高考数学第二章函数与导数第3课时函数的单调性

合集下载

2024年高考数学总复习第二章《函数与基本初等函数》函数的单调性与最值

2024年高考数学总复习第二章《函数与基本初等函数》函数的单调性与最值

2024年高考数学总复习第二章《函数与基本初等函数》§2.2函数的单调性与最值最新考纲1.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义.2.学会运用函数图象理解和研究函数的性质.1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是增函数当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间.2.函数的最值前提设函数y =f (x )的定义域为I ,如果存在实数M 满足条件(1)对于任意的x ∈I ,都有f (x )≤M ;(2)存在x 0∈I ,使得f (x 0)=M(3)对于任意的x ∈I ,都有f (x )≥M ;(4)存在x 0∈I ,使得f (x 0)=M结论M 为最大值M 为最小值概念方法微思考1.在判断函数的单调性时,你还知道哪些等价结论?提示对∀x 1,x 2∈D ,f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在D 上是增函数,减函数类似.2.写出对勾函数y =x +ax (a >0)的增区间.提示(-∞,-a ]和[a ,+∞).题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若定义在R 上的函数f (x ),有f (-1)<f (3),则函数f (x )在R 上为增函数.(×)(2)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).(×)(3)函数y =1x的单调递减区间是(-∞,0)∪(0,+∞).(×)(4)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是增函数.(×)(5)所有的单调函数都有最值.(×)题组二教材改编2.函数f (x )=x 2-2x 的单调递增区间是____________.答案[1,+∞)(或(1,+∞))3.函数y =2x -1在[2,3]上的最大值是______.答案24.若函数f (x )=x 2-2mx +1在[2,+∞)上是增函数,则实数m 的取值范围是________.答案(-∞,2]解析由题意知,[2,+∞)⊆[m ,+∞),∴m ≤2.题组三易错自纠5.函数y =12log (x 2-4)的单调递减区间为________.答案(2,+∞)6.若函数f (x )=|x -a |+1的增区间是[2,+∞),则a =________.答案2解析∵f (x )=|x -a |+1的单调递增区间是[a ,+∞),∴a =2.7.函数y =f (x )是定义在[-2,2]上的减函数,且f (a +1)<f (2a ),则实数a 的取值范围是________.答案[-1,1)解析-2≤a+1≤2,-2≤2a≤2,a+1>2a,解得-1≤a<1.8.函数f(x)1x,x≥1,-x2+2,x<1的最大值为________.答案2解析当x≥1时,函数f(x)=1x为减函数,所以f(x)在x=1处取得最大值,为f(1)=1;当x<1时,易知函数f(x)=-x2+2在x=0处取得最大值,为f(0)=2.故函数f(x)的最大值为2.题型一确定函数的单调性命题点1求函数的单调区间例1(1)函数f(x)=ln(x2-2x-8)的单调递增区间是()A.(-∞,-2)B.(-∞,1)C.(1,+∞)D.(4,+∞)答案D解析函数y=x2-2x-8=(x-1)2-9图象的对称轴为直线x=1,由x2-2x-8>0,解得x>4或x<-2,所以(4,+∞)为函数y=x2-2x-8的一个单调递增区间.根据复合函数的单调性可知,函数f(x)=ln(x2-2x-8)的单调递增区间为(4,+∞).(2)函数y=-x2+2|x|+3的单调递减区间是__________________.答案[-1,0],[1,+∞)解析由题意知,当x≥0时,y=-x2+2x+3=-(x-1)2+4;当x<0时,y=-x2-2x+3=-(x+1)2+4,二次函数的图象如图.由图象可知,函数y=-x2+2|x|+3的单调递减区间为[-1,0],[1,+∞).命题点2讨论函数的单调性例2判断并证明函数f (x )=ax 2+1x (其中1<a <3)在[1,2]上的单调性.解函数f (x )=ax 2+1x(1<a <3)在[1,2]上单调递增.证明:设1≤x 1<x 2≤2,则f (x 2)-f (x 1)=ax 22+1x 2-ax 21-1x 1=(x 2-x 1)a (x 1+x 2)-1x 1x 2,由1≤x 1<x 2≤2,得x 2-x 1>0,2<x 1+x 2<4,1<x 1x 2<4,-1<-1x 1x 2<-14.又因为1<a <3,所以2<a (x 1+x 2)<12,得a (x 1+x 2)-1x 1x 2>0,从而f (x 2)-f (x 1)>0,即f (x 2)>f (x 1),故当a ∈(1,3)时,f (x )在[1,2]上单调递增.引申探究如何用导数法求解本例?解f ′(x )=2ax -1x 2=2ax 3-1x 2,因为1≤x ≤2,所以1≤x 3≤8,又1<a <3,所以2ax 3-1>0,所以f ′(x )>0,所以函数f (x )=ax 2+1x (其中1<a <3)在[1,2]上是增函数.思维升华确定函数单调性的方法:(1)定义法和导数法,证明函数单调性只能用定义法和导数法;(2)复合函数法,复合函数单调性的规律是“同增异减”;(3)图象法,图象不连续的单调区间不能用“∪”连接.跟踪训练1(1)下列函数中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”的是()A .f (x )=2xB .f (x )=|x -1|C .f (x )=1x -xD .f (x )=ln(x +1)答案C解析由(x 1-x 2)·[f (x 1)-f (x 2)]<0可知,f (x )在(0,+∞)上是减函数,A ,D 选项中,f (x )为增函数;B 中,f (x )=|x -1|在(0,+∞)上不单调;对于f (x )=1x -x ,因为y =1x与y =-x 在(0,+∞)上单调递减,因此f (x )在(0,+∞)上是减函数.(2)函数f (x )=(a -1)x +2在R 上单调递增,则函数g (x )=a |x -2|的单调递减区间是______________.答案(-∞,2]解析因为f (x )在R 上单调递增,所以a -1>0,即a >1,因此g (x )的单调递减区间就是y =|x -2|的单调递减区间(-∞,2].(3)函数f (x )=|x -2|x 的单调递减区间是________.答案[1,2]解析f (x )2-2x ,x ≥2,x 2+2x ,x <2.画出f (x )图象,由图知f (x )的单调递减区间是[1,2].题型二函数的最值1.函数y =x 2-1x 2+1的值域为____________.答案[-1,1)解析由y =x 2-1x 2+1,可得x 2=1+y 1-y.由x 2≥0,知1+y1-y≥0,解得-1≤y <1,故所求函数的值域为[-1,1).2.函数y =x +1-x 2的最大值为________.答案2解析由1-x 2≥0,可得-1≤x ≤1.可令x =cos θ,θ∈[0,π],则y =cos θ+sin θ=2sin θ∈[0,π],所以-1≤y ≤2,故原函数的最大值为 2.3.函数y =|x +1|+|x -2|的值域为________.答案[3,+∞)解析函数y 2x +1,x ≤-1,,-1<x <2,x -1,x ≥2.作出函数的图象如图所示.根据图象可知,函数y =|x +1|+|x -2|的值域为[3,+∞).4.函数y =3x +1x -2的值域为________________.答案{y |y ∈R 且y ≠3}解析y =3x +1x -2=3(x -2)+7x -2=3+7x -2,因为7x -2≠0,所以3+7x -2≠3,所以函数y =3x +1x -2的值域为{y |y ∈R 且y ≠3}.5.函数f (x )-log 2(x +2)在区间[-1,1]上的最大值为________.答案3解析由于y 在[-1,1]上单调递减,y =log 2(x +2)在[-1,1]上单调递增,所以f (x )在[-1,1]上单调递减,故f (x )在[-1,1]上的最大值为f (-1)=3.6.若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ()A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关答案B 解析方法一设x 1,x 2分别是函数f (x )在[0,1]上的最小值点与最大值点,则m =x 21+ax 1+b ,M =x 22+ax 2+b .∴M -m =x 22-x 21+a (x 2-x 1),显然此值与a 有关,与b 无关.故选B.方法二由题意可知,函数f (x )的二次项系数为固定值,则二次函数图象的形状一定.随着b 的变动,相当于图象上下移动,若b 增大k 个单位,则最大值与最小值分别变为M +k ,m +k ,而(M +k )-(m +k )=M -m ,故与b 无关.随着a 的变动,相当于图象左右移动,则M -m 的值在变化,故与a 有关,故选B.思维升华求函数最值的五种常用方法及其思路(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值.(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.(4)分离常数法:形如求y=cx+dax+b(ac≠0)的函数的值域或最值常用分离常数法求解.(5)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.题型三函数单调性的应用命题点1比较函数值的大小例3已知函数f(x)的图象向左平移1个单位后关于y轴对称,当x2>x1>1时,[f(x2)-f(x1)]·(x2-x1)<0恒成立,设a=f -12,b=f(2),c=f(3),则a,b,c的大小关系为()A.c>a>b B.c>b>aC.a>c>b D.b>a>c答案D解析根据已知可得函数f(x)的图象关于直线x=1对称,且在(1,+∞)上是减函数,因为a=f -12f522<52<3,所以b>a>c.命题点2解函数不等式例4(2018·四川成都五校联考)设函数f(x)是奇函数,且在(0,+∞)内是增函数,又f(-3)=0,则f(x)<0的解集是()A.{x|-3<x<0或x>3}B.{x|x<-3或0<x<3}C.{x|x<-3或x>3}D.{x|-3<x<0或0<x<3}答案B解析∵f(x)是奇函数,f(-3)=0,∴f(-3)=-f(3)=0,解得f(3)=0.∵函数f(x)在(0,+∞)内是增函数,∴当0<x<3时,f(x)<0;当x>3时,f(x)>0.∵函数f(x)是奇函数,∴当-3<x<0时,f(x)>0;当x<-3时,f(x)<0.则不等式f (x )<0的解集是{x |0<x <3或x <-3}.命题点3求参数的取值范围例5(1)(2018·全国Ⅱ)若f (x )=cos x -sin x 在[0,a ]上是减函数,则a 的最大值是()A.π4B.π2C.3π4D .π答案C解析∵f (x )=cos x -sin x =-2sin∴当x -π4∈-π2,π2,即x ∈-π4,3π4时,y =sinf (x )=-2sin ∴-π4,3π4是f (x )在原点附近的单调减区间,结合条件得[0,a ]⊆-π4,3π4,∴a ≤3π4,即a max =3π4.(2)已知函数f (x )2+12a -2,x ≤1,x -a ,x >1,若f (x )在(0,+∞)上单调递增,则实数a 的取值范围为________.答案(1,2]解析由题意,得12+12a -2≤0,则a ≤2,又y =a x -a (x >1)是增函数,故a >1,所以a 的取值范围为1<a ≤2.(3)(2018·安徽滁州中学月考)已知函数f (x )=log 2(x 2-ax +3a )在[2,+∞)上是增函数,则实数a 的取值范围是______________.答案(-4,4]解析设g (x )=x 2-ax +3a ,根据对数函数及复合函数的单调性知,g (x )在[2,+∞)上是增函数,且g (2)>0,2,a >0,∴-4<a ≤4,∴实数a 的取值范围是(-4,4].思维升华函数单调性应用问题的常见类型及解题策略(1)比较大小.(2)解不等式.利用函数的单调性将“f ”符号脱掉,转化为具体的不等式求解,应注意函数的定义域.(3)利用单调性求参数.①依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较;②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的;③分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.跟踪训练2(1)如果函数f (x )2-a )x +1,x <1,x ,x ≥1满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________.答案32,解析对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0,所以y =f (x )在(-∞,+∞)上是增函数.-a >0,>1,2-a )×1+1≤a ,解得32≤a <2.故实数a 的取值范围是32,(2)已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f (2x -1)<f x 的取值范围是______________.答案12,解析因为函数f (x )是定义在区间[0,+∞)上的增函数,且满足f (2x -1)<所以0≤2x -1<13,解得12≤x <23.1.下列函数中,在区间(0,+∞)上为增函数的是()A .y =ln(x +2)B .y =-x +1C .yD .y =x +1x答案A解析函数y=ln(x+2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数.2.已知函数f(x)=x2-2x-3,则该函数的单调递增区间为()A.(-∞,1]B.[3,+∞)C.(-∞,-1]D.[1,+∞)答案B解析设t=x2-2x-3,由t≥0,即x2-2x-3≥0,解得x≤-1或x≥3,所以函数f(x)的定义域为(-∞,-1]∪[3,+∞).因为函数t=x2-2x-3的图象的对称轴为x=1,所以函数t在(-∞,-1]上单调递减,在[3,+∞)上单调递增,所以函数f(x)的单调递增区间为[3,+∞).3.设偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是()A.f(π)>f(-3)>f(-2)B.f(π)>f(-2)>f(-3)C.f(π)<f(-3)<f(-2)D.f(π)<f(-2)<f(-3)答案A解析因为f(x)是偶函数,所以f(-3)=f(3),f(-2)=f(2).又因为函数f(x)在[0,+∞)上是增函数,所以f(π)>f(3)>f(2),即f(π)>f(-3)>f(-2).4.已知函数f(x)-2a)x,x≤1,a x+13,x>1,当x1≠x2时,f(x1)-f(x2)x1-x2<0,则a的取值范围是(),13 B.13,12,12 D.14,13答案A解析当x1≠x2时,f(x1)-f(x2)x1-x2<0,∴f(x)是R上的减函数.∵f(x)-2a)x,x≤1,a x+13,x>1,-2a<1,a<1,-2a≥13,∴0<a≤13.5.设f (x )x -a )2,x ≤0,+1x +a ,x >0,若f (0)是f (x )的最小值,则a 的取值范围为()A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]答案D 解析∵当x ≤0时,f (x )=(x -a )2,f (0)是f (x )的最小值,∴a ≥0.当x >0时,f (x )=x +1x +a ≥2+a ,当且仅当x =1时取“=”.要满足f (0)是f (x )的最小值,需2+a ≥f (0)=a 2,即a 2-a -2≤0,解得-1≤a ≤2.∴a 的取值范围是0≤a ≤2.故选D.6.已知函数f (x )2x ,x ≥1,+c ,x <1,则“c =-1”是“函数f (x )在R 上单调递增”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案A 解析若函数f (x )在R 上单调递增,则需log 21≥c +1,即c ≤-1.由于c =-1,即c ≤-1,但c ≤-1不能得出c =-1,所以“c =-1”是“函数f (x )在R 上单调递增”的充分不必要条件.7.已知奇函数f (x )在R 上是增函数.若a =-b =f (log 24.1),c =f (20.8),则a ,b ,c 的大小关系为________________.答案a >b >c 解析∵f (x )在R 上是奇函数,∴a =-log f (log 25).又f (x )在R 上是增函数,且log 25>log 24.1>log 24=2>20.8,∴f (log 25)>f (log 24.1)>f (20.8),∴a >b >c .8.如果函数f (x )=ax 2+2x -3在区间(-∞,4)上单调递增,则实数a 的取值范围是______________.答案-14,0解析当a =0时,f (x )=2x -3在定义域R 上是单调递增的,故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a,因为f (x )在(-∞,4)上单调递增,所以a <0,且-1a ≥4,解得-14≤a <0.综上,实数a 的取值范围是-140.9.记min{a ,b },a ≤b ,,a >b ,若f (x )=min{x +2,10-x }(x ≥0),则f (x )的最大值为________.答案6解析由题意知,f (x )+2,0≤x ≤4,-x ,x >4,易知f (x )max =f (4)=6.10.设函数f (x )x 2+4x ,x ≤4,2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a的取值范围是__________________.答案(-∞,1]∪[4,+∞)解析作函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4.11.已知f (x )=x x -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)上单调递增;(2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围.(1)证明当a =-2时,f (x )=x x +2.设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).因为(x 1+2)(x 2+2)>0,x 1-x 2<0,所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),所以f (x )在(-∞,-2)上单调递增.(2)解设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a=a (x 2-x 1)(x 1-a )(x 2-a ).因为a >0,x 2-x 1>0,所以要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立,所以a ≤1.综上所述,0<a ≤1.12.(2018·河南南阳一中月考)设函数f (x )=ax 2+bx +1(a ,b ∈R ),F (x )x ),x >0,f (x ),x <0.(1)若f (-1)=0,且对任意实数x 均有f (x )≥0成立,求F (x )的解析式;(2)在(1)的条件下,当x ∈[-2,2]时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围.解(1)∵f (-1)=0,∴b =a +1.由f (x )≥0恒成立,知a >0且方程ax 2+bx +1=0中Δ=b 2-4a =(a +1)2-4a =(a -1)2≤0,∴a =1.从而f (x )=x 2+2x +1.∴F (x )x +1)2,x >0,(x +1)2,x <0.(2)由(1)可知f (x )=x 2+2x +1,∴g (x )=f (x )-kx =x 2+(2-k )x +1,由g (x )在[-2,2]上是单调函数,知-2-k 2≤-2或-2-k 2≥2,得k ≤-2或k ≥6.即实数k 的取值范围为(-∞,-2]∪[6,+∞).13.已知函数f (x )3,x ≤0,(x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是()A .(-∞,-1)∪(2,+∞)B .(-∞,-2)∪(1,+∞)C .(-1,2)D .(-2,1)答案D 解析∵当x =0时,两个表达式对应的函数值都为0,∴函数的图象是一条连续的曲线.又∵当x ≤0时,函数f (x )=x 3为增函数,当x >0时,f (x )=ln(x +1)也是增函数,∴函数f (x )是定义在R 上的增函数.因此,不等式f (2-x 2)>f (x )等价于2-x 2>x ,即x 2+x -2<0,解得-2<x <1.14.已知f (x )2-4x +3,x ≤0,x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a 的取值范围是________.答案(-∞,-2)解析二次函数y 1=x 2-4x +3的对称轴是x =2,∴该函数在(-∞,0]上单调递减,∴x 2-4x +3≥3,同样可知函数y 2=-x 2-2x +3在(0,+∞)上单调递减,∴-x 2-2x +3<3,∴f (x )在R 上单调递减,∴由f (x +a )>f (2a -x )得到x +a <2a -x ,即2x <a ,∴2x <a 在[a ,a +1]上恒成立,∴2(a +1)<a ,∴a <-2,∴实数a 的取值范围是(-∞,-2).15.已知函数f (x )=2020x +ln(x 2+1+x )-2020-x +1,则不等式f (2x -1)+f (2x )>2的解集为____________.答案解析由题意知,f (-x )+f (x )=2,∴f (2x -1)+f (2x )>2可化为f (2x -1)>f (-2x ),又由题意知函数f (x )在R 上单调递增,∴2x -1>-2x ,∴x >14,∴16.已知定义在区间(0,+∞)上的函数f (x )是增函数,f (1)=0,f (3)=1.(1)解不等式0<f (x 2-1)<1;(2)若f (x )≤m 2-2am +1对所有x ∈(0,3],a ∈[-1,1]恒成立,求实数m 的取值范围.解(1)2-1>0,x 2-1<3,得2<x <2或-2<x <- 2.∴原不等式的解集为(-2,-2)∪(2,2).(2)∵函数f (x )在(0,3]上是增函数,∴f (x )在(0,3]上的最大值为f (3)=1,∴不等式f (x )≤m 2-2am +1对所有x ∈(0,3],a ∈[-1,1]恒成立转化为1≤m 2-2am +1对所有a ∈[-1,1]恒成立,即m 2-2am ≥0对所有a ∈[-1,1]恒成立.设g (a )=-2ma +m 2,a ∈[-1,1],∴(-1)≥0,(1)≥0,m +m 2≥0,2m +m 2≥0,解该不等式组,得m ≤-2或m ≥2或m =0,即实数m 的取值范围为(-∞,-2]∪{0}∪[2,+∞).。

第二章 《 第3节函数的单调性》

第二章 《 第3节函数的单调性》

求下列函数的单调区间 (1)f(x)=x2-4|x|+3; = + ; (2)f(x)= = [思路点拨 思路点拨] 思路点拨 .
[课堂笔记 (1)f(x)=x2-4|x|+3= 课堂笔记] 课堂笔记 = + = 于是可得函数f(x)= 的图象, 于是可得函数 =x2-4|x|+3的图象,如图所示 + 的图象 如图所示. 由图可知,函数的增区间为 - ,+∞), 由图可知,函数的增区间为[-2,0),(2,+ , , ,+ 减区间为(-∞,- ,[0,2). ,-2), 减区间为 - ,-
3.最值的定义 最值的定义
1.下列函数中,在区间(0,2)上为增函数的是 下列函数中,在区间 下列函数中 上为增函数的是 A.y=- +1 =-x+ =- C.y=x2-4x+5 = + 解析: 函数 = 解析:∵函数y= ∴函数y= 函数 = 答案: 答案:B B.y= = D.y= =
(
)
的单调增区间为[0,+ , 的单调增区间为 ,+∞), ,+
(2)∵y= ∵ =

,-1]∪ ,+ ,+∞). ∴该函数的定义域为(-∞,- ∪[1,+ 该函数的定义域为 - ,- 又∵y= = 可看作是由
y= 与u=x2-1两个函数复合而成的, = 两个函数复合而成的, = 两个函数复合而成的 且y= = 在u∈[0,+ 上为增函数, ∈ ,+∞)上为增函数, ,+ 上为增函数
;③当a<0时,不可能在区 时
上恒为减函数. 间(-∞,3)上恒为减函数 - , 上恒为减函数 综合知: 的取值范围是 的取值范围是[0, 综合知:a的取值范围是 , 答案: , 答案:[0, ] ].
1.用定义证明函数单调性的一般步骤 用定义证明函数单调性的一般步骤 (1)取值:即设x1,x2是该区间内的任意两个值,且x1<x2. 取值:即设 是该区间内的任意两个值, 取值 (2)作差:即f(x2)-f(x1)(或f(x1)-f(x2)),并通过通分、配方、 作差: 作差 - 或 - ,并通过通分、配方、 因式分解等方法,向有利于判断差的符号的方向变形 因式分解等方法,向有利于判断差的符号的方向变形. (3)定号:根据给定的区间和x2-x1的符号,确定差 2)- 定号:根据给定的区间和 的符号,确定差f(x - 定号 f(x1)(或f(x1)-f(x2))的符号 当符号不确定时,可以进行分 的符号.当符号不确定时 或 - 的符号 当符号不确定时, 类讨论. 类讨论 (4)判断:根据定义得出结论. 判断:根据定义得出结论 判断

2017年高考通关讲练导数(数学(文)):三、函数的单调性与导数 含解析

2017年高考通关讲练导数(数学(文)):三、函数的单调性与导数 含解析

三、函数的单调性与导数考纲要求1.了解函数的单调性和导数的关系.2.能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).命题规律利用导数研究函数的单调性是高考考查的重点,具体形式为: (1)利用导数求函数(函数中常含有参数)的单调区间,或由函数的单调性求参数的取值范围。

一般以解答题的形式出现,有时也出现在选择题或填空题中.(2)利用函数的单调性比较大小、证明不等式、判断函数零点个数等,题目综合性强,有一定的难度,一般以解答题的形式出现.1.函数的单调性与导数的关系一般地,在某个区间(a,b)内:①如果()0f x'>,函数f (x)在这个区间内单调递增;②如果()0f x'<,函数f (x)在这个区间内单调递减;③如果()=0f x',函数f (x)在这个区间内是常数函数.2.单调性的应用(1)在某个区间内,()0f x'<)是函数f (x)在此区间内单调f x'>(()0递增(减)的充分条件,而不是必要条件。

例如,函数3=在定f x x()义域(,)-∞+∞上是增函数,但2'=≥。

()30f x x(2)函数f (x)在(a,b)内单调递增(减)的充要条件是()0f x'≤)f x'≥(()0在(a,b)内恒成立,且()f x'在(a,b)的任意子区间内都不恒等于0.这就是说,在区间内的个别点处有()0f x'=,不影响函数f (x)在区间内的单调性。

如图所示是函数f (x)的导函数f ′(x)的图象,则下列判断中正确的是A.函数f (x)在区间(−3,0)上是减函数B.函数f (x)在区间(−3,2)上是减函数C.函数f (x)在区间(0,2)上是减函数D.函数f (x)在区间(−3,2)上是单调函数【答案】A【解析】由导函数的图象易判断在区间(−3,0)上f ′(x)〈0,所以f (x)在(−3,0)上单调递减,故选A。

高考数学二轮复习考点知识与题型专题讲解3---导数的几何意义及函数的单调性

高考数学二轮复习考点知识与题型专题讲解3---导数的几何意义及函数的单调性

高考数学二轮复习考点知识与题型专题讲解第3讲导数的几何意义及函数的单调性[考情分析] 1.导数的几何意义和计算是导数应用的基础,是高考的热点,多以选择题、填空题的形式考查,难度较小.2.应用导数研究函数的单调性,是导数应用的重点内容,也是高考的常见题型,以选择题、填空题的形式考查,或为导数解答题第一问,难度中等偏上,属综合性问题.考点一导数的几何意义与计算核心提炼1.导数的几何意义(1)函数在某点的导数即曲线在该点处的切线的斜率.(2)曲线在某点的切线与曲线过某点的切线不同.(3)切点既在切线上,又在曲线上.2.复合函数的导数复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为y′x=y′u·u′x.例1(1)(2022·焦作模拟)函数f(x)=(2e x-x)·cos x的图象在x=0处的切线方程为()A.x-2y+1=0 B.x-y+2=0C.x+2=0 D.2x-y+1=0答案 B解析由题意,函数f(x)=(2e x-x)·cos x,可得f′(x)=(2e x-1)·cos x-(2e x-x)·sin x,所以f′(0)=(2e0-1)·cos 0-(2e0-0)·sin 0=1,f(0)=(2e0-0)·cos 0=2,所以f(x)在x=0处的切线方程为y-2=x-0,即x-y+2=0.(2)(2022·新高考全国Ⅰ)若曲线y =(x +a )e x 有两条过坐标原点的切线,则a 的取值范围是________. 答案 (-∞,-4)∪(0,+∞)解析 因为y =(x +a )e x ,所以y ′=(x +a +1)e x .设切点为A (x 0,(x 0+a )0e x),O 为坐标原点,依题意得,切线斜率k OA =0=|x x y'=(x 0+a +1)0e x =000e x x a x (+),化简,得x 20+ax 0-a =0.因为曲线y =(x +a )e x 有两条过坐标原点的切线,所以关于x 0的方程x 20+ax 0-a =0有两个不同的根,所以Δ=a 2+4a >0,解得a <-4或a >0,所以a 的取值范围是(-∞,-4)∪(0,+∞).易错提醒 求曲线的切线方程要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点. 跟踪演练1 (1)(2022·新高考全国Ⅱ)曲线y =ln|x |过坐标原点的两条切线的方程为__________,____________.答案 y =1e xy =-1ex 解析 先求当x >0时,曲线y =ln x 过原点的切线方程,设切点为(x 0,y 0),则由y ′=1x ,得切线斜率为1x 0, 又切线的斜率为y 0x 0,所以1x 0=y 0x 0, 解得y 0=1,代入y =ln x ,得x 0=e ,所以切线斜率为1e ,切线方程为y =1ex . 同理可求得当x <0时的切线方程为y =-1ex . 综上可知,两条切线方程为y =1e x ,y =-1ex . (2)(2022·保定联考)已知函数f (x )=a ln x ,g (x )=b e x ,若直线y =kx (k >0)与函数f (x ),g (x )的图象都相切,则a +1b的最小值为( ) A .2 B .2eC .e 2D. e答案 B解析 设直线y =kx 与函数f (x ),g (x )的图象相切的切点分别为A (m ,km ),B (n ,kn ).由f ′(x )=a x ,有⎩⎪⎨⎪⎧ km =a ln m ,a m =k ,解得m =e ,a =e k .又由g ′(x )=b e x ,有⎩⎪⎨⎪⎧kn =b e n ,b e n =k , 解得n =1,b =k e, 可得a +1b =e k +e k≥2e 2=2e , 当且仅当a =e ,b =1e时取“=”.考点二 利用导数研究函数的单调性 核心提炼利用导数研究函数单调性的步骤(1)求函数y =f (x )的定义域.(2)求f (x )的导数f ′(x ).(3)求出f ′(x )的零点,划分单调区间.(4)判断f ′(x )在各个单调区间内的符号.例2(2022·哈师大附中模拟)已知函数f (x )=ax e x -(x +1)2(a ∈R ,e 为自然对数的底数).(1)若f (x )在x =0处的切线与直线y =ax 垂直,求a 的值;(2)讨论函数f (x )的单调性.解 (1)f ′(x )=(x +1)(a e x -2),则f ′(0)=a -2,由已知得(a -2)a =-1,解得a =1.(2)f ′(x )=(x +1)(a e x -2),①当a ≤0时,a e x -2<0,所以f ′(x )>0⇒x <-1,f ′(x )<0⇒x >-1,则f (x )在(-∞,-1)上单调递增,在(-1,+∞)上单调递减;②当a >0时,令a e x -2=0,得x =ln 2a, (ⅰ)当0<a <2e 时,ln 2a>-1, 所以f ′(x )>0⇒x <-1或x >ln 2a, f ′(x )<0⇒-1<x <ln 2a, 则f (x )在(-∞,-1)上单调递增,在⎝⎛⎭⎫-1,ln 2a 上单调递减,在⎝⎛⎭⎫ln 2a ,+∞上单调递增; (ⅱ)当a =2e 时,f ′(x )=2(x +1)(e x +1-1)≥0, 则f (x )在(-∞,+∞)上单调递增;(ⅲ)当a >2e 时,ln 2a<-1, 所以f ′(x )>0⇒x <ln 2a或x >-1, f ′(x )<0⇒ln 2a<x <-1, 则f (x )在⎝⎛⎭⎫-∞,ln 2a 上单调递增,在⎝⎛⎭⎫ln 2a ,-1上单调递减,在(-1,+∞)上单调递增. 综上,当a ≤0时,f (x )在(-∞,-1)上单调递增,在(-1,+∞)上单调递减;当0<a <2e 时,f (x )在(-∞,-1)上单调递增,在⎝⎛⎭⎫-1,ln 2a 上单调递减,在⎝⎛⎭⎫ln 2a ,+∞上单调递增; 当a =2e 时,f (x )在(-∞,+∞)上单调递增;当a >2e 时,f (x )在⎝⎛⎭⎫-∞,ln 2a 上单调递增,在⎝⎛⎭⎫ln 2a ,-1上单调递减,在(-1,+∞)上单调递增. 规律方法 (1)讨论函数的单调性是在函数的定义域内进行的,千万不要忽视了定义域的限制;(2)在能够通过因式分解求出不等式对应方程的根时,依据根的大小进行分类讨论;(3)在不能通过因式分解求出根的情况时,根据不等式对应方程的判别式进行分类讨论.跟踪演练2 (2022·北京模拟)已知函数f (x )=ln x -ln t x -t. (1)当t =2时,求f (x )在x =1处的切线方程;(2)求f (x )的单调区间.解 (1)∵t =2,∴f (x )=ln x -ln 2x -2, ∴f ′(x )=x -2x -ln x +ln 2(x -2)2, ∴f ′(1)=ln 2-1,又f (1)=ln 2,∴切线方程为y -ln 2=(ln 2-1)(x -1),即y =(ln 2-1)x +1.(2)f (x )=ln x -ln t x -t, ∴f (x )的定义域为(0,t )∪(t ,+∞),且t >0,f ′(x )=1-t x -ln x +ln t (x -t )2, 令φ(x )=1-t x-ln x +ln t ,x >0且x ≠t , φ′(x )=t x 2-1x =t -x x 2, ∴当x ∈(0,t )时,φ′(x )>0,当x ∈(t ,+∞)时,φ′(x )<0,∴φ(x )在(0,t )上单调递增,在(t ,+∞)上单调递减,∴φ(x )<φ(t )=0,∴f ′(x )<0,∴f (x )在(0,t ),(t ,+∞)上单调递减.即f (x )的单调递减区间为(0,t ),(t ,+∞),无单调递增区间.考点三 单调性的简单应用 核心提炼1.函数f (x )在区间D 上单调递增(或递减),可转化为f ′(x )≥0(或f ′(x )≤0)在x ∈D 上恒成立.2.函数f (x )在区间D 上存在单调递增(或递减)区间,可转化为f ′(x )>0(或f ′(x )<0)在x ∈D 上有解.例3 (1)若函数f (x )=e x (cos x -a )在区间⎝⎛⎭⎫-π2,π2上单调递减,则实数a 的取值范围是( ) A .(-2,+∞) B .(1,+∞)C .[1,+∞)D .[2,+∞)答案 D解析 f ′(x )=e x (cos x -a )+e x (-sin x )=e x (cos x -sin x -a ),∵f (x )在区间⎝⎛⎭⎫-π2,π2上单调递减,∴f ′(x )≤0在区间⎝⎛⎭⎫-π2,π2上恒成立,即cos x -sin x -a ≤0恒成立,即a ≥cos x -sin x =2cos ⎝⎛⎭⎫x +π4恒成立,∵-π2<x <π2,∴-π4<x +π4<3π4,∴-1<2cos ⎝⎛⎭⎫x +π4≤2,∴a ≥ 2.(2)(2022·新高考全国Ⅰ)设a =0.1e 0.1,b =19,c =-ln 0.9,则( )A .a <b <cB .c <b <aC .c <a <bD .a <c <b答案 C解析 设u (x )=x e x (0<x ≤0.1),v (x )=x 1-x(0<x ≤0.1), w (x )=-ln(1-x )(0<x ≤0.1).则当0<x ≤0.1时,u (x )>0,v (x )>0,w (x )>0.①设f (x )=ln[u (x )]-ln[v (x )]=ln x +x -[ln x -ln(1-x )]=x +ln(1-x )(0<x ≤0.1),则f ′(x )=1-11-x =x x -1<0在(0,0.1]上恒成立, 所以f (x )在(0,0.1]上单调递减,所以f (0.1)<f (0)=0+ln(1-0)=0,即ln[u (0.1)]-ln[v (0.1)]<0,所以ln[u (0.1)]<ln[v (0.1)].又函数y =ln x 在(0,+∞)上单调递增,所以u (0.1)<v (0.1),即0.1e 0.1<19,所以a <b . ②设g (x )=u (x )-w (x )=x e x +ln(1-x )(0<x ≤0.1),则g ′(x )=(x +1)e x -11-x=(1-x 2)e x -11-x(0<x ≤0.1). 设h (x )=(1-x 2)e x -1(0<x ≤0.1),则h ′(x )=(1-2x -x 2)e x >0在(0,0.1]上恒成立,所以h (x )在(0,0.1]上单调递增,所以h (x )>h (0)=(1-02)·e 0-1=0,即g ′(x )>0在(0,0.1]上恒成立,所以g (x )在(0,0.1]上单调递增,所以g (0.1)>g (0)=0·e 0+ln(1-0)=0,即g (0.1)=u (0.1)-w (0.1)>0,所以0.1e 0.1>-ln 0.9,即a >c .综上,c <a <b ,故选C.规律方法 利用导数比较大小或解不等式的策略利用导数比较大小或解不等式,常常要构造新函数,把比较大小或求解不等式的问题,转化为利用导数研究函数单调性问题,再由单调性比较大小或解不等式.跟踪演练3 (1)(2022·全国甲卷)已知9m =10,a =10m -11,b =8m -9,则( )A .a >0>bB .a >b >0C .b >a >0D .b >0>a答案 A解析 ∵9m =10,∴m ∈(1,2),令f (x )=x m -(x +1),x ∈(1,+∞),∴f ′(x )=mx m -1-1, ∵x >1且1<m <2,∴x m -1>1,∴f ′(x )>0, ∴f (x )在(1,+∞)上单调递增,又9m =10,∴9m -10=0,即f (9)=0,又a =f (10),b =f (8),∴f (8)<f (9)<f (10),即b <0<a .(2)已知变量x 1,x 2∈(0,m )(m >0),且x 1<x 2,若2112x x x x 恒成立,则m 的最大值为(e =2.718 28…为自然对数的底数)( )A .e B. e C.1eD .1 答案 A解析 ∵2112x x x x ⇒x 2ln x 1<x 1ln x 2,x 1,x 2∈(0,m ),m >0,∴ln x 1x 1<ln x 2x 2恒成立, 设函数f (x )=ln x x ,∵x 1<x 2,f (x 1)<f (x 2),∴f (x )在(0,m )上单调递增,又f ′(x )=1-ln xx 2,则f ′(x )>0⇒0<x <e ,即函数f (x )的单调递增区间是(0,e),则m 的最大值为e.专题强化练一、单项选择题1.(2022·张家口模拟)已知函数f (x )=1x -2x +ln x ,则函数f (x )在点(1,f (1))处的切线方程为() A .2x +y -2=0 B .2x -y -1=0C .2x +y -1=0D .2x -y +1=0答案 C解析 因为f ′(x )=-1x 2-2+1x ,所以f ′(1)=-2,又f (1)=-1,故函数f (x )在点(1,f (1))处的切线方程为y -(-1)=-2(x -1),化简得2x +y -1=0.2.已知函数f (x )=x 2+f (0)·x -f ′(0)·cos x +2,其导函数为f ′(x ),则f ′(0)等于( )A .-1B .0C .1D .2答案 C解析 因为f (x )=x 2+f (0)·x -f ′(0)·cos x +2,所以f (0)=2-f ′(0).因为f ′(x )=2x +f (0)+f ′(0)·sin x ,所以f ′(0)=f (0).故f ′(0)=f (0)=1.3.(2022·重庆检测)函数f (x )=e -x cos x (x ∈(0,π))的单调递增区间为( ) A.⎝⎛⎭⎫0,π2B.⎝⎛⎭⎫π2,π C.⎝⎛⎭⎫0,3π4 D.⎝⎛⎭⎫3π4,π 答案 D解析 f ′(x )=-e -x cos x -e -x sin x =-e -x (cos x +sin x )=-2e -x sin ⎝⎛⎭⎫x +π4, 当x ∈⎝⎛⎭⎫0,3π4时, e -x >0,sin ⎝⎛⎭⎫x +π4>0,则f ′(x )<0; 当x ∈⎝⎛⎭⎫3π4,π时,e -x >0,sin ⎝⎛⎭⎫x +π4<0,则f ′(x )>0. ∴f (x )在(0,π)上的单调递增区间为⎝⎛⎭⎫3π4,π.4.(2022·厦门模拟)已知函数f (x )=(x -1)e x -mx 在区间x ∈[1,2]上存在单调递增区间,则m 的取值范围为( )A .(0,e)B .(-∞,e)C .(0,2e 2)D .(-∞,2e 2)答案 D解析 ∵f (x )=(x -1)e x -mx ,∴f ′(x )=x e x -m ,∵f (x )在区间[1,2]上存在单调递增区间,∴存在x ∈[1,2],使得f ′(x )>0,即m <x e x ,令g (x )=x e x ,x ∈[1,2],则g ′(x )=(x +1)e x >0恒成立,∴g (x )=x e x 在[1,2]上单调递增,∴g (x )max =g (2)=2e 2,∴m <2e 2,故实数m 的取值范围为(-∞,2e 2).5.(2021·新高考全国Ⅰ)若过点(a ,b )可以作曲线y =e x 的两条切线,则( )A .e b <aB .e a <bC .0<a <e bD .0<b <e a答案 D解析 (用图估算法)过点(a ,b )可以作曲线y =e x 的两条切线,则点(a ,b )在曲线y =e x 的下方且在x 轴的上方,得0<b <e a .6.已知a =e 0.3,b =ln 1.52+1,c = 1.5,则它们的大小关系正确的是( ) A .a >b >c B .a >c >bC .b >a >cD .c >b >a答案 B解析 由b =ln 1.52+1=ln 1.5+1,令f (x )=ln x +1-x ,则f ′(x )=1x -1,当x ∈(0,1)时,f ′(x )>0;当x ∈(1,+∞)时,f ′(x )<0;所以f (x )=ln x +1-x 在(0,1)上单调递增,在(1,+∞)上单调递减,且f (1)=0,则f ( 1.5)<0,因此ln 1.5+1- 1.5<0,所以b <c ,又因为c = 1.5<1.3,所以ln 1.5+1< 1.5<1.3,得ln 1.5<0.3=ln e 0.3, 故 1.5<e 0.3,所以a >c .综上,a >c >b .二、多项选择题7.若曲线f (x )=ax 2-x +ln x 存在垂直于y 轴的切线,则a 的取值可以是() A .-12 B .0 C.18 D.14答案 ABC解析 依题意,f (x )存在垂直于y 轴的切线,即存在切线斜率k =0的切线,又k =f ′(x )=2ax +1x -1,x >0,∴2ax +1x -1=0有正根,即-2a =⎝⎛⎭⎫1x 2-1x 有正根,即函数y =-2a 与函数y =⎝⎛⎭⎫1x 2-1x ,x >0的图象有交点,令1x =t >0,则g (t )=t 2-t =⎝⎛⎭⎫t -122-14,∴g (t )≥g ⎝⎛⎭⎫12=-14,∴-2a ≥-14,即a ≤18.8.已知函数f (x )=ln x ,x 1>x 2>e ,则下列结论正确的是() A .(x 1-x 2)[f (x 1)-f (x 2)]<0B.12[f (x 1)+f (x 2)]<f ⎝⎛⎭⎫x 1+x22C .x 1f (x 2)-x 2f (x 1)>0D .e[f (x 1)-f (x 2)]<x 1-x 2答案 BCD解析 ∵f (x )=ln x 是增函数,∴(x 1-x 2)[f (x 1)-f (x 2)]>0,A 错误;12[f (x 1)+f (x 2)]=12(ln x 1+ln x 2)=12ln(x 1x 2)=ln x 1x 2,f ⎝⎛⎭⎫x 1+x 22=ln x 1+x 22,由x 1>x 2>e ,得x 1+x 22>x 1x 2,又f (x )=ln x 单调递增,∴12[f (x 1)+f (x 2)]<f ⎝⎛⎭⎫x1+x 22,B 正确;令h (x )=f (x )x ,则h ′(x )=1-ln x x 2, 当x >e 时,h ′(x )<0,h (x )单调递减,∴h (x 1)<h (x 2),即 f (x 1)x 1< f (x 2)x 2⇒x 1f (x 2)-x 2f (x 1)>0, C 正确;令g (x )=e f (x )-x ,则g ′(x )=e x-1, 当x >e 时,g ′(x )<0,g (x )单调递减,∴g (x 1)<g (x 2),即e f (x 1)-x 1<e f (x 2)-x 2⇒e[f (x 1)-f (x 2)]<x 1-x 2,D 正确.三、填空题9.(2022·保定模拟)若函数f (x )=ln x -2x+m 在(1,f (1))处的切线过点(0,2),则实数m =______. 答案 6解析 由题意,函数f (x )=ln x -2x +m , 可得f ′(x )=1x +321x , 可得f ′(1)=2,且f (1)=m -2,所以m -2-21-0=2,解得m =6. 10.已知函数f (x )=x 2-cos x ,则不等式f (2x -1)<f (x +1)的解集为________.答案 (0,2)解析 f (x )的定义域为R ,f (-x )=(-x )2-cos(-x )=x 2-cos x =f (x ),∴f (x )为偶函数.当x >0时,f ′(x )=2x +sin x ,令g (x )=2x +sin x ,则g ′(x )=2+cos x >0,∴f ′(x )在(0,+∞)上单调递增,∴f ′(x )>f ′(0)=0,∴f (x )在(0,+∞)上单调递增,又f (x )为偶函数,∴原不等式化为|2x -1|<|x +1|,解得0<x <2,∴原不等式的解集为(0,2).11.(2022·伊春模拟)过点P (1,2)作曲线C :y =4x的两条切线,切点分别为A ,B ,则直线AB 的方程为________.答案 2x +y -8=0解析 设A (x 1,y 1),B (x 2,y 2),y ′=-4x 2, 所以曲线C 在A 点处的切线方程为y -y 1=-4x 21(x -x 1), 将P (1,2)代入得2-y 1=-4x 21(1-x 1), 因为y 1=4x 1,化简得2x 1+y 1-8=0, 同理可得2x 2+y 2-8=0,所以直线AB 的方程为2x +y -8=0.12.已知函数f (x )=12x 2-ax +ln x ,对于任意不同的x 1,x 2∈(0,+∞),有f (x 1)-f (x 2)x 1-x 2>3,则实数a 的取值范围是________.答案a ≤-1解析 对于任意不同的x 1,x 2∈(0,+∞),有 f (x 1)-f (x 2)x 1-x 2>3. 不妨设x 1<x 2,则f (x 1)-f (x 2)<3(x 1-x 2),即f (x 1)-3x 1<f (x 2)-3x 2,设F (x )=f (x )-3x ,则F (x 1)<F (x 2),又x 1<x 2,所以F (x )单调递增,F ′(x )≥0恒成立.F (x )=f (x )-3x =12x 2-(a +3)x +ln x . 所以F ′(x )=x -(3+a )+1x =x 2-(3+a )x +1x, 令g (x )=x 2-(3+a )x +1,要使F ′(x )≥0在(0,+∞)上恒成立,只需g (x )=x 2-(3+a )x +1≥0恒成立,即3+a ≤x +1x 恒成立,x +1x ≥2x ·1x=2, 当且仅当x =1x,即x =1时等号成立, 所以3+a ≤2,即a ≤-1.四、解答题13.(2022·滁州模拟)已知函数f (x )=x 2-2x +a ln x (a ∈R ).(1)若函数在x =1处的切线与直线x -4y -2=0垂直,求实数a 的值;(2)当a >0时,讨论函数的单调性.解 函数定义域为(0,+∞),求导得f ′(x )=2x -2+a x. (1)由已知得f ′(1)=2×1-2+a =-4,得a =-4.(2)f ′(x )=2x -2+a x =2x 2-2x +a x(x >0), 对于方程2x 2-2x +a =0,记Δ=4-8a .①当Δ≤0,即a ≥12时,f ′(x )≥0,函数f (x )在(0,+∞)上单调递增; ②当Δ>0,即0<a <12时,令f ′(x )=0, 解得x 1=1-1-2a 2,x 2=1+1-2a 2. 又a >0,故x 2>x 1>0.当x ∈(0,x 1)∪(x 2,+∞)时,f ′(x )>0,函数f (x )单调递增,当x ∈(x 1,x 2)时,f ′(x )<0,函数f (x )单调递减.综上所述,当a ≥12时,函数f (x )在(0,+∞)上单调递增; 当0<a <12时,函数f (x )在⎝ ⎛⎭⎪⎫0,1-1-2a 2, ⎝ ⎛⎭⎪⎫1+1-2a 2,+∞上单调递增, 在⎝ ⎛⎭⎪⎫1-1-2a 2,1+1-2a 2上单调递减. 14.(2022·湖北八市联考)设函数f (x )=e x -(ax -1)ln(ax -1)+(a +1)x .(e =2.718 28…为自然对数的底数)(1)当a =1时,求F (x )=e x -f (x )的单调区间;(2)若f (x )在区间⎣⎡⎦⎤1e ,1上单调递增,求实数a 的取值范围.解 (1)当a =1时,F (x )=e x -f (x )=(x -1)ln(x -1)-2x ,定义域为(1,+∞),F ′(x )=ln(x -1)-1,令F ′(x )>0,解得x >e +1,令F ′(x )<0,解得1<x <e +1,故F (x )的单调递增区间为(e +1,+∞),单调递减区间为(1,e +1).(2)f (x )在区间⎣⎡⎦⎤1e ,1上有意义,故ax -1>0在⎣⎡⎦⎤1e ,1上恒成立,可得a >e ,依题意可得f ′(x )=e x -a ln(ax -1)+1≥0在⎣⎡⎦⎤1e ,1上恒成立,设g (x )=f ′(x )=e x -a ln(ax -1)+1,g ′(x )=e x-a 2ax -1, 易知g ′(x )在⎣⎡⎦⎤1e ,1上单调递增,故g ′(x )≤g ′(1)=e -a 2a -1<0, 故g (x )=f ′(x )=e x -a ln(ax -1)+1在⎣⎡⎦⎤1e ,1上单调递减,最小值为g (1),故只需g (1)=e -a ln(a -1)+1≥0,设h (a )=e -a ln(a -1)+1,其中a >e ,由h ′(a )=-ln(a -1)-a a -1<0可得, h (a )=e -a ln(a -1)+1在(e ,+∞)上单调递减,又h (e +1)=0,故a ≤e +1.综上所述,a 的取值范围为(e ,e +1].。

【新高考】高三数学一轮复习知识点专题3-2 导数与函数的单调性、极值与最值

【新高考】高三数学一轮复习知识点专题3-2 导数与函数的单调性、极值与最值

专题3.2 导数与函数的单调性、极值与最值(精讲)【考情分析】1.了解函数的单调性与导数的关系;2.能利用导数研究函数的单调性,会求函数的单调区间。

3.了解函数在某点取得极值的必要条件和充分条件;4.会用导数求函数的极大值、极小值;5.会求闭区间上函数的最大值、最小值。

【重点知识梳理】知识点一函数的单调性与导数的关系函数y=f(x)在某个区间内可导,则:(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.知识点二函数的单调性与导数的关系函数y=f(x)在某个区间内可导,则:(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.知识点三函数的极值与导数形如山峰形如山谷知识点四函数的最值与导数(1)函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y =f (x )在[a ,b ]上的最大(小)值的步骤 ①求函数y =f (x )在(a ,b )内的极值;②将函数y =f (x )的各极值与端点处的函数值f (a ),f (b )比较,其中最大的一个是最大值,最小的一个是最小值.【特别提醒】1.函数f (x )在区间(a ,b )上递增,则f ′(x )≥0,“f ′(x )>0在(a ,b )上成立”是“f (x )在(a ,b )上单调递增”的充分不必要条件.2.对于可导函数f (x ),“f ′(x 0)=0”是“函数f (x )在x =x 0处有极值”的必要不充分条件.3.求最值时,应注意极值点和所给区间的关系,关系不确定时,需要分类讨论,不可想当然认为极值就是最值.4.函数最值是“整体”概念,而函数极值是“局部”概念,极大值与极小值之间没有必然的大小关系. 【典型题分析】高频考点一求函数的单调区间例1.【2019·天津卷】设函数()e cos ,()xf x xg x =为()f x 的导函数,求()f x 的单调区间。

高考数学二轮复习 专题2 函数与导数 第3讲 导数的概念

高考数学二轮复习 专题2 函数与导数 第3讲 导数的概念

第3讲导数的概念及其简单应用导数的几何意义及导数的运算1.(2015洛阳统考)已知直线m:x+2y-3=0,函数y=3x+cos x的图象与直线l相切于Ρ点,若l ⊥m,则Ρ点的坐标可能是( B )(A)(-错误!未找到引用源。

,-错误!未找到引用源。

) (B)(错误!未找到引用源。

,错误!未找到引用源。

)(C)(错误!未找到引用源。

,错误!未找到引用源。

)(D)(-错误!未找到引用源。

,-错误!未找到引用源。

)解析:由l⊥m可得直线l的斜率为2,函数y=3x+cos x的图象与直线l相切于Ρ点,也就是函数在P点的导数值为2,而y ′=3-sin x=2,解得sin x=1,只有B,D符合要求,而D中的点不在函数图象上,因此选B.2.(2014广东卷)曲线y=e-5x+2在点(0,3)处的切线方程为.解析:由题意知点(0,3)是切点.y′=-5e-5x,令x=0,得所求切线斜率为-5.从而所求方程为5x+y-3=0.答案:5x+y-3=0利用导数研究函数的单调性3.(2015辽宁沈阳市质检)若定义在R上的函数f(x)满足f(x)+f′(x)>1,f(0)=4,则不等式f(x)>错误!未找到引用源。

+1(e为自然对数的底数)的解集为( A )(A)(0,+∞) (B)(-∞,0)∪(3,+∞)(C)(-∞,0)∪(0,+∞) (D)(3,+∞)解析:不等式f(x)>错误!未找到引用源。

+1可以转化为e x f(x)-e x-3>0令g(x)=e x f(x)-e x-3,所以g′(x)=e x(f(x)+f′(x))-e x=e x(f(x)+f′(x)-1)>0,所以g(x)在R上单调递增,又因为g(0)=f(0)-4=0,所以g(x)>0⇒x>0,即不等式的解集是(0,+∞).故选A.4.(2014辽宁卷)当x∈[-2,1]时,不等式ax3-x2+4x+3≥0恒成立,则实数a的取值范围是( C )(A)[-5,-3] (B)[-6,-错误!未找到引用源。

高考数学复习 专题02 函数与导数 函数的单调性与最值备考策略-人教版高三全册数学素材

高考数学复习 专题02 函数与导数 函数的单调性与最值备考策略-人教版高三全册数学素材

函数的单调性与最值备考策略主标题:函数的单调性与最值备考策略副标题:通过考点分析高考命题方向,把握高考规律,为学生备考复习打通快速通道。

关键词:函数,单调性,最值,备考策略 难度:3 重要程度:5 内容考点一 确定函数的单调性或单调区间【例1】 (1)判断函数f (x )=x +k x(k >0)在(0,+∞)上的单调性. (2)求函数y =log 13(x 2-4x +3)的单调区间.解 (1)法一 任意取x 1>x 2>0,则f (x 1)-f (x 2)=⎝⎛⎭⎪⎫x 1+kx 1-⎝ ⎛⎭⎪⎫x 2+k x 2=(x 1-x 2)+⎝ ⎛⎭⎪⎫k x 1-k x 2=(x 1-x 2)+k x 2-x 1x 1x 2=(x 1-x 2)⎝ ⎛⎭⎪⎫1-k x 1x 2.当k ≥x 1>x 2>0时,x 1-x 2>0,1-kx 1x 2<0, 有f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),此时,函数f (x )=x +k x(k >0)在(0,k ]上为减函数; 当x 1>x 2≥k 时,x 1-x 2>0,1-kx 1x 2>0, 有f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),此时,函数f (x )=x +k x(k >0)在[k ,+∞)上为增函数;综上可知,函数f (x )=x +k x(k >0)在(0,k ]上为减函数;在[k ,+∞)上为增函数. 法二 f ′(x )=1-k x 2,令f ′(x )>0,则1-k x2>0, 解得x >k 或x <-k (舍).令f ′(x )<0,则1-k x2<0,解得-k <x <k .∵x >0,∴0<x <k .∴f (x )在(0,k )上为减函数;在(k ,+∞)上为增函数, 也称为f (x )在(0,k ]上为减函数;在[k ,+∞)上为增函数.(2)令u =x 2-4x +3,原函数可以看作y =log 13u 与u =x 2-4x +3的复合函数.令u =x 2-4x +3>0.则x <1或x >3. ∴函数y =log 13(x 2-4x +3)的定义域为(-∞,1)∪(3,+∞).又u =x 2-4x +3的图象的对称轴为x =2,且开口向上,∴u =x 2-4x +3在(-∞,1)上是减函数,在(3,+∞)上是增函数.而函数y =log 13u 在(0,+∞)上是减函数,∴y =log 13(x 2-4x +3)的单调递减区间为(3,+∞),单调递增区间为(-∞,1).【备考策略】(1)对于给出具体解析式的函数,证明或判断其在某区间上的单调性有两种方法:①可以利用定义(基本步骤为取值、作差或作商、变形、定号、下结论)求解;②可导函数则可以利用导数解之.(2)复合函数y =f [g (x )]的单调性规律是“同则增,异则减”,即y =f (u )与u =g (x )若具有相同的单调性,则y =f [g (x )]为增函数,若具有不同的单调性,则y =f [g (x )]必为减函数.考点二 利用单调性求参数【例2】 已知函数f (x )=ax -1x +1. (1)若a =-2,试证f (x )在(-∞,-2)上单调递减.(2)函数f (x )在(-∞,-1)上单调递减,求实数a 的取值范围. (1)证明 任设x 1<x 2<-2, 则f (x 1)-f (x 2)=-2x 1-1x 1+1--2x 2-1x 2+1=-x 1-x 2x 1+1x 2+1.∵(x 1+1)(x 2+1)>0,x 1-x 2<0,∴f (x 1)-f (x 2)>0, ∴f (x 1)>f (x 2),∴f (x )在(-∞,-2)上单调递减. (2)解 法一 f (x )=ax -1x +1=a -a +1x +1,设x 1<x 2<-1, 则f (x 1)-f (x 2)=⎝⎛⎭⎪⎫a -a +1x 1+1-⎝ ⎛⎭⎪⎫a -a +1x 2+1 =a +1x 2+1-a +1x 1+1=a +1x 1-x 2x 1+1x 2+1,又函数f (x )在(-∞,-1)上是减函数, 所以f (x 1)-f (x 2)>0. 由于x 1<x 2<-1,∴x 1-x 2<0,x 1+1<0,x 2+1<0, ∴a +1<0,即a <-1.故a 的取值范围是(-∞,-1). 法二 由f (x )=ax -1x +1,得f ′(x )=a +1x +12,又因为f (x )=ax -1x +1在(-∞,-1)上是减函数,所以f ′(x )=a +1x +12≤0在x ∈(-∞,-1)上恒成立,解得a ≤-1,而a =-1时,f (x )=-1,在(-∞,-1)上不具有单调性,故实数a 的取值范围是(-∞,-1).【备考策略】利用单调性求参数的一般方法:一是求出函数的单调区间,然后使所给区间是这个单调区间的子区间,建立关于参数的不等式组即可求得参数范围;二是直接利用函数单调性的定义:作差、变形,由f (x 1)-f (x 2)的符号确定参数的范围,另外也可分离参数转化为不等式恒成立问题.考点三 利用函数的单调性求最值【例3】 已知f (x )=x 2+2x +a x,x ∈[1,+∞).(1)当a =12时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.审题路线 (1)当a =12时,f (x )为具体函数→求出f (x )的单调性,利用单调性求最值.(2)当x ∈[1,+∞)时,f (x )>0恒成立→转化为x 2+2x +a >0恒成立.解 (1)当a =12时,f (x )=x +12x +2,联想到g (x )=x +1x 的单调性,猜想到求f (x )的最值可先证明f (x )的单调性.任取1≤x 1<x 2, 则f (x 1)-f (x 2)=(x 1-x 2)+⎝⎛⎭⎪⎫12x 1-12x 2=x 1-x 22x 1x 2-12x 1x 2, ∵1≤x 1<x 2,∴x 1x 2>1,∴2x 1x 2-1>0. 又x 1-x 2<0,∴f (x 1)<f (x 2), ∴f (x )在[1,+∞)上是增函数,∴f (x )在[1,+∞)上的最小值为f (1)=72.(2)在区间[1,+∞)上,f (x )=x 2+2x +ax>0恒成立,则⎩⎪⎨⎪⎧x 2+2x +a >0,x ≥1⇔⎩⎪⎨⎪⎧a >-x 2+2x ,x ≥1,等价于a 大于函数φ(x )=-(x 2+2x )在[1,+∞)上的最大值.只需求函数φ(x )=-(x 2+2x )在[1,+∞)上的最大值.φ(x )=-(x +1)2+1在[1,+∞)上递减,∴当x =1时,φ(x )最大值为φ(1)=-3. ∴a >-3,故实数a 的取值范围是(-3,+∞). 【备考策略】求函数最值的常用方法:(1)单调性法:先确定函数的单调性,再由单调性求最值;(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值;(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值;(4)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值; (5)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.。

高考数学第2章函数、导数及其应用第3讲函数的奇偶性与周期性创高三全册数学

高考数学第2章函数、导数及其应用第3讲函数的奇偶性与周期性创高三全册数学

12/8/2021
第十九页,共七十四页。
解析 答案
4.设函数 f(x)=cosπ2-xπ2+x+e2x+e2的最大值为 M,最小值为 N,则(M
+N-1)2020 的值为( )
A.1
B.2
C.22020
D.32020
解析 由已知 x∈R,f(x)=cosπ2-xπ2+x+e2x+e2=sinπx+xx2+2+ee22+2ex=
12/8/2021
第二页,共七十四页。
1
PART ONE
基础知识过关(guò〃guān)
12/8/2021
第三页,共七十四页。
1.函数的奇偶性
奇偶性
定义
图象特点
一般地,如果对于函数f(x)的定义域内 偶函数 任意一个x,都有 01 f(-x)=f(x) ,那 关于 02 y轴对称
么函数f(x)就叫做偶函数
第二章 函数(hánshù)、导数及其应用 第3讲 函数(hánshù)的奇偶性与周期性
12/8/2021
第一页,共七十四页。
[考纲解读] 1.了解函数奇偶性的含义. 2.会运用基本初等函数的图象分析函数的奇偶性.(重点) 3.了解函数周期性、最小正周期的含义,会判断、应用简单 函数的周期性.(重点) [考向预测] 从近三年高考情况来看,函数的奇偶性与周期性 是高考的一个热点.预测2021年高考会侧重以下三点:①函数 奇偶性的判断及应用;②函数周期性的判断及应用;③综合利 用函数奇偶性、周期性和单调性求参数的值或解不等式.
3.(2019·衡水模拟)已知 f(x)是定义在 R 上的奇函数,若 x>0 时,f(x)
=xln x,则 x<0 时,f(x)=( )
A.xln x
B.xln (-x)

高考数学各章知识点总结

高考数学各章知识点总结

高考数学各章知识点总结在高中的学习过程中,数学是一门重要而广泛应用的学科。

对于正在备战高考的同学们来说,掌握各章知识点是取得好成绩的关键。

本文将对高考数学各章的知识点进行总结,供同学们参考。

第一章:函数与导数函数与导数是数学学习的基础,在高考中占据重要地位。

在这一章中,我们主要学习了函数的概念、函数的性质、函数的图像、函数的运算、反函数与复合函数以及导数的概念与初等函数的导数等。

第二章:二次函数与图像的性质在这一章中,我们学习了二次函数的定义、一般式与顶点式、二次函数图像的性质、二次函数与一元二次方程的关系等内容。

二次函数在现实生活中有广泛的应用,并且在高考中常用于解析几何等题型。

第三章:实数与复数实数与复数是数学中的基本概念。

在这一章中,我们主要学习了实数的性质、有理数与无理数、实数大小的比较、复数的定义与运算、复数的几何意义等内容。

复数在高等数学和物理学等领域有着重要的应用。

第四章:不等式不等式在高考数学中占据重要地位。

在这一章中,我们学习了不等式的定义、等式与不等式、不等式的性质、不等式的加减乘除等运算、一次不等式与一元一次方程的关系等知识点。

在解决实际问题时,我们经常需要利用不等式进行推理和求解。

第五章:数列与数学归纳法数列与数学归纳法是数学学习中重要的内容。

在这一章中,我们学习了数列的概念、数列的分类、等差数列与等比数列、数列的通项公式、等差中项公式、数学归纳法等知识。

数列与数学归纳法可以应用于数学、物理等领域的问题求解。

第六章:排列与组合排列与组合是数学中的一门重要分支。

在高考中,这一章的题型也非常常见。

在这一章中,我们学习了排列的概念与性质、排列数的计算、组合的概念与性质、组合数的计算、二项式定理等内容。

排列与组合在概率论、组合数学等领域有广泛的应用。

第七章:概率概率是高考数学中的另一门重要内容。

在这一章中,我们学习了概率的基本概念、事件的概率、概率的性质、几何概率等知识点。

概率在生活中的应用广泛,如在赌博、保险、风险评估等方面都有着实际应用。

高考数学 导数与函数的单调性、极值与最值 教案 含解析题

高考数学  导数与函数的单调性、极值与最值 教案  含解析题

第二节 导数在研究函数中的应用第1课时 系统知识牢基础——导数与函数的单调性、极值与最值知识点一 利用导数研究函数的单调性1.函数f (x )在某个区间(a ,b )内的单调性与f ′(x )的关系 (1)若f ′(x )>0,则f (x )在这个区间上单调递增. (2)若f ′(x )<0,则f (x )在这个区间上单调递减. (3)若f ′(x )=0,则f (x )在这个区间上是常数. 2.利用导数判断函数单调性的一般步骤 (1)求f ′(x ).(2)在定义域内解不等式f ′(x )>0或f ′(x )<0. (3)根据结果确定f (x )的单调性及单调区间.[提醒] (1)讨论函数的单调性或求函数的单调区间的实质是解不等式,求解时,要坚持“定义域优先”原则.(2)有相同单调性的单调区间不止一个时,用“,”隔开或用“和”连接,不能用“∪”连接. (3)若函数y =f (x )在区间(a ,b )上单调递增,则f ′(x )≥0,且在(a ,b )的任意子区间,等号不恒成立;若函数y =f (x )在区间(a ,b )上单调递减,则f ′(x )≤0,且在(a ,b )的任意子区间,等号不恒成立.[重温经典]1.(多选·教材改编题)如图是函数y =f (x )的导函数y =f ′(x )的图象,则下列判断正确的是( ) A .在区间(-2,1)上f (x )是增函数 B .在区间(2,3)上f (x )是减函数 C .在区间(4,5)上f (x )是增函数 D .当x =2时,f (x )取到极大值 答案:BCD2.(教材改编题)函数y =x 4-2x 2+5的单调递减区间为( ) A .(-∞,-1)和(0,1) B .[-1,0]和[1,+∞) C .[-1,1] D .(-∞,-1]和[1,+∞)答案:A3.(易错题)若函数y =x 3+x 2+mx +1是R 上的单调函数,则实数m 的取值范围是( ) A.⎝⎛⎭⎫13,+∞ B .⎝⎛⎦⎤-∞,13C.⎣⎡⎭⎫13,+∞ D .⎝⎛⎭⎫-∞,13 解析:选C y ′=3x 2+2x +m ,由条件知y ′≥0在R 上恒成立,∴Δ=4-12m ≤0,∴m ≥13.4.若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( ) A .(-∞,-2] B .(-∞,-1] C .[2,+∞)D .[1,+∞)解析:选D 因为f (x )=kx -ln x ,所以f ′(x )=k -1x .因为f (x )在区间(1,+∞)上单调递增,所以当x >1时,f ′(x )=k -1x ≥0恒成立,即k ≥1x 在区间(1,+∞)上恒成立.因为x >1,所以0<1x <1,所以k ≥1.故选D.5.若函数y =-43x 3+ax 有三个单调区间,则a 的取值范围是________.解析:∵y ′=-4x 2+a ,且y 有三个单调区间,∴方程y ′=-4x 2+a =0有两个不等的实根,∴Δ=02-4×(-4)×a >0,∴a >0. 答案:(0,+∞)6.设函数f (x )在(a ,b )上的导函数为f ′(x ),f ′(x )在(a ,b )上的导函数为f ″(x ),若在(a ,b )上,f ″(x )<0恒成立,则称函数f (x )在(a ,b )上为“凸函数”.已知f (x )=x 44-t 3x 3+32x 2在(1,4)上为“凸函数”,则实数t 的取值范围是________.解析:由f (x )=x 44-t 3x 3+32x 2可得f ′(x )=x 3-tx 2+3x ,f ″(x )=3x 2-2tx +3,∵f (x )在(1,4)上为“凸函数”,∴x ∈(1,4)时,3x 2-2tx +3<0恒成立,∴t >32⎝⎛⎭⎫x +1x 恒成立. 令g (x )=32⎝⎛⎭⎫x +1x ,∵g (x )在(1,4)上单调递增, ∴t ≥g (4)=518.∴实数t 的取值范围是⎣⎡⎭⎫518,+∞. 答案:⎣⎡⎭⎫518,+∞知识点二 利用导数研究函数的极值 1.函数的极大值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都小于x 0点的函数值,称点x 0为函数y =f (x )的极大值点,其函数值f (x 0)为函数的极大值. 2.函数的极小值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都大于x 0点的函数值,称点x 0为函数y =f (x )的极小值点,其函数值f (x 0)为函数的极小值.极大值与极小值统称为极值,极大值点与极小值点统称为极值点.[提醒] (1)极值点不是点,若函数f (x )在x 1处取得极大值,则x 1为极大值点,极大值为f (x 1);在x 2处取得极小值,则x 2为极小值点,极小值为f (x 2).极大值与极小值之间无确定的大小关系.(2)极值一定在区间内部取得,有极值的函数一定不是单调函数.(3)f ′(x 0)=0是x 0为f (x )的极值点的必要而非充分条件.例如,f (x )=x 3,f ′(0)=0,但x =0不是极值点.[重温经典]1.(多选)(2021·福州模拟)下列函数中,存在极值点的是( ) A .y =x -1xB .y =2|x |C .y =-2x 3-xD .y =x ln x解析:选BD 由题意函数y =x -1x ,则y ′=1+1x2>0,所以函数y =x -1x 在(-∞,0),(0,+∞)内单调递增,没有极值点;函数y =2|x |=⎩⎪⎨⎪⎧2x ,x ≥0,2-x ,x <0,根据指数函数的图象与性质可得,当x <0时,函数y =2|x |单调递减,当x >0时,函数y =2|x |单调递增,所以函数y =2|x |在x =0处取得极小值;函数y =-2x 3-x ,则y ′=-6x 2-1<0,所以函数y =-2x 3-x 在R 上单调递减,没有极值点;函数y =x ln x ,则y ′=ln x +1,当x ∈⎝⎛⎭⎫0,1e 时,y ′<0,函数单调递减,当x ∈⎝⎛⎭⎫1e ,+∞时,y ′>0,函数单调递增,当x =1e 时,函数取得极小值,故选B 、D.2.(教材改编题)如图是f (x )的导函数f ′(x )的图象,则f (x )的极小值点的个数为( ) A .1 B .2 C .3D .4解析:选A 由图象及极值点的定义知,f (x )只有一个极小值点.3.(教材改编题)若函数f (x )=x 3+ax 2+3x -9在x =-3时取得极值,则a 的值为( ) A .2 B .3 C .4D .5解析:选D f ′(x )=3x 2+2ax +3,由题意知f ′(-3)=0,即3×(-3)2+2a ×(-3)+3=0,解得a =5.4.(多选)材料:函数是描述客观世界变化规律的重要数学模型,在现行的高等数学与数学分析教材中,对“初等函数”给出了确切的定义,即由常数和基本初等函数经过有限次的四则运算及有限次的复合步骤所构成的,且能用一个式子表示的,如函数f(x)=x x(x>0),我们可以作变形:f(x)=x x=eln x x=e x ln x=e t(t=x ln x),所以f(x)可看作是由函数f(t)=e t和g(x)=x ln x复合而成的,即f(x)=x x(x>0)为初等函数.根据以上材料,对于初等函数h(x)=x 1x(x>0)的说法正确的是()A.无极小值B.有极小值1C.无极大值D.有极大值e 1 e解析:选AD根据材料知:h(x)=x 1x=e1ln xx=e1ln xx,所以h′(x)=e 1ln xx·⎝⎛⎭⎫1x ln x′=e1ln xx·⎝⎛⎭⎫-1x2ln x+1x2=1x2e1ln xx(1-ln x),令h′(x)=0得x=e,当0<x<e时,h′(x)>0,此时函数h(x)单调递增;当x>e时,h′(x)<0,此时函数h(x)单调递减.所以h(x)有极大值且为h(e)=e 1e,无极小值.5.若x=-2是函数f(x)=(x2+ax-1)e x的极值点,则f′(-2)=________,f(x)的极小值为________.解析:由函数f(x)=(x2+ax-1)e x可得f′(x)=(2x+a)e x+(x2+ax-1)e x,因为x=-2是函数f(x)的极值点,所以f′(-2)=(-4+a)e-2+(4-2a-1)e-2=0,即-4+a+3-2a=0,解得a=-1.所以f′(x)=(x2+x-2)e x.令f′(x)=0可得x=-2或x=1.当x<-2或x>1时,f′(x)>0,此时函数f(x)为增函数,当-2<x<1时,f′(x)<0,此时函数f(x)为减函数,所以当x=1时函数f(x)取得极小值,极小值为f(1)=(12-1-1)×e1=-e.答案:0-e6.设x1,x2是函数f(x)=x3-2ax2+a2x的两个极值点,若x1<2<x2,则实数a的取值范围是________.解析:由题意得f′(x)=3x2-4ax+a2的两个零点x1,x2满足x1<2<x2,所以f′(2)=12-8a+a2<0,解得2<a<6.答案:(2,6)知识点三 函数的最值1.在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.2.若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.[提醒] 求函数最值时,易误认为极值点就是最值点,不通过比较就下结论,这种做法是错误的.[重温经典]1.(教材改编题)函数f (x )=ln x -x 在区间(0,e]上的最大值为( ) A .1-e B .-1 C .-eD .0解析:选B 因为f ′(x )=1x -1=1-x x ,当x ∈(0,1)时,f ′(x )>0;当x ∈(1,e]时,f ′(x )<0,所以f (x )的单调递增区间是(0,1),单调递减区间是(1,e],所以当x =1时,f (x )取得最大值f (1)=ln 1-1=-1.2.(教材改编题)函数f (x )=x 4-4x (|x |<1)( ) A .有最大值,无最小值 B .有最大值,也有最小值 C .无最大值,有最小值D .既无最大值,也无最小值解析:选D f ′(x )=4x 3-4=4(x -1)(x 2+x +1).令f ′(x )=0,得x =1.又x ∈(-1,1)且1∉(-1,1),∴该方程无解,故函数f (x )在(-1,1)上既无极值也无最值.故选D. 3.(教材改编题)函数y =x +2cos x 在区间⎣⎡⎦⎤0,π2上的最大值是________. 答案:3+π64.(易错题)已知f (x )=-x 2+mx +1在区间[-2,-1]上的最大值就是函数f (x )的极大值,则m 的取值范围是________. 答案:(-4,-2)5.函数f (x )=x e -x ,x ∈[0,4]的最小值为________. 解析:f ′(x )=e -x -x e -x =e -x (1-x ). 令f ′(x )=0,得x =1(e -x >0), 又f (1)=1e >0,f (0)=0,f (4)=4e 4>0,所以f (x )的最小值为0. 答案:06.已知函数f (x )=2sin x +sin 2x ,则f (x )的最小值是________.解析:f ′(x )=2cos x +2cos 2x =2cos x +2(2cos 2x -1) =2(2cos 2x +cos x -1)=2(2cos x -1)(cos x +1).∵cos x +1≥0,∴当cos x <12时,f ′(x )<0,f (x )单调递减;当cos x >12时,f ′(x )>0,f (x )单调递增.∴当cos x =12时,f (x )有最小值.又f (x )=2sin x +sin 2x =2sin x (1+cos x ), ∴当sin x =-32时,f (x )有最小值, 即f (x )min =2×⎝⎛⎭⎫-32×⎝⎛⎭⎫1+12=-332.答案:-332。

2018年高考数学(理)二轮复习 讲学案:考前专题二 函数与导数 第3讲 导数及其应用(含答案解析)

2018年高考数学(理)二轮复习 讲学案:考前专题二  函数与导数 第3讲 导数及其应用(含答案解析)

第3讲 导数及其应用1.导数的意义和运算是导数应用的基础,是高考的一个热点. 2.利用导数解决函数的单调性与极值(最值)问题是高考的常见题型. 3.导数与函数零点,不等式的结合常作为高考压轴题出现.热点一 导数的几何意义1.函数f (x )在x 0处的导数是曲线f (x )在点P (x 0,f (x 0))处的切线的斜率,曲线f (x )在点P 处的切线的斜率k =f ′(x 0),相应的切线方程为y -f (x 0)=f ′(x 0)(x -x 0).2.求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的不同. 例 1 (1)(2017届山东寿光现代中学月考)过点(0,1)且与曲线y =x +1x -1在点(3,2)处的切线垂直的直线的方程为( )A .2x +y -1=0B .2x -y +1=0C .x -2y +2=0D .x +2y -2=0答案 B 解析 因为y ′=x -1-(x +1)(x -1)2=-2(x -1)2,故切线的斜率k =-12,即所求直线的斜率k =2,方程为y -1=2(x -0),即2x -y +1=0.故选B.(2)(2017届成都一诊)已知曲线C 1:y 2=tx (y >0,t >0)在点M ⎝ ⎛⎭⎪⎫4t ,2处的切线与曲线C 2:y =e x +1-1也相切,则t ln 4e 2t 的值为( ) A .4e 2B .8eC .2D .8答案 D解析 曲线C 1:y =tx ,y ′=t2tx. 当x =4t 时,y ′=t 4,切线方程为y -2=t 4⎝ ⎛⎭⎪⎫x -4t ,化简为y =t4x +1.①与曲线C 2相切,设切点为(x 0,y 0),y ′|0x x ==e01x +=t 4,x 0=ln t4-1, 那么y 0=e01x +-1=t4-1, 切线方程为y -⎝ ⎛⎭⎪⎫t 4-1=t 4⎝⎛⎭⎪⎫x -ln t4+1,化简为y =t 4x -t 4ln t 4+t2-1,②①②是同一方程,所以-t 4ln t 4+t 2-1=1⇔ln t 4=2t -8t,即t =4,那么t ln 4e 2t=4ln e 2=8,故选D.思维升华 (1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.跟踪演练1 (1)(2017届河北省正定中学期中)已知函数f (x )=3x +cos 2x +sin 2x ,a =f ′⎝ ⎛⎭⎪⎫π4,f ′(x )是f (x )的导函数,则过曲线y =x 3上一点P (a ,b )的切线方程为________. 答案 3x -y -2=0或3x -4y +1=0解析 f ′(x )=3-2sin 2x +2cos 2x ,f ′⎝ ⎛⎭⎪⎫π4=3-2=1,则a =1,点P 的坐标为()1,1, 若P 为切点,y ′=3x 2,曲线y =x 3在点P 处切线的斜率为3,切线方程为y -1=3(x -1),即 3x -y -2=0;若P 不为切点,设曲线y =x 3的切线的切点为(m ,n ),曲线y =x 3的切线的斜率k =3m 2,则n -1m -1=3m 2.又n =m 3,则m =-12,n =-18,得切线方程为y +18=34⎝ ⎛⎭⎪⎫x +12,即3x -4y +1=0.∴过曲线y =x 3上一点P (a ,b )的切线方程为3x -y -2=0或3x -4y +1=0.(2)(2017届云南省师范大学附属中学月考)若函数f (x )=ln x 与函数g (x )=x 2+2x +a (x <0)有公切线,则实数a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫ln 12e ,+∞ B .(-1,+∞) C .(1,+∞) D. (-ln 2,+∞)答案 A解析 设公切线与函数f (x )=ln x 切于点A (x 1,ln x 1)(x 1>0),则切线方程为y -ln x 1=1x 1(x -x 1).设公切线与函数g (x )=x 2+2x +a 切于点B (x 2,x 22+2x 2+a )(x 2<0),则切线方程为y -(x 22+2x 2+a )=2(x 2+1)(x -x 2),∴⎩⎪⎨⎪⎧1x 1=2(x 2+1),ln x 1-1=-x 22+a ,∵x 2<0<x 1,∴0<1x 1<2.又a =ln x 1+⎝⎛⎭⎪⎫12x 1-12-1=-ln 1x 1+14⎝ ⎛⎭⎪⎫1x 1-22-1,令t =1x 1,∴0<t <2,a =14t 2-t -ln t .设h (t )=14t 2-t -ln t (0<t <2),则h ′(t )=12t -1-1t =(t -1)2-32t <0,∴h (t )在(0,2)上为减函数, 则h (t )>h (2)=-ln 2-1=ln 12e ,∴a ∈(ln 12e ,+∞),故选A.热点二 利用导数研究函数的单调性1.f ′(x )>0是f (x )为增函数的充分不必要条件,如函数f (x )=x 3在(-∞,+∞)上单调递增,但f ′(x )≥0. 2.f ′(x )≥0是f (x )为增函数的必要不充分条件,当函数在某个区间内恒有f ′(x )=0时,则f (x )为常函数,函数不具有单调性.例2 (2017届河南息县第一高级中学段测)已知函数f (x )=x 2+a ln x . (1)当a =-2时,求函数f (x )的单调区间;(2)若g (x )=f (x )+2x,在[1,+∞)上是单调函数,求实数a 的取值范围.解 (1)f ′(x )=2x -2x,令f ′(x )>0,得x >1;令f ′(x )<0,得0<x <1,所以f (x )的单调递增区间是(1,+∞), 单调递减区间是(0,1). (2)由题意g (x )=x 2+a ln x +2x,g ′(x )=2x +a x -2x2,若函数g (x )为[1,+∞)上的单调增函数, 则g ′(x )≥0在[1,+∞)上恒成立, 即a ≥2x-2x 2在[1,+∞)上恒成立,设φ(x )=2x-2x 2.∵φ(x )在[1,+∞)上单调递减, ∴φ(x )max =φ(1)=0,∴a ≥0;若函数g (x )为[1,+∞)上的单调减函数, 则g ′(x )≤0在[1,+∞)上恒成立,不可能. ∴实数a 的取值范围为[0,+∞).思维升华 利用导数研究函数单调性的一般步骤 (1)确定函数的定义域. (2)求导函数f ′(x ).(3)①若求单调区间(或证明单调性),只要在函数定义域内解(或证明)不等式f ′(x )>0或f ′(x )<0; ②若已知函数的单调性,则转化为不等式f ′(x )≥0或f ′(x )≤0在单调区间上恒成立问题来求解.跟踪演练2 (1)(2017届昆明市第一中学月考)若函数f (x )=ln x +ax 2-2在区间⎝ ⎛⎭⎪⎫12,2内存在单调递增区间,则实数a 的取值范围是( ) A .(-∞,-2] B.⎝ ⎛⎭⎪⎫-18,+∞ C. ⎝ ⎛⎭⎪⎫-2,-18 D. (-2,+∞)答案 D解析 由题意得f ′(x )=1x+2ax ,若f (x )在区间⎝ ⎛⎭⎪⎫12,2内存在单调递增区间,则f ′(x )>0在⎝ ⎛⎭⎪⎫12,2上有解, 即a >⎝ ⎛⎭⎪⎫-12x 2min.又g (x )=-12x 2在⎝ ⎛⎭⎪⎫12,2上是单调递增函数, 所以g (x )>g ⎝ ⎛⎭⎪⎫12=-2, 所以a >-2. 故选D.(2)定义在⎝ ⎛⎭⎪⎫0,π2上的函数f (x ),f ′(x )是它的导函数,且恒有f (x )<f ′(x )·tan x 成立,则( )A.3f ⎝ ⎛⎭⎪⎫π4>2f ⎝ ⎛⎭⎪⎫π3 B .f (1)<2f ⎝ ⎛⎭⎪⎫π6sin 1C.2f ⎝ ⎛⎭⎪⎫π6>f ⎝ ⎛⎭⎪⎫π4 D.3f ⎝ ⎛⎭⎪⎫π6<f ⎝ ⎛⎭⎪⎫π3 答案 D解析 构造函数F (x )=f (x )sin x. 则F ′(x )=f ′(x )sin x -f (x )cos x sin 2x >0,x ∈⎝ ⎛⎭⎪⎫0,π2,从而有F (x )=f (x )sin x 在⎝⎛⎭⎪⎫0,π2上为增函数,所以有F ⎝ ⎛⎭⎪⎫π6<F ⎝ ⎛⎭⎪⎫π3,即f ⎝ ⎛⎭⎪⎫π6sin π6<f ⎝ ⎛⎭⎪⎫π3sinπ3⇒3f ⎝ ⎛⎭⎪⎫π6<f⎝ ⎛⎭⎪⎫π3,故选D.热点三 利用导数求函数的极值、最值1.若在x 0附近左侧f ′(x )>0,右侧f ′(x )<0,则f (x 0)为函数f (x )的极大值;若在x 0附近左侧f ′(x )<0,右侧f ′(x )>0,则f (x 0)为函数f (x )的极小值.2.设函数y =f (x )在[a ,b ]上连续,在(a ,b )内可导,则f (x )在[a ,b ]上必有最大值和最小值且在极值点或端点处取得.例3 (2017届云南大理州统测)设函数G (x )=x ln x +(1-x )·ln(1-x ). (1)求G (x )的最小值;(2)记G (x )的最小值为c ,已知函数f (x )=2a ·e x +c+a +1x-2(a +1)(a >0),若对于任意的x ∈(0,+∞),恒有f (x )≥0成立,求实数a 的取值范围. 解 (1)由已知得0<x <1,G ′(x )=ln x -ln(1-x )=lnx1-x. 令G ′(x )<0,得0<x <12;令G ′(x )>0,得12<x <1,所以G (x )的单调减区间为⎝ ⎛⎭⎪⎫0,12, 单调增区间为⎝ ⎛⎭⎪⎫12,1. 从而G (x )min =G ⎝ ⎛⎭⎪⎫12=ln 12=-ln 2. (2)由(1)中c =-ln 2, 得f (x )=a ·e x+a +1x-2(a +1).所以f ′(x )=ax 2·e x-(a +1)x 2.令g (x )=ax 2·e x-(a +1), 则g ′(x )=ax (2+x )e x>0, 所以g (x )在(0,+∞)上单调递增,因为g (0)=-(a +1),且当x →+∞时,g (x )>0,所以存在x 0∈(0,+∞),使g (x 0)=0,且f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增. 因为g (x 0)=ax 20·e 0x -(a +1)=0,所以ax 20·ex =a +1,即a ·e 0x =a +1x 20, 因为对于任意的x ∈(0,+∞),恒有f (x )≥0成立, 所以f (x )min =f (x 0)=a ·e 0x +a +1x 0-2(a +1)≥0, 所以a +1x 20+a +1x 0-2(a +1)≥0, 即1x 20+1x 0-2≥0,即2x 20-x 0-1≤0,所以-12≤x 0≤1.因为ax 20·ex =a +1,所以x 20·ex =a +1a>1. 又x 0>0,所以0<x 0≤1,从而x 20·e 0x ≤e,所以1<a +1a ≤e,故a ≥1e -1. 思维升华 (1)求函数f (x )的极值,则先求方程f ′(x )=0的根,再检查f ′(x )在方程根的左右函数值的符号. (2)若已知极值大小或存在情况,则转化为已知方程f ′(x )=0根的大小或存在情况来求解.(3)求函数f (x )在闭区间[a ,b ]上的最值时,在得到极值的基础上,结合区间端点的函数值f (a ),f (b )与f (x )的各极值进行比较得到函数的最值.跟踪演练3 已知函数f (x )=ax 3+bx 2,在x =1处取得极值16.(1)求a ,b 的值;(2)若对任意的x ∈[0,+∞),都有f ′(x )≤k ln(x +1)成立(其中f ′(x )是函数f (x )的导函数),求实数k 的最小值.解 (1)由题设可得f ′(x )=3ax 2+2bx , ∵f (x )在x =1处取得极值16,∴⎩⎪⎨⎪⎧f ′(1)=0,f (1)=16,即⎩⎪⎨⎪⎧3a +2b =0,a +b =16,解得a =-13,b =12,经检验知,a =-13,b =12满足题设条件.(2)由(1)得f (x )=-13x 3+12x 2,∴f ′(x )=-x 2+x ,∴-x 2+x ≤k ln(x +1)在[0,+∞)上恒成立, 即x 2-x +k ln(x +1)≥0在x ∈[0,+∞)上恒成立, 设g (x )=x 2-x +k ln(x +1),则g (0)=0,g ′(x )=2x -1+kx +1=2x 2+x +k -1x +1,x ∈[0,+∞),设h (x )=2x 2+x +k -1,①当Δ=1-8(k -1)≤0,即k ≥98时,h (x )≥0,∴g ′(x )≥0,g (x )在[0,+∞)上单调递增, ∴g (x )≥g (0)=0,即当k ≥98时,满足题设条件.②当Δ=1-8(k -1)>0,即k <98时,设x 1,x 2是方程2x 2+x +k -1=0的两个实根,且x 1<x 2,由x 1+x 2=-12可知,x 1<0,由题设可知,当且仅当x 2≤0,即x 1·x 2≥0,即k -1≥0,即k ≥1时,对任意的x ∈[0,+∞)有h (x )≥0,即g ′(x )≥0在[0,+∞)上恒成立, ∴g (x )在[0,+∞)上单调递增,∴g (x )≥g (0)=0,∴当1≤k <98时,也满足条件,综上,k 的取值范围为[1,+∞),∴实数k 的最小值为1.真题体验1.(2017·浙江改编)函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是________.(填序号)答案 ④解析 观察导函数f ′(x )的图象可知,f ′(x )的函数值从左到右依次为小于0,大于0,小于0,大于0, ∴对应函数f (x )的增减性从左到右依次为减、增、减、增. 观察图象可知,排除①,③.如图所示,f ′(x )有3个零点,从左到右依次设为x 1,x 2,x 3,且x 1,x 3是极小值点,x 2是极大值点,且x 2>0,故④正确.2.(2017·全国Ⅱ改编)若x =-2是函数f (x )=(x 2+ax -1)·e x -1的极值点,则f (x )的极小值为________.答案 -1解析 函数f (x )=(x 2+ax -1)e x -1,则f ′(x )=(2x +a )e x -1+(x 2+ax -1)ex -1=ex -1[x 2+(a +2)x +a -1].由x =-2是函数f (x )的极值点,得f ′(-2)=e -3(4-2a -4+a -1)=(-a -1)e -3=0,所以a =-1,所以f (x )=(x 2-x -1)ex -1,f ′(x )=e x -1(x 2+x -2).由ex -1>0恒成立,得当x =-2或x =1时,f ′(x )=0,且x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当x >1时,f ′(x )>0.所以x =1是函数f (x )的极小值点. 所以函数f (x )的极小值为f (1)=-1.3.(2017·山东改编)若函数e xf (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质,下列函数中具有M 性质的是______.(填序号) ①f (x )=2-x;②f (x )=x 2;③f (x )=3-x;④f (x )=cos x . 答案 ①解析 若f (x )具有性质M ,则[e xf (x )]′=e x[f (x )+f ′(x )]>0在f (x )的定义域上恒成立,即f (x )+f ′(x )>0在f (x )的定义域上恒成立.对于①式,f (x )+f ′(x )=2-x-2-xln 2=2-x(1-ln 2)>0,符合题意. 经验证,②③④均不符合题意.故填①.4.(2017·全国Ⅰ)曲线y =x 2+1x在点(1,2)处的切线方程为________.答案 y =x +1解析 ∵y ′=2x -1x2,∴y ′|x =1=1,即曲线在点(1,2)处的切线的斜率k =1,∴切线方程为y -2=x -1,即x -y +1=0. 押题预测1.设函数y =f (x )的导函数为f ′(x ),若y =f (x )的图象在点P (1,f (1))处的切线方程为x -y +2=0,则f (1)+f ′(1)等于( )A .4B .3C .2D .1押题依据 曲线的切线问题是导数几何意义的应用,是高考考查的热点,对于“过某一点的切线”问题,也是易错易混点. 答案 A解析 依题意有f ′(1)=1,1-f (1)+2=0,即f (1)=3, 所以f (1)+f ′(1)=4.2.已知函数f (x )=x 3+ax 2+bx -a 2-7a 在x =1处取得极大值10,则a b的值为( ) A .-23 B .-2C .-2或-23 D .2或-23押题依据 函数的极值是单调性与最值的“桥梁”,理解极值概念是学好导数的关键.极值点、极值的求法是高考的热点. 答案 A解析 由题意知f ′(x )=3x 2+2ax +b ,f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧3+2a +b =0,1+a +b -a 2-7a =10,解得⎩⎪⎨⎪⎧a =-2,b =1或⎩⎪⎨⎪⎧a =-6,b =9,经检验⎩⎪⎨⎪⎧a =-6,b =9满足题意,故a b =-23.3.已知函数f (x )=x 2-ax +3在(0,1)上为减函数,函数g (x )=x 2-a ln x 在(1,2)上为增函数,则a 的值等于________. 押题依据 函数单调性问题是导数最重要的应用,体现了“以直代曲”思想,要在审题中搞清“在(0,1)上为减函数”与“函数的减区间为(0,1)”的区别. 答案 2解析 ∵函数f (x )=x 2-ax +3在(0,1)上为减函数, ∴a2≥1,得a ≥2.又∵g ′(x )=2x -a x,依题意g ′(x )≥0在x ∈(1,2)上恒成立,得2x 2≥a 在x ∈(1,2)上恒成立,有a ≤2,∴a =2. 4.已知函数f (x )=x -1x +1,g (x )=x 2-2ax +4,若对任意x 1∈[0,1],存在x 2∈[1,2],使f (x 1)≥g (x 2),则实数a 的取值范围是__________.押题依据 不等式恒成立或有解问题可以转化为函数的值域解决.考查了转化与化归思想,是高考的一个热点.答案 ⎣⎢⎡⎭⎪⎫94,+∞ 解析 由于f ′(x )=1+1(x +1)2>0,因此函数f (x )在[0,1]上单调递增,所以当x ∈[0,1]时,f (x )min =f (0)=-1. 根据题意可知存在x ∈[1,2], 使得g (x )=x 2-2ax +4≤-1,即x 2-2ax +5≤0,即a ≥x 2+52x 成立,令h (x )=x 2+52x,则要使a ≥h (x )在x ∈[1,2]能成立,只需使a ≥h (x )min ,又函数h (x )=x 2+52x在x ∈[1,2]上单调递减,所以h (x )min =h (2)=94,故只需a ≥94.A 组 专题通关1.(2017届河北省衡水中学六调)已知函数f (x )=12x 2sin x +x cos x ,则其导函数f ′(x )的图象大致是( )答案 C解析 ∵f (x )=12x 2sin x +x cos x ,∴f ′(x )=12x 2cos x +cos x,∴f ′(-x )=12(-x )2cos(-x )+cos(-x )=12x 2cos x +cos x =f ′(x ),∴其导函数f ′(x ) 为偶函数,图象关于y 轴对称,故排除A ,B ,又f ′(0)=1,排除D ,故选C.2.(2017届山西省怀仁县第一中学期末)已知a ∈R ,函数f (x )=e x +a e -x的导函数是f ′(x ),且f ′(x )是奇函数,若曲线y =f (x )的一条切线的斜率是32,则切点的横坐标为( )A .ln 2B .-ln 2C.ln 22 D .-ln 22答案 A解析 对f (x )=e x +a e -x 求导,得f ′(x )=e x -a e -x.又f ′(x )是奇函数,故f ′(0)=1-a =0,解得a =1,故有f ′(x )=e x-e -x,设切点为(x 0,y 0),则f ′(x 0)=e 0x -ex -=32,得e 0x =2或e 0x=-12(舍去),得x 0=ln 2,故选A. 3.(2017届内蒙古包头市十校联考)已知函数F (x )=xf (x ),f (x )满足f (x )=f (-x ),且当x ∈(-∞,0]时,f ′(x )<0成立,若a =20.1·f (20.1),b =ln 2·f (ln 2),c =log 218·f⎝⎛⎭⎪⎫log 218,则a ,b ,c 的大小关系是( ) A .a >b >c B .c >a >b C .c >b >a D .a >c >b 答案 C解析 F (-x )=(-x )f (-x )=-xf (x )=-F (x ),即函数F (x )是奇函数,并且当x ∈(-∞,0]时,f ′(x )<0,即当x ∈(-∞,0]时,F (x )是单调递减函数,所以在R 上函数F (x )是单调递减函数,a =F (20.1),b =F (ln 2),c =F ⎝⎛⎭⎪⎫log 218,20.1>1,0<ln 2<1,log 218=-3,所以20.1>ln 2>log 218,所以a <b <c ,故选C.4.设a ∈R ,若函数y =e ax+3x ,x ∈R 有大于零的极值点,则( ) A .a >-3 B .a <-3C .a >-13 D .a <-13答案 B解析 y ′=a e ax+3=0在(0,+∞)上有解,即a e ax=-3,∵e ax>0,∴a <0.又当a <0时,0<e ax<1,要使a e ax=-3,则a <-3,故选B.5.(2017届河北省衡水中学调研)已知函数f (x )=a x +x ln x ,g (x )=x 3-x 2-5,若对任意的x 1,x 2∈⎣⎢⎡⎦⎥⎤12,2,都有f (x 1)-g (x 2)≥2成立,则实数a 的取值范围是( )A .[1,+∞)B .(0,+∞)C .(-∞,0)D .(-∞,-1]答案 A解析 g (x )=x 3-x 2-5 ,g ′(x )=3x ⎝ ⎛⎭⎪⎫x -23 ,由上表可知,g (x ) 在x =2 处取得最大值, 即g ()x max =g (2)=-1,所以当x ∈⎣⎢⎡⎦⎥⎤12,2时,f (x )=a x +x ln x ≥1恒成立,等价于a ≥x -x 2ln x 恒成立,记u (x )=x -x 2ln x ,所以a ≥u ()x max ,u ′(x )=1-x -2x ln x ,可知u ′(1)=0,当x ∈⎝ ⎛⎭⎪⎫12,1时,1-x >0,2x ln x <0 , 则u ′(x )>0,所以u (x ) 在x ∈⎝ ⎛⎭⎪⎫12,1上单调递增; 当x ∈(1,2)时,1-x <0,2x ln x >0,则u ′(x )<0, 所以u (x )在()1,2 上单调递减.故当x =1时,函数u (x )在区间⎣⎢⎡⎦⎥⎤12,2上取得最大值u (1)=1 , 所以a ≥1,即实数a 的取值范围是[1,+∞) ,故选A.6.(2017届重庆市第一中学月考)已知直线x -y +1=0与曲线y =ln x +a 相切,则a 的值为___. 答案 2解析 y =ln x +a 的导数为y ′=1x,设切点P (x 0,y 0),则y 0=x 0+1,y 0=ln x 0+a .又切线方程x -y +1=0的斜率为1,即1x 0=1,解得x 0=1,则y 0=2,a =y 0-ln x 0=2.7.(2017届辽宁省沈阳市郊联体期末)f (x )=23x 3-x 2+ax -1,已知曲线存在两条斜率为3的切线,且切点的横坐标都大于零,则实数a 的取值范围为________.答案 ⎝ ⎛⎭⎪⎫3,72 解析 原题等价于方程f ′(x )-3=0有两个大于零的实数根. 因为f (x )=23x 3-x 2+ax -1,所以f ′(x )=2x 2-2x +a ,所以f ′(x )-3=0,即2x 2-2x +a -3=0, 设g (x )=2x 2-2x +a -3,要使方程g (x )=0有两个大于零的实数根需要满足⎩⎪⎨⎪⎧Δ>0,g (0)>0,即⎩⎪⎨⎪⎧22-4×2×(a -3)>0,a -3>0,解得3<a <72.所以a 的取值范围为⎝ ⎛⎭⎪⎫3,72. 8.(2017届重庆模拟)已知x =0是函数f (x )=(x -2a )·(x 2+a 2x +2a 3)的极小值点,则实数a 的取值范围是__________. 答案 a >2或a <0解析 因为f (x )=x 3+(a 2-2a )x 2-4a 4,所以令f ′(x )=3x 2+2(a 2-2a )x =3x ⎣⎢⎡⎦⎥⎤x +2(a 2-2a )3=0,可得函数f (x )=x 3+(a 2-2a )x 2-4a 4的两个极值点分别为x =0,x =-2(a 2-2a )3,由题意得2(a 2-2a )3>0,即a 2-2a >0,解得a <0或a >2.9.(2017届西安模拟)定义1:若函数f (x )在区间D 上可导,即f ′(x )存在,且导函数f ′(x )在区间D 上也可导,则称函数f (x )在区间D 上存在二阶导数,记作f ″(x ),即f ″(x )=[f ′(x )]′.定义2:若函数f (x )在区间D 上的二阶导数为正,即f ″(x )>0恒成立,则称函数f (x )在区间D 上是凹函数. 已知函数f (x )=x 3-32x 2+1在区间D 上为凹函数,则x 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫12,+∞ 解析 f ′(x )=3x 2-3x ,f ″(x )=6x -3, 令f ″(x )>0,得x >12.10.已知函数f (x )=x +aex.(1)若f (x )在区间(-∞,2)上为单调递增函数,求实数a 的取值范围;(2)若a =0,x 0<1,设直线y =g (x )为函数f (x )的图象在x =x 0处的切线,求证:f (x )≤g (x ). (1)解 易得f ′(x )=-x -(1-a )ex,由已知f ′(x )≥0对x ∈(-∞,2)恒成立, 故x ≤1-a 对x ∈(-∞,2)恒成立, ∴1-a ≥2,∴a ≤-1.(2)证明 若a =0,则f (x )=xex .函数f (x )的图象在x =x 0处的切线方程为y =g (x )=f ′(x 0)(x -x 0)+f (x 0). 令h (x )=f (x )-g (x )=f (x )-f ′(x 0)(x -x 0)-f (x 0),x ∈R , 则h ′(x )=f ′(x )-f ′(x 0)=1-x e x -1-x 0e 0x =(1-x )e 0x-(1-x 0)e xe 0x x +. 设φ(x )=(1-x )e 0x -(1-x 0)e x,x ∈R ,则φ′(x )=-ex -(1-x 0)e x,∵x 0<1,∴φ′(x )<0,∴φ(x )在R 上单调递减,又φ(x 0)=0, ∴当x <x 0时,φ(x )>0,当x >x 0时,φ(x )<0, ∴当x <x 0时,h ′(x )>0,当x >x 0时,h ′(x )<0,∴h (x )在区间(-∞,x 0)上为增函数,在区间(x 0,+∞)上为减函数, ∴当x ∈R 时,h (x )≤h (x 0)=0, ∴f (x )≤g (x ).B 组 能力提高11.(2017届衡阳期末)函数f (x )在定义域(0,+∞)内恒满足:①f (x )>0;②2f (x )<xf ′(x )<3f (x ),其中f ′(x )为f (x )的导函数,则( ) A.14<f (1)f (2)<12 B. 116<f (1)f (2)<18 C. 13<f (1)f (2)<12D. 18<f (1)f (2)<14答案 D 解析 令g (x )=f (x )x 2,x ∈(0,+∞), g ′(x )=xf ′(x )-2f (x )x 3,∵∀x ∈(0,+∞),2f (x )<xf ′(x )<3f (x ), ∴f (x )>0,g ′(x )>0,∴函数g (x )在x ∈(0,+∞)上单调递增, ∴g (1)<g (2),即4f (1)<f (2),f (1)f (2)<14. 令h (x )=f (x )x 3,x ∈(0,+∞), h ′(x )=xf ′(x )-3f (x )x 4,∵∀x ∈(0,+∞),2f (x )<xf ′(x )<3f (x ),∴h ′(x )<0,∴函数h (x )在x ∈(0,+∞)上单调递减, ∴h (1)>h (2),即f (1)>f (2)8,18<f (1)f (2), 故选D.12.(2017届湖南长沙雅礼中学月考)已知实数a ,b 满足2a 2-5ln a -b =0,c ∈R ,则(a -c )2+(b +c )2的最小值为( ) A.12 B.22C.322D.92答案 C解析 用x 代换a ,用y 代换b ,则x ,y 满足2x 2-5ln x -y =0,即y =2x 2-5ln x ,以x 代换c ,可得点(x ,-x ),满足x +y =0,所以求解(a -c )2+(b +c )2的最小值即为求解曲线y =2x 2-5ln x 上的点到直线x +y =0的距离的最小值,设直线x +y +m =0与曲线y =2x 2-5ln x 相切于点P (x 0,y 0),则f ′(x )=4x -5x ,则f ′(x 0)=4x 0-5x 0=-1,解得x 0=1,所以切点P (1,2),所以点P 到直线x +y =0的距离为d =|1+2|12+12=322, 故选C.13.已知函数f (x )=12ax 2-(2a +1)x +2ln x (a ∈R ).(1)若曲线y =f (x )在x =1和x =3处的切线互相平行,求a 的值; (2)求f (x )的单调区间;(3)设g (x )=x 2-2x ,若对任意x 1∈(0,2],均存在x 2∈(0,2],使得f (x 1)<g (x 2),求a 的取值范围. 解 (1)f ′(x )=ax -(2a +1)+2x.由题意知,f ′(1)=f ′(3),即a -(2a +1)+2=3a -(2a +1)+23,解得a =23.(2)f ′(x )=(ax -1)(x -2)x(x >0).①当a ≤0时,∵x >0,∴ax -1<0,在区间(0,2)上,f ′(x )>0; 在区间(2,+∞)上,f ′(x )<0, 故f (x )的单调递增区间是(0,2), 单调递减区间是(2,+∞).②当0<a <12时,在区间(0,2)和⎝ ⎛⎭⎪⎫1a ,+∞上,f ′(x )>0;在区间⎝ ⎛⎭⎪⎫2,1a 上,f ′(x )<0.故f (x )的单调递增区间是(0,2)和⎝ ⎛⎭⎪⎫1a,+∞,单调递减区间是⎝⎛⎭⎪⎫2,1a .③当a =12时,f ′(x )=(x -2)22x,故f (x )的单调递增区间是(0,+∞).④当a >12时,0<1a <2,在区间⎝ ⎛⎭⎪⎫0,1a 和(2,+∞)上,f ′(x )>0;在区间⎝ ⎛⎭⎪⎫1a ,2上,f ′(x )<0, 故f (x )的单调递增区间是⎝⎛⎭⎪⎫0,1a 和(2,+∞),单调递减区间是⎝⎛⎭⎪⎫1a,2.(3)由题意知,在(0,2]上有f (x )max <g (x )max , 由已知,得g (x )max =0,由(2)可知, ①当a ≤12时,f (x )在(0,2]上单调递增,故f (x )max =f (2)=2a -2(2a +1)+2ln 2=-2a -2+2ln 2, 所以-2a -2+2ln 2<0,解得a >ln 2-1, 故ln 2-1<a ≤12.②当a >12时,f (x )在⎝ ⎛⎦⎥⎤0,1a 上单调递增,在⎣⎢⎡⎦⎥⎤1a ,2上单调递减,故f (x )max =f ⎝ ⎛⎭⎪⎫1a =-2-12a -2ln a ,由a >12可知,ln a >ln 12>ln 1e =-1,∴2ln a >-2,即-2ln a <2, ∴-2-2ln a <0,∴f (x )max <0, 综上所述,a >ln 2-1.。

高考理科数学一轮总复习第二章函数的单调性与最值

高考理科数学一轮总复习第二章函数的单调性与最值

第2讲函数的单调性与最值一、知识梳理1.函数的单调性(1)单调函数的定义增函数减函数定义在函数y=f(x)的定义域内的一个区间A上,如果对于任意两数x1,x2∈A当x1<x2时,都有f(x1)<f(x2),那么,就称函数y=f(x)在区间A上是增加的,有时也称函数y=f(x)在区间A上是递增的当x1<x2时,都有f(x1)>f(x2),那么,就称函数y=f(x)在区间A上是减少的,有时也称函数y=f(x)在区间A上是递减的①如果y=f(x)在区间A上是增加的或是减少的,那么称A为单调区间.②如果函数y=f(x)在定义域的某个子集上是增加的或是减少的,那么就称函数y=f(x)在这个子集上具有单调性.(3)单调函数如果函数y=f(x)在整个定义域内是增加的或是减少的,我们称这个函数为增函数或减函数,统称为单调函数.2.函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件(1)对于任意的x∈I,都有f(x)≤M;(1)对于任意的x∈I,都有f(x)≥M;(2)存在x ∈I ,使得f (x )=M(2)存在x ∈I ,使得f (x )=M结论 M 为最大值M 为最小值1.函数单调性的两种等价形式 设任意x 1,x 2∈[a ,b ]且x 1≠x 2,(1)f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在[a ,b ]上是增函数;f (x 1)-f (x 2)x 1-x 2<0⇔f (x )在[a ,b ]上是减函数.(2)(x 1-x 2)[f (x 1)-f (x 2)]>0⇔f (x )在[a ,b ]上是增函数;(x 1-x 2)[f (x 1)-f (x 2)]<0⇔f (x )在[a ,b ]上是减函数.2.五条常用结论(1)对勾函数y =x +ax (a >0)的增区间为(-∞,-a ]和[a ,+∞),减区间为[-a ,0)和(0,a ].(2)在区间D 上,两个增函数的和仍是增函数,两个减函数的和仍是减函数. (3)函数f (g (x ))的单调性与函数y =f (u ),u =g (x )的单调性的关系是“同增异减”. (4)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点处取到.(5)开区间上的“单峰”函数一定存在最大(小)值. 二、教材衍化1.函数f (x )=x 2-2x 的递增区间是________. 答案:[1,+∞)(或(1,+∞))2.若函数y =(2k +1)x +b 在R 上是减函数,则k 的取值范围是________. 解析:因为函数y =(2k +1)x +b 在R 上是减函数,所以2k +1<0,即k <-12.答案:⎝⎛⎭⎫-∞,-12 3.已知函数f (x )=2x -1,x ∈[2,6],则f (x )的最大值为________,最小值为__________.解析:可判断函数f (x )=2x -1在[2,6]上为减函数,所以f (x )max =f (2)=2,f (x )min =f (6)=25. 答案:2 25一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)若定义在R 上的函数f (x ),有f (-1)<f (3),则函数f (x )在R 上为增函数.( ) (2)函数y =f (x )在[1,+∞)上是增函数,则函数f (x )的递增区间是[1,+∞).( ) (3)函数y =1x 的递减区间是(-∞,0)∪(0,+∞).( )(4)所有的单调函数都有最值.( )(5)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是增函数.( )(6)闭区间上的单调函数,其最值一定在区间端点处取到. ( ) 答案:(1)× (2)× (3)× (4)× (5)× (6)√ 二、易错纠偏常见误区|K(1)求单调区间忘记定义域导致出错; (2)对于分段函数,一般不能整体单调,只能分段单调; (3)利用单调性解不等式忘记在单调区间内求解; (4)混淆“单调区间”与“在区间上单调”两个概念. 1.函数y =log 12(x 2-4)的递减区间为________.答案:(2,+∞)2.已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x ,x ≥2,⎝⎛⎭⎫12x -1,x <2是定义在R 上的减函数,则实数a 的取值范围是________.解析:由题意得⎩⎪⎨⎪⎧a -2<0,2(a -2)≤⎝⎛⎭⎫122-1, 解得⎩⎪⎨⎪⎧a <2,a ≤138,即a ≤138.答案:⎝⎛⎦⎤-∞,138 3.函数y =f (x )是定义在[-2,2]上的减函数,且f (a +1)<f (2a ),则实数a 的取值范围是________.解析:由题意得⎩⎪⎨⎪⎧-2≤a +1≤2,-2≤2a ≤2,a +1>2a ,即⎩⎪⎨⎪⎧-3≤a ≤1,-1≤a ≤1,a <1.所以-1≤a <1. 答案:[-1,1)4.(1)若函数f (x )=x 2+2(a -1)x +2在区间(-∞,4]上是减函数,则实数a 的取值范围是________;(2)若函数f (x )=x 2+2(a -1)x +2的递减区间为(-∞,4],则a 的值为________. 答案:(1)a ≤-3 (2)-3确定函数的单调性(区间)(多维探究) 角度一 给出具体解析式的函数的单调性(1)函数f (x )=|x 2-3x +2|的递增区间是( )A.⎣⎡⎭⎫32,+∞ B .⎣⎡⎦⎤1,32和[2,+∞) C .(-∞,1]和⎣⎡⎦⎤32,2D .⎝⎛⎦⎤-∞,32和[2,+∞) (2)函数y =x 2+x -6的递增区间为________,递减区间为________.【解析】 (1)y =|x 2-3x +2|=⎩⎪⎨⎪⎧x 2-3x +2,x ≤1或x ≥2,-(x 2-3x +2),1<x <2. 如图所示,函数的递增区间是⎣⎡⎦⎤1,32和[2,+∞);递减区间是(-∞,1)和⎝⎛⎭⎫32,2.故选B.(2)令u =x 2+x -6,则y =x 2+x -6可以看作是由y =u 与u =x 2+x -6复合而成的函数. 令u =x 2+x -6≥0,得x ≤-3或x ≥2.易知u =x 2+x -6在(-∞,-3]上是减函数,在[2,+∞)上是增函数,而y =u 在[0,+∞)上是增函数,所以y =x 2+x -6的递减区间为(-∞,-3],递增区间为[2,+∞). 【答案】 (1)B (2)[2,+∞) (-∞,-3] 角度二 含参函数的单调性(一题多解)判断并证明函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性.【解】 法一:设-1<x 1<x 2<1, f (x )=a ⎝⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎫1+1x -1,f (x 1)-f (x 2)=a⎝⎛⎭⎫1+1x 1-1-a ⎝⎛⎭⎫1+1x 2-1 =a (x 2-x 1)(x 1-1)(x 2-1),由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),函数f (x )在(-1,1)上是减少的;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上是增加的. 法二:f ′(x )=a (x -1)-ax (x -1)2=-a(x -1)2,所以当a >0时,f ′(x )<0,当a <0时,f ′(x )>0, 即当a >0时,f (x )在(-1,1)上为减函数, 当a <0时,f (x )在(-1,1)上为增函数.确定函数单调性的4种方法(1)定义法.利用定义判断.(2)导数法.适用于初等函数、复合函数等可以求导的函数.(3)图象法.由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接.(4)性质法.利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性.[提醒] 求函数的单调区间,应先求定义域,在定义域内求单调区间.1.函数y =-x 2+2|x |+3的递减区间是________. 解析:由题意知,当x ≥0时,y =-x 2+2x +3=-(x -1)2+4;当x <0时,y =-x 2-2x +3=-(x +1)2+4,二次函数的图象如图,由图象可知,函数y =-x 2+2|x |+3的递减区间为[-1,0],[1,+∞).答案:[-1,0],[1,+∞)2.判断并证明函数f (x )=ax 2+1x (其中1<a <3)在x ∈[1,2]上的单调性.解:设1≤x 1<x 2≤2,则 f (x 2)-f (x 1)=ax 22+1x 2-⎝⎛⎭⎫ax 21+1x 1 =(x 2-x 1)⎣⎡⎦⎤a (x 1+x 2)-1x 1x 2, 由1≤x 1<x 2≤2,得x 2-x 1>0,2<x 1+x 2<4, 1<x 1x 2<4,-1<-1x 1x 2<-14.又1<a <3,所以2<a (x 1+x 2)<12,得a (x 1+x 2)-1x 1x 2>0,从而f (x 2)-f (x 1)>0,即f (x 2)>f (x 1),故当a ∈(1,3)时,f (x )在[1,2]上是增加的.求函数的最值(师生共研)(1)函数f (x )=⎝⎛⎭⎫13x-log 2(x +2)在区间[-1,1]上的最大值为________. (2)已知函数f (x )=⎩⎪⎨⎪⎧x 2,x ≤1,x +6x-6,x >1,则f (x )的最小值是________.【解析】 (1)由于y =⎝⎛⎭⎫13x 在R 上递减,y =log 2(x +2)在[-1,1]上递增,所以f (x )在[-1,1]上递减,故f (x )在[-1,1]上的最大值为f (-1)=3.(2)当x ≤1时,f (x )min =0,当x >1时,f (x )min =26-6,当且仅当x =6时取到最小值,又26-6<0,所以f (x )min =26-6.【答案】 (1)3 (2)26-6求函数最值的5种常用方法及其思路1.函数f (x )=1x -1在区间[a ,b ]上的最大值是1,最小值是13,则a +b =________.解析:易知f (x )在[a ,b ]上为减函数, 所以⎩⎪⎨⎪⎧f (a )=1,f (b )=13,即⎩⎨⎧1a -1=1,1b -1=13,所以⎩⎪⎨⎪⎧a =2,b =4. 所以a +b =6. 答案:62.(一题多解)对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________.解析:法一:在同一直角坐标系中, 作出函数f (x ),g (x )的图象, 依题意,h (x )的图象如图所示. 易知点A (2,1)为图象的最高点, 因此h (x )的最大值为h (2)=1.法二:依题意,h (x )=⎩⎪⎨⎪⎧log 2x ,0<x ≤2,-x +3,x >2.当0<x ≤2时,h (x )=log 2x 是增函数, 当x >2时,h (x )=3-x 是减函数, 所以h (x )在x =2处取得最大值h (2)=1.答案:1函数单调性的应用(多维探究) 角度一 比较大小已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >bD .b >a >c【解析】 因为f (x )的图象关于直线x =1对称. 所以f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52.当x 2>x 1>1时, [f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,知f (x )在(1,+∞)上单调递减.因为1<2<52<e ,所以f (2)>f ⎝⎛⎭⎫52>f (e),所以b >a >c . 【答案】 D角度二 解函数不等式已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,ln (x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-∞,-2)∪(1,+∞)C .(-1,2)D .(-2,1)【解析】 因为当x =0时,两个表达式对应的函数值都为零,所以函数f (x )的图象是一条连续的曲线.因为当x ≤0时,函数f (x )=x 3为增函数, 当x >0时,f (x )=ln(x +1)也是增函数, 所以函数f (x )是定义在R 上的增函数. 因此,不等式f (2-x 2)>f (x )等价于2-x 2>x , 即x 2+x -2<0,解得-2<x <1. 【答案】 D角度三 根据函数的单调性求参数(1)(2020·南阳调研)已知函数f (x )=x -a x +a2在(1,+∞)上是增函数,则实数a的取值范围是________.(2)设函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上是增加的,则实数a的取值范围是________.【解析】 (1)法一:设1<x 1<x 2,所以x 1x 2>1. 因为函数f (x )在(1,+∞)上是增函数, 所以f (x 1)-f (x 2)=x 1-a x 1+a2-⎝⎛⎭⎫x 2-a x 2+a 2 =(x 1-x 2)⎝⎛⎭⎫1+a x 1x 2<0.因为x 1-x 2<0,所以1+ax 1x 2>0,即a >-x 1x 2.因为1<x 1<x 2,x 1x 2>1,所以-x 1x 2<-1,所以a ≥-1. 所以a 的取值范围是[-1,+∞). 法二:由f (x )=x -a x +a 2得f ′(x )=1+ax 2,由题意得1+ax2≥0(x >1),可得a ≥-x 2,当x ∈(1,+∞)时,-x 2<-1. 所以a 的取值范围是[-1,+∞).(2)作出函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上是增加的,需满足a ≥4或a +1≤2,即a ≤1或a ≥4.【答案】 (1)[-1,+∞) (2)(-∞,1]∪[4,+∞)函数单调性应用问题的3种常见类型及解题策略(1)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.(3)利用单调性求参数.视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数.[提醒] ①若函数在区间[a ,b ]上单调,则该函数在此区间的任意子区间上也是单调的;②分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.1.(2020·武汉模拟)若函数f (x )=2|x -a |+3在区间[1,+∞)上不单调,则a 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(-∞,1)D .(-∞,1]解析:选B.因为函数f (x )=2|x -a |+3=⎩⎪⎨⎪⎧2x -2a +3,x ≥a -2x +2a +3,x <a , 因为函数f (x )=2|x -a |+3在区间[1,+∞)上不单调, 所以a >1.所以a 的取值范围是(1,+∞).故选B.2.定义在[-2,2]上的函数f (x )满足(x 1-x 2)·[f (x 1)-f (x 2)]>0,x 1≠x 2,且f (a 2-a )>f (2a -2),则实数a 的取值范围为( )A .[-1,2)B .[0,2)C .[0,1)D .[-1,1)解析:选C.因为函数f (x )满足(x 1-x 2)[f (x 1)-f (x 2)]>0,x 1≠x 2, 所以函数f (x )在[-2,2]上是增加的,所以-2≤2a -2<a 2-a ≤2,解得0≤a <1,故选C.[基础题组练]1.下列四个函数中,在x ∈(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |解析:选C.当x >0时,f (x )=3-x 为减函数; 当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数, 当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数; 当x ∈(0,+∞)时,f (x )=-1x +1为增函数; 当x ∈(0,+∞)时,f (x )=-|x |为减函数.2.函数y =|x |(1-x )在区间A 上是增函数,那么区间A 是( )A .(-∞,0)B .⎣⎡⎦⎤0,12C .[0,+∞)D .⎝⎛⎭⎫12,+∞ 解析:选B.y =|x |(1-x )=⎩⎪⎨⎪⎧x (1-x ),x ≥0,-x (1-x ),x <0=⎩⎪⎨⎪⎧-x 2+x ,x ≥0,x 2-x ,x <0函数y 的草图如图所示.由图易知原函数在⎣⎡⎦⎤0,12上递增.故选B. 3.若函数f (x )=x 2+a |x |+2,x ∈R 在区间[3,+∞)和[-2,-1]上均为增函数,则实数a 的取值范围是( )A.⎣⎡⎦⎤-113,-3 B .[-6,-4] C .[-3,-22]D .[-4,-3]解析:选B.由于f (x )为R 上的偶函数,因此只需考虑函数f (x )在(0,+∞)上的单调性即可.由题意知函数f (x )在[3,+∞)上为增函数,在[1,2]上为减函数,故-a2∈[2,3],即a ∈[-6,-4].4.已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上递增,则满足f (2x -1)<f ⎝⎛⎭⎫13的x 的取值范围是( )A.⎝⎛⎭⎫13,23 B .⎣⎡⎭⎫13,23 C.⎝⎛⎭⎫12,23D .⎣⎡⎭⎫12,23解析:选D.因为函数f (x )是定义在区间[0,+∞)上的增函数,满足f (2x -1)<f ⎝⎛⎭⎫13. 所以0≤2x -1<13,解得12≤x <23.5.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C.由题意知当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2,又f (x )=x -2,f (x )=x 3-2在相应的定义域内都为增函数,且f (1)=-1,f (2)=6,所以f (x )的最大值为6.6.函数f (x )=4-x -x +2的值域为________.解析:因为⎩⎪⎨⎪⎧4-x ≥0,x +2≥0,所以-2≤x ≤4,所以函数f (x )的定义域为[-2,4].又y 1=4-x ,y 2=-x +2在区间[-2,4]上均为减函数, 所以f (x )=4-x -x +2在[-2,4]上为减函数, 所以f (4)≤f (x )≤f (-2). 即-6≤f (x )≤ 6. 答案:[-6,6]7.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.解析:由题意知g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1.函数图象如图所示,其递减区间是[0,1).答案:[0,1)8.若f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1,-ax ,x ≥1是定义在R 上的减函数,则a 的取值范围是________.解析:由题意知,⎩⎪⎨⎪⎧3a -1<0,(3a -1)×1+4a ≥-a ,a >0,解得⎩⎪⎨⎪⎧a <13,a ≥18,a >0,所以a ∈⎣⎡⎭⎫18,13. 答案:⎣⎡⎭⎫18,139.已知函数f (x )=1a -1x (a >0,x >0).(1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,求a 的值.解:(1)证明:任取x 1>x 2>0,则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2,因为x 1>x 2>0,所以x 1-x 2>0,x 1x 2>0, 所以f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),所以f (x )在(0,+∞)上是增函数. (2)由(1)可知,f (x )在⎣⎡⎦⎤12,2上为增函数, 所以f ⎝⎛⎭⎫12=1a -2=12, f (2)=1a -12=2,解得a =25.10.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)上是增加的;(2)若a >0且f (x )在(1,+∞)上是减少的,求a 的取值范围. 解:(1)证明:设x 1<x 2<-2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). 因为(x 1+2)(x 2+2)>0,x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以f (x )在(-∞,-2)上是增加的. (2)设1<x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ). 因为a >0,x 2-x 1>0,所以要使f (x 1)-f (x 2)>0, 只需(x 1-a )(x 2-a )>0恒成立, 所以a ≤1.综上所述,0<a ≤1.[综合题组练]1.若f (x )=-x 2+4mx 与g (x )=2mx +1在区间[2,4]上都是减函数,则m 的取值范围是( )A .(-∞,0)∪(0,1]B .(-1,0)∪(0,1]C .(0,+∞)D .(0,1]解析:选D.函数f (x )=-x 2+4mx 的图象开口向下,且以直线x =2m 为对称轴,若在区间[2,4]上是减函数,则2m ≤2,解得m ≤1;g (x )=2m x +1的图象由y =2mx 的图象向左平移一个单位长度得到,若在区间[2,4]上是减函数,则2m >0,解得m >0.综上可得,m 的取值范围是(0,1].2.已知函数f (x )=log 2x +11-x ,若x 1∈(1,2),x 2∈(2,+∞),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0解析:选B.因为函数f (x )=log 2x +11-x 在(1,+∞)上为增函数,且f (2)=0,所以当x 1∈(1,2)时,f (x 1)<f (2)=0;当x 2∈(2,+∞)时,f (x 2)>f (2)=0, 即f (x 1)<0,f (x 2)>0.故选B.3.设f (x )=⎩⎪⎨⎪⎧(x -a )2,x ≤0,x +1x +a ,x >0.若f (0)是f (x )的最小值,则a 的取值范围为________.解析:因为当x ≤0时,f (x )=(x -a )2,f (0)是f (x )的最小值,所以a ≥0.当x >0时,f (x )=x +1x +a ≥2+a ,当且仅当x =1时取“=”.要满足f (0)是f (x )的最小值,需2+a ≥f (0)=a 2,即a 2-a -2≤0,解得-1≤a ≤2,所以a 的取值范围是0≤a ≤2. 答案:[0,2]4.如果函数y =f (x )在区间I 上是增函数,且函数y =f (x )x 在区间I 上是减函数,那么称函数y =f (x )是区间I 上的“缓增函数”,区间I 叫做“缓增区间”.若函数f (x )=12x 2-x+32是区间I 上的“缓增函数”,则“缓增区间”I 为________. 解析:因为函数f (x )=12x 2-x +32的对称轴为x =1,所以函数y =f (x )在区间[1,+∞)上是增函数,又当x ≥1时,f (x )x =12x -1+32x ,令g (x )=12x -1+32x (x ≥1),则g ′(x )=12-32x 2=x 2-32x 2, 由g ′(x )≤0得1≤x ≤3,即函数f (x )x =12x -1+32x 在区间[1, 3 ]上递减,故“缓增区间”I 为[1, 3 ].答案:[1, 3 ]5.已知函数f (x )=x 2+a |x -2|-4.(1)当a =2时,求f (x )在[0,3]上的最大值和最小值;(2)若f (x )在区间[-1,+∞)上是增加的,求实数a 的取值范围. 解:(1)当a =2时,f (x )=x 2+2|x -2|-4=⎩⎪⎨⎪⎧x 2+2x -8,x ≥2x 2-2x ,x <2=⎩⎪⎨⎪⎧(x +1)2-9,x ≥2(x -1)2-1,x <2, 当x ∈[0,2)时,-1≤f (x )<0,当x ∈[2,3]时,0≤f (x )≤7, 所以f (x )在[0,3]上的最大值为7,最小值为-1.(2)因为f (x )=⎩⎪⎨⎪⎧x 2+ax -2a -4,x >2x 2-ax +2a -4,x ≤2,又f (x )在区间[-1,+∞)上是增加的,所以当x >2时,f (x ) 是增加的,则-a2≤2,即a ≥-4.当-1<x ≤2时,f (x ) 是增加的,则a2≤-1.即a ≤-2,且4+2a -2a -4≥4-2a +2a -4恒成立, 故a 的取值范围为[-4,-2].6.已知定义在R 上的函数f (x )满足:①f (x +y )=f (x )+f (y )+1,②当x >0时,f (x )>-1. (1)求f (0)的值,并证明f (x )在R 上是增函数; (2)若f (1)=1,解关于x 的不等式f (x 2+2x )+f (1-x )>4. 解:(1)令x =y =0,得f (0)=-1.在R 上任取x 1>x 2,则x 1-x 2>0,f (x 1-x 2)>-1.又f (x 1)=f [(x 1-x 2)+x 2]=f (x 1-x 2)+f (x 2)+1>f (x 2),所以函数f (x )在R 上是增函数. (2)由f (1)=1,得f (2)=3,f (3)=5.由f (x 2+2x )+f (1-x )>4得f (x 2+x +1)>f (3), 又函数f (x )在R 上是增函数,故x 2+x +1>3, 解得x <-2或x >1,故原不等式的解集为{x |x <-2或x >1}.。

(全国通用)2014届高考数学总复习(考点引领+技巧点拨)第二章 函数与导数第3课时 函数的单调性

(全国通用)2014届高考数学总复习(考点引领+技巧点拨)第二章 函数与导数第3课时 函数的单调性

第二章 函数与导数第3课时 函数的单调性第三章 (对应学生用书(文)、(理)11~12页)1. (必修1P 54测试4)已知函数y =f(x)的图象如图所示,那么该函数的单调减区间是________.答案:[-3,-1]和[1,2] 2. (必修1P 44习题2改编)下列函数中,在区间(0,2)上是单调增函数的是________.(填序号)① y =1-3x ;② y=-1x;③ y=x 2+1;④ y=|x +1|.答案:②③④3. (必修1P 44习题4改编)函数y =f(x)是定义在[-2,2]上的单调减函数,且f(a +1)<f(2a),则实数a 的取值范围是________.答案:[-1,1)解析:由条件⎩⎪⎨⎪⎧-2≤a+1≤2,-2≤2a≤2,a +1>2a ,解得-1≤a<1.4. (必修1P 44习题3改编)函数y =(x -3)|x|的单调递减区间是________.答案:⎣⎢⎡⎦⎥⎤0,32 解析:y =(x -3)|x|=⎩⎪⎨⎪⎧-x (x -3),x<0,x (x -3),x ≥0,画图可知单调递减区间是⎣⎢⎡⎦⎥⎤0,32.5. (必修1P 54测试6改编)已知函数f(x)=mx 2+x +m +2在(-∞,2)上是增函数,则实数m 的取值范围是________.答案:⎣⎢⎡⎦⎥⎤-14,0 解析:当m =0时,f(x)=x +2,符合;当m≠0时,必须⎩⎪⎨⎪⎧m<0,-12m ≥2,解得-14≤m<0.综上,实数m 的取值范围是-14≤m ≤0.1. 增函数和减函数一般地,设函数f(x)的定义域为I :如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1、x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说函数f(x)在区间D 上是单调增函数.(如图(1)所示)如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1、x 2,当x 1<x 2时,都有f(x 1)>f(x 2),那么就说函数f(x)在区间D 上是单调减函数.(如图(2)所示)2. 单调性与单调区间如果一个函数在某个区间M 上是单调增函数或是单调减函数,就说这个函数在这个区间M 上具有单调性(区间M 称为单调区间).3. 判断函数单调性的方法(1) 定义法:利用定义严格判断. (2) 利用函数的运算性质.如若f(x)、g(x)为增函数,则:① f(x)+g(x)为增函数;② 1f (x )为减函数(f(x)>0);③ f (x )为增函数(f(x)≥0);④ f(x)·g(x)为增函数(f(x)>0,g(x)>0);⑤ -f(x)为减函数.(3) 利用复合函数关系判断单调性 法则是“同增异减”,即两个简单函数的单调性相同,则这两个函数的复合函数为增函数,若两个简单函数的单调性相反,则这两个函数的复合函数为减函数.(4) 图象法奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.[备课札记]题型1 函数单调性的判断例1 判断函数f(x)=e x+1e x 在区间(0,+∞)上的单调性.解:(解法1)设0<x 1<x 2,则 f(x 1)-f(x 2)=⎝⎛⎭⎪⎫ex 1+1ex 1-⎝ ⎛⎭⎪⎫ex 2+1ex 2 =()ex 1-ex 2+ex 2-ex 1ex 1·ex 2=()ex 1-ex 2⎝ ⎛⎭⎪⎫1-1ex 1+x 2 =()ex 1-x 2-1·ex 1+x 2-1ex 1.∵ 0<x 1<x 2,∴ x 1-x 2<0,x 1+x 2>0,∴ ex 1-x 2<1,ex 1+x 2>1,ex 1>0, ∴ f(x 1)<f(x 2).∴ f(x)在(0,+∞)上是增函数. (解法2)对f(x)=e x+1e x 求导,得f′(x)=e x-1e x =1e x (e 2x -1),当x >0时,e x>0,e 2x>1, ∴ f ′(x)>0,∴ f(x)在(0,+∞)上为增函数. 备选变式(教师专享)证明函数f(x)=x1+x 在区间[1,+∞)上是减函数.证明:设x 1、x 2∈[1,+∞),且x 1<x 2.f(x 1)-f(x 2)=x 11+x 21-x 21+x 22=x 1(1+x 22)-x 2(1+x 21)(1+x 21)(1+x 22)=(x 1-x 2)(1-x 1x 2)(1+x 21)(1+x 22). ∵ x 1、x 2∈[1,+∞),且x 1<x 2,∴ x 1-x 2<0,1-x 1x 2<0.又(1+x 21)(1+x 22)>0,∴ f(x 1)-f(x 2)>0,即f(x 1)>f(x 2). ∴ f(x)=x1+x 2在[1,+∞)上为减函数.题型2 已知函数的单调性求参数的值或范围 例2 已知函数f(x)=lg kx -1x -1(k∈R ,且k>0).(1) 求函数f(x)的定义域;(2) 若函数f(x)在[10,+∞)上单调递增,求k 的取值范围.解:(1) 由kx -1x -1>0,k>0,得x -1k x -1>0,当0<k<1时,得x<1或x>1k ;当k =1时,得x∈R且x ≠1;当k>1时,得x<1k或x>1.综上,当0<k<1时,函数定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x<1或x>1k ;当k≥1时,函数定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x<1k 或x>1.(2) 由函数f(x)在[10,+∞)上单调递增,知10k -110-1>0,∴ k>110.又f(x)=lg kx -1x -1=lg ⎝ ⎛⎭⎪⎫k +k -1x -1,由题意,对任意的x 1、x 2,当10≤x 1<x 2,有f(x 1)<f(x 2),即lg ⎝ ⎛⎭⎪⎫k +k -1x 1-1<lg ⎝ ⎛⎭⎪⎫k +k -1x 2-1, 得k -1x 1-1<k -1x 2-1 (k -1)(1x 1-1-1x 2-1)<0. ∵ x 1<x 2,∴ 1x 1-1>1x 2-1,∴ k -1<0,即k<1.综上可知,k 的取值范围是⎝ ⎛⎭⎪⎫110,1. 变式训练已知函数f(x)=2x -ax,x ∈(0,1].(1) 当a =-1时,求函数y =f(x)的值域;(2) 若函数y =f(x)在x∈(0,1]上是减函数,求实数a 的取值范围. 解:(1) 当a =-1时,f(x)=2x +1x ,因为0<x≤1,所以f(x)=2x +1x≥22x·1x =22,当且仅当x =22时,等号成立,所以函数y =f(x)的值域是[22,+∞).(2) (解法1)设0<x 1<x 2≤1,由f(x 1)-f(x 2)=⎝ ⎛⎭⎪⎫2x 1-a x 1-⎝ ⎛⎭⎪⎫2x 2-a x 2=2(x 1-x 2)+⎝ ⎛⎭⎪⎫a x 2-a x 1=(x 1-x 2)(2x 1x 2+a )x 1x 2,因为函数y =f(x)在x∈(0,1]上是减函数,所以f(x 1)-f(x 2)>0恒成立,所以2x 1x 2+a<0,即a<-2x 1x 2在x∈(0,1]上恒成立, 所以a≤-2,即实数a 的取值范围是(-∞,-2]. (解法2)由f(x)=2x -a x ,知f′(x)=2+ax 2,因为函数y =f(x)在x∈(0,1]上是减函数, 所以f ′(x)=2+ax 2≤0在x∈(0,1]上恒成立,即a≤-2x 2在x∈(0,1]上恒成立,所以a≤-2,即实数a 的取值范围是(-∞,-2].题型3 函数的单调性与最值例3 已知函数f(x)=x 2+2x +ax ,x ∈[1,+∞).(1) 当a =12时,求f(x)的最小值;(2) 若对任意x∈[1,+∞),f(x)>0恒成立,求实数a 的取值范围. 解:(1) 当a =12时,f(x)=x +12x +2.设x 1>x 2≥1,则f(x 1)-f(x 2)=(x 1-x 2)+⎝ ⎛⎭⎪⎫12x 1-12x 2=(x 1-x 2)·2x 1x 2-12x 1x 2.∵ x 1>x 2≥1, ∴ f(x 1)>f(x 2),∴ f(x)在[1,+∞)上为增函数. ∴ f (x)≥f(1)=72,即f(x)的最小值为72.(2) ∵ f(x)>0在x∈[1,+∞)上恒成立,即x 2+2x +a >0在[1,+∞)上恒成立,∴ a >[-(x 2+2x)]max .∵ t(x)=-(x 2+2x)在[1,+∞)上为减函数, ∴ t(x)max =t(1)=-3, ∴ a >-3. 备选变式(教师专享)已知a∈R 且a≠1,求函数f(x)=ax +1x +1在[1,4]上的最值.解:由f(x)=ax +1x +1=a +1-ax +1.若1-a>0,即a<1时,f(x)在[1,4]上为减函数, ∴ f max (x)=f(1)=a +12,f min (x)=f(4)=4a +15;若1-a<0,即a>1时,f(x)在[1,4]上为增函数, ∴ f max (x)=f(4)=4a +15,f min (x)=f(1)=a +12.1. (2013·南京期初)已知函数f(x)=⎩⎪⎨⎪⎧e x-2k ,x ≤0(1-k )x ,x>0是R 上的增函数,则实数k 的取值范围是________.答案:⎣⎢⎡⎭⎪⎫12,1 解析:由题意得⎩⎪⎨⎪⎧e 0-2k≤0,1-k>0,解得12≤k<1.2. 若函数f(x)=a x(a>0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g(x)=(1-4m)x 在[0,+∞)上是增函数,则a =________.答案:14解析:若a>1,有a 2=4,a -1=m ,所以a =2,m =12,此时g(x)=-x 是[0,+∞)上的减函数,不符合;当0<a<1,有a -1=4,a 2=m ,所以a =14,m =116,此时g(x)=3x 4,符合.3. (2013·安徽)“a≤0”是“函数f(x)=|(ax -1)x|在区间是(0,+∞)内单调递增”的________条件.答案:充要解析:① 当a =0时,f(x)=|x|在区间(0,+∞)内单调递增;② 当a<0时,结合函数f(x)=|ax 2-x|的图象知函数在(0,+∞)内单调递增;③当a>0时,结合函数f(x)=|ax 2-x|的图象知函数在(0,+∞)上先增后减再增,不符合.所以“a≤0”是“函数f(x)=|(ax -1)x|在区间(0,+∞)内单调递增”的充要条件.4. 已知函数f(x)是定义在正实数集上的单调函数,且满足对任意x >0,都有f(f(x)-lnx)=1+e ,则f(1)=________.答案:e解析:f(x)-lnx 必为常数函数,否则存在两个不同数,其对应值均为1+e ,与单调函数矛盾.所以可设f(x)-lnx =c ,则f(x)=lnx +c.将c 代入,得f(c)=1+e ,即lnc +c =1+e.∵ y =lnx +x 是单调增函数,当c =e 时,lnc +c =1+e 成立, ∴ f(x)=lnx +e.则f(1)=e.1. 给定函数:①y=x 12,②y =log 12(x +1),③y =|x -1|,④y =2x +1,其中在区间(0,1)上单调递减的函数是____________.(填序号)答案:②③解析:①是幂函数,其在(0,+∞)上是增函数,不符合;②中的函数是由函数y =log 12x 向左平移1个单位而得到的,因为原函数在(0,+∞)上是减函数,故符合;③中的函数图象是由函数y =x -1的图象保留x 轴上方,下方图象翻折到x 轴上方而得到的,故由其图象可知正确;④中函数显然是增函数,故不符合.2. 设a>0且a≠1,则“函数f(x)=a x 在R 上是减函数 ”是“函数g(x)=(2-a)x 3在R 上是增函数”的__________条件.答案:充分不必要解析:函数f(x)=a x 在R 上是减函数等价于0<a<1,函数g(x)=(2-a)x 3在R 上是增函数等价于0<a<1或1<a<2,所以“函数f(x)=a x在R 上是减函数 ”,是“函数g(x)=(2-a)x 3在R 上是增函数”的充分不必要条件.3. 函数f(x)=⎩⎪⎨⎪⎧ax 2+1,x ≥0,(a 2-1)e ax,x <0在(-∞,+∞)上单调,则a 的取值范围是________.答案:(-∞,-2]∪(1,2]解析:若a>0,则f(x)=ax 2+1在[0,+∞)上单调增,∴ f(x)=(a 2-1)e ax在(-∞,0)上单调增,∴⎩⎪⎨⎪⎧a 2-1>0,a 2-1≤1,∴ 1<a ≤ 2.同理,当a<0时,可求得a≤-2,故a∈(-∞,-2]∪(1,2].4. 是否存在实数a ,使函数f(x)=log a (ax 2-x)在区间[2,4]上是增函数?如果存在,说明a 可取哪些值;如果不存在,请说明理由.解:显然a>0且a≠1.当a>1时,则t(x)=ax 2-x 的对称轴是x =12a ∈⎝ ⎛⎭⎪⎫0,12,只需t(2)=4a -2>0,即a>12,所以a >1均成立; 当0<a <1时,则t(x)=ax 2-x 的对称轴是x =12a ∈⎝ ⎛⎭⎪⎫12,+∞,需要⎩⎪⎨⎪⎧12a≥4,t (4)=16a -4>0无解. 所以,存在实数a >1,满足条件.1. 求函数的单调区间,首先应注意函数的定义域,函数的单调区间都是定义域的子集,常用方法有:定义法、图象法、导数法、复合函数法等.2. 函数单调性的应用 (1) 比较函数值的大小; (2) 解不等式;(3) 求函数的值域或最值等.注意利用定义都是充要性命题,即若函数f(x)在区间D 上递增(减)且f(x 1)<f(x 2) x 1<x 2(x 1>x 2)(x 1、x 2∈D).请使用课时训练(B )第3课时(见活页).[备课札记]。

北师大版高中数学课本目录(含重难点及课时分布)

北师大版高中数学课本目录(含重难点及课时分布)

高中数学课本内容及其重难点北师大版高中数学必修一·第一章集合(考点的难度不是很大,是高考的必考点)· 1、集合的基本关系· 2、集合的含义与表示· 3、集合的基本运算(重点)(2课时)·第二章函数· 1、生活中的变量关系· 2、对函数的进一步认识· 3、函数的单调性(重点)· 4、二次函数性质的再研究(重点)· 5、简单的幂函数(5课时)·第三章指数函数和对数函数· 1、正整数指数函数· 2、指数概念的扩充· 3、指数函数(重点)· 4、对数· 5、对数函数(重点)· 6、指数函数、幂函数、对数函数增减性(重点)(3课时)·第四章函数应用· 1、函数与方程· 2、实际问题的函数建模(2课时)北师大版高中数学必修二·第一章立体几何初步· 1、简单几何体· 2、三视图(重点)· 3、直观图(1课时)· 4、空间图形的基本关系与公理(重点)· 5、平行关系(重点)· 6、垂直关系(重点)· 7、简单几何体的面积和体积(重点)· 8、面积公式和体积公式的简单应用(重点、难点)(4课时)·第二章解析几何初步· 1、直线与直线的方程· 2、圆与圆的方程· 3、空间直角坐标系(4课时)北师大版高中数学必修三·第一章统计· 1、统计活动:随机选取数字· 2、从普查到抽样· 3、抽样方法· 4、统计图表· 5、数据的数字特征(重点)· 6、用样本估计总体· 7、统计活动:结婚年龄的变化· 8、相关性· 9、最小二乘法(3课时)·第二章算法初步· 1、算法的基本思想· 2、算法的基本结构及设计(重点)· 3、排序问题(重点)· 4、几种基本语句(2课时)·第三章概率· 1、随机事件的概率(重点)· 2、古典概型(重点)· 3、模拟方法――概率的应用(重点、难点)(4课时)北师大版高中数学必修四·第一章三角函数· 1、周期现象与周期函数· 2、角的概念的推广· 3、弧度制· 4、正弦函数(重点)· 5、余弦函数(重点)· 6、正切函数(重点)· 7、函数的图像(重点)· 8、同角三角函数的基本关系(重点、难点)(5课时)·第二章平面向量· 1、从位移、速度、力到向量· 2、从位移的合成到向量的加法(重点)· 3、从速度的倍数到数乘向量(重点)· 4、平面向量的坐标(重点)· 5、从力做的功到向量的数量积(重点)· 6、平面向量数量积的坐标表示(重点)· 7、向量应用举例(难点)(5课时)·第三章三角恒等变形(重点)· 1、两角和与差的三角函数· 2、二倍角的正弦、余弦和正切· 3、半角的三角函数· 4、三角函数的和差化积与积化和差· 5、三角函数的简单应用(难点)(4课时)北师大版高中数学必修五·第一章数列· 1、数列的概念· 2、数列的函数特性· 3、等差数列(重点)· 4、等差数列的前n项和(重点)· 5、等比数列(重点)· 6、等比数列的前n项和(重点)· 7、数列在日常经济生活中的应用(6课时)·第二章解三角形(重点)· 1、正弦定理与余弦定理正弦定理· 2、正弦定理· 3、余弦定理· 4、三角形中的几何计算(难点)· 5、解三角形的实际应用举例(6课时)·第三章不等式· 1、不等关系· 1。

第二章函数函数单调性

第二章函数函数单调性

第二章 函数、导数及其应用第二节 函数的单调性与最值考点1 函数的单调性的判断回扣教材 1.单调函数的定义2.函数单调性的定义的等价形式:增函数;减函数.设x 1,x 2∈[a ,b],x 1≠x 2.若有(x 1-x 2)[f(x 1)-f(x 2)]>0或f (x 1)-f (x 2)x 1-x 2>0,则f(x)在闭区间[a ,b]上是 ;若有(x 1-x 2)[f(x 1)-f(x 2)]<0或f (x 1)-f (x 2)x 1-x 2<0,则f(x)在闭区间[a ,b]上是 .3.函数单调性的常用结论(1)若f(x),g(x)均为区间A 上的增(减)函数,则f(x)+g(x)也是区间A 上的增(减)函数; (2)若k>0,则kf(x)与f(x)单调性相同;若k<0,则kf(x)与f(x)单调性相反; (3)函数y =f(x)(f(x)>0)在公共定义域内与y =-f(x),y =1f (x )的单调性相反; (4)函数y =f(x)(f(x)≥0)在公共定义域内与y =f (x )的单调性相同;小题快做1.思考辨析(1)函数f(x)=|x|的定义域为R ,由于f (0)<f (1),所以f (x )=|x |为R 上的增函数.( )(2)设任意x 1,x 2∈[a ,b ]且x 1≠x 2,那么f (x )在[a ,b ]上是增函数⇔f (x 1)-f (x 2)x 1-x 2>0⇔(x 1-x 2)[f (x 1)-f (x 2)]>0.( )2.[2014·北京高考]下列函数中,在区间(0,+∞)上为增函数的是( )A .y =x +1B .y =(x -1)2C .y =2-xD .y =log 0.5(x +1) 3.[教材改编]函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A .k >12B .k <12C .k >-12D .k <-12典例1 判断函数f (x )=x +ax (a >0)在(0,+∞)上的单调性,并给出证明.1.判断函数y =x +2x +1在(-1,+∞)上的单调性.考点2 函数的单调区间回扣教材1.单调区间的定义如果函数y =f(x)在区间D 上是 ,那么就说函数y =f(x)在这一区间具有(严格的)单调性, 叫做函数y =f(x)的单调区间..研究函数单调区间的注意事项(1)单调性是与“区间”紧密相关的概念,一个函数在不同的区间上,可以有不同的单调性.(2)函数的单调性只能在函数的定义域内来讨论,所以求函数的单调区间,必须先求函数的定义域.(3)函数的单调性是对某个区间而言的,所以要受到区间的限制.例如函数y =1x 分别在(-∞,0),(0,+∞)内都是单调递减的,但不能说它在整个定义域即(-∞,0)∪(0,+∞)内单调递减,只能分开写,即函数的单调减区间为(-∞,0)和(0,+∞).小题快做1.思考辨析(1)函数y =1x 在定义域上为减函数,故其单调递减区间是(-∞,0)∪(0,+∞).( )(2)函数y =f(x)在[0,+∞)上为增函数,则函数y =f(x)的增区间为[0,+∞).( ) (3)函数f(x)=log 12 (x 2-2x -3)在区间[1,+∞)上单调递减.( )2.函数f(x)=|x -2|(x -4)的单调减区间是( )A .[1,2]B .[-1,0]C .[0,2]D .[2,3]3.函数y =⎝⎛⎭⎫132x 2-3x +1的单调递增区间为( ) A .(1,+∞) B .⎝⎛⎦⎤-∞,34 C .⎝⎛⎭⎫12,+∞ D .⎣⎡⎭⎫34,+∞ 4.[2014·天津高考]函数f(x)=log 12 (x 2-4)的单调递增区间为( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)典例2 (1)[2015·洛阳二模]函数y =f(x)(x ∈R )的图象如图所示,则函数g (x )=f (log a x )(0<a <1)的单调减区间是( )A.⎣⎡⎦⎤0,12B .[a ,1]C .(-∞,0)∪⎣⎡⎦⎤12,+∞ D .[a ,a +1](2)[2015·东北四校联考]函数f (x )=(a -1)x +2在R 上单调递增,则函数g (x )=a |x -2|的单调递减区间是________.【跟踪训练】2.函数y =|x |(1-x )在区间A 上是增函数,那么区间A 是( ) A .(-∞,0) B.⎣⎡⎦⎤0,12 C .[0,+∞)D.⎝⎛⎭⎫12,+∞ 3.[2015·武汉调研]若函数f (x )=ax +1在R 上递减,则函数g (x )=a (x 2-4x +3)的增区间是( ) A .(2,+∞) B .(-∞,2) C .(4,+∞)D .(-∞,4) 考点3 函数单调性的应用回扣教材 1.函数的最值2.(1)由x 1,x 2的大小关系可以判断f(x 1)与f(x 2)的大小关系,也可以由f(x 1)与f(x 2)的大小关系判断出x 1与x 2的大小关系.(2)利用函数的单调性,求函数的最大值和最小值. (3)利用函数的单调性,求参数的取值范围. (4)利用函数的单调性解不等式.小题快做1.思考辨析(1)闭区间上的单调函数,其最值一定在区间端点取到.( ) (2)所有的单调函数都有最值.( )(3)[教材改编]定义在R 上的函数f (x ),若在(-∞,a ]上f (x )单调递增,在[a ,+∞)上f (x )单调递减,则f (a )为f (x )的最大值.( )2.下列函数f (x )满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是( ) A .f(x )=e x B .f (x )=1xC .f (x )=(x -2)2D .f (x )=ln (x +3)3.如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( )A.⎝⎛⎭⎫-14,+∞ B.⎣⎡⎭⎫-14,+∞ C.⎣⎡⎭⎫-14,0 D.⎣⎡⎦⎤-14,0 4.[教材改编]f (x )=2x -1,x ∈[2,6],则f (x )的最大值为________,最小值为________.函数单调性结合函数图象以及其他性质的考查一直是高考命题的热点,常以客观题的形式呈现,有时也出现在解答题的某一问中,且主要有以下几种命题角度.命题角度1 利用函数的单调性比较大小典例3 21[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >bD .b >a >c命题角度2 利用函数的单调性解不等式典例4 ≤2时,x的取值范围是( )A .(8,+∞)B .(8,9]C .[8,9]D .(0,8)命题角度3 利用函数的单调性求参数的取值或范围典例5 ⎩⎪⎨⎪⎧a x(x <0),(a -3)x +4a (x ≥0),满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,则a 的取值范围是( )A.⎝⎛⎦⎤0,14 B .(0,1) C.⎣⎡⎭⎫-14,0 D .(0,3)命题角度4 利用函数的单调性求最值典例6 [2015·福州一模]如果函数f (x )对任意的实数x ,都有f (1+x )=f (-x ),且当x ≥12时,f (x )=log 2(3x -1),那么函数f (x )在[-2,0]上的最大值与最小值之和为( )A .2B .3C .4D .-1函数单调性应用问题的常见类型及解题策略(1)比较大小比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间上进行比较,对于选择题、填空题能数形结合的尽量用图象法求解. (2)解不等式首先根据函数的性质把不等式转化为f (g (x ))>f (h (x ))的形式,然后根据函数的单调性去掉“f ”号,转化为具体的不等式(组),此时要注意g (x )与h (x )的取值应在外层函数的定义域内.跟踪训练】4.已知函数f (x )=log 2x +11-x ,若x 1∈(1,2),x 2∈(2,+∞),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>05.[2016·辽宁五校联考]已知f (x )是定义在R 上的偶函数,在区间[0,+∞)上为增函数,且f ⎝⎛⎭⎫13=0,则不等式f ⎝⎛⎭⎫log 18 x >0的解集为( )A.⎝⎛⎭⎫12,2B .(2,+∞) C.⎝⎛⎭⎫0,12∪(2,+∞) D.⎝⎛⎭⎫12,1∪(2,+∞)\6.[2013·天津高考]已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足f (log 2a )+f (log 12a )≤2f (1),则a 的取值范围是( ) A .[1,2] B.⎝⎛⎦⎤0,12 C.⎣⎡⎦⎤12,2 D .(0,2]7.[2015·青岛检测]函数f (x )=1x -1在区间[a ,b ]上的最大值是1,最小值为13,则a +b =______[失误与防范]1.函数的单调性是通过任意两点的变化趋势来刻画整体的变化趋势,“任意”两个字是必不可少的.如果只用其中两点的函数值(比如说端点值)进行大小比较是不能确定函数的单调性的.2.讨论函数单调性必须在其定义域内进行,函数的单调区间是其定义域的子集,因此,讨论函数的单调性时,应先确定函数的定义域.3.函数的单调区间是指函数在定义域内的某个区间上单调递增或单调递减.单调区间要分开写,即使在两个区间上的单调性相同,也不能用并集表示.转化与化归思想在求解函数不等式中的应用典例 [2015·正定模拟]函数f(x)对任意的m ,n ∈R ,都有f (m +n )=f (m )+f (n )-1,并且x >0时,恒有f (x )>1. (1)求证:f (x )在R 上是增函数. (2)若f (3)=4,解不等式f (a 2+a -5)<2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章函数与导数第3课时函数的单调性第三章(对应学生用书(文)、(理)11~12页)1. (必修1P54测试4)已知函数y=f(x)的图象如图所示,那么该函数的单调减区间是________.答案:[-3,-1]和[1,2] 2. (必修1P 44习题2改编)下列函数中,在区间(0,2)上是单调增函数的是________.(填序号)① y =1-3x ;② y=-1x;③ y=x 2+1;④ y=|x +1|.答案:②③④3. (必修1P 44习题4改编)函数y =f(x)是定义在[-2,2]上的单调减函数,且f(a +1)<f(2a),则实数a 的取值范围是________.答案:[-1,1)解析:由条件⎩⎪⎨⎪⎧-2≤a+1≤2,-2≤2a≤2,a +1>2a ,解得-1≤a<1.4. (必修1P 44习题3改编)函数y =(x -3)|x|的单调递减区间是________.答案:⎣⎢⎡⎦⎥⎤0,32 解析:y =(x -3)|x|=⎩⎪⎨⎪⎧-x (x -3),x<0,x (x -3),x ≥0,画图可知单调递减区间是⎣⎢⎡⎦⎥⎤0,32.5. (必修1P 54测试6改编)已知函数f(x)=mx 2+x +m +2在(-∞,2)上是增函数,则实数m 的取值范围是________.答案:⎣⎢⎡⎦⎥⎤-14,0 解析:当m =0时,f(x)=x +2,符合;当m≠0时,必须⎩⎪⎨⎪⎧m<0,-12m ≥2,解得-14≤m<0.综上,实数m 的取值范围是-14≤m ≤0.1. 增函数和减函数一般地,设函数f(x)的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是单调增函数.(如图(1)所示) 如果对于定义域I内某个区间D上的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是单调减函数.(如图(2)所示)2. 单调性与单调区间如果一个函数在某个区间M上是单调增函数或是单调减函数,就说这个函数在这个区间M上具有单调性(区间M称为单调区间).3. 判断函数单调性的方法(1) 定义法:利用定义严格判断.(2) 利用函数的运算性质.如若f(x)、g(x)为增函数,则:① f(x)+g(x)为增函数;② 1f(x)为减函数(f(x)>0);③ f(x)为增函数(f(x)≥0);④ f(x)·g(x)为增函数(f(x)>0,g(x)>0);⑤ -f(x)为减函数.(3) 利用复合函数关系判断单调性 法则是“同增异减”,即两个简单函数的单调性相同,则这两个函数的复合函数为增函数,若两个简单函数的单调性相反,则这两个函数的复合函数为减函数.(4) 图象法奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.[备课札记]题型1 函数单调性的判断例1 判断函数f(x)=e x+1e x 在区间(0,+∞)上的单调性.解:(解法1)设0<x 1<x 2,则 f(x 1)-f(x 2)=⎝⎛⎭⎪⎫ex 1+1ex 1-⎝ ⎛⎭⎪⎫ex 2+1ex 2=()ex 1-ex 2+ex 2-ex 1ex 1·ex 2=()ex 1-ex 2⎝ ⎛⎭⎪⎫1-1ex 1+x 2=()ex 1-x 2-1·ex 1+x 2-1ex 1.∵ 0<x 1<x 2,∴ x 1-x 2<0,x 1+x 2>0,∴ ex 1-x 2<1,ex 1+x 2>1,ex 1>0, ∴ f(x 1)<f(x 2).∴ f(x)在(0,+∞)上是增函数. (解法2)对f(x)=e x+1e x 求导,得f′(x)=e x-1e x =1e x (e 2x -1),当x >0时,e x>0,e 2x>1, ∴ f ′(x)>0,∴ f(x)在(0,+∞)上为增函数. 备选变式(教师专享)证明函数f(x)=x1+x 2在区间[1,+∞)上是减函数.证明:设x 1、x 2∈[1,+∞),且x 1<x 2.f(x 1)-f(x 2)=x 11+x 21-x 21+x 22=x 1(1+x 22)-x 2(1+x 21)(1+x 21)(1+x 22)=(x 1-x 2)(1-x 1x 2)(1+x 21)(1+x 22). ∵ x 1、x 2∈[1,+∞),且x 1<x 2,∴ x 1-x 2<0,1-x 1x 2<0.又(1+x 21)(1+x 22)>0,∴ f(x 1)-f(x 2)>0,即f(x 1)>f(x 2). ∴ f(x)=x1+x 2在[1,+∞)上为减函数.题型2 已知函数的单调性求参数的值或范围 例2 已知函数f(x)=lg kx -1x -1(k∈R ,且k>0).(1) 求函数f(x)的定义域;(2) 若函数f(x)在[10,+∞)上单调递增,求k 的取值范围.解:(1) 由kx -1x -1>0,k>0,得x -1k x -1>0,当0<k<1时,得x<1或x>1k ;当k =1时,得x∈R且x ≠1;当k>1时,得x<1k或x>1.综上,当0<k<1时,函数定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x<1或x>1k ;当k≥1时,函数定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x<1k 或x>1.(2) 由函数f(x)在[10,+∞)上单调递增,知10k -110-1>0,∴ k>110.又f(x)=lg kx -1x -1=lg ⎝ ⎛⎭⎪⎫k +k -1x -1,由题意,对任意的x 1、x 2,当10≤x 1<x 2,有f(x 1)<f(x 2),即lg ⎝ ⎛⎭⎪⎫k +k -1x 1-1<lg ⎝ ⎛⎭⎪⎫k +k -1x 2-1, 得k -1x 1-1<k -1x 2-1(k -1)(1x 1-1-1x 2-1)<0. ∵ x 1<x 2,∴ 1x 1-1>1x 2-1,∴ k -1<0,即k<1.综上可知,k 的取值范围是⎝ ⎛⎭⎪⎫110,1. 变式训练已知函数f(x)=2x -ax,x ∈(0,1].(1) 当a =-1时,求函数y =f(x)的值域;(2) 若函数y =f(x)在x∈(0,1]上是减函数,求实数a 的取值范围. 解:(1) 当a =-1时,f(x)=2x +1x ,因为0<x≤1,所以f(x)=2x +1x≥22x ·1x =22,当且仅当x =22时,等号成立,所以函数y =f(x)的值域是[22,+∞).(2) (解法1)设0<x 1<x 2≤1,由f(x 1)-f(x 2)=⎝ ⎛⎭⎪⎫2x 1-a x 1-⎝ ⎛⎭⎪⎫2x 2-a x 2=2(x 1-x 2)+⎝ ⎛⎭⎪⎫a x 2-a x 1=(x 1-x 2)(2x 1x 2+a )x 1x 2,因为函数y =f(x)在x∈(0,1]上是减函数,所以f(x 1)-f(x 2)>0恒成立,所以2x 1x 2+a<0,即a<-2x 1x 2在x∈(0,1]上恒成立, 所以a≤-2,即实数a 的取值范围是(-∞,-2]. (解法2)由f(x)=2x -a x ,知f′(x)=2+ax 2,因为函数y =f(x)在x∈(0,1]上是减函数, 所以f ′(x)=2+ax 2≤0在x∈(0,1]上恒成立,即a≤-2x 2在x∈(0,1]上恒成立,所以a≤-2,即实数a 的取值范围是(-∞,-2]. 题型3 函数的单调性与最值例3 已知函数f(x)=x 2+2x +ax ,x ∈[1,+∞).(1) 当a =12时,求f(x)的最小值;(2) 若对任意x∈[1,+∞),f(x)>0恒成立,求实数a 的取值范围. 解:(1) 当a =12时,f(x)=x +12x +2.设x 1>x 2≥1,则f(x 1)-f(x 2)=(x 1-x 2)+⎝⎛⎭⎪⎫12x 1-12x 2=(x 1-x 2)·2x 1x 2-12x 1x 2.∵ x 1>x 2≥1, ∴ f(x 1)>f(x 2),∴ f(x)在[1,+∞)上为增函数. ∴ f (x)≥f(1)=72,即f(x)的最小值为72.(2) ∵ f(x)>0在x∈[1,+∞)上恒成立,即x 2+2x +a >0在[1,+∞)上恒成立,∴ a >[-(x 2+2x)]max .∵ t(x)=-(x 2+2x)在[1,+∞)上为减函数, ∴ t(x)max =t(1)=-3, ∴ a >-3. 备选变式(教师专享)已知a∈R 且a≠1,求函数f(x)=ax +1x +1在[1,4]上的最值.解:由f(x)=ax +1x +1=a +1-ax +1.若1-a>0,即a<1时,f(x)在[1,4]上为减函数, ∴ f max (x)=f(1)=a +12,f min (x)=f(4)=4a +15;若1-a<0,即a>1时,f(x)在[1,4]上为增函数, ∴ f max (x)=f(4)=4a +15,f min (x)=f(1)=a +12.1. (2013·南京期初)已知函数f(x)=⎩⎪⎨⎪⎧e x-2k ,x ≤0(1-k )x ,x>0是R 上的增函数,则实数k 的取值范围是________.答案:⎣⎢⎡⎭⎪⎫12,1 解析:由题意得⎩⎪⎨⎪⎧e 0-2k≤0,1-k>0,解得12≤k<1.2. 若函数f(x)=a x(a>0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g(x)=(1-4m)x 在[0,+∞)上是增函数,则a =________.答案:14解析:若a>1,有a 2=4,a -1=m ,所以a =2,m =12,此时g(x)=-x 是[0,+∞)上的减函数,不符合;当0<a<1,有a -1=4,a 2=m ,所以a =14,m =116,此时g(x)=3x 4,符合.3. (2013·安徽)“a≤0”是“函数f(x)=|(ax -1)x|在区间是(0,+∞)内单调递增”的________条件.答案:充要解析:① 当a =0时,f(x)=|x|在区间(0,+∞)内单调递增;② 当a<0时,结合函数f(x)=|ax 2-x|的图象知函数在(0,+∞)内单调递增;③当a>0时,结合函数f(x)=|ax 2-x|的图象知函数在(0,+∞)上先增后减再增,不符合.所以“a≤0”是“函数f(x)=|(ax -1)x|在区间(0,+∞)内单调递增”的充要条件.4. 已知函数f(x)是定义在正实数集上的单调函数,且满足对任意x >0,都有f(f(x)-lnx)=1+e ,则f(1)=________.答案:e解析:f(x)-lnx 必为常数函数,否则存在两个不同数,其对应值均为1+e ,与单调函数矛盾.所以可设f(x)-lnx =c ,则f(x)=lnx +c.将c 代入,得f(c)=1+e ,即lnc +c =1+e.∵ y =lnx +x 是单调增函数,当c =e 时,lnc +c =1+e 成立, ∴ f(x)=lnx +e.则f(1)=e.1. 给定函数:①y=x 12,②y =log 12(x +1),③y =|x -1|,④y =2x +1,其中在区间(0,1)上单调递减的函数是____________.(填序号)答案:②③解析:①是幂函数,其在(0,+∞)上是增函数,不符合;②中的函数是由函数y =log 12x 向左平移1个单位而得到的,因为原函数在(0,+∞)上是减函数,故符合;③中的函数图象是由函数y =x -1的图象保留x 轴上方,下方图象翻折到x 轴上方而得到的,故由其图象可知正确;④中函数显然是增函数,故不符合.2. 设a>0且a≠1,则“函数f(x)=a x 在R 上是减函数 ”是“函数g(x)=(2-a)x 3在R 上是增函数”的__________条件.答案:充分不必要解析:函数f(x)=a x 在R 上是减函数等价于0<a<1,函数g(x)=(2-a)x 3在R 上是增函数等价于0<a<1或1<a<2,所以“函数f(x)=a x在R 上是减函数 ”,是“函数g(x)=(2-a)x 3在R 上是增函数”的充分不必要条件.3. 函数f(x)=⎩⎪⎨⎪⎧ax 2+1,x ≥0,(a 2-1)e ax,x <0在(-∞,+∞)上单调,则a 的取值范围是________.答案:(-∞,-2]∪(1,2]解析:若a>0,则f(x)=ax 2+1在[0,+∞)上单调增,∴ f(x)=(a 2-1)e ax在(-∞,0)上单调增,∴⎩⎪⎨⎪⎧a 2-1>0,a 2-1≤1,∴ 1<a ≤ 2.同理,当a<0时,可求得a≤-2,故a∈(-∞,-2]∪(1,2].4. 是否存在实数a ,使函数f(x)=log a (ax 2-x)在区间[2,4]上是增函数?如果存在,说明a 可取哪些值;如果不存在,请说明理由.解:显然a>0且a≠1.当a>1时,则t(x)=ax 2-x 的对称轴是x =12a ∈⎝ ⎛⎭⎪⎫0,12,只需t(2)=4a -2>0,即a>12,所以a >1均成立; 当0<a <1时,则t(x)=ax 2-x 的对称轴是x =12a ∈⎝ ⎛⎭⎪⎫12,+∞,需要⎩⎪⎨⎪⎧12a≥4,t (4)=16a -4>0无解. 所以,存在实数a >1,满足条件.1. 求函数的单调区间,首先应注意函数的定义域,函数的单调区间都是定义域的子集,常用方法有:定义法、图象法、导数法、复合函数法等.2. 函数单调性的应用(1) 比较函数值的大小;(2) 解不等式;(3) 求函数的值域或最值等.注意利用定义都是充要性命题,即若函数f(x)在区间D上递增(减)且f(x1)<f(x2)x1<x2(x1>x2)(x1、x2∈D).请使用课时训练(B)第3课时(见活页).[备课札记]。

相关文档
最新文档