结构力学:极限荷载2
结构力学结构的极限荷载
P
C
B
M u 5Pl / 32 Pl / 4
将P 代入,得
A
5Pl / 32
P
C
B
5 16 M u M u l Pl / 4 32 3l
P 2M u / 3l Pu P P 6 M u / l
P l / 4
逐渐加载法(增量法)
从受力情况,可判断出塑性铰发生的位置应为A、C。利用极限状态的 Pu 平衡可直接求出极限荷载。 Mu A B 1 l C Mu MA 0 RB ( Pu M u ) l 2 2 RB P l Pu l M u A MC 0 M u RB B 2 4 2 C
Ms s M A ydA A ydAe A s ydA p [3 ( )2 ] 2 Ms s M ——弯矩与曲率关系(非线性关系) M [3 ( )2 ] 或 s 3 2 2 Ms
e p
塑性极限状态: 截面上各点应力均达到屈服 s
§9-4
单跨超静定梁的极限荷载
超静定梁有多余约束,出现一个塑性铰后仍是几何不变体系。 A 截面先出现塑性铰,这时 M A 3Pl / 16 M u
A
P
C
B
P 16 M u / 3l
再增加荷载 l/2
3Pl / 16
A
l/2
M C 5Pl / 32 Pl / 4
令 MC Mu
只能出现一个塑性铰,所以
9M u Pu l
2 Pl 9
讨论: M C Pl / 9 1 Pl Mu Mu 9 Mu
M D 2 Pl / 9 1 Pl Mu 4M u 18 M u
结构力学(二)第4版龙驭球第17章结构的极限荷载
第17章 极限荷载【17-1】 验证:(a )工字形截面的极限弯矩为)41(212δδδσb hbh M s u +=。
(b )圆形截面的极限弯矩为63D M s u σ=。
(c )环形截面的极限弯矩为⎥⎦⎤⎢⎣⎡--=33)21(16D D M su δσ。
【解】(a )工字形截面的等面积轴位于中间。
静距计算公式:2021d xy y xy S y ==⎰考虑上半部分面积对等面积轴的静距(大矩形静距减两个小矩形静距):)41(21)4(21)2)((21)2(21211212222121122222212bhb b h h bh h h b bh hb h b S δδδδδδδδδδδδδδδδ+-+-=+-+-=---= 去除高阶小量后)41(21212δδδb h bh S +=因此极限弯矩为)41()(212δδδσσb h bh S S M s s u +=+= (b )静距计算公式:2021d xy y xy S y==⎰ 6322d 2))2(d(21)2(4d )2(43)2(023)2(0202222202222D uu u y D y D y y y D S D DDD =⋅=⋅=-⋅-=⋅-=⎰⎰⎰关/注;公,众。
号:倾听细雨因此极限弯矩为63D S M s s u σσ==(c )圆的静距为63D S =则圆环的静距为⎥⎦⎤⎢⎣⎡--=-=3333)21(166)2(-6D D D D S δδ 因此极限弯矩为⎥⎦⎤⎢⎣⎡--==33)21(16D D S M ss u δσσ 【17-2】 试求图示两角钢截面的极限弯矩u M 。
设材料的屈服应力为s σ。
【解】设等面积轴距上顶面距离为xmm 。
由面积轴两侧面积相等,也即面积轴以上面积等于总面积的一半,得405550))50(21(22⨯+⨯=-+x x x ,解得mm x 723.4=。
单个角钢上下截面面积矩:32323232233214879mm ])723.440(20)723.440(31)723.445(20)723.445(31[)723.445(521723.431723.4)723.445(21540mm 723.431723.4)723.450(21=+⨯++⨯-+⨯-+⨯-+⨯⨯+⨯-⨯-⨯==⨯+⨯-⨯=S S由此得截面极限弯矩s s s u S S M σσσ10838)4879540(2)(221=+⨯=+=【17-3】 试求图示各梁的极限荷载。
11 结构力学—— 结构的极限荷载
MC
哈工大 土木工程学院
25 / 46
17
结构的塑性分析和极限荷载
A B C FP D
破坏机构实现的条件:
(1)B、C 点出现塑性铰 则:
M C Mu
M A Mu
M B Mu
3
A
Mu
Mu
Mu FP B
Mu
D
9Mu F l
P1
Mu C Mu
Mu
M A 3Mu
哈工大 土木工程学院
哈工大 土木工程学院
12 / 46
17
结构的塑性分析和极限荷载
限弯矩。
80 mm
例题:已知材料的屈服极限σs =240MPa,求图示截面的极 解:
A 0.0036 2 m
g
A1 A2 A / 2 0.0018 2 m
A1 形心距离下端0.045m A2 形心距离上端0.01167m A1与A2的形心距离为0.0633m
哈工大 土木工程学院
7 / 46
17
结构的塑性分析和极限荷载
s
y 弹性阶段 结束的标志是最外纤维某 处应力达到屈服极限应力σs ,此时的弯 矩称屈服弯矩 Ms。 s 2 bh M s dA. y s W s W 弹性抗弯截面系数 6
弹塑性阶段 截面上既有塑性区又 有弹性区(弹性核 y0)。随弯矩 增大,弹性核逐渐减小。
Mu
FP u
6Mu l
20 / 46
哈工大 土木工程学院
17
结构的塑性分析和极限荷载
q
例题:试求图示结构的极限荷载 qu 解: 由梁的弯矩图可 A 知:第一个塑性 铰必出现在固定 支座处; 1 2 ql 8 首先求当出现第一 个塑性铰时支座B 的 约束反力FRB
结构力学专题十六(单跨梁极限荷载计算)
P
P
A
D
B
C
l/3 l/3 l/3
共有三种可能的破坏机构
Fpu
4 l
Mu
F1
5 l
Mu
F2
4 l
Mu
2.用试算法求解
F3
9 l
Mu
作业:
16—3、 16—4。
补:求图示结构的极限荷载, 材料极限弯矩为Mu。
M
A
C
B
3m
1m
(2)平衡弯矩法
Mmax 1.5FPu M u
FPu
2 3
Mu
2F
F
2m
2m
1m
小结: 静定梁极限荷载计算特点:
静定结构无多余约束,出现一个塑性铰即成为破 坏机构。这时结构上的荷载即为极限荷载。
塑性铰出现的位置应为截面弯矩与极限弯矩之比 的绝对值最大的截面。
求出塑性铰发生的截面后,令该截面的弯矩等于 极限弯矩,利用平衡条件即可求出极限荷载。
(1)可破坏荷载 Fp
对任一破坏机构,由平衡条件求出的荷载称为可破坏 荷载;
(2)可接受荷载 Fp
同时满足屈服条件和平衡条件的荷载称为可接受荷载;
(3)极限荷载 Fpu
同时满足三个条件的荷载称为极限荷载,即极限荷载 既是可破坏荷载,又是可接受荷载。
4、一般定理
(1)基本定理(预备定理)
可破坏荷载恒不小于可接受荷载 Fp Fp
第十六章 梁和刚架的极限荷载
§16-3 单跨梁极限荷载计算
一、静定梁 例2:求图示结构的极限荷载,
材料极限弯矩为Mu。 (1)机动法
2F
F
2m
2m
1m
塑性铰出现在支座处
李廉锟《结构力学》(第5版)(下册)课后习题-第14章 结构的极限荷载【圣才出品】
第14章 结构的极限荷载复习思考题1.什么叫极限状态和极限荷载?什么叫极限弯矩、塑性铰和破坏机构?答:(1)极限状态和极限荷载的含义:①极限状态是指整个结构或结构的一部分超过某一状态就不能满足设计规定的某一功能要求时所对应的特定状态;②极限荷载是指结构在极限状态时所能承受的荷载。
(2)极限弯矩、塑性铰和破坏机构的含义:①极限弯矩是指某一截面所能承受的弯矩的最大数值;②塑性铰是指弯矩不能再增大,但弯曲变形则可任意增长的截面;③破坏机构是指出现若干塑性铰而成为几何可变或瞬变体系的结构。
2.静定结构出现一个塑性铰时是否一定成为破坏机构?n次超静定结构是否必须出现n+1个塑性铰才能成为破坏机构?答:(1)静定结构出现一个塑性铰时一定成为破坏机构。
因为根据几何组成分析,当静定结构出现一个塑性铰时,结构由几何不变变成几何可变或几何瞬变体系,此时该结构一定成为了破坏机构。
(2)n次超静定结构不必出现n+1个塑性铰才能成为破坏机构。
因为n次超静定结构出现n个塑性铰时,如果塑性铰的位置不合适,也可能使原结构变成几何瞬变的体系,此时的结构也成为了破坏机构。
3.结构处于极限状态时应满足哪些条件?答:结构处于极限状态时应满足如下三个条件:(1)机构条件机构条件是指在极限状态中,结构必须出现足够数目的塑性铰而成为机构(几何可变或瞬变体系),可沿荷载作正功的方向发生单向运动。
(2)内力局限条件内力局限条件是指在极限状态中,任一截面的弯矩绝对值都不超过其极限弯矩。
(3)平衡条件平衡条件是指在极限状态中,结构的整体或任一局部仍维持平衡。
4.什么叫可破坏荷载和可接受荷载?它们与极限荷载的关系如何?答:(1)可破坏荷载和可接受荷载的含义:可破坏荷载是指满足机构条件和平衡条件的荷载(不一定满足内力局限条件);可接受荷载是指满足内力局限条件和平衡条件的荷载(不一定满足机构条件)。
(2)与极限荷载的关系极限荷载是所有可破坏荷载中的最小者,是所有可接受荷载中的最大者。
龙驭球《结构力学Ⅱ》配套题库-名校考研真题(结构的极限荷载)【圣才出品】
所以由原点到 2/3l 时下降的距离为:
2l
3 d
2l 3
1
(
y)2
dx
2l 3
1
a2 (l2
3x2 )2
dx
7
a2l5
0
02
02
45
则集中荷载做的功为:
T2
ql
7 45
qa2l 6
微段上荷载所做的功为:
T1
1 2
q(l
x
dx)( y)2 dx
1 2
q(l
x)(
y)2 dx
沿杆长积分,可得:
2/7
圣才电子书 十万种考研考证电子书、题库视频学习平台
图 17-3
则由图示可得,由于杆件的倾斜会是整个系统产生向下的下降,距离为:
d dx dx cos 2 sin2 dx 1 2dx 1 ( y)2 dx
22
2
式中, y (l2 3x2 ) 。
T1
1 1 q(1 x)( y)2dx 1 q
1
(1
x)a2
(l
2
3x2
)2
dx
3
qa2l 6
02
20
20
所以外力的势能为:
V
(T1
T2 )
3 20
7 45
qa
2l
6
11 36
qa 2l 6
3/7
圣才电子书 十万种考研考证电子书、题库视频学习平台
系统的总能量为:
方程为 qu× l ×θ1x=Mu(θ1+θ1+θ2),其中 2
代入虚功方程幵整理得
qu=
由
解得 x=0.586l。将 x 值代入虚功方程,解得
结构力学 结构的极限荷载与弹性稳定图文
A
B
D
C
l/3
l/3
l/3
解: AB段极限弯矩为 M u ,BC段极限弯矩为Mu。
塑性铰的可能位置:A、B、D。
A l/3
B
Mu B
l/3
FPu
DC Mu
D
l/3
§11-4 超静定结构的极限荷载计算
1)B、D截面出现塑性
FPu
铰,由弯矩图可知,只 有当 Mu 3Mu 时,此破
A l/3
B
Mu B
分析:(1) 图(a)表示截面处于弹性阶段。
该阶段的最大应力发生在截面最外纤维处,
称为屈服极限y,此时的弯矩Ms称为弹性 s a)
极限弯矩,或称为屈服弯矩。即:
s
MS
bh2 6
s
y0
(2)图(b)—截面处于弹塑性阶段,
y0
截面外边缘处成为塑性区,应力为常数, s b)
§11-2 基本概念
=s;在截面内部(|y|y0)则仍为弹性区,称为弹性
2
C l
2 4
B Mu
由We=Wi,可得 所以有1 4q源自l 24M uqu
16M l2
u
三次超静定 三个塑性铰
§11-4 超静定结构的极限荷载计算
例11-4-3 已知梁截面极限弯矩为Mu ,求极限荷载 。 解:塑性铰位置:A截面及梁上最大弯矩截面C。
q
qu
A
l
BA
Mu A
Mu C C B
l-x
x
例11-1-1 设有矩形截面简支梁在跨中承受集中荷载 作用(图a),试求极限荷载FPu 。
解:由M图知跨中截面 弯矩最大,在极限荷载作用 下,塑性铰将在跨中截面形 成,弯矩达极限值Mu(图b)。
结构力学专题十五(结构的极限荷载)
Ms W
称为截面形状系数,其值与截面形状有关。
例:已知材料的屈服极限 s 240 MPa ,
求图示截面的极限弯矩。
80mm
Mu s (S1 S2 ) 27.36kN.m
20mm
2、塑性较 当截面弯矩达到极限弯矩时,在保持弯矩不变的前
提下,截面纤维将无限地伸长和缩短,因此在该小段内, 两个无限靠近的截面可以发生相对转动,这种情况与带 铰截面相似,称这种截面为“塑性铰”。
A
(1)平衡弯矩法
(2)机动法
(3)增量法
F
B
l/2
l/2
例5:求图示等截面梁的极限荷载。 已知梁的极限弯矩为Mu。
A
q
B
l
例6:求图示结构的极限荷载, 材料极限弯矩为Mu。
M
AC
B
1m
3m
三、变截面超静定梁
例7:求图示结构的极限荷载,
已知 Mu Mu
A Mu
Mu F
D
BC
l ll
作业:
思考题 16—2 、16—4、16—5; 习题: 16—1。
塑性铰与普通铰的区别:
(1)普通铰不能承受弯矩,而塑性铰能承受弯矩Mu。 (2)普通铰是双向铰,而塑性铰是单向铰。
3、弹性极限荷载、极限荷载、破坏机构(极限状态)
(1)对弹于性特阶定段的结构,随着荷载的逐渐增加:
各截面弯矩不超过 “屈服弯矩”Ms ;
(2)弹性阶段终止
当某个截面弯矩首先达到“屈服弯矩”Ms时,弹性阶段终止, 此时的荷载称为“弹性极限荷载”Fps;
加载
E S
S
S
弹性
塑性 s
卸载 E
弹性
s
结构力学 极限荷载讲解
h
ql2/8
b
应 力
s
s
s
应 变
s
塑性区
三、基本假设
1、材料为“理想弹塑性材料” 。 2、拉压时,应力、应变关系相同。
3、满足平截面假定。即无论弹、塑性阶段,保持平截面不变。
y
卸载时有残余变形
第15章
15.2 极限弯矩、塑性铰、破坏机构
一、屈服弯矩与极限弯矩 1、屈服弯矩(Ms): 截面最外侧纤维的应力达到流动极限时对应的弯矩。
结构力学
STRUCTURE MECHANICS
天津城市建设学院力学教研室
第15章
一、弹性分析
梁和刚架的极限荷载
15.1 概述
材料在比例极限内的结构分析(利用弹性分析计算内力),以许 用应力为依据确定截面或进行验算的方法。 q
A s e p
A
B b h
l
1、设计:
ql2/8
o
s———流动极限(屈服极限) e———弹性极限 p———比例极限
ql 2 12 ql 2 12
ql 2 24
q u1
Mu
q u1 l Mu 12
q u1 l 2 M u 24 2
2
Mu
q u1 l 2 Mu 12
(1)弹性阶段
qs
qs l 2 12 qs l 2 12
qs l 2 24
(3)梁两端出现塑性铰
qu 2 q u1
(2)弹性阶段末
Mu
可得: qu 2 4Mu l2
第15章
例题1 试用机动法求图示结构的极限荷载。 p 1.1 p
解:
2a
a
结构力学课件 第十二章 结构的极限荷载
Mu
× 2δθ
=
0
Pu
A
δθ B
δθ
C Mu
2δθ
Pu/2
本例中,截面上有剪力,剪力 会使极限弯矩值降低,但一般 影响较小,可略去不计。
机械系 董达善 教授
第十二章 结构的极限荷载
§12-3 单跨超静定梁的极限荷载
超静定梁有多余约束,出现一个塑性铰后仍是几何不变体系。
A截面先出现塑性铰,这时 M A = 3Pl /16 = M u P = 16M u / 3l
机械系 董达善 教授
第十二章 结构的极限荷载
§12-5 计算极限荷载的穷举法和试算法
上节定理的应用:
极小定理的应用
穷举法:列出所有可能的破坏机构,用平衡条件求出这些破坏 机构对应的可破坏荷载,其中最小者既是极限荷载。
试算法:每次任选一种破坏机构,由平衡条件求出相应的可破 坏荷载,再检验是否满足内力局限性条件;若满足,该可破坏 荷载既为极限荷载;若不满足,另选一个破坏机构继续运算。
Pu1 ≥ Pu2 若把 Pu2看成可破坏荷载,Pu1 看成可接受荷载。
故有
Pu1 ≤ Pu2 Pu1 = Pu2
3.极小定理:极限荷载是所有可破坏荷载中最小的。
证明:由于极限荷载 Pu 是可接受荷载,由基本定理 Pu ≤ P+ 4.极大定理:极限荷载是所有可接受荷载中最大的。
证明:由于极限荷载 Pu 是可破坏荷载,由基本定理 Pu ≥ P−
令 M max = M u ,得
Pu
=
4Mu
/
l
=
4 4000
× 26.79×106
=
26.79
kN
l/2
l/2
结构力学 第十四章 结构塑性分析的极限荷载
(
FP 2 L 4
Mu 2
)
FP L 4
Mu
解得:
FP 2
FP
6M u L
(a)
即:
FPu
6M u L
2)超静定梁的极限荷载
由前已由叠加方法得出了式(a)所示单跨 超静定梁的极限荷载。观察梁的最后极 限 弯 矩 图 (g) , 既 是 所 叠 加 的 两 弯 矩 图 (c)、(e)的叠加结果。利用梁的极限弯 矩图的平衡条件,可得:
解: 1)基本方法用破坏机构法
可能机构I:
FP1
L 3
3M u
0
(a)
FP1
9M u L
注意:在突变截面处的塑性铰的极限弯 矩为较小极限弯矩。
可能机构II:
FP 2
L 3
(M
` u
M u )
Mu
0
由几何关系知: 2 代入上式,得:
FP 2
3(M u `3M u ) 2L
(b)
可能机构III:
1
1
5
M C 4 (2FPu ) 6 2 FPu 2 FPu
即
5 2 FPu
Mu
则
2 FPu 5 M u
b.破坏机构法
荷载和极限弯矩在虚位移上所作的总外力 虚功方程为:
2FPu
3
FPu 2
2
Mu
2
0
解该虚功方程,得:
FPu
2 5
M
u
c.关于静定梁极限荷载的求解
由于静定结构只要出现一个塑性铰即达到 其塑性极限状态,即静定梁的极限状态时 弹性阶段最大弯矩截面形成塑性铰,且弯 矩图分布与弹性阶段相同,因此可由弹性 阶段的弯矩图一次确定极限弯矩图。
结构力学第16章---结构的极限荷载
(1)基本定理: 可破坏荷载 FP 恒不小于可接受荷载 FP ,即 FP FP
(2)唯一性定理: 极限荷载值是唯一确定的。
(3)上限定理(极小定理):可破坏荷载是极限荷载的上限; 即极限荷载是可破坏荷载中的极小值。 FPu FP
qu
6.4
Mu l2
§16-4 比例加载时判定极限荷载的一般定理
比例加载: 所有荷载变化时都彼此保持固定的比例,可用一个 参数FP表示; 荷载参数FP只是单调增大,不出现卸载现象。
假设条件: 材料是理想弹塑性的; 截面的正极限弯矩与负极限弯矩的绝对值相等; 忽略轴力和剪力对极限弯矩的影响。
结构的极限受力状态应满足的条件: (1)平衡条件: 结构的整体或任一局部都能维持平衡; (2)内力局限条件: 任一截面弯矩绝对值都不超过其极限弯矩; (3)单向机构条件: 结构成为机构能够沿荷载方向作单向运动。
11.7
Mu l2
§16-5 刚架的极限荷载
基本假设: (1)当出现塑性铰时,塑性区退化为一个截面(塑性铰处的
截面),其余部分仍为弹性区。 (2)荷载按比例增加,且为结点荷载,塑性铰只出现在结点
处。 (3)每个杆件的极限弯矩为常数,各杆的极限弯矩可不同。 (4)忽略轴力和剪力对极限弯矩的影响。
1. 增量变刚度法的基本思路: 把非线性问题转化为分阶段的几
0 0
k
e 1
2
0 EA
l 0
0 0 0
0 0 0
0 EA
l 0
0 0 0 0 0 0
0 0 0 0 0 0
3. 计算步骤-求刚架极限荷载(比例加载, 荷载用荷载参数FP表示)
极限荷载的名词解释
极限荷载的名词解释极限荷载,简称为极限载荷,是指结构在允许的极限条件下所能承受的最大力量或压力。
它是设计师在建筑、航空航天、汽车工程、桥梁和机械工程等领域中必须考虑的关键因素之一。
1. 极限荷载概述极限荷载在工程设计中具有重要意义。
无论是建筑物、桥梁、飞机还是汽车,都必须能够在特定的工作负荷下运行,而这些工作负荷不能超过其极限荷载的承载能力。
极限荷载研究的目的是确保工程或设备在正常工作条件下的安全可靠性,以及在异常负荷情况下的抗击压力和破坏的能力。
2. 极限荷载与结构安全极限荷载的考虑对于确保结构的安全性至关重要。
在设计阶段,工程师需要评估预期荷载以及结构所能承载的极限荷载。
这样的评估通常基于复杂的计算和经验公式,包括静力学、动力学、材料力学和结构力学等知识。
通过对各种力学条件的实际测试和模拟分析,设计团队可以确定结构的极限荷载,并相应地进行结构的加强和改进。
3. 极限荷载的影响因素极限荷载受许多因素的影响。
其中最重要的因素之一是物体的重量和形状。
不同形状的结构将受到不同程度的应力和压力。
其他因素包括运动速度、温度、湿度、材料的强度和刚度,以及使用环境的条件等。
在设计过程中,这些因素必须全面考虑,以确保结构具有足够的强度和稳定性。
4. 极限荷载的实践应用极限荷载的研究和应用广泛应用于各个工程领域。
在建筑设计中,极限荷载的考虑可以确保建筑物在各种自然灾害和外部冲击下的抵御能力。
在航空航天领域,极限荷载的研究应用于飞行器和航天器的设计和制造。
在汽车工程中,极限荷载的概念用来研究汽车零部件的强度和耐久性,确保其在各种驾驶条件下的安全性。
5. 极限荷载的意义和挑战极限荷载的考虑对于工程设计师和研究者而言至关重要。
一个可靠的结构需要经过良好的分析和合理的设计,以保证其在各种情况下的安全和稳定性。
然而,预测和计算极限荷载并非易事,它需要专业知识、经验和计算能力的共同运用。
此外,随着科技的进步和工程技术的发展,我们对于极限荷载的认识还在不断演进和完善中。
结构力学极限荷载
结构力学(2)
浙大宁波理工学院土建学院
2)虚功法(作破坏机构图)
FP
红线为变形后的杆件,兰点为塑性铰
A
C
Mu
1
Mu
2
1B1源自l/22l
2
21
4
l
令机构产生虚位移,使C截面竖向
位移和荷载FP同向,大小为δ
外力虚功: We FP
内力虚功:
Wi
M u1
Mu2
2
Mu( l
4
l
)
6Mu
l
由
We=Wi 得: FPu
Fpu
=
(a+b)M ab
u
2Fp Fp
l/2
l/2
7 Fpl 16
5 Fpl 8
M图
5 M max 8 Fpl M u
Fpu
=
8M 5l
u
M max 2Fpl M u
Fpu
=
Mu 2l
结构力学(2)
浙大宁波理工学院土建学院
例 求静定梁的比例加载时的极限荷载Fpu
2Fp Fp
弯矩图法
A
3Mu
极限荷载(P266)
结构破坏时所能承担的的荷载。
结构力学(2)
浙大宁波理工学院土建学院
§17-2 极限弯矩、塑性铰、极限荷载 、极限状态
基本假设(一般针对钢材料) 1、材料为“理想弹塑性材料” 。 2、材料均匀,各向同性。 3、平面假定。即无论弹、塑性阶段,都保持平截面不变。
s A
塑性流动状态
C
o
C Mu
B Mu D
l
l/2
l/2
Fpl
解:作弯矩图
A
结构力学极限荷载
Harbin Institute of Technology超静定梁中的极限荷载的研究课程名称:结构力学院系:土木工程学院班级:1433111姓名:李渊学号: 1143310120摘要:大多数工程材料,特别是钢材,受力后发生变形,一般都存在线性弹性阶段、屈服阶段和强化阶段。
因此,随着荷载的增加,结构截面上应力大的点首先达到屈服强度,发生屈服,结构将进入弹塑性状态。
这时虽然截面部分材料已进入塑性状态,但尚有相当大的部分材料仍处于弹性范围,因而结构仍可继续加载。
当荷载增加到一定程度,结构中进入塑形的部分不断扩展直至完全丧失承载能力,导致结构崩溃(或倒塌)。
因此研究结构极限状态下的极限荷载,是十分有必要的,对于结构安全储备的考虑的依据提供有重要意义。
正文:一、极限荷载的有关意义定义:结构出现塑性变形直到崩溃时所能承受的最大荷载,称为极限荷载,它是考虑结构安全储备设计依据的因素之一,且按极限状态设计结构比弹性设计更经济。
通过对弹性设计方法及其许用应力设计法的研究,并在其方面进行了探讨,得到弹性设计方法及其许用应力设计法的最大缺陷是以某一截面上的max σ达到[σ]作为衡量整个结构破坏的标准。
事实上,由塑性材料组成的结构(特别是超静定结构)当某一局部的max σ达到了屈服应力时,结构还没有破坏,还能承受更大的荷载。
因此弹性设计法不能充分的利用结构的承载能力,是不够经济的。
塑性分析考虑了材料的塑性性质,其强度要求以结构破坏时的荷载作为标准:max []PuP p uF F F k ≤=其中,Pu F 是结构破坏时荷载的极限值,即极限荷载。
u k 是相应的安全系数。
对结构进行塑性分析时仍然要用到平衡条件、几何条件、平截面假定,这与弹性分析时相同。
另外还要采用以下假设:图1(1)材料为理想弹塑性材料。
其应力与应变关系如图所示。
(图1)(2)比例加载:全部荷载可以用一个荷载参数P 表示,不会出现卸载现象。
(3)结构的弹性变形和塑性变形都很小。
结构力学-第17章-结构的塑性分析与极限荷载
q 2l x 2M u x(l x) l
qu
22 3 24
Mu l2
11.7
Mu l2
极限荷载复习题
1. 极限分析的目的是什么? 答:寻找结构承载能力的极限,充分利用材料。
2. 试说明塑性铰与普通铰的异同。 答:当截面弯矩达到极限弯矩时,这种截面可称为塑性铰; 塑性铰是单向铰,塑性铰只能沿弯矩增大的方向发生有限的 转角;塑性铰可传递弯矩,普通铰不能传递弯矩。
AB跨破坏时
ql
(a) A
B
0.5l 0.5l
q 1.5ql
C
D
l 0.75l 0.75l
1.2M u
(b)
Mu
ql 1.2MuB Mu ( A B )
1.2M
u
0.5l
M
u
( 0.5l
0.5l
)
q1
6.4 l2
M
u
BC跨破坏时
ql
(a) A
B
0.5l 0.5l
q 1.5ql
C
D
l 0.75l 0.75l
A1 A2 A / 2 1800mm2
A2
等面积轴
90mm
A1
A1的面积形心距等面积轴45mm, A2的面积形心距等
M u S (S S ) S [ A A .]
S
A
[
.]
S
A
.
26.79KN m
塑性铰、极限荷载
1、静定结构只要产生一个塑性铰即发生塑性破坏,n次超 静定结构一定要产生n +1个塑性铰才产生塑性破坏。
答案:错误
2、塑性铰与普通铰不同,它是一种单向铰,只能沿弯矩增 大的方向发生相对转动。
结构力学 第17章 结构的塑性分析与极限荷载
可见,塑性流动阶段的中性轴应等分截面面积。
由此,极限弯矩的计算方法: M u s (S S )
S、S 分别为面积A、A 对等面积轴的静矩。
可见,极限弯矩与外力无关,只与材料、截面几何形状 和尺寸有关。
6
[例]已知材料的屈服极限 s 240MPa ,试求图示截面的
极限弯矩。
80mm
解: A 3600mm2
荷载只是单调增大,不出现卸载现象。
2.结构的极限状态应当满足的条件
1)平衡条件:在极限受力状态下,结构的整体或任一 局部都保持平衡。
2)内力局限条件(屈服条件):在极限受力状态下,
结构任一截面的弯矩绝对值都不大于其极限弯矩,即
︱M︱≤Mu 。 3)单向机构条件:在极限状态,结构中已经出现足够
数量的塑性铰,使结构成为机构,该机构能够沿荷载
FP
FPu
l/2
l/2
Mu
①图中简支梁随着荷载的增大,梁跨中弯矩达到极限弯矩Mu。
②跨中截面达到塑性流动阶段,跨中两个无限靠近的截面可以产生有
限的相对转角,因此,当某截面弯矩达到极限弯矩Mu时,就称该截面
产生了“塑性铰”。
③这时简支梁已成为机构,这种状态称为“极限状态”,此时的荷载
称为“极限荷载”,记作FPu。
35
1、静定结构只要产生一个塑性铰即发生塑性破坏,n次超 静定结构一定要产生n +1个塑性铰才产生塑性破坏。
答案:错误
2、塑性铰与普通铰不同,它是一种单向铰,只能沿弯矩增 大的方向发生相对转动。
答案:正确
3、超静定结构的极限荷载不受温度变化、支座移动等因素 影响。
答案:正确
4、结构极限荷载是结构形成最容易产生的破坏机构时的荷 载。
结构力学 结构的塑性分析与极限荷载
A l/3
FPu
B
DC
Mu
B
Mu
D
l/3
l/3
B
3 l
D
6 l
此时M图如图,MA=3Mu
3M u
Mu
A
B
l/3 l/6
FPu
D
C
Mu
当3M u M u,此破坏可实现。
由虚功方程可得: FPu MuB MuD
FPu
Mu
(3 l
6) l
FPu
M u l
2 当截面D和A出现塑性铰时的破坏机构
FPu Mu' A MuD
极限荷载
q 2l x 2M u x(l x) l
qu
22 3 24
Mu l2
11
.7
Mu l2
极限荷载复习题
1. 极限分析的目的是什么? 答:寻找结构承载能力的极限,充分利用材料。
2. 试说明塑性铰与普通铰的异同。 答:当截面弯矩达到极限弯矩时,这种截面可称为塑性铰; 塑性铰是单向铰,塑性铰只能沿弯矩增大的方向发生有限的 转角;塑性铰可传递弯矩,普通铰不能传递弯矩。
屈服弯矩、极限弯矩 以理想弹塑性材料的矩形截面纯弯曲梁为例:
M
M
随着M的增大,梁截面应力的变化为:
b
s
s
h b
s
h
y0 y0
s
s
a)
b)
s
c)
b
s
s
s
h
y0 y0
s
s
a)
b)
s
c)
图a)弹性阶段,最外纤维处应力达到屈服极限σs ,弯矩M
为:
MS
bh2 6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试算法: 每次任选一种破坏机构,由平衡条件求出相应的可破坏
荷载,再检验是否满足内力局限性条件;若满足,该可
破坏荷载既为极限荷载;若不满足,另选一个破坏机构
继续运算。
唯一性定理的应用
例11-6:求图示等截面梁的极限荷载。极限弯矩为Mu 。
解:1.用穷举法求解 共有三种可能的破坏机构
P
P
A
D
B
C
l/3 l/3 l/3
l 2
Mu
1 x
Mu(l
1 x
1) x
0
q 2l x 2Mu x(l x) l
dq 0 dx
x2 4lx 2l 2 0
x1 (2 2)l x2 (2 2)l
qu
qm in
11.66
Mu l2
§11-6 连续梁的极限荷载
连续梁的破坏机构
一跨单独破坏
相邻跨联合破坏 在各跨等截面、荷载方向相同条件下, 破坏机构只能在各跨内独立形成。
由前面例题可见:若分析出塑性铰的位置,由结构的极限状态的平衡即 可求出极限荷载。
同时也可推知超静定结构的极限荷载与结构的温度变化、支座移动等 因素无关。
§11-5 比例加载时判定极限荷载的定理
比例加载---作用于结构上的所有荷载按同一比例增加,且不出现 卸载的加载方式。
P1
P1 1P P2 2P q1 1P q2 2P
Mu
由作出的弯矩图可见,C截面不满足内力
2l / 3 3 l / 3
5M u / l 5M u / l
Mu
局限性条件。
(2)选A、C出现塑性铰形成的破坏机构
P
2
l 3
P
l
3
Mu
Mu
3
0
P
4 l
Mu
Mu
4Mu / 3
2
l / 3 2l / 3 3
由作出的弯矩图可见,满足内力局限性条件。
4Mu / l
2
2l / 3
3 l / 3 2
l / 3 2l / 3 3
P
l 3
Mu
Mu
2
0
P
9 l
Mu
Pu
4 l
Mu
l / 3 2
例11-6 求图示等截面梁的极限荷载。极限弯矩为Mu 。
解: 2.用试算法求解
(1)选A、B出现塑性铰形成的破坏机构
P
P
A
D
B
C
P
2
l 3
P
l
3
Mu
2
Mu
3
0
2
P
5 l
例11-6 求图示等截面梁的极限荷载。极限弯矩为Mu 。
解:1.用穷举法求解
共有三种可能的破坏机构:
(1)A、B出现塑性铰
P
2
l 3
P
l
3
Mu
2
Mu
3
0
P
5 l
Mu
(2)A、C出现塑性铰
P
2
l 3
P
l
3
Mu
Mu
3
0
P
4 l
Mu
(3)B、C出现塑性铰
P
P
A
D
B
C
l/3 l/3 l/3
PP
P 3.75M u / a
D (2)BC跨破坏时
2
0.8P q=P/a
2
PP
P a
1 2a a 2
Mu
Mu 2
Mu
P 4Mu / a
(3)CD跨破坏时
有三种情况:
例11-8 求图示连续梁的极限荷载。各跨分别是等截面的,AB、BC跨的
极限弯矩为Mu ,CD跨的极限弯矩为3Mu 。
0.8P q=P/a A
PP
B
CE F
解:先分别求出各跨独自破坏时的
可破坏荷载. D (1)AB跨破坏时
a a 2a 0.8P q=P/a
a aa PP
0.8P a M u 2 M u
P 3.75M u / a
D (2)BC跨破坏时
0.8P q=P/a
PP
P a
1 2a a 2
Байду номын сангаас
Mu
比例加载时关于极限荷载的定理:
1.基本定理:可破坏荷载恒不小于可接受荷载。
P P
证明: 取任一可破坏荷载 P,给与其相应的破坏机构虚位移,列虚功方程 n P M ui i i 1
取任一可接受荷载 P,在与上面相同虚位移上列虚功方程
n
P
M
i
i
M
i
Mui
i 1
P P
2.唯一性定理:极限荷载是唯一的。 证明:设同一结构有两个极限荷载Pu1和Pu2 。
求极限荷载相当于求P的极限值。
q1
q2
P2
结构处于极限状态时,应同时满足下面三个条件:
1.单向机构条件; 2.内力局限条件; 3.平衡条件。
可破坏荷载--- 同时满足单向机构条件和平衡条件的荷载。 P 可接受荷载--- 同时满足内力局限条件和平衡条件的荷载。 P
极限荷载既是可破坏荷载又是可接受荷载。
例11-8 求图示连续梁的极限荷载。各跨分别是等截面的,AB、BC跨的
极限弯矩为Mu ,CD跨的极限弯矩为3Mu 。
0.8P q=P/a A
PP
B
CE F
解:先分别求出各跨独自破坏时的
可破坏荷载. D
(1)AB跨破坏时
a a 2a
0.8P q=P/a
a aa
0.8P a M u 2 M u
3.上限定理(极小定理):极限荷载是所有可破坏荷载中最小的。 证明:由于极限荷载Pu 是可接受荷载,由基本定理
Pu P
4.下限定理(极大定理):极限荷载是所有可接受荷载中最大的。 证明:由于极限荷载Pu 是可破坏荷载,由基本定理
Pu P
定理的应用:
极小定理的应用
穷举法: 列出所有可能的破坏机构,用平衡条件求出这些破坏机 构对应的可破坏荷载,其中最小者既是极限荷载。
取任一可接受荷载 P,在与上面相同虚位移上列虚功方程
n
P
M
i
i
M
i
Mui
i 1
P P
2.唯一性定理:极限荷载是唯一的。 证明:设同一结构有两个极限荷载Pu1和Pu2 。
若把Pu1看成可破坏荷载,Pu2看成可接受荷载。
Pu1 Pu 2
若把Pu2看成可破坏荷载,Pu1看成可接受荷载。
Pu1 Pu 2 故有 Pu1 Pu2
Mu 2
Mu
P 4Mu / a
(3)CD跨破坏时 有三种情况
0.8P q=P/a
P P P a P 2a Mu 3Mu 3
2
P 3.33M u / a
3
Pu 3.33Mu / a
若把Pu1看成可破坏荷载,Pu2看成可接受荷载。
Pu1 Pu 2
若把Pu2看成可破坏荷载,Pu1看成可接受荷载。
Pu1 Pu 2 故有 Pu1 Pu2
1.基本定理:可破坏荷载恒不小于可接受荷载。
P P
证明: 取任一可破坏荷载 P,给与其相应的破坏机构虚位移,列虚功方程 n P M ui i i 1
Mu
4Mu / l
Pu
4 l
Mu
Mu /3
Mu
例11-7 求图示等截面梁的极限荷载.已知梁的极限弯矩为Muq。
解: 用上限定理(极小定理)计算。
A
B
q
1 2
l
M u A
M uC
0
B
l
x
;
A
x
C
A
B
( l
1 x
1 ) x
l
Mu
q
A
C
B
A
x
Mu B C
q
l 2
Mu
x
Mu(l
1
x
1 ) x
0
q