结构力学专题十五(结构的极限荷载)

合集下载

▲ 结构的极限荷载小结

▲ 结构的极限荷载小结

3.超静定结构极限荷载计算的特点 (1)先判断出超静定梁的破坏机构,即可直接利用机构的平衡 条件求FPu,不必考虑弹塑性变形过程。 (2)只需考虑平衡条件,不需考虑变形协调条件。因而计算比 弹性计算简单。 (3)超静定结构极限荷载,不受温度改变、支座移动等因素的 影响。(按最终的破坏机构计算,温度改变、支座移动等因素不再
2)第二跨破坏
ql q 1.5ql
ql ql l 17.6 1.2Mu 1.2Mu Mu 2 q2 2 Mu 2 2 2 l 3)第三跨破坏 q ql 1.5ql θ
1.2Mu θ M Δ u
θ
1.2Mu
1.2Mu
3ql 3ql 3l 1.2M u 2.4M u 2M u 2 2 2 4 6.4 M u 7.6Mu 8 Mu q3 2 6.756 2 破坏荷载为: qu 9 l l l2 (第一跨)
l
2.4Mu
ql 2 4
1.2Mu
1.2Mu
Mu
Mu
2Mu
ql 2 4
1.2Mu
ql 2 8
1.2Mu
9ql 2 16
2.4Mu
Mu
Mu
2Mu
第一跨单独破坏时: 第二跨单独破坏时: 第三跨单独破坏时:
q1l 2 M u 0.6M u 4
6.4M u q1 l2
17.6M u q2l 2 M u 1.2M u q2 8 l2 9q3l 2 6.76M u 2M u 1.8M u q3 16 l2
6 Mu FPu l
[例2] 图示各跨等截面连续梁,第一、二跨正极限弯矩为Mu, 第三跨正极限弯矩为2Mu,各跨负极限弯矩为正极限弯 矩的1.2倍,求qu 。

结构力学结构的塑性分析与极限荷载 ppt课件

结构力学结构的塑性分析与极限荷载 ppt课件
屈服弯矩、极限弯矩 以理想弹塑性材料的矩形截面纯弯曲梁为例:
M
M
随着M的增大,梁截面应力的变化为:
b
s
s
h b
s
h
y0 y0
s
s
a)
b)
s c)
b
s
s
s
h
y0 y0
s
s
a)
b)
s c)
图a)弹性阶段,最外纤维处应力达到屈服极限σs ,弯矩M
为:
MS
bh2 6
s
→屈服弯矩
图b)弹塑性阶段,y0部分为弹性区,称为弹性核。
图c)塑性流动阶段,y0→0。相应的弯矩M为:
Mu
bh
s
→极限弯矩
是截面所能承受的最大弯矩。
极限弯矩的计算
Mu
bh
s
设塑性流动阶段截面上受压区和受拉区的面积分别为A1
和A2,并且此时受压区和受拉区的应力均为常量,又因为
梁是没有轴力的,所以:
sA1sA20
A1A2A/2
可见,塑性流动阶段的中性轴应等分截面面积。
【例17.1 】 图示为矩形截面简支梁在跨中承受集中荷载,试 求极限荷载。
FP
FPu
已知Mu
解:
FPul
Mu
FPu
Mu l
可破坏荷载: 对于任一单向破坏机构,用平衡条件求得的荷载值,称
为可破坏荷载,常用FP+ 表示。
基本定理:
(1)唯一性定理:极限荷载FPu值是唯一确定的。
(2)极小定理:极限荷载是可破坏荷载中的极小者。
由此,极限弯矩的计算方法: M u s(SS)
S、S分别为面 A、 积 A对等面积轴的静矩

结构力学 结构的极限荷载与弹性稳定图文

结构力学 结构的极限荷载与弹性稳定图文

A
B
D
C
l/3
l/3
l/3
解: AB段极限弯矩为 M u ,BC段极限弯矩为Mu。
塑性铰的可能位置:A、B、D。
A l/3
B
Mu B
l/3
FPu
DC Mu
D
l/3
§11-4 超静定结构的极限荷载计算
1)B、D截面出现塑性
FPu
铰,由弯矩图可知,只 有当 Mu 3Mu 时,此破
A l/3
B
Mu B
分析:(1) 图(a)表示截面处于弹性阶段。
该阶段的最大应力发生在截面最外纤维处,
称为屈服极限y,此时的弯矩Ms称为弹性 s a)
极限弯矩,或称为屈服弯矩。即:
s
MS
bh2 6
s
y0
(2)图(b)—截面处于弹塑性阶段,
y0
截面外边缘处成为塑性区,应力为常数, s b)
§11-2 基本概念
=s;在截面内部(|y|y0)则仍为弹性区,称为弹性
2
C l
2 4
B Mu
由We=Wi,可得 所以有1 4q源自l 24M uqu
16M l2
u
三次超静定 三个塑性铰
§11-4 超静定结构的极限荷载计算
例11-4-3 已知梁截面极限弯矩为Mu ,求极限荷载 。 解:塑性铰位置:A截面及梁上最大弯矩截面C。
q
qu
A
l
BA
Mu A
Mu C C B
l-x
x
例11-1-1 设有矩形截面简支梁在跨中承受集中荷载 作用(图a),试求极限荷载FPu 。
解:由M图知跨中截面 弯矩最大,在极限荷载作用 下,塑性铰将在跨中截面形 成,弯矩达极限值Mu(图b)。

结构的极限荷载

结构的极限荷载
1 1 Pl = M J + M J 3 3
C MJ D
l/3
MJ
P A
l/3
P B
3 l/3
C MJ D1 Pl
l/3
MJ
PJ =
4M J l
检查屈服条件: 检查屈服条件:
1 2 2 M C = Pl M J = M J < M J 3 3 3
§10-3 连续梁的极限荷载 10一.连续梁的极限状态
对任一静力满足屈服条件和平衡条件的可接受荷载,将 小于或等于极限荷载,因此可接受荷载中的极大值是极限荷 载的下限值。
五.极限荷载的单值定理(唯一性定理) 极限荷载的单值定理(唯一性定理)
既是可破坏荷载,又是可接受荷载,则为极限荷载。 或同时满足机构条件、屈服条件和平衡条件的荷载,必为 极限荷载。
P A
q MJ l
x
*精确解
V
V=
ql M J 2 l
Q=
ql M J qx = 0 2 l
x= l MJ 2 ql
M max = (
ql M J l M J 1 l M )( ) q( J )2 = M J l 2 ql 2 2 2 ql
q θ MJ 2θ θ
解得 q = 11.66
l *近似解 x = 2
M J = W Sσ s
矩形截面
1 h bh 2 W S = 2 × bh × = 2 4 4 bh 2 W= 6
W S ≥ W 经济
(2)塑性铰 当截面达到塑性极限状态时,中性轴上、下各点应 力全都达到受压和受拉的屈服极限,截面两侧可以互相 转动,从变形上看,如同出现一个铰,称为塑性铰。 塑性铰与普通铰的不同之处: 塑性铰与普通铰的不同之处: ①塑性铰是单向铰,只能向一致方向发生有限的转动。 塑性铰是单向铰,只能向一致方向发生有限的转动。 ②塑性铰承受并传递极限弯矩Mu。 塑性铰承受并传递极限弯矩Mu。 Mu ③塑性铰不是一个铰点,而是具有一定的长度。 塑性铰不是一个铰点,而是具有一定的长度。

结构的极限荷载和例题讲解

结构的极限荷载和例题讲解

简化计算: 假设材料为理想弹塑性材料,其应力~应变关系下图所示。
§12-2 极限弯矩和塑性铰 破坏机构 静定梁的计算
一、弹塑性阶段工作情况
理想弹塑性材料T形截面梁处于纯弯曲状态时
弹性状态:
图b:截面处于弹性阶段,σ<σs (屈服极限) 图c:截面最外边缘处σ=σs (达到屈服极限) 屈服弯矩(弹性极限弯矩)MS = Wσs(W:弯曲截面系数) 图d:截面处于弹塑性阶段。 靠外部分形成塑性区,其应力为常数,σ=σs , 靠内部分仍为弹性区,称弹性核,其应力直线分布 图e:截面全部达到塑性——极限情形, 这时的弯矩是该截面所能承受的最大弯矩 ——极限弯矩,以Mu 表示。
等截面超静定梁(图a) (各截面Mu相同) 弹性——弹塑性阶段——极限状态过程:
(1)弹性阶段弯矩图:P≤Ps (2首)先弹在塑A性端阶形段成M并图扩:大荷,载然超后过CP截s,面塑也性形区成
塑性性铰区。。A端首先达到Mu并出现第一个塑
(3)极限状态M图:荷载再增加,A端弯矩 增量为零,当荷载增加到使跨中截面的弯矩达 到Mu时,在该截面形成第二个塑性铰,于是梁 即变为机构,而梁的承载力即达到极限值。此 时的荷载称为极限荷载Pu——极限状态(e)。
破坏机构——极限状态: 结构出现若干塑性铰而成为几何可变或瞬变体系时 ——结构丧失承载能力
三、静定梁的计算
静定梁由于没有多余联系,因此,出现一个塑性铰时,即 成为破坏机构。
对于等截面梁,在弯矩绝对值最大截面处达到极限弯矩, 该截面形成塑性铰。
由塑性铰处的弯矩等于极限弯矩和平衡条件,就可求出静 定梁的极限荷载。
结构的极限荷载和例题 讲解
§12-1 概述
结构设计方法:
1、容许应力法(弹性分析法):

结构力学第十五章 结构的塑性分析与极限荷载.ppt

结构力学第十五章 结构的塑性分析与极限荷载.ppt

坏形态才可能实现。
A l/3
B
Mu
B

l/3
FPu
DC Mu
D
l/3
FPu MuB MuD
B

3 l
FPu

M
u
(
3 l

6 l
)
Mu 3Mu
Mu
A
B
FPu

9 l
Mu
(Mu 3Mu )
D

6 l
FPu
D
C
Mu
20
2) A、D截面出现塑性铰。由弯矩图可知,只
解:
为Mu。
塑性铰位置:A截面及跨 A
中最大弯矩截面C。
q
B l
整体平衡 M A 0
FRB

1(1 l2
qul 2

Mu )
qu
A
Mu A
l-x
Mu C C x
B
FRB
FRB

1 2
qul

Mu l
qu
BC段平衡
Fy 0 FQC FRB qu x 0
C
FQC Mux
4
1)残余应变
当应力达到屈服应力σs后,从C点卸载至D
点,即应力减小为零。此时,应变并不等于
零,而为εP。由下图可以看出, ε= εs+ εP, εP是应变的塑性部分,称为残余应变。

s A
CB
o
ε
D
sεεP
ε
s
ε
理想弹塑性模型
5
2)应力与应变关系不唯一
当应力达到屈服应力σs后,应力σ与应变ε之 间不再存在一一对应关系,即对于同一应力,

结构力学 结构塑性分析的极限荷载

结构力学   结构塑性分析的极限荷载

max
M ym a x I
s
(a)
时,认为该截面已达到截面的弹性极限状 态,此时截面的弯矩即为该截面的弹性极 限弯矩。用Ms替换式(a)中的M,即得:
MS
y
I
m
ax
s
(b)
对图示矩形截面梁,代入 I bh3 得矩形截面弹性极限弯矩: 12
h ymax 2
MS
bh2 6
S
(c)
M
M
M =M s
第二节 极限弯矩和塑性铰
M
M
(a)纯弯曲 矩形截面梁
(b) s
(c) s
1、弹性极限弯矩Ms
由材料力学知,在线弹性范围内,处于纯 弯曲受力状态的梁的任一截面上只有与外 力偶相等的弯矩产生,截面在变形后仍保 持平截面,即截面上各层纤维沿梁轴线的 伸缩与截面高度成正比,或说截面上的应 变按截面高度线性分布,在中性轴处的应 变等于零。 按结构的弹性设计方法,当截面的最外 层纤维达到材料的屈服应力,即
3.具有一个对称轴截面的极限弯矩
形 心 轴 等 面 积 轴
(1)截面在塑性极限状态的中性轴位置 截面上的应力应满足:
dA 0
(a)
A
在塑性极限状态时截面上的轴力应满足:
S dA S dA 0
A1
A2
即 S ( dA dA) S (A1 A2 ) 0
A1
A2
上式只有在 A1 A2 0 成立时才能满足, 即受拉区的面积须等于受压区的面积。
y dA ydA ydA S1 S2
A1
A2
则极限弯矩可表示为:
Mu s (S1 S2 ) (14-2-2)
弹性极限和塑性极限之间的弹塑性阶段, 中性轴界于截面的形心轴和等面积轴之间。

结构力学 结构塑性分析的极限荷载

结构力学   结构塑性分析的极限荷载

FP2/2
5FP1/2
5FP2/2
(b) M C M s FP1 FPs (c) M S M C M u FPs FP2 FPu
3FPu Mu
FPu/2
Fpu FPu/2
5FPu/2
(d) M C M u
2FPu
FPu/2
(e)
(1).结构的极限状态
极限荷载是相应于结构极限状态时的荷载。
塑性铰的以下特征:
(1)塑性铰承受并传递极限弯矩Mu。 (2)塑性铰是单向铰,只能使其两侧按与荷 载增加(弯矩增大)相一致方向发生有限的 转动。 (3)塑性铰不是一个铰点,而是具有一定的 长度。
综上所述,截面上各点应力均等于屈服应力 的应力状态、截面达到极限弯矩、截面形成 塑性铰,均表示该截面达到其塑性流动的极 限状态。
即:
(
FP 2 L 4
Mu 2
)
FP L 4
Mu
解得:
FP 2
FP
6M u L
(a)
即:
FPu
6M u L
2)超静定梁的极限荷载
由前已由叠加方法得出了式(a)所示单跨 超静定梁的极限荷载。观察梁的最后极 限 弯 矩 图 (g) , 既 是 所 叠 加 的 两 弯 矩 图 (c)、(e)的叠加结果。利用梁的极限弯 矩图的平衡条件,可得:
当MC<Mu,FP2<FPu时,梁处于弹塑性发 展阶段,弯矩图见图(c)。 当MC=Mu时,截面C也将首先达到截面的塑 性极限状态,也即形成第一个塑性铰。
结构上出现足够多的塑性铰,能使原结构 成为破坏机构时的状态为结构的极限状态。 结构在极限状态仍能保持静力平衡。
(2)结构的极限荷载
a.极限弯矩平衡法 由静力平衡条件得:

结构力学15

结构力学15

Fp Fp

i 1

2.唯一性定理:极限荷载是唯一的。 证明: 设同一结构有两个极限荷载 Fpu1 和 FPu 2 。
若把 Fpu1 看成可破坏荷载 FPu 2 ,成可接受荷载。
Fpu1 Fpu 2 Fpu1 Fpu 2
F 若把 FPu 2 看成可破坏荷载, Pu 1 看成可接受荷载。
3.卸载时消失; 4.随荷载分布而出现于不同截面。
破坏机构 结构由于出现足够多的塑性铰而形成的机构称为破坏 机构。 破坏机构可以是整体性的,也可能是局部的。
§15-3静定结构的极限荷载
静定结构无多余约束,出现一个塑性铰即成为破坏机构。这时结构上 的荷载即为极限荷载。 塑性铰出现的位置应为截面弯矩与极限弯矩之比的绝对值最大的截面。 求出塑性铰发生的截面后,令该截面的弯矩等于极限弯矩,利用平衡 条件即可求出极限荷载。
A B
FP
D
C
l/3
l/3 l/3
Mu Mu
2l A y 3
列虚功方程
l C y 3
D A C
A
2M u
Fp
B
Fpu
Mu
Fpuy 2M u A M u D 0
3 9 Fpuy 2M u y M u y 0 2l 2l
s A1 s A2 0
A1 A2 A / 2
中性轴亦为等分截面轴。 由此可得极限弯矩的计算方法
M u s A1a1 s A2 a2 s ( S1 S 2 )
例:已知材料的屈服极限 解:
S1 式中 a1、a2为A1、A2的形心到等分截面轴的距离,、S2为A1、A2对该轴的静矩。
Fp1 1 Fp Fp 2 2 Fp

结构力学极限荷载

结构力学极限荷载

Harbin Institute of Technology超静定梁中的极限荷载的研究课程名称:结构力学院系:土木工程学院班级:1433111姓名:李渊学号: 1143310120摘要:大多数工程材料,特别是钢材,受力后发生变形,一般都存在线性弹性阶段、屈服阶段和强化阶段。

因此,随着荷载的增加,结构截面上应力大的点首先达到屈服强度,发生屈服,结构将进入弹塑性状态。

这时虽然截面部分材料已进入塑性状态,但尚有相当大的部分材料仍处于弹性范围,因而结构仍可继续加载。

当荷载增加到一定程度,结构中进入塑形的部分不断扩展直至完全丧失承载能力,导致结构崩溃(或倒塌)。

因此研究结构极限状态下的极限荷载,是十分有必要的,对于结构安全储备的考虑的依据提供有重要意义。

正文:一、极限荷载的有关意义定义:结构出现塑性变形直到崩溃时所能承受的最大荷载,称为极限荷载,它是考虑结构安全储备设计依据的因素之一,且按极限状态设计结构比弹性设计更经济。

通过对弹性设计方法及其许用应力设计法的研究,并在其方面进行了探讨,得到弹性设计方法及其许用应力设计法的最大缺陷是以某一截面上的max σ达到[σ]作为衡量整个结构破坏的标准。

事实上,由塑性材料组成的结构(特别是超静定结构)当某一局部的max σ达到了屈服应力时,结构还没有破坏,还能承受更大的荷载。

因此弹性设计法不能充分的利用结构的承载能力,是不够经济的。

塑性分析考虑了材料的塑性性质,其强度要求以结构破坏时的荷载作为标准:max []PuP p uF F F k ≤=其中,Pu F 是结构破坏时荷载的极限值,即极限荷载。

u k 是相应的安全系数。

对结构进行塑性分析时仍然要用到平衡条件、几何条件、平截面假定,这与弹性分析时相同。

另外还要采用以下假设:图1(1)材料为理想弹塑性材料。

其应力与应变关系如图所示。

(图1)(2)比例加载:全部荷载可以用一个荷载参数P 表示,不会出现卸载现象。

(3)结构的弹性变形和塑性变形都很小。

结构力学 结构的塑性分析与极限荷载

结构力学  结构的塑性分析与极限荷载

A l/3
FPu
B
DC
Mu
B
Mu
D
l/3
l/3
B
3 l
D
6 l
此时M图如图,MA=3Mu
3M u
Mu
A
B
l/3 l/6
FPu
D
C
Mu
当3M u M u,此破坏可实现。
由虚功方程可得: FPu MuB MuD
FPu
Mu
(3 l
6) l
FPu
M u l
2 当截面D和A出现塑性铰时的破坏机构
FPu Mu' A MuD
极限荷载
q 2l x 2M u x(l x) l
qu
22 3 24
Mu l2
11
.7
Mu l2
极限荷载复习题
1. 极限分析的目的是什么? 答:寻找结构承载能力的极限,充分利用材料。
2. 试说明塑性铰与普通铰的异同。 答:当截面弯矩达到极限弯矩时,这种截面可称为塑性铰; 塑性铰是单向铰,塑性铰只能沿弯矩增大的方向发生有限的 转角;塑性铰可传递弯矩,普通铰不能传递弯矩。
屈服弯矩、极限弯矩 以理想弹塑性材料的矩形截面纯弯曲梁为例:
M
M
随着M的增大,梁截面应力的变化为:
b
s
s
h b
s
h
y0 y0
s
s
a)
b)
s
c)
b
s
s
s
h
y0 y0
s
s
a)
b)
s
c)
图a)弹性阶段,最外纤维处应力达到屈服极限σs ,弯矩M
为:
MS
bh2 6

结构力学15第十五章.结构的塑性分析与极限荷载

结构力学15第十五章.结构的塑性分析与极限荷载
2
内力虚功
Wi Mu Mu 2 Mu 4Mu
由We=Wi,可得
所以有
1 2 qu l 4 M u 4
16 M u qu l2
16
例15-3-3 求梁的极限荷载,已知梁截面极限弯矩 为Mu。 q 解: 塑性铰位置:A截面及跨 A l 中最大弯矩截面C。 qu 整体平衡 M A 0
有当 1 ( M u' M u ) M u ,即M u' 3M u 时,此破坏 2 FPu 形态才可能实现。
FPu M A M u D
' u
A
3 9 FPu M Mu 2l 2l
' u
M u' A 2l /3
A
3 2l

D Mu
C
D
l /3
3
二、材料的应力——应变关系
在塑性设计中,通常假设材料为理想弹塑性, 其应力与应变关系如下:

s A
C B

s A
C
B
o
εs εP εs ε
D
ε
o
εs
ε
D
a) 理想弹塑性模型
b) 弹塑性硬化模型
4
1)残余应变
当应力达到屈服应力σs后在C点卸载至D点, 即应力减小为零,此时,应变并不等于零,而 为εP,由下图可以看出, ε= εs+ εP, εP是应变 的塑性部分,称为残余应变。
一、 极限弯矩
下图示理想弹塑性材料的矩形截面纯弯梁, 随着M 增大,梁会经历由弹性阶段到弹塑性阶 段最后到塑性阶段的过程(见下页图)。无论 在哪一个阶段,平截面假定都成立。
M M h
b

结构的极限荷载

结构的极限荷载

第11章 结构的极限荷载前面各章所讨论的结构计算均是以线弹性结构为基础的,即限定结构在弹性范围内工作。

当结构的最大应力达到材料的极限应力n σ时,结构将会破坏,故强度条件为[]max nKσσσ=≤ 式中,max σ为结构的最大工作应力;[]σ为材料的许用应力;n σ为材料的极限应力,对于脆性材料为其强度极限b σ,对于塑性材料为其屈服极限s σ;K 为安全系数。

基于这种假定的结构分析称为弹性分析。

从结构强度角度来看,弹性分析具有一定的缺点。

对于塑性材料的结构,尤其是超静定结构,在某一截面的最大应力达到屈服应力,某一局部已进入塑性阶段时,结构并不破坏,还能承受更大的荷载继续工作,因此按弹性分析设计是不够经济合理的。

另外,弹性分析无法考虑材料超过屈服极限以后,结构的这一部分的承载能力。

塑性分析方法就是为了弥补弹性分析的不足而提出和发展起来的。

它充分地考虑了材料的塑性性质,以结构完全丧失承载能力时的极限状态作为结构破坏的标志。

此时的荷载是结构所能承受荷载的极限,称为极限荷载,记为u F 。

结构的强度条件可表示为u F F K≤ 式中F 为结构工作荷载,K 为安全系数。

显然,塑性分析的强度条件比弹性分析更切合实际。

塑性分析方法只适用于延展性较好的塑性材料的结构,对于脆性材料的结构或对变形有较大限制的结构应慎用这种方法。

对结构进行塑性分析时,平衡条件和几何条件与弹性分析时相同,如平截面假设仍然成立,所不同的是物理条件。

为了简化计算,对于所用的材料,常用如图11.1所示的应力—应变曲线。

当应力达到屈服极限以前,材料处于弹性阶段,应力与应变成正比;当应力达到屈服极限s σ时,材料开始进入塑性变形阶段,应力保持不变,应变可无限增加;卸载时,材料恢复弹性但存在残余变形。

凡符合这种应力—应变关系的材料,称为理想弹塑性材料。

实际钢结构一般可视为理想弹塑性材料。

对于钢筋混凝土受弯构件,在混凝土受拉区出现裂缝后,拉力完全由钢筋承受,故也可采用这种简化的应力—应变曲线进行塑性分析。

结构力学教案 第15章 梁和刚架的极限荷载

结构力学教案 第15章 梁和刚架的极限荷载

qql 2/8 b σ ε 应 力 应 变塑性区 σy 第十五章 梁和刚架的极限荷载15.1 概述一、弹性分析材料在比例极限内的结构分析。

它是以许用应力为依据确定截面或进行验算的。

(低碳钢拉伸图)1、设计:[]σmaxM w ≥2、验算:[]σσ≤==I yM W M max max二、塑性分析按照极限状态进行结构设计的方法。

结构破坏瞬时对应的荷载称为“极限荷载”;,相应的状态称为“极限状态”。

三、基本假设 1、材料为“理想弹塑性材料” 。

2、拉压时,应力、应变关系相同。

3、满足平截面假定。

即无论弹、塑性阶段,保持平截面不变。

15.2 极限弯矩 塑性铰及破坏机构 一、屈服弯矩与极限弯矩1、屈服弯矩(My): 截面最外侧纤维的应力达到流动极限时对应的弯矩。

2、极限弯矩(Mu):弯矩。

3、截面形状系数:极限弯矩与屈服弯矩之比yhh y h h y h h bh y h b bydy h y y bdy σσσσ632 2M 22232222y =⋅=⋅=⋅⋅=---⎰⎰矩形截面:y d σπ32 M 3y =圆形截面:y22h2h 2y 2h 2h y u σ4bh 2y b σy bdy σM 矩形截面:=⋅=⋅=--⎰y 3u σ6dM 圆形截面:=y y s σs σσdy yu Yu W W M M α==⎪⎪⎩⎪⎪⎨⎧===1.15 316 1.5 απαα工字形截面:圆形截面:矩形截面:σyy A σ1yA σ2•⨯h b yA σ1y A σ2•⨯122ql 122ql 242(1)弹性阶段q 122l q s 12l q s242ls (2)弹性阶段末2u q u 1u q uM u M 8222l q M u u +M u u u u M l q =1221u u M l q =122122421u u M l q =(3)梁两端出现塑性铰 q令22164l M l M uu =+(4)极限状态 确定单跨梁极限荷载的机动法 q θθθθ2 221⋅+⋅+⋅=⋅⎰u u u l u M M M dx q x 2216 441 l M q M q l u u u u =∴=⋅θθA 确定单跨梁极限荷载的静力法quM uM u M uM 2lq u q B极限状态受力图0lq V y u ==4、截面达到极限弯矩时的特点 极限状态时,无论截面形状如何,中性轴两侧的拉压面积相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Mu W
Ms W
称为截面形状系数,其值与截面形状有关。
例:已知材料的屈服极限 s 240 MPa ,
求图示截面的极限弯矩。
80mm
Mu s (S1 S2 ) 27.36kN.m
20mm
2、塑性较 当截面弯矩达到极限弯矩时,在保持弯矩不变的前
提下,截面纤维将无限地伸长和缩短,因此在该小段内, 两个无限靠近的截面可以发生相对转动,这种情况与带 铰截面相似,称这种截面为“塑性铰”。
A
(1)平衡弯矩法
(2)机动法
(3)增量法
F
B
l/2
l/2
例5:求图示等截面梁的极限荷载。 已知梁的极限弯矩为Mu。
A
q
B
l
例6:求图示结构的极限荷载, 材料极限弯矩为Mu。
M
AC
B
1m
3m
三、变截面超静定梁
例7:求图示结构的极限荷载,
已知 Mu Mu
A Mu
Mu F
D
BC
l ll
作业:
思考题 16—2 、16—4、16—5; 习题: 16—1。
塑性铰与普通铰的区别:
(1)普通铰不能承受弯矩,而塑性铰能承受弯矩Mu。 (2)普通铰是双向铰,而塑性铰是单向铰。
3、弹性极限荷载、极限荷载、破坏机构(极限状态)
(1)对弹于性特阶定段的结构,随着荷载的逐渐增加:
各截面弯矩不超过 “屈服弯矩”Ms ;
(2)弹性阶段终止
当某个截面弯矩首先达到“屈服弯矩”Ms时,弹性阶段终止, 此时的荷载称为“弹性极限荷载”Fps;
加载
E S
S
S
弹性
塑性 s
卸载 E
弹性
s
(2)拉压本构关系相同
(3)平截面假定仍然有效
第十六章 结构的极限荷载
§16-2 极弯矩、塑性铰和极限状态
1、屈服弯矩与极限弯矩
M s W s
---弹性极限弯矩(屈服弯矩) ---材料边缘纤维应力达到屈服
Mu W s ---塑性极限弯矩(简称为极限弯矩)
(3)弹塑性阶段
当荷载超过Fps时,在截面中形成塑性区;
(4)塑性阶段
随着荷载增大,塑性区逐渐扩大,最后当某截面处弯矩达 到“极限弯矩”Mu 时,形成“塑性铰”;
(5)破坏阶段
当塑性铰的个数足以使结构成为机构时,荷载再也加不上去了, 这种状态称为“极限状态”,这时的结构称为“破坏机构”,对应 的荷载称为“极限荷载”Fpu 。
破坏机构 结构由于出现塑性铰而形成的机构称为破坏机构。 破坏机构可以是整体性的,也可能是局部的。
第十六章 梁和刚架的极限荷载
§16-3 单跨梁极限荷载计算
一、静定梁
例1:求图示结构的极限荷载,
已知屈服应力为 s 240MPa, l 4m。
F
80mm
l/2 l/2
解得: Mu 27.36kN.m
例2:求图示结构的极限荷载, 材料极限弯矩为Mu。
(1)机动法 判断塑性铰位置 作虚位移图 列虚功方程:
(2)平衡弯矩法
2F
F
2m
2m
1m
二、等截面超静定梁
例3:求图示结构的极限荷载,
A
材料极限弯矩为Mu。
(1)平衡弯矩法 (2)机动法
(3)增量法
q
B l
例4:求图示结构的极限荷载,
材料极限弯矩为Mu。
第十六章 结构的极限荷载
§16-1 概述
1、极限分析的目的 弹性分析带来的问题: (1)没有充分发挥材料的潜力 (2)没有充分发挥结构的潜力 所以极限分析的目的就是要充分发挥材料潜力和
结构潜力。 对于材料潜力而言,引入“极限弯矩”Mu的概念 对于结构潜力而言,引入“极限荷载”FPu的概念
3、基本假定 (1)材料为理想弹塑性材料
20mm
例1:求图示结构的极限荷载,
已知屈服应力为 s 240MPa,
Mu 27.36kN.m (1)平衡弯矩法
l 4m。
根据平衡条件,用荷载表示结构上各截面内力,并 使最大内力不大于材料极限弯矩。
(2)机动法
判断塑性铰位置,作虚位移图(注意塑性铰是单 向铰)利用虚功原理,写出表征平衡条件的虚功方程, 借以计算极限荷载。
相关文档
最新文档