用,并可回收长时间使用的一种技术。
酶的固定化技术已经成为酶应用领域中的一个主要研究方向。
经固定化的酶与游离酶相比具有稳定性高、回收方便、易于控制、可反复使用、成本低廉等优点,在生物工业、医学及临床诊断、化学分析、环境保护、能源开发以及基础研究等方面发挥了重要作用。
2.固定化酶技术的发展以前,固定化酶技术是把从生物体内提取出来的酶,用人工方法固定在载体上。
1916年Nelson和GrImn最先发现了酶的固定化现象。
科学家们就开始了同定化酶的研究工作。
1969年日本一家制药公司第一次将固定化的酰化氨基酸水解酶用于从混合氨基酸中生产L-氮基酸,开辟了固定化酶在工业生产中的新纪元。
我国的固定化酶研究开始于1970年,首先是微生物所和上海生化所的工作者开始了固定化酶的研究。
当今,固定化酶技术发展方向是无载体的酶固定化技术。
邱广亮等用磁性聚乙二醇胶体粒子作载体,采用吸附-交联法,制备出具有磁响应性的固定化糖化酶,简称磁性酶(M I E)一方面由于载体具有两亲性,M I E可稳定的分散于水相或有机相中,充分的进行酶催化反应;另一方面,由于载体具有磁响应性,M I E又可借助外部磁场简单地回收,反复使用,大大提高酶的使用效率。
Puleo等将钛合金表面用丙烯酸胺等离子体处理引入氨基,然后将含碳硝化甘油接枝于钛合金表面,或者将等离子体处理的钛合金先由琥珀酸酐处理,再用含碳硝化甘油接枝,进而将溶菌酶和骨形态蛋白进行固定,实现了生物分子在生物惰性金属上的固定化。
酶及细胞固定化技术
酶及细胞固定化技术酶作为生物体内的催化剂,具有高效性和高特异性的特点。
但在工业生产中,酶稳定性差、易流失,造成成本过高,限制其广泛应用。
因此将酶采用固定化技术,使酶在发挥其高效、专一性同时,还能增强酶的贮存稳定性,提高了生产效率,节约了成本。
本文对酶和细胞的固定化技术进行综述。
【关键词】酶细胞固定化载体应用酶及细胞固定化技术是生物技术的重要组成部分。
20世纪60年代出现了固定化酶技术,60年代末固定化酶技术用于工业生产,70年代出现了固定化细胞技术,80年代又发展了固定化增殖细胞技术以及包括辅助因子在内的固定化多酶反应体系技术。
工程技术日益成熟,成为近代工业生产中不可缺少的组成部分。
所谓固定化技术,是指利用化学或物理手段将游离的酶或细胞(微生物),定位于限定的空间区域并使其保持活性和可反复使用的一种基本技术,包括固定化酶技术和固定化细胞技术。
固定化细胞的制备方法是多种多样的,任何一种限制细胞自由流动的技术,都可以用于制备固定化细胞。
一般来说,固定化技术大致可以分成吸附法、共价结合法、交联法和包埋法等4大类,其中以包埋法使用最为普遍。
一、固定化技术分类1.吸附法很多细胞都有吸附到固体物质表面的能力,这种吸附能力可以是天生具有的,也可以是经过处理诱导产生的,依靠这种吸附能力,人们发展起许多廉价而又有效的固定化方法。
吸附法可分为物理吸附法和离子吸附法,前者是使用具有高度吸附能力的硅胶、活性炭、多孔玻璃、石英砂和纤维素等吸附剂将细胞吸附到表面上使之固定化,是一种最古老的方法,操作简单、反应条件温和、载体可以反复利用,但结合不牢固,细胞易脱落。
后者根据细胞在解离状态下可因静电引力(即离子键合作用)而固着于带有相异电荷的离子交换剂上,如DEAE-纤维素、DEAE-Sephadex、CM-纤维素等。
2.共價结合法共价结合法是细胞表面上功能团和固相支持物表面的反应基团之间形成化学共价键连接,从而成为固定化细胞。
酶与细胞的固定化
酶与细胞的固定化
一、为什么要进行酶的固定化?
(1)游离酶的稳定性较差:在温度、pH值和无机离子等外界因素的影响下,容易变性失活。
(2)游离酶难于连续化生产:酶与底物和产物混在一起,反应结束后,即使酶仍有较高的活力,也难于回收利用。
这种一次性使用酶的方式,不仅使成本较高,而且难于连续化生产。
(3)游离酶给下游的纯化工作带来了难度:酶反应后成为杂质与产物混在一起,无疑给进一步的分离纯化带来一定的困难。
二、固定化酶的概念:是指固定在载体上或被限制在一定的空间范围内,能连续进行催化反应,且反应后能回收并重复利用的酶。
三、固定化细胞是指固定在载体上并在一定的空间范围内进行生命活动的细胞。
也称为固定化活细胞或固定化增殖细胞。
四、与游离酶相比,固定化酶优缺点各在哪里?
固定化酶优点:
五、固定化方法有哪几类?各类的优缺点及适合范围是什么?
酶固定化的方法很多,主要可分为载体结合法、交联法、包埋法和热处理法等。
现分述如下;。
食品化学-06酶
(2)酸处理法 ) • 多数酚酶最适 =6~7,PH < 3失活。 多数酚酶最适PH= ~ , 失活。 失活 • 常用的酸有:柠檬酸、苹果酸、磷酸、抗坏血酸、混合酸。 常用的酸有:柠檬酸、苹果酸、磷酸、抗坏血酸、混合酸。 • 柠檬酸可降低 ,还可络合酚酶辅基 2+,但单独用效果不大。常 柠檬酸可降低pH,还可络合酚酶辅基Cu 但单独用效果不大。 与抗坏血酸、亚硫酸合用。 与抗坏血酸、亚硫酸合用。 • 实践证明:0.5%柠檬酸 + 0.3%抗坏血酸效果好。 实践证明: 抗坏血酸效果好。 柠檬酸 抗坏血酸效果好 • 抗坏血酸还可使酚酶失活,且可耗氧。 抗坏血酸还可使酚酶失活,且可耗氧。
5
酶的固定方法 2. 共价连接
利用酶与载体形成共价键固定酶 此法载体与酶结合牢固、半衰期长。 此法载体与酶结合牢固、半衰期长。 形成共价键的反应剧烈,常常引起酶蛋白高级结构发生变化, 形成共价键的反应剧烈,常常引起酶蛋白高级结构发生变化,因 此酶活力回收一般较低。 此酶活力回收一般较低。 共价结合法使用的载体主要有: 共价结合法使用的载体主要有: 纤维素、琼脂糖凝胶、葡聚糖凝胶、甲壳素及其衍生物、 纤维素、琼脂糖凝胶、葡聚糖凝胶、甲壳素及其衍生物、氨基酸 共聚物、甲基丙烯酸(或醇)共聚物、多孔玻璃等。 共聚物、甲基丙烯酸(或醇)共聚物、多孔玻璃等。
17
b.钙离子激活中性蛋白酶 分离出两种:CANPⅠ和CANPⅡ 分离出两种:CANPⅠ和CANPⅡ 都是二聚体 都是二聚体 含有相同的较小亚基(MW=30,000)和较大的亚基(MW=80,000, 含有相同的较小亚基(MW=30,000)和较大的亚基(MW=80,000,免疫性 质不同)。 )。 质不同)。 完全激活:50~ μmol/L CANP I 完全激活:50~100 μmol/L Ca2+ 的激活: mmol/L CANP II 的激活:1~2 mmol/L Ca2+ 活性部位中含有半胱氨酸残基的巯基,被归属于巯基蛋白酶 活性部位中含有半胱氨酸残基的巯基, CANPS的作用 CANPS的作用 • 通过分裂特定的肌原纤维蛋白质影响肉的嫩化 • 同溶菌体蛋白酶协同作用 • 死后僵直的肌肉缓慢松弛,这样产生的肉具有良好的质构 死后僵直的肌肉缓慢松弛,
酶及细胞固定化技术
酶及细胞固定化技术酶及细胞固定化技术是一种常见的生物技术方法,广泛应用于食品工业、医药工业、环境保护等领域。
通过这种技术,酶或细胞被固定在一种固体材料上,从而增强了它们的稳定性和重复使用性,提高了生产效率和产品质量。
本文将介绍酶及细胞固定化技术的原理、优势以及在不同领域的应用情况。
酶及细胞固定化技术的原理主要是通过将酶或细胞固定在一种固定载体上,使其能够稳定地存在于一定的环境中并保持其生物活性。
固定载体一般是多孔性的固体材料,如珠状树脂、活性炭、聚合物材料等。
在固定化过程中,酶或细胞通常会与载体表面发生物理或化学结合,从而实现固定化。
固定化后的酶或细胞能够在一定条件下发挥作用,实现对底物的转化或反应。
二、酶及细胞固定化技术的优势相较于游离态的酶或细胞,在固定化状态下具有以下优势:1.稳定性高:固定化后的酶或细胞能够更好地耐受环境变化,如温度、pH值等变化,从而提高其稳定性和长期使用的能力。
2.重复使用性强:固定化后的酶或细胞能够被多次使用,降低了成本,提高了生产效率。
3.易于分离:固定化后的酶或细胞与反应物之间的分离更加便利,便于后续操作和产品纯化。
4.改善环境适应性:固定化后的酶或细胞对不同环境条件的适应能力更强,可在复杂环境中发挥作用,适用范围更广。
5.抑制酶或细胞的不良反应:在固定化状态下,酶或细胞的不良反应如自身降解被抑制,更加稳定可靠。
酶及细胞固定化技术在食品工业中得到了广泛应用。
一些发酵产品的生产过程中,固定化酶或细胞能够提高发酵效率、缩短发酵周期,并且保证产品的稳定性和质量。
在乳制品工业中,利用固定化乳酸菌进行发酵能够保持产品的风味和质量,并且加速乳酸发酵的速度,提高了生产效率。
固定化酶还可以应用于酶解工艺,如利用固定化酶对淀粉、蛋白质等进行水解,得到高质量的发酵原料。
固定化技术还可以用于改善食品加工过程中的废水处理,通过固定化细胞去除废水中的有机物和重金属离子,净化废水,达到环保的目的。
酶的固定化技术及其应用综述
酶的固定化技术及其应用曾鸿雁(西南科技大学,四川,绵阳)摘要:随着工业生物技术和酶工程的不断发展,酶在各个领域的广泛应用,对酶的要求也越来越严格。
本文针对目前酶工程技术之一酶的固定化,对酶的固定化技术及其展望做一综述。
关键词:酶,固定化,技术Immobilization of Enzyme And its Applications Abstract:with the continuous development of biotechnology industrial and enzyme engineering , enzyme are widely used in various fields and the requirements to enzymes also become more and more stringent . This article is to review the enzyme immobilization, which is one of the current enzyme engineering technologiesKey words: enzyme, immobilization, technology一、引言酶是一类具有生物催化性质的高分子物质,其催化性具有专一性强、催化效率高和作用脚尖温和等特点。
但是在实际工业生产中,由于实际环境因素,应用酶的过程出现了一些不足之处:①酶的催化效率不高。
人们在使用酶的过程中,往往要求酶的催化效率要足够高,以加快反应速度,提高劳动生产率,然而实际上很多酶的催化效率不够高而难于满足人们的使用要求。
②酶的稳定性较差。
大多数酶稳定性较差,在高温、强酸、强碱和重金属离子等外界因素的影响下,都容易变形失活。
③酶的一次性使用。
酶一般是在溶液中与底物反应,这样酶在反应系统中,与底物和产物混合在一起,反应结束后,即使酶仍有很高的活力,也难于回收利用。
固定化酶与固定化细胞(第六章)
固定化催化剂的特殊应用( 固定化催化剂的特殊应用(三) 特殊应用 药物控释载体9
药物释放要求: 定点(靶向性); 定量(太高太低均有害); 避免被(胃酸、蛋白酶)破坏; 避免引起免疫反应。 措施:聚合物修饰;凝胶包埋;制成微球 制剂或脂质体、具有导向性的药物等。
固定化催化剂的特殊应用( 固定化催化剂的特殊应用(四) 特殊应用 --生物传感器
第六章 固定化酶与固定化细胞
固定化酶定义的形成以及扩展
固定化酶是20世纪50年代发展起来的一项新技术, 最初称“ 水不溶性酶 ”(water insoluble enzyme) 和 “ 固相酶 ” (solid phase enzyme),是将水溶性的酶 与不溶性的载体结合起来。 后来,人们发现可以将酶包埋在凝胶内或置于超滤装 置中,高分子底物与酶在超滤膜的一边,反应产物可以 透过膜逸出。这种情况下,酶本身仍处于溶解状态,只 不过是被固定在一个有效的空间内。再用上面的名字已 不合适。 1971年第一次国际酶工程会议上统一称为“ 固定化 酶”。(immobilized enzyme )是指在一定空间内成闭索 状态存在的酶,能连续地进行反应,反应后酶可以回收 利用。 “ 固定化的生物催化剂” 包含酶、含酶细胞及微生物 的固定化。1
固定化酶半衰期(T 固定化酶半衰期(T1/2)的测定
测定半衰期的意义:评价固定化方法;生 产上决定更换酶的时机。 定义:从开始到活力只剩一半时所经历的 时间。有使用半衰期,贮藏半衰期等。 方法:直接法测既费时、费力,有时还不 可行(如半衰期很长)。 参考测定放射性元素半衰期的做法,间接 测定。
间接法测定固定化酶半衰期T 间接法测定固定化酶半衰期T1/2
生物催化剂固定化的优点
o 某些酶回到了它在体内的原始状态。 o 可以重复使用,节约了成本。 o 使用时方便得多,对产物抑制型反应既有 利又方便。 o 催化剂易和产物分离,有利于提高产品质 量(如生产针剂药品,最后不能含蛋白 质)。 o 大多数情况下催化剂固定化后稳定性提高。 o 酶反应过程可以控制。 o 较游离酶更适合于多酶体系反应。
酶及细胞固定化技术
酶及细胞固定化技术酶及细胞固定化技术是一种将酶或细胞固定在载体上的技术,以使其具有更好的稳定性和重复使用性。
固定化技术已被广泛应用于生物医学、工业、环境等领域。
下面将对酶及细胞固定化技术进行详细介绍。
酶是生物催化剂,广泛应用于食品、医药、化工等领域。
传统的酶工程主要基于游离酶,但是游离酶不具有稳定性和重复使用性弱的缺点,这就限制了其在工业生产方面的应用。
而酶固定化技术可以通过化学或物理方法将酶固定在载体上,使其具有更好的稳定性和重复使用性。
1. 化学固定法化学固定法是一种通过共价键连接酶和载体的方法。
该方法基于酶和载体之间的化学交互作用,通过改变酶的分子结构,以使其固定在载体上。
化学固定法适用于固定生物分子化学性质类似的酶,并产生最小的影响,请酶的活性。
物理固定法是一种通过物理作用将酶固定在载体上的方法。
该方法基于酶和载体之间的物理交互作用,如静电吸附、离子交换、锁链和凝胶气相沉积等。
物理固定法适用于固定易溶胶的酶,以保持酶活性和稳定性。
细胞固定化技术是将细胞固定在载体上的方法。
固定细胞后,其活性和稳定性得到提高,使得其在工业生产中得到广泛应用。
细胞固定化技术分为两类:静态和动态。
静态细胞固定化技术通过静止相来实现细胞固定化。
最常用的静态细胞固定化技术包括:微囊化、凝胶微囊化和包埋。
微囊化是将细胞封装在聚合物或蛋白质材料中,以形成筛网结构,使细胞能够在载体上安全地生长。
凝胶微囊化是将细胞悬浮在凝胶中,以形成凝胶微囊。
包埋是将细胞置于凝胶、聚合物或其他材料中,以固定细胞并形成细胞团块。
动态细胞固定化技术使用特定装置来保持细胞与载体的稳定性。
最常用的动态细胞固定化技术包括:滤池、旋转生物反应器、循环床反应器。
滤池是将细胞置于纤维滤袋中,以滤分离细胞并悬浮于培养液中。
旋转生物反应器是将细胞与载荷一起旋转,并同时提供氧气和培养液以促进细胞的生长。
循环床反应器是将细胞与载体在床中循环,以提供一定的氧气和培养液。
酶和细胞的固定化
研究得较多的载体是壳聚糖和海藻酸钠。由于 天然高分子材料存在强度较低,在厌氧条件下 易被微生物所分解,使用寿命较短,而且天然 高分子材料原料来源往往受产地所限,这在一 定程度上限制了其应用。
合成有机高分子材料
合成有机高分子材料由于其化学、物理性能都 有很大的可变性,从理论上来说,可以担当任 何一种酶的固定化载体,而且它们对微生物的 腐蚀也有较强的抵抗力。另外,与天然高分子 材料相比,合成有机高分子凝胶载体还有强度 较大的优点。
酶的催化具有高选择性、高催化活性、反应条 件温和、环保无污染等特点。但游离状态的酶 对热、强酸、强碱、高离子强度、有机溶剂等 稳定性较差,易失活,并且反应后混入底物等 物质,纯化困难,不能重复使用。
历史简介
1916年Nelson和Griffin首先发现了酶的固定 化现象,从此科学家就开始了固定化酶的研究 工作。1969年日本一家制药公司第一次将固 定化的酰化氨基酸水解酶用来从混合氨基酸中 生产L-氨基酸,开辟了固定化酶工业化应用的 新纪元。
(5) 组成和粒径:一般来说,材料的孔径越小, 其比表面积就越大,与自由酶固定化程度就越 高,固定化率也就越高。
(6) 对微生物的抵抗性:在长时间的使用中, 载体材料必须要能防止微生物的降解作用,对 微生物抵抗性好的载体材料可以长时间的使用。
(7) 经济性和环保:来源经济、丰富,无毒、 可降解。
3. 固定化细胞的方法
细胞的固定化主要是活细胞的固定化,是一种 不用载体的工艺。通过化学的或物理的手段, 使整个细胞彼此附着相连。
化学交联
化学交联是指细胞体借助双功能或多功能试剂, 如醛或胺的共价附着相连。固定含L-天门冬氨 酸解氨酶(天门冬氨酸酶)活性的大肠杆菌细胞, 它们是通过应用双功能试剂(戊二醛,以及甲 苯二异氰酸酯)来强化细胞壁或细胞膜的交联。
酶六章酶的固定化
Cl
醛基载体
——纤维素葡聚糖经过碘酸氧化或用 二甲基砜氧化裂解葡萄糖环,产生二 醛高聚物,每个葡萄糖分子含二个醛 基。
CH 2OH O
CH 2OH O
P-NH2
CH 2OH O
NaIO4
P-SH
H
O
OH
OR
O
OR P-咪唑 N
OR
O
PO
CH 2OH O
OR
N P HO
羧基载体
+ COOH
O DCC
物理吸附法也能固定微生物细胞,并 有可能在研究此法中开发出固定化增
殖微生物的优良载体。
物理吸附法具有酶活性中心 不易被破坏和酶高级结构变化少 的优点,因而酶活力损失很少。 ——若能找到适当的载体,这是 很好的方法。 ——但是它有酶与载体相互作用 力弱、酶易脱落等缺点。
4. 离子结合法
——酶通过离子键结合于具有离 子交换基的水不溶性载体的固定 化方法。
第六章 固定化酶
酶催化的优点
——作为一种生物催化剂,酶参 与生物体内的各种代谢反应,具 有专一性强、催化效率高及作用 条件温和等优点。
酶催化的缺陷
——酶对环境影响十分敏感,各 种物理、化学和生物因素(如温 度、压力、电磁场、氧化、还原、 有机溶剂、金属离子、离子强度、 pH、酶修饰和酶降解等)都可能 使酶丧失生物活力。
酶的固定化方法
——酶的固定化方法很多,但对 任何酶都适用的方法是没有的。
酶的固定化方法通常按照用于结合的 非化学结合法
化学结合法 包埋法
结晶法 分散法 物理吸附法 离子结合法
交联法 共价结合法
微囊法 网格法
(一)非共价结合法
——1结晶法 ——2 分散法 ——3 物理吸附法
酶的固定化技术及其应用
酶工程课程论文题目:酶的固定化技术及其应用学院:食品学院专业:食品科学与工程班级:食品101(35)2012-11-21酶的固定化技术及其应用摘要:酶的固定化技术是酶工程研究领域的一项重点和热点技术之一,酶的固定化技术可以显著提高酶的利用率,降低酶生产的成本。
本文主要研究酶的固定化技术,酶固定化的优缺点,以及在食品,医药,环境中的应用。
并对其研究的前景进行了简洁的预测。
关键字:酶固定化技术应用酶作为一种生物催化剂,因其催化作用具有高度专一性、催化条件温和、无污染等特点,广泛应用于食品加工、医药和精细化工等行业。
但在使用过程中,人们也注意到酶的一些不足之处,如酶稳定性差、不能重复使用,并且反应后混入产品,纯化困难,使其难以在工业中更为广泛的应用。
因此为适应工业化生产的需要,人们模仿人体酶的作用方式,通过固定化技术对酶加以固定改造,来克服游离酶在使用过程中的一些缺陷。
固定化酶,是指在一定的空间范围内起催化作用,并能反复和连续使用的酶。
与传统的酶相比,固定化酶具有游离酶所不可比拟的优点.同一批固定化酶能在工艺流程中重复多次地使用;固定化后,和反应物分开,有利于控制生产过程,同时也省去了热处理使酶失活的步骤;稳定性显著提高;可长期使用,并可预测衰变的速度;提供了研究酶动力学的良好模型等一系列的优点。
用于固定化的酶,起初都是采用经提取和分离纯化后的酶,随着固定化技术的发展,也可采用含酶细胞或细胞碎片进行固定化,直接应用细胞或细胞碎片中的酶或酶系进行催化反应.由于微生物细胞可直接作为酶源,所以逐渐产生了固定化细胞技术.固定化细胞的优点是:(1)省去了酶分离纯化的时间和费用;(2)可进行多酶反应;(3)保持了酶的原始状态,从而增加了酶的稳定性.但固定化细胞与固定化酶相比,也存在一些不足之处:(1)因为产生副反应和所需生化产物的进一步代谢,使固定化完整细胞生产的产物纯度可能比固定化酶低;(2)细胞使用相当长的时间后,常常会发生自溶,尤其是在细胞有可能进行增殖时,细胞的漏出就特别明显:(3)单位体积反应器内固定化细胞的活性总是比相应的固定化酶活性低.酶的固定化方法主要可分为四类:吸附法、包埋法、共价键结合法和交联法等。
6 酶学与酶工程 第六章 酶的固定化
2.蛋白总量 (1)双辛可宁酸法(BCA法) (2)考马斯亮蓝法 3.偶联率及相对活力 偶联率=(加入蛋白活力一上清液蛋白活力)/加入 蛋白活力X100% 活力回收=固定化酶总活力/加入酶的总活力 ×100% 相对活力=固定化酶总活力/(加入酶的总活 力一上清液中未偶联酶活力)X100%
物理吸附法常用的固体吸附剂有活性炭、氧化铝、硅 藻土、多孔陶瓷、多孔玻璃、硅胶、羟基磷灰石等。
操作简便,条件温和,不会引起酶变性失活,载体廉 价易得,而且可反复使用
于靠物理吸附作用,结合力较弱,酶与载体结合不牢
固而容易脱落,
2.包埋法
将酶或含酶菌体包埋在各种多孔载体中,使酶固定化的方
法称为包埋法。
包埋法可分为凝胶包埋法和微胶囊包埋法(半透膜法) 将酶或微生物包埋在高分子凝胶细微网格中的称为凝胶包 埋法;
将酶或微生物包埋在高分子半透膜中的称为微胶囊法。包
埋法一般不需要与酶蛋白的氨基酸残基进行结合反应,因 此可以应用于许多酶、微生物的固定化。
1)凝胶包埋法 凝胶包埋法是应用最广泛的固定化方法 主要用包埋载体: 琼脂凝胶, 海藻酸钙凝胶, 角叉菜胶, 明胶, 聚丙烯酰胺凝胶
固定化酶颗粒的扩散阻力会使反应速率下降;
只能用于可溶性底物和小分子底物,对大分子底物不适
宜。
必须注意维持酶的催化活性及专一性 应该有利于生产自动化、连续化
应有最小的空间位阻
酶与载体必须结合牢固,从而使固定化酶能回收贮存,利 于反复使用
固定化酶应有最大的稳定性,所选载体不与废物,产物或 反应液发生化学反应
酶工程 第六章酶与细胞固定化 第四节 原生质体固定化
第四节 原生质体固定化
3.生物碱的生产 1985年,Kome等人进行固定化麦角菌原生质体生产麦 角碱的研究,虽然产率不高,但显示出较好的操作稳定性, 可连续使用15天。 4.甾体转化 1985年,Linsefors等人用固定化胡萝卜原生质体进 行甾体转化的研究,可以催化毛地黄毒苦进行5β-羟基化 反应,生成杠柳毒苷。 5.木质素降解 1988年,Boettcher等人用固定化白腐真菌原生质体 进行降解木质素的研究,其降解能力比游离细胞显著提高。 从上述例子可见,固定化原生质体技术虽然研究历史 不长,但已在多个领域的研究中显示出其优越性,具有广 阔的应用前景。
第四节 原生质体固定化
2.胞内酶的生产
1986年,华南理工大学生物工程研究所用固定化枯草 杆菌原生质体生产碱性磷酸酶,使原来存在于细胞间质中 的碱性磷酸酶,全部分泌到发酵液中,提高产率36%,可 连续使用37天;用固定化黑曲霉原生质体生产葡萄糖氧化 酶,使细胞内的葡萄糖氧化酶,90%以上分泌到发酵液中; 用固定化谷氨酸棒杆菌原生质体生产谷氨酸脱氢酶,分泌 到发酵液中的谷氨酸脱氢酶占该酶总量的62%。
第四节 原生质体固定化
三、固定化原生质体的应用
固定化原生质体一方面保持了细胞原有的新陈代谢特 性,可以照常产生原来在细胞内生产的各种代谢产物,另 一方面又去除了细胞壁这一扩散屏障,有利于胞内产物不 断地分泌到胞外,这样就可以不经过细胞破碎和提取工艺 而在发酵液中获得所需的发解产物,为胞内物质的工业化 生产开辟了新途径。
固定化原生质体的制备主要包括原生质体的制备和原 生质体固定化两个阶段。
一、原生质体的制备
酶及细胞固定化技术
酶及细胞固定化技术酶及细胞固定化技术是一种将酶或细胞固定在某种材料上,以便进行特定反应的技术。
这种技术可以有效地提高反应速率、稳定性和重复使用性,广泛应用于生物技术、食品工业、环境保护和医药领域。
本文将介绍酶及细胞固定化技术的原理、应用和未来发展方向。
酶及细胞固定化技术的关键在于将酶或细胞固定在一种载体上,以便进行特定反应。
常用的载体材料包括天然材料如海藻酸钠、明胶、聚乙烯醇等,以及合成材料如聚丙烯酸酯、氧化硅、氨基硅烷等。
通过交联、吸附、包埋等方法,将酶或细胞与载体结合在一起,形成固定化的酶或细胞系统。
固定化技术的主要优点在于可以提高酶或细胞的稳定性和重复使用性。
通过固定在载体上,酶或细胞可以更好地抵抗外界因素的影响,如温度、pH值、离子强度等。
固定化的酶或细胞可以通过简单的分离和回收,实现反应产物的纯化和酶的再利用。
二、酶及细胞固定化技术的应用酶及细胞固定化技术在生物技术、食品工业、环境保护和医药领域有着广泛的应用。
1. 生物技术领域在生物技术领域,酶及细胞固定化技术被用于生产化学品、药物和生物燃料。
以葡萄糖氧化酶为例,固定化的葡萄糖氧化酶可以用于葡萄糖检测、生物传感器以及生物燃料电池中。
固定化的工程酶也被用于合成生物材料、精细化学品和医药中间体,以实现高效、环保的生产过程。
2. 食品工业领域在食品工业领域,酶及细胞固定化技术被用于食品加工、酿造和酶制剂制备。
在酿造过程中,固定化的酵母细胞可以实现连续发酵,提高酒精产率和控制发酵过程。
而在食品加工中,固定化的酶可以用于降解醣类、蛋白质和脂肪,改善食品的口感和营养价值。
3. 环境保护领域在环境保护领域,酶及细胞固定化技术被用于废水处理、土壤修复和污染物降解。
固定化的微生物可以被用于处理含有重金属、有机物和氮、磷等污染物的废水,减少对环境的影响。
固定化的酶也可以用于土壤修复,去除油污和有机污染,改善土壤的质量。
4. 医药领域在医药领域,酶及细胞固定化技术被用于药物的制备、生物传感器和组织工程。
酶工程第六章 固定化酶
酶的固定化方法主要可分为四类:吸附法、包埋法、共价键结合 法和交联法等。吸附法和共价键结合法又可统称为载体结合法。
6.3.1吸附法
吸附法(adsorption)是通过载体表面和酶 分子表面间的次级键相互作用而达到固定目的的 方法,是固定化中最简单的方法。 酶与载体之间的亲和力是范德华力、疏水相 互作用、离子键和氢键等。 吸附法又可分为物理吸附法和离子吸附法。
(1)重氮法 重氮法是将酶蛋白与水不溶性载体的重氮基
团通过共价键相连接而固定化的方法,是共价键法中使用
最多的一种。
常用的载体有多糖类的芳族氨基衍生物、氨基酸的共
聚体和聚丙烯化生成叠氮化合物,再与酶分子上
的相应基团偶联成固定化酶。含有羟基、羧基、羧甲基等
其新的功能和新的应用正在迅速不断地扩展,是一项
研究领域宽广、应用前景极为引人瞩目的新研究领域和新 技术。
6.1 固定化酶的定义与优点
所谓固定化酶(immobilized enzyme), 是指在一定的空间范围内起催化作用,并 能反复和连续使用的酶。
固定化酶的优点:
(1)同一批固定化酶能在工艺流程中重复多次地使用; (2)固定化后,和反应物分开,有利于控制生产过程,同 时也省去了热处理使酶失活的步骤; (3)稳定性显著提高; (4)可长期使用,并可预测衰变的速度; (5)提供了研究酶动力学的良好模型。
(1)物理吸附法
物理吸附法(physical adsorption)是通过物理方法将酶
直接吸附在水不溶性载体表面上而使酶固定化的方法。
是制备固定化酶最早采用的方法。
如α-淀粉酶、糖化酶、葡萄糖氧化酶等都曾采用过此
法进行固定化。物理吸附法常用的有机载体如纤维素、胶 原、淀粉及面筋等;无机载体如活性炭、氧化铝、皂土、 多孔玻璃、硅胶、二氧化钛、羟基磷灰石等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章酶与细胞固定化直接应用
酶固定化方法示意图
第六章酶与细胞固定化直接应用
吸附法
用固体吸附剂将酶或含酶菌体吸附在其表 面上而使其固定的方法;
固体吸附剂:活性炭、硅藻土、多孔陶瓷、 多孔玻璃等;
(1)固定化时酶活有损失; (2)增加了生产初始成本; (3)只能用于可溶底物且较小分子; (4)与完整菌体相比不适宜于多酶反应; (5)胞内酶须分离。
第六章酶与细胞固定化直接应用
第一节 酶固定化
定义 酶的固定化:将酶和菌体与不溶性载体结合的过程; 固定化酶:在一定空间内呈闭锁状态存在的酶,能连续 进行反应,反应后的酶可回收重复使用; 概念发展
天然凝胶条件温和,操作简便,对酶活影响小,强度较 差 合成凝胶强度高,耐温度、pH值变化强,因需聚合反应 而使部分酶变性失活 适用性不适用于底物或产物分子很大的酶类的固定化
第六章酶与细胞固定化直接应用
(2)半透膜包埋法
半透膜聚酰胺膜、火棉膜等,孔径几埃至几 十埃,比酶分子直径小 适用性底物和产物都是小分子物质的酶 微胶囊直径一般只有几微米至几百微米?
特点此法与共价结合法一样也是利用
共价键固定酶的,所不同的是不使用
载体
酶
双功能试剂戊二醛、己二胺、双偶氮
苯等
第一篇报道是:戊二醛交联羧肽酶 得 到一种分子间交联的固定化酶
双功 能剂
“水不溶酶”(water insoluble enzyme) “固相酶”(solid phase enzyme)
1971年第一届国际酶工程会议正式采用“固定化酶 (immobilized enzyme)”
第六章酶与细胞固定化直接应用
什么是固定化酶?
水溶性酶
水不溶性载体
固定化技术 水不溶性酶 (固定化酶)
第六章酶与细胞固定化直接应用
制
备
酶+亲水性单体溶于水
混合
疏水性单体溶于有机溶液
亲水性、疏水性单 体在两相界面上聚
乳 化 剂
乳化
合成半透膜,将酶 包埋
酶液分散成小水滴
半透膜
酶液滴
Tween -20 破乳 离心
微胶囊型固定化酶
第六章酶与细胞固定化直接应用
(3)胶格包埋法
首先被采用的胶格包埋法是:
• 固定化胰蛋白酶 • 木瓜蛋白酶 • -淀粉酶 Enzyme+N, N-甲叉双丙稀酰胺, 丙稀酰胺 引发剂--inactiation
第六章酶与细胞固定化直接应用
back
酶
结合法
载
体
选择适宜的载体,通过载体的共价键或离子键(非共 价健)与酶结合在一起的固定化方法
(1)离子键结合法
载体:DEAE-纤维素、TEAE-纤维素、DEAE-葡聚糖凝胶 等不溶于水的离子交换剂 操作:将酶液与载体混合搅拌几个小时; 或将酶液缓慢地流过处理好的离子交换柱; 活力损失少,结合力较弱,条件(pH值和离子强度)改变时, 酶易脱落
第六章酶与细胞固定化直接应用
固定化酶制备原则
(1)维持酶的催化活性及专一性; (2)有利于生产自动化、连续化; (3)应有最小的空间位阻; (4)酶与载体必须结合牢固; (5)应有最大稳定性,载体不与废物、产物或
反应液发生化学反应; (6)成本要低。
第六章酶与细胞固定化直接应用
一、酶固定化的方法
第六章酶与细胞固定化直接应用
溴化氰法
含有羟ቤተ መጻሕፍቲ ባይዱ的载体,如纤维素等,可用溴化 氰活化生成亚氨基碳酸衍生物
第六章酶与细胞固定化直接应用
烷基化法
含羟基的载体可用三氯-均三嗪等多卤代物 进行活化,形成含有卤素基团的活化载体
第六章酶与细胞固定化直接应用
back
交联法
借助双功能试剂使酶分子之间发生交 联作用,制成网状结构
第六章酶与细胞固定化直接应用
(2)共价键结合法
是载体结合法中报道最多的方法; 载体分类:纤维素、琼脂糖凝胶、葡聚糖凝胶、甲壳质等; 也可分三类:天然有机载体(多糖、蛋白质、细胞)、无机 物(玻璃、陶瓷)、合成聚合物(聚酯、聚胺、尼龙) 方法载体活化:借助某种方法,在载体上引进某一能够与 酶分子上某一基团反应的活泼基团 优点:结合很牢固,酶可连续使用较长时间 缺点:操作复杂,共价结合可能影响酶的空间构象而影响 酶的催化活性
第六章 酶与细胞固定化
直接应用酶的不足之处: (1)酶的稳定性差,在温度、pH和无机离子等外界因素的影响 下,容易变性失活 (2)酶通常在水溶液中与底物反应,反应结束后,即使仍有较 高酶活力,也难于回收利用,成本较高,不便连续化生产 (3)酶反应后成为杂质与产物混在一起,增加分离纯化的困难
第六章酶与细胞固定化直接应用
固定化技术
改善方法之一
思路设计一种方法,将酶束缚于特殊的相,使它与整体分 开但仍能进行底物和效应物的分子交换.这种固定化的 酶可象一般化学反应中的固体催化剂一样既有酶催化 特性,又有一般化学催化剂能回收,反复使用等优点,并 可使生产工艺连续化自动化.
种类
(1)固定化酶 (2)固定化菌体(死细胞) (3)固定化活细胞(增殖细胞) (4)固定化原生质体 (5)固定化动植物细胞
第六章酶与细胞固定化直接应用
载体活化方法
1、重氮法; 2、迭氮法; 3、溴化氰法; 4、烷基化法.
第六章酶与细胞固定化直接应用
重氮法
将含有苯氨基的不溶性 载体与亚硝酸反应生成 重氮盐衍生物,使载体 引进了活泼的重氮基团
第六章酶与细胞固定化直接应用
第六章酶与细胞固定化直接应用
迭氮法
含有酰肼基团的 载体可用亚硝酸 活化,生成迭氮 化合物
第六章酶与细胞固定化直接应用
优点
缺点
(1)提高酶稳定性; (2)可反复或连续使用; (3)易于和反应产物分开; (4)酶反应过程可严格控制; (5)产物溶液无酶残留,简化提纯工艺; (6)较游离酶更适合多酶反应; (7)增加产物收率,提高产物质量; (8)酶的使用效率提高,成本降低。
(1)操作简单,条件温和,不会引起酶变性 失活,载体廉价易得,可反复使用; (2)物理吸附结合能力弱,酶与载体结合不 牢固易脱落.
第六章酶与细胞固定化直接应用
back
包埋法
将酶或含酶菌体包埋在各种多孔载体中的 固定化方法
多孔载体琼脂、海藻酸钠、角叉菜胶、明 胶、聚酰胺、火棉胶等
(1)凝胶包埋法