大物B课后题08-第八章 电磁感应 电磁场

合集下载

《大学物理》期末复习 第八章 电磁感应与电磁场

《大学物理》期末复习 第八章  电磁感应与电磁场

第八章 电磁感应与电磁场§8-1电磁感应定律一、电磁感应现象电磁感应现象可通过两类实验来说明: 1.实验1)磁场不变而线圈运动 2)磁场随时变化线圈不动2.感应电动势由上两个实验可知:当通过一个闭合导体回路的磁通量变化时,不管这种变化的原因如何(如:线圈运动,变;或不变线圈运动),回路中就有电流产生,这种现象就是电磁感应现象,回路中电流称为感应电流。

3.电动势的数学定义式定义:把单位正电荷绕闭合回路一周时非静电力做的功定义为该回路的电动势,即()⎰∙=lK ld K :非静电力ε (8-1)说明:(1)由于非静电力只存在电源内部,电源电动势又可表示为⎰∙=正极负极ld Kε表明:电源电动势的大小等于把单位正电荷从负极经电源内部移到正极时,非静电力所做的功。

(2)闭合回路上处处有非静电力时,整个回路都是电源,这时电动势用普遍式表示:()⎰∙=lK ld K :非静电力ε(3)电动势是标量,和电势一样,将它规定一个方向,把从负极经电源内部到正极的方向规定为电动势的方向。

二、电磁感应定律 1、定律表述在一闭合回路上产生的感应电动势与通过回路所围面积的磁通量对时间的变化率成正比。

数学表达式:dtd ki Φ-=ε在SI 制中,1=k ,(St V Wb :;:;:εΦ),有dtd i Φ-=ε (8-2)上式中“-”号说明方向。

2、i ε方向的确定为确定i ε,首先在回路上取一个绕行方向。

规定回路绕行方向与回路所围面积的正法向满足右手旋不定关系。

在此基础上求出通过回路上所围面积的磁通量,根据dtd i Φ-=ε计算i ε。

,0>Φ00<⇒>Φi dtd ε ,0>Φ00>⇒<Φi dtd ε沿回路绕行反方向沿回路绕行方向:0:0<>iε三、楞次定律此外,感应电动势的方向也可用楞次定律来判断。

楞次定律表述:闭合回路感应电流形成的磁场关系抵抗产生电流的磁通量变化。

大学物理第章习题分析与解答.doc

大学物理第章习题分析与解答.doc

第八章恒定磁场8-1均匀磁场的磁感强度B垂直于半径为"KJ圆面.今以该圆周为边线,作一半球面S,则通过S面的磁通量的大小为[]。

(B) nr2 B(C) 0 (D)无法确定分析与解根据高斯定理,磁感线是闭合曲线,穿过圆平面的磁通量与穿过半球面的磁通量相等。

正确答案为(B)。

8-2下列说法正确的是[]。

(A)闭合回路上各点磁感强度都为零时,I口I路内一定没有电流穿过(B)闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零(C)磁感强度沿闭合回路的积分为零时,回路上作点的磁感强度必定为零(D)磁感强度沿闭合回路的积分不为零时,回路上任意点的磁感强度必定为零分析与解由磁场中的安培环路定理,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过1口1路的电流代数和一定为零。

正确答案为(B)。

8-3磁场中的安培环路定理J B= 口。

£七说明稳恒电流的磁场是[]。

i = 1(A)无源场(B)有旋场(C)无旋场(D)有源场分析与解磁场的高斯定理与安培环路定理是磁场性质的重要表述,在恒定磁场中B的环流一般不为零,所以磁场是涡旋场;而在恒定磁场中,通过任意闭合曲面的磁通量必为零, 所以磁场是无源场;静电场中E的环流等于零,故静电场为保守场;而静电场中,通过任意闭合面的电通量可以不为零,故静电场为有源场。

正确答案为(B)。

8-4 一半圆形闭合平面线圈,半径为R,通有电流/,放在磁感强度为8的均匀磁场中,磁场方向与线圈平面平行,则线圈所受磁力矩大小为[]。

(A) I TI R2B(B) (C) ^I H R2B(D) 0分析与解对一匝通电平面线圈,在磁场中所受的磁力矩可表示为M = ISe n xB,而且对任意形状的平面线圈都是适用的。

正确答案为(B)o8-5 —长直螺线管是由直径d=0.2mm的漆包线密绕而成。

当它通以/=0. 5A的电流时,其内部的磁感强度B=。

大学物理期末复习第八章电磁感应及电磁场

大学物理期末复习第八章电磁感应及电磁场

第八章 电磁感应与电磁场§8-1电磁感应定律一、电磁感应现象电磁感应现象可通过两类实验来说明: 1.实验1)磁场不变而线圈运动 2)磁场随时变化线圈不动 2.感应电动势由上两个实验可知:当通过一个闭合导体回路的磁通量变化时,不管这种变化的原因如何(如:线圈运动,变;或不变线圈运动),回路中就有电流产生,这种现象就是电磁感应现象,回路中电流称为感应电流。

3.电动势的数学定义式定义:把单位正电荷绕闭合回路一周时非静电力做的功定义为该回路的电动势,即()⎰∙=l K l d K :非静电力ε (8-1)说明:(1)由于非静电力只存在电源内部,电源电动势又可表示为表明:电源电动势的大小等于把单位正电荷从负极经电源内部移到正极时,非静电力所做的功。

(2)闭合回路上处处有非静电力时,整个回路都是电源,这时电动势用普遍式表示:()⎰∙=l K l d K :非静电力ε(3)电动势是标量,和电势一样,将它规定一个方向,把从负极经电源内部到正极的方向规定为电动势的方向。

二、电磁感应定律 1、定律表述在一闭合回路上产生的感应电动势与通过回路所围面积的磁通量对时间的变化率成正比。

数学表达式:在SI 制中,1=k ,(S t V Wb :;:;:εΦ),有dt d i Φ-=ε (8-2)上式中“-”号说明方向。

2、i ε方向的确定为确定i ε,首先在回路上取一个绕行方向。

规定回路绕行方向与回路所围面积的正法向满足右手旋不定关系。

在此基础上求出通过回路上所围面积的磁通量,根据dt d i Φ-=ε计算i ε。

三、楞次定律此外,感应电动势的方向也可用楞次定律来判断。

楞次定律表述:闭合回路感应电流形成的磁场关系抵抗产生电流的磁通量变化。

说明:(1)实际上,法拉第电磁感应定律中的“-”号是楞次定律的数学表述。

(2)楞次定律是能量守恒定律的反映。

例8-1:设有矩形回路放在匀强磁场中,如图所示,AB 边也可以左右滑动,设以匀速度向右运动,求回路中感应电动势。

大物B课后题08-第八章 电磁感应 电磁场

大物B课后题08-第八章 电磁感应 电磁场

习题之阳早格格创做8-6 一根无限少曲导线有接变电流0sin i I t ω=,它中间有一与它共里的矩形线圈ABCD ,如图所示,少为l 的AB 战CD 二边与曲导背仄止,它们到曲导线的距离分别为a 战b ,试供矩形线圈所围里积的磁通量,以及线圈中的感触电动势. 解 修坐如图所示的坐标系,正在矩形仄里上与一矩形里元dS ldx =,载流少曲导线的磁场脱过该里元的磁通量为 通过矩形里积CDEF 的总磁通量为由法推第电磁感触定律有8-7 有一无限少曲螺线管,单位少度上线圈的匝数为n ,正在管的核心搁置一绕了N 圈,半径为r 的圆形小线圈,其轴线与螺线管的轴线仄止,设螺线管内电流变更率为dI dt ,球小线圈中感触的电动势.解 无限少曲螺线管里里的磁场为通过N 匝圆形小线圈的磁通量为由法推第电磁感触定律有8-8 部分积为S 的小线圈正在一单位少度线圈匝数为n ,通过电流为i 的少螺线管内,并与螺线管共轴,若0sin i i t ω=,供小线圈中感死电动势的表白式.解 通过小线圈的磁通量为由法推第电磁感触定律有8-9 如图所示,矩形线圈ABCD 搁正在16.010B T -=⨯的匀称磁场中,磁场目标与线圈仄里的法线目标之间的夹角为60α=︒,少为0.20m 的AB 边可安排滑动.若令AB 边以速率15.0v m s -=•背左疏通,试供线圈中感触电动势的大小及感触电流的目标.解 利用动死电动势公式感触电流的目标从A B →.8-10 如图所示,二段导体AB 战BC 的少度均为10cm ,它们正在B 处相接成角30︒;磁场目标笔曲于纸里背里,其大小为22.510B T -=⨯.若使导体正在匀称磁场中以速率11.5v m s -=•疏通,目标与AB 段仄止,试问AC 间的电势好是几? 哪一端的电势下?解 导体AB 段与疏通目标仄止,不切割磁场线,不电动势爆收.BC 段爆收的动死电动势为AC 间的电势好是C 端的电势下.8-11 少为l 的一金属棒ab ,火仄搁置正在匀称磁场B 中,如图所示,金属棒可绕O 面正在火仄里内以角速度ω转动,O 面离a 端的距离为l k .试供a,b 二端的电势好,并指出哪端电势下(设k>2)解 修坐如图所示的坐标系,正在Ob 棒上任一位子x 处与一微元dx ,该微元爆收的动死电动势为Ob 棒爆收的动死电动势为共理,Oa 棒爆收的动死电动势为金属棒a,b 二端的电电势好果k>2,所以a 端电势下.8-12 如图所示,真空中一载有稳恒电流I 的无限少曲导线旁有一半圆形导线回路,其半径为r ,回路仄里与少曲导线笔曲,且半圆形曲径cd 的延少线与少曲导线相接,导线与圆心O 之间距离为l ,无限少曲导线的电流目标笔曲纸里背内,当回路以速度v 笔曲纸里背中疏通时,供:(1)回路中感触电动势的大小;(2)半圆弧导线cd 中感触电动势的大小.解 (1) 由于无限少曲导线所爆收的磁场目标与半圆形导线天圆仄里仄止,果此当导线回路疏通时,通过它的磁通量不随时间改变,导线回路中感触电动势0ε=.(2)半圆形导线中的感触电动势与曲导线中的感触电动势大小相等,目标好异,所以可由曲导线估计感触电动势的大小采用x 轴如图8.7所示,正在x 处与线元dx,dx 中爆收感触电动势大小为其中02I B xμπ= 导线cd 及圆弧cd 爆收感触电动势的大小均为8-13 正在半径0.50R m =的圆柱体内有匀称磁场,其目标与圆柱体的轴线仄止,且211.010dB dt T s --=⨯•,圆柱体中无磁场,试供离启核心O 的距离分别为0.1,0.25,0.50,1.0m m m m 战各面的感死电场的场强.解 变更的磁场爆收感死电场线是以圆柱轴线为圆心的一系列共心圆,果此有 而22,L S B dB E dl E r dS r t dtππ∂•=-•=-∂⎰⎰⎰感感当r R <时, 22dB E r r dtππ=-感 所以0.1r m =时,415.010E V m --=⨯•感;0.25r m=时,.311.310E V m --=⨯•感当r R >时 22dB E r R dtππ=-感 所以0.50r m =时, 312.510E V m --=⨯•感; 1.0r m =时311.2510E V m --=⨯•感8-14 如图所示,磁感触强度为B 的匀称磁场充谦正在半径为R 的圆柱体内,有一少为l 的金属棒ab 搁正在该磁场中,如果B 以速率dB dt 变更,试证:由变更磁场合爆收并效率于棒二端的电动势等于12dB dt 说明 要领一 对接Oa,Ob,设念Oab 形成关合回路,由于Oa,Ob 沿半径目标,与通过该处的感死电场处笔曲,所以Oa,Ob 二段均无电动势,那样由法推第电磁感触定律供出的关合回路Oab 的总电动势便是棒ab 二端电动势.根据法推第电磁感触定律要领二 变更的磁场正在圆柱体内爆收的感死电场为棒ab 二端的电动势为8-15 如图所示,二根横截里半径为a 的仄止少曲导线,核心相距d ,它们载有大小相等、目标好异的电流,属于共一回路,设导线里里的磁通量不妨忽略不计,试说明那样一对于导线少为l 的一段的自感为0ln l d a L aμπ-=. 解 二根仄止少曲导线正在它们之间爆收的磁感触强度为 脱过二根导线间少为dx 的一段的磁通量为所以,一对于少为的一段导线的自感为8-16一匀称稀绕的环形螺线管,环的仄稳半径为R ,管的横截里积为S ,环的总匝数为N ,管内充谦磁导率为μ的磁介量.供此环形螺线管的自感系数L .解 当环形螺线管中通有电流I 时,管中的磁感触强度为 通过环形螺线管的磁链为则环形螺线管的自感系数为8-17由二薄圆筒形成的共轴电缆,内筒半径1R ,中筒半径为2R ,二筒间的介量1r μ=.设内圆筒战中圆筒中的电流目标好异,而电流强度I 相等,供少度为l 的一段共轴电缆所储磁能为几?解 有安培环路定理可供得共轴电缆正在空间分歧天区的磁感触强度为1r R <时, 10B =12R r R <<时, 022I B rμπ=2r R >时, 30B =正在少为L ,内径为r ,中径为r dr +的共轴薄圆筒的体积2dV rldr π=中磁场能量为所以,少度为l 的一段共轴电缆所储能为补充正在共时存留电场战磁场的空间天区中,某面P 的电场强度为E ,磁感触强度为B ,此空间天区介量的介电常数0εε≈,磁导率0μμ≈.供P 面处电场战磁场的总能量体稀度w . 解 电场能量稀度为磁场能量稀度为总能量稀度为8-19 一小圆线圈里积为21 4.0S cm =,由表面绝缘的细导线绕成,其匝数为150N =,把它搁正在另一半径220R cm =,2100N =匝的圆线圈核心,二线圈共轴共里.如果把大线圈正在小线圈中爆收的磁场瞅成是匀称的,试供那二个线圈之间的互感;如果大线圈导线中的电流每秒缩小50A ,试供小线圈中的感触电动势.解 当大圆形线圈通偶尔2I ,它正在小圆形线圈核心处的磁感触强度大小为若把大圆形线圈正在小圆形线圈中爆收的磁场瞅成是匀称的,则通过小圆形线圈的磁链为二个线圈之间的互感为如果大线圈导线中的电流每秒缩小50A ,则小线圈中的感触电动势为8-20 一螺线管少为30cm .由2500匝漆包导线匀称稀绕而成,其中铁芯的相对于磁导率100r μ=,当它的导线中通有的电流时,供螺线管核心处的磁场能量稀度.解 螺线管中的磁感触强度为螺线管中的磁场能量稀度为8-21 一根少曲导线载有电流I ,且I 匀称天分散正在导线的横截里上,试供正在少度为l 的一段导线里里的磁场能量. 解 有安培环路定理可得少曲导线里里的磁感触强度为 正在少度为l 的一段导线里里的磁场能量8-22一共轴线由很少的曲导线战套正在它表里的共轴圆筒形成,它们之间充谦了相对于磁导率为1r μ=的介量,假定导线的半径为1R ,圆筒的内中半径分别为2R 战3R ,电流I 由圆筒流出,由曲导线流回,并匀称天分散正在它们的横截里上,试供:(1)正在空间各个范畴内的磁能稀度表白式;(2)当12310, 4.0, 5.0,10R mm R mm R mm I A ====时,正在每米少度的共轴线中所储藏的磁场能量.解 (1)有安培环路定理可得正在空间各个范畴内的磁感触强度为1r R <时 01212Ir B R μπ= ;12R r R << 时022I B r μπ=23R r R <<时2203322322I R r B r R R μπ-=-;3r R >时 40B =相映天,空间各个范畴内的磁能稀度为1r R <时222012201128m I r B w R μμπ==;12R r R <<时20228m I w r μπ=; 23R r R <<时2222032222328m I R r w r R R μπ⎛⎫-= ⎪-⎝⎭;3r R >时0m w =.(2) 每米少度的共轴线中所储藏的磁场能量为8-23说明电容C 的仄止板电容器,极板间的位移电流强度d dUI C dt =,U 是电容器二极板间的电势好.说明 由于仄止板中D σ=,所以脱过极板位移电位移通量 仄止板电容器中的位移电流强度8-24 设圆形仄止板电容器的接变电场为()51720sin 10E t V m π-=•,电荷正在电容器极板上匀称分散,且边沿效力不妨忽略,试供:(1)电容器二极板间的位移电流稀度;(2)正在距离电容器极板核心连线为 1.0r cm =处,通过时间52.010t s -=⨯时的磁感触强度的大小.解 (1)电容器二极板间的位移电流稀度为(2)以电容器极板核心连线为圆心,以 1.0r cm =为半径干一圆周.由齐电流安培环路定律有所以通过时间时52.010t s -=⨯,磁感触强度的大小为8-25 试决定哪一个麦克斯韦圆程相称于或者包罗下列究竟:(1)电场线仅起初或者末止与电荷或者无贫近处;(2)位移电流;(3) 正在静电仄稳条件下,导体里里大概有所有电荷;(4)一变更的电场,肯定有一个磁场伴伴它;(5)关合里的磁通量末究为整;(6)一个变更的磁场,肯定有一个电场伴伴它;(7)磁感触线是无头无尾的;(8)通过一个关合里的洁电通量与关合里里里的总电荷成正比;(9)不存留磁单极子;(10)库仑定律;(11)静电场是守旧场.解 1Ni i s D ds q =•=∑⎰⎰相称于或者包罗究竟:(1),(3),(8),(10);L S B E dl dS t ∂•=-•∂⎰⎰⎰相称于或者包罗究竟:(6),(11); 0S B dS •=⎰⎰相称于或者包罗究竟:(5),(7),(9);1N D i i L d H dl I dt φ=•=+∑⎰相称于或者包罗究竟:(2),(4);。

大物b课后题08-第八章电磁感应电磁场

大物b课后题08-第八章电磁感应电磁场

习题8-6 一根无限长直导线有交变电流0sin i I t ω=,它旁边有一与它共面的矩形线圈ABCD ,如图所示,长为l 的AB 和CD 两边与直导向平行,它们到直导线的距离分别为a 和b ,试求矩形线圈所围面积的磁通量,以及线圈中的感应电动势。

解 建立如图所示的坐标系,在矩形平面上取一矩形面元dS ldx =,载流长直导线的磁场穿过该面元的磁通量为02m id B dS ldx xμφπ=⋅=通过矩形面积CDEF 的总磁通量为0000ln ln sin 222bm ai il I l b bldx t x a aμμμφωπππ===⎰由法拉第电磁感应定律有00ln cos 2m d I l bt dt aφμωεωπ=-=- 8-7 有一无限长直螺线管,单位长度上线圈的匝数为n ,在管的中心放置一绕了N 圈,半径为r 的圆形小线圈,其轴线与螺线管的轴线平行,设螺线管内电流变化率为dI dt,球小线圈中感应的电动势。

解 无限长直螺线管内部的磁场为0B nI μ=通过N 匝圆形小线圈的磁通量为20m NBS N nI r φμπ==由法拉第电磁感应定律有20m d dIN n r dt dtφεμπ=-=- 8-8 一面积为S 的小线圈在一单位长度线圈匝数为n ,通过电流为i 的长螺线管内,并与螺线管共轴,若0sin i i t ω=,求小线圈中感生电动势的表达式。

解 通过小线圈的磁通量为0m BS niS φμ==由法拉第电磁感应定律有000cos m d dinS nSi t dt dtφεμμωω=-=-=- 8-9 如图所示,矩形线圈ABCD 放在16.010B T -=⨯的均匀磁场中,磁场方向与线圈平面的法线方向之间的夹角为60α=︒,长为0.20m 的AB 边可左右滑动。

若令AB 边以速率15.0v m s -=•向右运动,试求线圈中感应电动势的大小及感应电流的方向。

解 利用动生电动势公式0.20()50.6sin(60)0.30()2B Av B dl dl V πε=⨯•=⨯⨯-︒=⎰⎰感应电流的方向从A B →.8-10 如图所示,两段导体AB 和BC 的长度均为10cm ,它们在B 处相接成角30︒;磁场方向垂直于纸面向里,其大小为22.510B T -=⨯。

大学物理第8章试卷答案

大学物理第8章试卷答案

第8章电磁感应作业题答案一、选择题1、圆铜盘水平放置在均匀磁场中,B得方向垂直盘面向上,当铜盘绕通过中心垂直于盘面得轴沿图示方向转动时,(A) 铜盘上有感应电流产生,沿着铜盘转动得相反方向流动。

(B) 铜盘上有感应电流产生,沿着铜盘转动得方向流动。

(C) 铜盘上有感应电流产生,铜盘中心处电势最高。

(D)铜盘上有感应电流产生,铜盘边缘处电势最高。

答案(D)2.在尺寸相同得铁环与铜环所包围得面积中穿过相同变化率得磁通量,则两环中A.感应电动势相同,感应电流相同;B.感应电动势不同,感应电流不同;ﻫC.感应电动势相同,感应电流不同;ﻫD.感应电动势不同,感应电流相同。

答案(C)ﻫ3. 两根无限长得平行直导线有相等得电流,2.但电流得流向相反如右图,而电流得变化率均大于零,有一矩形线圈与两导线共面,则ﻫ A.线圈中无感应电流;B.线圈中感应电流为逆时针方向;C.线圈中感应电流为顺时针方向;D.线圈中感应电流不确定。

答案: B(解:两直导线在矩形线圈处产生得磁场方向均垂直向里,且随时间增强,由楞次定律可知线圈中感应电流为逆时针方向。

)4.如图所示,在长直载流导线下方有导体细棒,棒与直导线垂直且共面。

(a)、(b)、(c)处有三个光滑细金属框。

今使以速度向右滑动。

设(a)、(b)、(c)、(d)四种情况下在细棒中得感应电动势分别为ℇa、ℇb、ℇc、ℇd,则ﻫﻫA.ℇa=ℇb =ℇc <ℇdB.ℇa =ℇb=ℇc>ℇdC.ℇa=ℇb=ℇc =ℇd D.ℇa>ℇb <ℇc<ℇd答案:C5.一矩形线圈,它得一半置于稳定均匀磁场中,另一半位于磁场外,如右图所示,磁感应强度得方向与纸面垂直向里。

欲使线圈中感应电流为顺时针方向则ﻫA.线圈应沿轴正向平动;ﻫB.线圈应沿轴正向平动;C.线圈应沿轴负向平动;D.线圈应沿轴负向平动答案(A).*6.两个圆线圈、相互垂直放置,如图所示。

当通过两线圈中得电流、均发生变化时,那么ﻫ A.线圈中产生自感电流,线圈中产生互感电流;B.线圈中产生自感电流,ﻫ线圈中产生互感电流;ﻫC.两线圈中同时产生自感电流与互感电流;D.两线圈中只有自感电流,不产生互感电流。

第八章电磁感应电磁场习题解答-感生电场习题

第八章电磁感应电磁场习题解答-感生电场习题

第八章电磁感应电磁场习题解答8 —6 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为G =8.0 10^5sin100二t(Wb),求在t =1.0 10 2 s时,线圈中的感应电动势.分析由于线圈有N匝相同回路,线圈中的感应电动势等于各匝回路的感应电动势的代数d①dΨ和,在此情况下,法拉第电磁感应定律通常写成;=-N d d,其中弓-NG称为dt dt磁链.解线圈中总的感应电动势dΦ;-- N 2.51cos(100二t)dt当t =1.0 102s 时,;:-2.51V .8 —7有两根相距为d的无限长平行直导线,它们通以大小相等流向相反的电流,且电流均以W 的变化率增长•若有一边长为d的正方形线圈与两导线处于同一平面内,如图所dt示.求线圈中的感应电动势.题8-7 ≡d①分析本题仍可用法拉第电磁感应定律来求解.由于回路处在非均匀磁场中,磁dt通量就需用①= B d S来计算(其中B为两无限长直电流单独存在时产生的磁感强度B1 S与B 2之和).为了积分的需要,建立如图所示的坐标系.由于B仅与X有关,即B=B(X),故取一个平行于长直导线的宽为d X、长为d的面元d S,如图中阴影部分所示,贝U dS =ddx ,所以,总磁通量可通过线积分求得(若取面元dS =dxdy ,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式E^- -M ~~求解.dttlx解1穿过面元dS的磁通量为再由法拉第电磁感应定律,有dΦP od I 3 [di;= —Indt ]2兀4_dt解2当两长直导线有电流I通过时,穿过线圈的磁通量为线圈与两长直导线间的互感为①M= —:I∖d3= In2 二4当电流以d~变化时,线圈中的互感电动势为dtIKfl dij0d 3;--M —0 Indt 2 二48 - 10如图(a)所示,把一半径为R的半圆形导线OP置于磁感强度为B的均匀磁场中,当导线以速率V水平向右平动时,求导线中感应电动势E的大小,哪一端电势较高?^S-IO 圈分析本题及后面几题中的电动势均为动生电动势,除仍可由构造一个闭合回路),还可直接用公式;=I(V B) d 1求dΦ = B d S = B1d S + B2J√∙d S = 0ddx2兀(x + d)%:ddx2二X因此穿过线圈的磁通量为dx 一严。

大学物理第八章课后习题答案

大学物理第八章课后习题答案

大学物理第八章课后习题答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第八章电磁感应电磁场8 -1一根无限长平行直导线载有电流I,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动(如图所示),则()(A)线圈中无感应电流(B)线圈中感应电流为顺时针方向(C)线圈中感应电流为逆时针方向(D)线圈中感应电流方向无法确定分析与解由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为(B).8 -2将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则()(A)铜环中有感应电流,木环中无感应电流(B)铜环中有感应电流,木环中有感应电流(C)铜环中感应电动势大,木环中感应电动势小(D)铜环中感应电动势小,木环中感应电动势大23分析与解 根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等,但在木环中不会形成电流.因而正确答案为(A ).8 -3 有两个线圈,线圈1 对线圈2 的互感系数为M 21 ,而线圈2 对线圈1的互感系数为M 12 .若它们分别流过i 1 和i 2 的变化电流且ti t i d d d d 21<,并设由i 2变化在线圈1 中产生的互感电动势为ε12 ,由i 1 变化在线圈2 中产生的互感电动势为ε21 ,下述论断正确的是( ).(A )2112M M = ,1221εε=(B )2112M M ≠ ,1221εε≠(C )2112M M =, 1221εε<(D )2112M M = ,1221εε<分析与解 教材中已经证明M21 =M12 ,电磁感应定律t i M εd d 12121=;ti M εd d 21212=.因而正确答案为(D ). 8 -4 对位移电流,下述四种说法中哪一种说法是正确的是( )(A ) 位移电流的实质是变化的电场(B ) 位移电流和传导电流一样是定向运动的电荷(C ) 位移电流服从传导电流遵循的所有定律(D ) 位移电流的磁效应不服从安培环路定理分析与解 位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为(A ).48 -5 下列概念正确的是( )(A ) 感应电场是保守场(B ) 感应电场的电场线是一组闭合曲线(C ) LI Φm =,因而线圈的自感系数与回路的电流成反比(D ) LI Φm =,回路的磁通量越大,回路的自感系数也一定大 分析与解 对照感应电场的性质,感应电场的电场线是一组闭合曲线.因而正确答案为(B ).8 -6 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为()Wb π100sin 100.85t Φ⨯=,求在s 100.12-⨯=t 时,线圈中的感应电动势.分析 由于线圈有N 匝相同回路,线圈中的感应电动势等于各匝回路的感应电动势的代数和,在此情况下,法拉第电磁感应定律通常写成tψt ΦN ξd d d d -=-=,其中ΦN ψ=称为磁链. 解 线圈中总的感应电动势()()t tΦNξπ100cos 51.2d d =-= 当s 100.12-⨯=t 时,V 51.2=ξ. 8 -7 有两根相距为d 的无限长平行直导线,它们通以大小相等流向相反的电流,且电流均以tI d d 的变化率增长.若有一边长为d 的正方形线圈与两导线处于同一平面内,如图所示.求线圈中的感应电动势.5分析 本题仍可用法拉第电磁感应定律tΦξd d -=来求解.由于回路处在非均匀磁场中,磁通量就需用⎰⋅=SΦS B d 来计算(其中B 为两无限长直电流单独存在时产生的磁感强度B 1 与B 2 之和). 为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即()B B x =,故取一个平行于长直导线的宽为dx 、长为d 的面元dS ,如图中阴影部分所示,则x d S d d =,所以,总磁通量可通过线积分求得(若取面元y x S d d d =,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式tl M E M d d -=求解. 解1 穿过面元dS 的磁通量为()x d xI μx d d x I μΦd π2d π2d d d d 0021-+=⋅+⋅=⋅=S B S B S B 因此穿过线圈的磁通量为()43ln π2d π2d π2d 02020Id μx x Id μx d x Id μΦΦd d dd =-+==⎰⎰⎰ 再由法拉第电磁感应定律,有6tI d μt ΦE d d 43ln π2d d 0⎪⎭⎫ ⎝⎛=-= 解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为 43ln π20dI μΦ=线圈与两长直导线间的互感为 43ln π20d μI ΦM == 当电流以tl d d 变化时,线圈中的互感电动势为 tI d μt I M E d d 43ln π2d d 0⎪⎭⎫ ⎝⎛=-= 试想:如线圈又以速率v 沿水平向右运动,如何用法拉第电磁感应定律求图示位置的电动势呢此时线圈中既有动生电动势,又有感生电动势.设时刻t ,线圈左端距右侧直导线的距离为ξ,则穿过回路的磁通量()ξf ΦS,1d =⋅=⎰S B ,它表现为变量I 和ξ的二元函数,将Φ代入t ΦE d d -= 即可求解,求解时应按复合函数求导,注意,其中v =tξd d ,再令ξ=d 即可求得图示位置处回路中的总电动势.最终结果为两项,其中一项为动生电动势,另一项为感生电动势.8 -8 有一测量磁感强度的线圈,其截面积S =4.0 cm 2 、匝数N =160 匝、电阻R =50Ω.线圈与一内阻R i =30Ω的冲击电流计相连.若开始时,线圈的平面与均匀磁场的磁感强度B 相垂直,然后线圈的平面很快地转到与B 的方向平行.此时从冲击电流计中测得电荷值54.010C q -=⨯.问此均匀磁场的磁感强度B 的值为多少7分析 在电磁感应现象中,闭合回路中的感应电动势和感应电流与磁通量变化的快慢有关,而在一段时间内,通过导体截面的感应电量只与磁通量变化的大小有关,与磁通量变化的快慢无关.工程中常通过感应电量的测定来确定磁场的强弱. 解 在线圈转过90°角时,通过线圈平面磁通量的变化量为NBS NBS ΦΦΦ=-=-=0Δ12 因此,流过导体截面的电量为ii R RNBS R R Φq +=+=Δ 则 ()T 050.0=+=NSR R q B i 8 -9 如图所示,一长直导线中通有I =5.0 A 的电流,在距导线9.0 cm 处,放一面积为0.10 cm 2 ,10 匝的小圆线圈,线圈中的磁场可看作是均匀的.今在1.0 ×10-2 s 内把此线圈移至距长直导线10.0 cm 处.求:(1) 线圈中平均感应电动势;(2) 设线圈的电阻为1.0×10-2Ω,求通过线圈横截面的感应电荷.8分析 虽然线圈处于非均匀磁场中,但由于线圈的面积很小,可近似认为穿过线圈平面的磁场是均匀的,因而可近似用NBS ψ=来计算线圈在始、末两个位置的磁链.解 (1) 在始、末状态,通过线圈的磁链分别为1011π2r ISμN S NB ψ==,2022π2r IS μN S NB ψ== 则线圈中的平均感应电动势为 V 1011.111πΔ2ΔΔ8210-⨯=⎪⎪⎭⎫ ⎝⎛-==r r t IS μN t ΦE 电动势的指向为顺时针方向.(2) 通过线圈导线横截面的感应电荷为tΦE d d -= 8 -10 如图(a)所示,把一半径为R 的半圆形导线OP 置于磁感强度为B 的均匀磁场中,当导线以速率v 水平向右平动时,求导线中感应电动势E 的大小,哪一端电势较高9分析 本题及后面几题中的电动势均为动生电动势,除仍可由tΦE d d -=求解外(必须设法构造一个闭合回路),还可直接用公式()l B d ⋅⨯=⎰l E v 求解.在用后一种方法求解时,应注意导体上任一导线元dl 上的动生电动势()l B d d ⋅⨯=v E .在一般情况下,上述各量可能是dl 所在位置的函数.矢量(v ×B )的方向就是导线中电势升高的方向. 解1 如图(b)所示,假想半圆形导线O P 在宽为2R 的静止形导轨上滑动,两者之间形成一个闭合回路.设顺时针方向为回路正向,任一时刻端点O 或端点P 距 形导轨左侧距离为x ,则B R Rx Φ⎪⎭⎫ ⎝⎛+=2π212 即B R tx RB t ΦE v 2d d 2d d -=-=-= 由于静止的 形导轨上的电动势为零,则E =-2R v B .式中负号表示电动势的方向为逆时针,对OP 段来说端点P 的电势较高. 解2 建立如图(c )所示的坐标系,在导体上任意处取导体元dl ,则()θR θB l θB E o d cos d cos 90sin d d v v ==⋅⨯=l B vB R θθBR E v v 2d cos d E π/2π/2===⎰⎰- 由矢量(v ×B )的指向可知,端点P 的电势较高.10 解3 连接OP 使导线构成一个闭合回路.由于磁场是均匀的,在任意时刻,穿过回路的磁通量==BS Φ常数.由法拉第电磁感应定律tΦE d d -=可知,E =0 又因 E =E OP +E PO即 E OP =-E PO =2R v B由上述结果可知,在均匀磁场中,任意闭合导体回路平动所产生的动生电动势为零;而任意曲线形导体上的动生电动势就等于其两端所连直线形导体上的动生电动势.上述求解方法是叠加思想的逆运用,即补偿的方法.8 -11 长为L 的铜棒,以距端点r 处为支点,以角速率ω绕通过支点且垂直于铜棒的轴转动.设磁感强度为B 的均匀磁场与轴平行,求棒两端的电势差.分析 应该注意棒两端的电势差与棒上的动生电动势是两个不同的概念,如同电源的端电压与电源电动势的不同.在开路时,两者大小相等,方向相反(电动势的方向是电势升高的方向,而电势差的正方向是电势降落的方向).本题可直接用积分法求解棒上的电动势,亦可以将整个棒的电动势看作是O A 棒与O B 棒上电动势的代数和,如图(b)所示.而E O A 和E O B 则可以直接利用第8 -2 节例1 给出的结果.解1 如图(a)所示,在棒上距点O 为l 处取导体元dl ,则()()r L lB ωl lB ωE L-r r AB AB 221d d --=-=⋅⨯=⎰⎰-l B v 因此棒两端的电势差为()r L lB ωE U AB AB 221--== 当L >2r 时,端点A 处的电势较高解2 将AB 棒上的电动势看作是O A 棒和O B 棒上电动势的代数和,如图(b)所示.其中221r ωB E OA =,()221r L B ωE OB -= 则()r L BL ωE E E OB OA AB 221--=-= 8 -12 如图所示,长为L 的导体棒OP ,处于均匀磁场中,并绕OO ′轴以角速度ω旋转,棒与转轴间夹角恒为θ,磁感强度B 与转轴平行.求OP 棒在图示位置处的电动势.分析 如前所述,本题既可以用法拉第电磁感应定律t ΦE d d -= 计算(此时必须构造一个包含OP 导体在内的闭合回路, 如直角三角形导体回路OPQO ),也可用()l B d ⋅⨯=⎰lE v 来计算.由于对称性,导体OP 旋转至任何位置时产生的电动势与图示位置是相同的.解1 由上分析,得()l B d ⋅⨯=⎰OP OP E v l αB l o d cos 90sin ⎰=v()()l θB θωl o d 90cos sin ⎰-=l()⎰==L θL B ωl l θB ω022sin 21d sin 由矢量B ⨯v 的方向可知端点P 的电势较高.解2 设想导体OP 为直角三角形导体回路OPQO 中的一部分,任一时刻穿过回路的磁通量Φ为零,则回路的总电动势QO PQ OP E E E t ΦE ++==-=0d d 显然,E QO =0,所以()221PQ B ωE E E QO PQ OP ==-= 由上可知,导体棒OP 旋转时,在单位时间内切割的磁感线数与导体棒QP 等效.后者是垂直切割的情况.8 -13 如图(a)所示,金属杆AB 以匀速12.0m s -=⋅v 平行于一长直导线移动,此导线通有电流I =40A .求杆中的感应电动势,杆的哪一端电势较高分析 本题可用两种方法求解.(1) 用公式()l B d ⋅⨯=⎰lE v 求解,建立图(a )所示的坐标系,所取导体元x l d d =,该处的磁感强度xI μB π20=.(2) 用法拉第电磁感应定律求解,需构造一个包含杆AB 在内的闭合回路.为此可设想杆AB 在一个静止的形导轨上滑动,如图(b)所示.设时刻t ,杆AB 距导轨下端CD 的距离为y ,先用公式⎰⋅=SΦS B d 求得穿过该回路的磁通量,再代入公式tΦE d d -=,即可求得回路的电动势,亦即本题杆中的电动势. 解1 根据分析,杆中的感应电动势为()V 1084.311ln 2πd 2πd d 50m 1.1m 1.00-⨯-=-=-==⋅⨯=⎰⎰v v v I μx x μxl E AB AB l B 式中负号表示电动势方向由B 指向A ,故点A 电势较高. 解2 设顺时针方向为回路AB CD 的正向,根据分析,在距直导线x 处,取宽为dx 、长为y 的面元dS ,则穿过面元的磁通量为x y xI μΦd 2πd d 0=⋅=S B 穿过回路的磁通量为11ln 2πd 2πd 0m1.1m 1.00⎰⎰-===S Iy μx y x I μΦΦ 回路的电动势为V 1084.32πd d 11ln 2πd d 500-⨯-=-=-=-=Iy μt y x I μt ΦE 由于静止的形导轨上电动势为零,所以 V 1084.35-⨯-==E E AB式中负号说明回路电动势方向为逆时针,对AB 导体来说,电动势方向应由B 指向A ,故点A 电势较高.8 -14 如图(a)所示,在“无限长”直载流导线的近旁,放置一个矩形导体线框,该线框在垂直于导线方向上以匀速率v 向右移动,求在图示位置处,线框中感应电动势的大小和方向.分析 本题亦可用两种方法求解.其中应注意下列两点:1.当闭合导体线框在磁场中运动时,线框中的总电动势就等于框上各段导体中的动生电动势的代数和.如图(a)所示,导体eh 段和fg 段上的电动势为零[此两段导体上处处满足()0l B =⋅⨯d v ],因而线框中的总电动势为()()()()hg ef hgef gh ef E E E -=⋅⨯-⋅⨯=⋅⨯+⋅⨯=⎰⎰⎰⎰l B l B l B l B d d d d v v v v 其等效电路如图(b)所示.2.用公式tΦE d d -=求解,式中Φ是线框运动至任意位置处时,穿过线框的磁通量.为此设时刻t 时,线框左边距导线的距离为ξ,如图(c )所示,显然ξ是时间t 的函数,且有v =tξd d .在求得线框在任意位置处的电动势E (ξ)后,再令ξ=d ,即可得线框在题目所给位置处的电动势.解1 根据分析,线框中的电动势为hg ef E E E -=()()⎰⎰⋅⨯-⋅⨯=hgef l B l B d d v v ()⎰⎰+-=2201000d 2πd 2πl l l l d I μl d I μv v ()1202πl d I I μ+=1vI 由E ef >E hg 可知,线框中的电动势方向为efgh .解2 设顺时针方向为线框回路的正向.根据分析,在任意位置处,穿过线框的磁通量为()()ξl ξξx Il μdx ξx Il μΦl 120020ln π2π21++=+=⎰ 相应电动势为()()1120π2d d l ξξl l I μt ΦξE +=-=v 令ξ=d ,得线框在图示位置处的电动势为 ()1120π2l d d l l I μE +=v 由E >0 可知,线框中电动势方向为顺时针方向.*8 -15 有一长为l ,宽为b 的矩形导线框架,其质量为m ,电阻为R .在t =0时,框架从距水平面y =0 的上方h 处由静止自由下落,如图所示.磁场的分布为:在y =0 的水平面上方没有磁场;在y =0 的水平面下方有磁感强度为B 的均匀磁场,B 的方向垂直纸面向里.已知框架在时刻t 1 和t 2 的位置如图中所示.求在下述时间内,框架的速度与时间的关系:(1) t 1 ≥t >0,即框架进入磁场前;(2) t 2 ≥t ≥t 1 ,即框架进入磁场, 但尚未全部进入磁场;(3)t >t 2 ,即框架全部进入磁场后.分析 设线框刚进入磁场(t 1 时刻)和全部进入磁场(t 2 时刻)的瞬间,其速度分别为v 10 和v 20 .在情况(1)和(3)中,线框中无感应电流,线框仅在重力作用下作落体运动,其速度与时间的关系分别为v =gt (t <t 1)和v =v 20 +g (t -t 2 )(t >t 2 ).而在t 1<t <t 2这段时间内,线框运动较为复杂,由于穿过线框回路的磁通量变化,使得回路中有感应电流存在,从而使线框除受重力外,还受到一个向上的安培力F A ,其大小与速度有关,即()A A F F =v .根据牛顿运动定律,此时线框的运动微分方程为()tv v d d m F mg A =-,解此微分方程可得t 1<t <t 2 时间内线框的速度与时间的关系式.解 (1) 根据分析,在1t t ≤时间内,线框为自由落体运动,于是()11t t gt ≤=v 其中1t t =时,gh 2101==v v(2) 线框进入磁场后,受到向上的安培力为v Rl B IlB F A 22== 根据牛顿运动定律,可得线框运动的微分方程tv m v d d 22=-R l B mg 令mRl B K 22=,整理上式并分离变量积分,有 ⎰⎰=-t t t g 110d d vv Kv v 积分后将gh 210=v 代入,可得()()[]1212t t K e gh K g g K----=v (3) 线框全部进入磁场后(t >t 2),作初速为v 20 的落体运动,故有()()()[]()222031221t t g e gh K g g Kt t g t t K -+--=-+=--v v 8 -16 有一磁感强度为B 的均匀磁场,以恒定的变化率t d d B 在变化.把一块质量为m 的铜,拉成截面半径为r 的导线,并用它做成一个半径为R 的圆形回路.圆形回路的平面与磁感强度B 垂直.试证:这回路中的感应电流为td d π4B d ρm I =式中ρ 为铜的电阻率,d 为铜的密度. 解 圆形回路导线长为πR 2,导线截面积为2πr ,其电阻R ′为22rR ρS l ρR ==' 在均匀磁场中,穿过该回路的磁通量为BS Φ=,由法拉第电磁感应定律可得回路中的感应电流为t t t d d 2πd d π1d d 122B ρRr B R R ΦR R E I ='='='= 而2ππ2r R d m =,即dm Rr π2π2=,代入上式可得 td d π4B d ρm I = 8 -17 半径为R =2.0 cm 的无限长直载流密绕螺线管,管内磁场可视为均匀磁场,管外磁场可近似看作零.若通电电流均匀变化,使得磁感强度B 随时间的变化率td d B 为常量,且为正值,试求:(1) 管内外由磁场变化激发的感生电场分布;(2) 如1s T 010.0d d -⋅=tB ,求距螺线管中心轴r =5.0 cm 处感生电场的大小和方向.分析 变化磁场可以在空间激发感生电场,感生电场的空间分布与场源———变化的磁场(包括磁场的空间分布以及磁场的变化率td d B 等)密切相关,即S B l E d d ⋅∂∂-=⎰⎰S S k t .在一般情况下,求解感生电场的分布是困难的.但对于本题这种特殊情况,则可以利用场的对称性进行求解.可以设想,无限长直螺线管内磁场具有柱对称性,其横截面的磁场分布如图所示.由其激发的感生电场也一定有相应的对称性,考虑到感生电场的电场线为闭合曲线,因而本题中感生电场的电场线一定是一系列以螺线管中心轴为圆心的同心圆.同一圆周上各点的电场强度E k 的大小相等,方向沿圆周的切线方向.图中虚线表示r <R 和r >R 两个区域的电场线.电场线绕向取决于磁场的变化情况,由楞次定律可知,当0d d <t B 时,电场线绕向与B 方向满足右螺旋关系;当0d d >t B 时,电场线绕向与前者相反.解 如图所示,分别在r <R 和r >R 的两个区域内任取一电场线为闭合回路l (半径为r 的圆),依照右手定则,不妨设顺时针方向为回路正向.(1) r <R , tB r t r E E k l k d d πd d d π2d 2-=⋅-=⋅=⋅=⎰⎰S B l E tB r E k d d 2-= r >R , t B R t r E E k lk d d πd d d π2d 2-=⋅-=⋅=⋅=⎰⎰S B l E tB r R E k d d 22-= 由于0d d >tB ,故电场线的绕向为逆时针. (2) 由于r >R ,所求点在螺线管外,因此tB r R E k d d 22-= 将r 、R 、tB d d 的数值代入,可得15m V 100.4--⋅⨯-=k E ,式中负号表示E k 的方向是逆时针的.8 -18 在半径为R 的圆柱形空间中存在着均匀磁场,B 的方向与柱的轴线平行.如图(a)所示,有一长为l 的金属棒放在磁场中,设B 随时间的变化率tB d d 为常量.试证:棒上感应电动势的大小为分析 变化磁场在其周围激发感生电场,把导体置于感生电场中,导体中的自由电子就会在电场力的作用下移动,在棒内两端形成正负电荷的积累,从而产生感生电动势.由于本题的感生电场分布与上题所述情况完全相同,故可利用上题结果,由⎰⋅=lk E l E d 计算棒上感生电动势.此外,还可连接OP 、OQ ,设想PQOP 构成一个闭合导体回路,用法拉第电磁感应定律求解,由于OP 、OQ 沿半径方向,与通过该处的感生电场强度E k 处处垂直,故0d =⋅l E k ,OP 、OQ 两段均无电动势,这样,由法拉第电磁感应定律求出的闭合回路的总电动势,就是导体棒PQ 上的电动势.证1 由法拉第电磁感应定律,有 22Δ22d d d d d d ⎪⎭⎫ ⎝⎛-==-==l R l t B t B S t ΦE E PQ 证2 由题8 -17可知,在r <R 区域,感生电场强度的大小tB r E k d d 2= 设PQ 上线元dx 处,E k 的方向如图(b )所示,则金属杆PQ 上的电动势为()()222202/2d d d 2/d d 2d cos d l R l t B x r l R t B r x θE E l k k PQ -=-==⋅=⎰⎰x E 讨论 假如金属棒PQ 有一段在圆外,则圆外一段导体上有无电动势 该如何求解8 -19 截面积为长方形的环形均匀密绕螺绕环,其尺寸如图(a)所示,共有N 匝(图中仅画出少量几匝),求该螺绕环的自感L .分析 如同电容一样,自感和互感都是与回路系统自身性质(如形状、匝数、介质等)有关的量.求自感L 的方法有两种:1.设有电流I 通过线圈,计算磁场穿过自身回路的总磁通量,再用公式IΦL =计算L .2.让回路中通以变化率已知的电流,测出回路中的感应电动势E L ,由公式t I E L L d /d =计算L .式中E L 和tI d d 都较容易通过实验测定,所以此方法一般适合于工程中.此外,还可通过计算能量的方法求解.解 用方法1 求解,设有电流I 通过线圈,线圈回路呈长方形,如图(b)所示,由安培环路定理可求得在R 1 <r <R 2 范围内的磁场分布为xNI μB π20=由于线圈由N 匝相同的回路构成,所以穿过自身回路的磁链为 12200ln π2d π2d 21R R hI N μx h x NI μN N ψS R R ==⋅=⎰⎰S B 则1220ln π2R R h N μI ψL = 若管中充满均匀同种磁介质,其相对磁导率为μr ,则自感将增大μr 倍.8 -20 如图所示,螺线管的管心是两个套在一起的同轴圆柱体,其截面积分别为S 1 和S 2 ,磁导率分别为μ1 和μ2 ,管长为l ,匝数为N ,求螺线管的自感.(设管的截面很小)分析 本题求解时应注意磁介质的存在对磁场的影响.在无介质时,通电螺线管内的磁场是均匀的,磁感强度为B 0 ,由于磁介质的存在,在不同磁介质中磁感强度分别为μ1 B 0 和μ2 B 0 .通过线圈横截面的总磁通量是截面积分别为S 1 和S 2 的两部分磁通量之和.由自感的定义可解得结果.解 设有电流I 通过螺线管,则管中两介质中磁感强度分别为I L N μnl μB 111==,I LN μnl μB 222== 通过N 匝回路的磁链为221121S NB S NB ΨΨΨ+=+=则自感2211221S μS μlN I ψL L L +==+= 8 -21 有两根半径均为a 的平行长直导线,它们中心距离为d .试求长为l的一对导线的自感(导线内部的磁通量可略去不计).分析 两平行长直导线可以看成无限长但宽为d 的矩形回路的一部分.设在矩形回路中通有逆时针方向电流I ,然后计算图中阴影部分(宽为d 、长为l )的磁通量.该区域内磁场可以看成两无限长直载流导线分别在该区域产生的磁场的叠加.解 在如图所示的坐标中,当两导线中通有图示的电流I 时,两平行导线间的磁感强度为()r d I μr I μB -+=π2π200 穿过图中阴影部分的磁通量为 aa d l μr Bl ΦS a d a -==⋅=⎰⎰-ln πd d 0S B 则长为l 的一对导线的自感为aa d l μI ΦL -==ln π0 如导线内部磁通量不能忽略,则一对导线的自感为212L L L +=.L 1 称为外自感,即本题已求出的L ,L 2 称为一根导线的内自感.长为l 的导线的内自感8π02l μL =,有兴趣的读者可自行求解. 8 -22 如图所示,在一柱形纸筒上绕有两组相同线圈AB 和A ′B ′,每个线圈的自感均为L ,求:(1) A 和A ′相接时,B 和B ′间的自感L 1 ;(2) A ′和B 相接时,A 和B ′间的自感L 2 .分析 无论线圈AB 和A ′B ′作哪种方式连接,均可看成一个大线圈回路的两个部分,故仍可从自感系数的定义出发求解.求解过程中可利用磁通量叠加的方法,如每一组载流线圈单独存在时穿过自身回路的磁通量为Φ,则穿过两线圈回路的磁通量为2Φ;而当两组线圈按(1)或(2)方式连接后,则穿过大线圈回路的总磁通量为2Φ±2Φ,“ ±”取决于电流在两组线圈中的流向是相同或是相反.解 (1) 当A 和A ′连接时,AB 和A ′B ′线圈中电流流向相反,通过回路的磁通量亦相反,故总通量为0221=-=ΦΦΦ,故L 1 =0.(2) 当A ′和B 连接时,AB 和A ′B ′线圈中电流流向相同,通过回路的磁通量亦相同,故总通量为ΦΦΦΦ4222=+=, 故L I ΦI ΦL 4422===. 本题结果在工程实际中有实用意义,如按题(1)方式连接,则可构造出一个无自感的线圈.8 -23 如图所示,一面积为4.0 cm 2 共50 匝的小圆形线圈A ,放在半径为20 cm 共100 匝的大圆形线圈B 的正中央,此两线圈同心且同平面.设线圈A 内各点的磁感强度可看作是相同的.求:(1) 两线圈的互感;(2) 当线圈B 中电流的变化率为-50 A·s-1 时,线圈A 中感应电动势的大小和方向.分析 设回路Ⅰ中通有电流I 1 ,穿过回路Ⅱ的磁通量为Φ21 ,则互感M =M 21 =Φ21I 1 ;也可设回路Ⅱ通有电流I 2 ,穿过回路Ⅰ的磁通量为Φ12 ,则21212I ΦM M == . 虽然两种途径所得结果相同,但在很多情况下,不同途径所涉及的计算难易程度会有很大的不同.以本题为例,如设线圈B 中有电流I 通过,则在线圈A 中心处的磁感强度很易求得,由于线圈A 很小,其所在处的磁场可视为均匀的,因而穿过线圈A 的磁通量Φ≈BS .反之,如设线圈A 通有电流I ,其周围的磁场分布是变化的,且难以计算,因而穿过线圈B 的磁通量也就很难求得,由此可见,计算互感一定要善于选择方便的途径.解 (1) 设线圈B 有电流I 通过,它在圆心处产生的磁感强度R I μN B B 200=穿过小线圈A 的磁链近似为 A B A A A A S RI μN N S B N ψ200== 则两线圈的互感为H 1028.6260-⨯===RS μN N I ψM A B A A (2)V 1014.3d d 4-⨯=-=tI M E A 互感电动势的方向和线圈B 中的电流方向相同.8 -24 如图所示,两同轴单匝线圈A 、C 的半径分别为R 和r ,两线圈相距为d .若r 很小,可认为线圈A 在线圈C 处所产生的磁场是均匀的.求两线圈的互感.若线圈C 的匝数为N 匝,则互感又为多少解 设线圈A 中有电流I 通过,它在线圈C 所包围的平面内各点产生的磁感强度近似为()2/322202d R IR μB +=穿过线圈C 的磁通为 ()22/32220π2r d R IR μBS ψC +==则两线圈的互感为 ()2/3222202πdR R r μI ψM +== 若线圈C 的匝数为N 匝,则互感为上述值的N 倍. 8 -25 如图所示,螺绕环A 中充满了铁磁质,管的截面积S 为2.0 cm 2 ,沿环每厘米绕有100 匝线圈,通有电流I 1 =4.0 ×10 -2 A ,在环上再绕一线圈C ,共10 匝,其电阻为0.10 Ω,今将开关S 突然开启,测得线圈C 中的感应电荷为2.0 ×10 -3C .求:当螺绕环中通有电流I 1 时,铁磁质中的B 和铁磁质的相对磁导率μr .分析 本题与题8 -8 相似,均是利用冲击电流计测量电磁感应现象中通过回路的电荷的方法来计算磁场的磁感强度.线圈C 的磁通变化是与环形螺线管中的电流变化相联系的. 解 当螺绕环中通以电流I 1 时,在环内产生的磁感强度110I n μμB r =则通过线圈C 的磁链为S I n μμN BS N ψr c 11022==设断开电源过程中,通过C 的感应电荷为q C ,则有()RS I n μμN ψR ψR qc r c c 110201Δ1=--=-= 由此得 T 10.02110===S N Rqc I n μμB r 相对磁导率1991102==I n μS N Rqc μr8 -26 一个直径为0.01 m ,长为0.10 m 的长直密绕螺线管,共1 000 匝线圈,总电阻为7.76 Ω.求:(1) 如把线圈接到电动势E =2.0 V 的电池上,电流稳定后,线圈中所储存的磁能有多少 磁能密度是多少*(2) 从接通电路时算起,要使线圈储存磁能为最大储存磁能的一半,需经过多少时间分析 单一载流回路所具有的磁能,通常可用两种方法计算:(1) 如回路自感为L (已知或很容易求得),则该回路通有电流I 时所储存的磁能221LI W m =,通常称为自感磁能.(2) 由于载流回路可在空间激发磁场,磁能实际是储存于磁场之中,因而载流回路所具有的能量又可看作磁场能量,即V w W V m m d ⎰=,式中m w 为磁场能量密度,积分遍及磁场存在的空间.由于μB w m 22=,因而采用这种方法时应首先求载流回路在空间产生的磁感强度B 的分布.上述两种方法还为我们提供了计算自感的另一种途径,即运用V w LI V m d 212⎰=求解L . 解 (1) 密绕长直螺线管在忽略端部效应时,其自感l S N L 2=,电流稳定后,线圈中电流RE I =,则线圈中所储存的磁能为J 1028.3221522202-⨯===lRSE N μLI W m 在忽略端部效应时,该电流回路所产生的磁场可近似认为仅存在于螺线管。

大学物理题库-第8章-电磁感应习题(含答案解析)

大学物理题库-第8章-电磁感应习题(含答案解析)

第八章 电磁感应一 选择题1、 (130101104)一圆形线圈的一半放在分布于方形区域内的匀强磁场B中,另一半位于磁场之外,如图13-2所示。

欲使圆线圈中产生逆时针方向的感应电流,应使[ ](A )线圈向右平移 (B )线圈向上平移 (C )线圈向左平移 (D )磁场强度减弱2、(130201202) 如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B平行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度ω转动时,abc回路中的感应电动势ε和a 、c 两点间的电势差U a – U c 为 (A)ε=0,U a – U c =221l B ω.(B) ε=0,U a – U c =221l B ω-.(C) ε=2l B ω,U a – U c =221l B ω.(D) ε=2l B ω,U a – U c =221l B ω-. [ ]3、(130201204)如图13-4所示,在圆柱形空间内有一磁感应强度为B的均匀磁场,其变化率为dt dB 。

若在图中a 、b 两点间放置一直导线ab 和弯曲导线ab ,下列说法中正确的是[ ] (A )电动势只在ab 中产生 (B )电动势只在ab 中产生(C )ab 和ab 中都产生电动势,且大小相等(D )ab 中的电动势小于ab 中的电动势.4、(130201205)均匀磁场被局限在圆柱形空间内,且随时间变化。

图13-22所示为圆柱形截面,M 、N 分别为圆柱形空间内、外两点,M E 、N E 分别表示这两点的有旋电场强度大小,则 [ ](A )0=M E , 0=N E (B )0=M E ,0≠N E (C )0≠M E ,0≠N E (D ) 0≠M E ,0=N E5、 (130301203)已知圆环式螺线管的自感系数为L ,若将该螺线管锯成两个半环式的螺线管,则两个半环螺线管的自感系数[ ](A )都等于2/L (B )一个大于2/L ,另一个小于2/L (C )都大于2/L (D )都小于2/LB⨯⨯⨯⨯⨯⨯⨯⨯⨯图13-2⨯⨯⨯Bb ⨯⨯⨯⨯a 图13-4 N⨯⨯B⨯⨯M 图13-22Ba bclω6、 (130401101)用线圈的自感系数L 来表示载流线圈磁场能量的公式221LI W m =(A) 只适用于无限长密绕螺线管. (B) 只适用于单匝圆线圈. (C) 只适用于一个匝数很多,且密绕的螺绕环.(D) 适用于自感系数L一定的任意线圈. [ ]7、(130401102)真空中一根无限长直导线上通有电流强度为I 的电流,则距导线垂直距离为a 的空间某点处的磁能密度为[ ] (A )200)2(21a I πμμ (B )200)2(21a I πμμ (C )20)2(21a I πμ (D )200)2(21aI μμ 8、(130401201) 有两个长直密绕螺线管,长度及线圈匝数均相同,半径分别为r 1和r 2.管内充满均匀介质,其磁导率分别为μ1和μ2.设r 1∶r 2=1∶2,μ1∶μ2=2∶1,当将两只螺线管串联在电路中通电稳定后,其自感系数之比L 1∶L 2与磁能之比W m 1∶W m 2分别为: (A) L 1∶L 2=1∶1,W m 1∶W m 2 =1∶1. (B) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶1. (C) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶2.(D) L 1∶L 2=2∶1,W m 1∶W m 2 =2∶1. [ ] 9、(130401301)两根无限长的平行导线,其间距离为d ,与电源组成回路如图13-21所示,已知导线上的电流为I ,两根导线横截面半径均为0r ,设用L 表示两导线回路单位长度的自感系数,则沿导线单位长度的空间总磁能0W 为[ ](A )221LI (B )rdr r d I r I LI ππμπμ2])(22[2120002+-+⎰∞(C )∞ (D )rdI LI ln 22102πμ+10、(130501101)对位移电流,有下述四种说法,请指出哪一种说法正确.(A) 位移电流是指变化电场. (B) 位移电流是由线性变化磁场产生的. (C) 位移电流的热效应服从焦耳─楞次定律.(D) 位移电流的磁效应不服从安培环路定理. [ ]11、 如图,平板电容器(忽略边缘效应)充电时,沿环路L 1的磁场强度H 的环流与沿环路L 2的磁场强度H的环流两者,必有:(A) >'⎰⋅1d L l H ⎰⋅'2d L l H . (B) ='⎰⋅1d L l H ⎰⋅'2d L l H.(C) <'⎰⋅1d L l H⎰⋅'2d L l H. (D)0d 1='⎰⋅L l H. [ ]二 填空题1、如图所示,在一长直导线L 中通有电流I ,ABCD 为一矩形线圈,它与L 皆在纸面内,且AB 边与L 平行. (1) 矩形线圈在纸面内向右移动时,线圈中感应电动势方 向为________________________________.2r d图13-21I LADC BHL 1L 2(2) 矩形线圈绕AD 边旋转,当BC 边已离开纸面正向外运 动时,线圈中感应动势的方向为_________________________.2、(130102201)半径为r 的小绝缘圆环,置于半径为R 的大导线圆环中心,二者在同一平面内,且r <<R .在大导线环中通有正弦电流(取逆时针方向为正)I =I 0sin ωt ,其中ω、I 0为常数,t 为时间,则任一时刻小线环中感应电动势(取逆时针方向为正)为_________________________________.3、(130202201)长为l 的金属直导线在垂直于均匀磁场的平面内以角速度ω转动.如果转轴在导线上的位置是在____________,整个导线上的电动势为最大,其值为____________;如果转轴位置是在____________,整个导线上的电动势为最小,其值为____________.4、(130202203)如图13-23所示,半径为R 的圆弧abc 在磁感应强度为B的均匀磁场中沿x轴向右移动,已知︒=∠=∠150cox aox ,若移动速度为v,则在圆弧abc 中的感应电动势为 。

大物 上海交大课后答案 第八章

大物 上海交大课后答案 第八章

习题88-1.如图所示,金属圆环半径为R ,位于磁感应强度为B的均匀磁场中,圆环平面与磁场方向垂直。

当圆环以恒定速度v在环所在平面内运动时,求环中的感应电动势及环上位于与运动方向垂直的直径两端a 、b 间的电势差。

解:(1)由法拉第电磁感应定律i d dtεΦ=-,考虑到圆环内的磁通量不变,所以,环中的感应电动势0i ε=; (2)利用:()aab bv B dl ε=⨯⋅⎰,有:22ab Bv R Bv R ε=⋅=。

【注:相同电动势的两个电源并联,并联后等效电源电动势不变】8-2.如图所示,长直导线中通有电流A I 0.5=,在与其相距cm 5.0=d 处放有一矩形线圈,共1000匝,设线圈长cm 0.4=l ,宽cm 0.2=a 。

不计线圈自感,若线圈以速度cm/s 0.3=v 沿垂直于长导线的方向向右 运动,线圈中的感生电动势多大?解法一:利用法拉第电磁感应定律解决。

首先用0lB dl I μ⋅=∑⎰ 求出电场分布,易得:02I B rμπ=, 则矩形线圈内的磁通量为:00ln22x axI I l x al dr r xμμππ++Φ=⋅=⎰, 由i d Nd t εΦ=-,有:011()2i N I l d x x a x dtμεπ=--⋅+ ∴当x d =时,有:041.92102()i N I l a v V d a μεπ-==⨯+。

解法二:利用动生电动势公式解决。

由0lB dl I μ⋅=∑⎰ 求出电场分布,易得:02I B rμπ=, 考虑线圈框架的两个平行长直导线部分产生动生电动势, 近端部分:11NB l v ε=, 远端部分:22NB lv ε=, 则:12εεε=-=00411() 1.921022()N I N I al v l v V d d a d d a μμππ--==⨯++。

8-3.如图所示,长直导线中通有电流强度为I 的电流,长为l 的金属棒ab 与长直导线共面且垂直于导线放置,其a 端离导线为d ,并以速度v平行于长直导线作匀速运动,求金属棒中的感应电动势ε并比较U a 、U b 的电势大小。

《大学物理》课后解答题 第八章电磁感应

《大学物理》课后解答题  第八章电磁感应

第六章 电磁感应一、思考讨论题1、判断下列情况下可否产生感应电动势,若产生,其方向如何确定? (1)图6.1a ,在均匀磁场中,线圈从圆形变为椭圆形;(2)图6.1b ,在磁铁产生的磁场中,线圈向右运动;(3)图6.1c ,在磁场中导线段AB 以过中点并与导线垂直的轴旋转; (4)图6.1d ,导线圆环绕着通过圆环直径长直电流转动(二者绝缘)。

解:(1)线圈面积变小,产生顺时针方向的感应电动势(俯视) (2)产生电动势,从左往右看顺时针方向。

(3)不产生电动势。

(4)不产生电动势。

2、一段导体ab 置于水平面上的两条光滑金属导轨上(设导轨足够长),并以初速v 0向右运动,整个装置处于均匀磁场之中(如图6.2所示),在下列两种情况下判断导体ab 最终的运动状态。

解:a 图中,由于不产生电流,ab 杆始终向右做匀速运动。

b 图中,ab 杆产生的电动势方向与电源方向相反,当ab 杆产生的电动势小于电源的电动势时,安培力为阻力,做减速运动。

当ab杆产生的电动势等于电源的电动势时,不受力而作图6.1a图6.1b O图6.1c 图6.1d图6.2a图6.2b匀速运动。

3、长直螺线管产生的磁场 B 随时间均匀增强,B 的方向垂直于纸面向里。

判断如下几种情况中,给定导体内的感应电动势的方向,并比较各段导体两端的电势高低:(1)图6.3a ,管内外垂直于B 的平面上绝缘地放置三段导体ab 、cd 和ef ,其中ab 位于直径位置,cd 位于弦的位置,ef 位于管外切线的位置。

(2)图 6.3b ,在管外共轴地套上一个导体圆环(环面垂直于B ),但它由两段不同金属材料的半圆环组成,电阻分别为R 1、R 2,且R R 12>,接点处为a 、b 两点。

解:(1)b a ϕϕ=,c d ϕϕ>,f e ϕϕ> (2)b a ϕϕ>4、今有一木环,将一磁铁以一定的速度插入其中,环中是否有感应电流?是否有感应电动势?如换成一个尺寸完全相同的铝环,又如何?通过两个环的磁通量是否相同? 解:木环没有感应电流。

大学物理第8章稳恒磁场课后习题答案与解析

大学物理第8章稳恒磁场课后习题答案与解析

第8章 稳恒磁场 习题及答案6. 如图所示,AB 、CD 为长直导线,C B为圆心在O 点的一段圆弧形导线,其半径为R 。

若通以电流I ,求O 点的磁感应强度。

解:O 点磁场由AB 、C B、CD 三部分电流产生,应用磁场叠加原理。

AB 在O 点产生的磁感应强度为01=BC B在O 点产生的磁感应强度大小为θπμR I B 402=RIR I 123400μππμ=⨯=,方向垂直纸面向里CD 在O 点产生的磁感应强度大小为)cos (cos 421003θθπμ-=r IB )180cos 150(cos 60cos 400︒︒-=R I πμ )231(20-=R I πμ,方向垂直纸面向里 故 )6231(203210ππμ+-=++=R I B B B B ,方向垂直纸面向里7. 如图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连。

已知圆环的粗细均匀,求环中心O 的磁感应强度。

解:圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。

且θπθ-==21221R R I I 电阻电阻 1I 产生的磁感应强度大小为)(θππμ-=24101RI B ,方向垂直纸面向外2I 产生的磁感应强度大小为θπμRIB 4202=,方向垂直纸面向里 所以, 1)2(2121=-=θθπI I B B环中心O 的磁感应强度为0210=+=B B B8. 如图所示,一无限长载流平板宽度为a ,沿长度方向通过均匀电流I ,求与平板共面且距平板一边为b 的任意点P 的磁感应强度。

解:将载流平板看成许多无限长的载流直导线,应用叠加原理求解。

以P 点为坐标原点,垂直载流平板向左为x 轴正方向建立坐标系。

在载流平板上取dx aIdI =,dI 在P 点产生的磁感应强度大小为x dI dB πμ20=dx axIπμ20=,方向垂直纸面向里 P 点的磁感应强度大小为⎰⎰+==a b b x dx a I dB B πμ20bab a I +=ln 20πμ 方向垂直纸面向里。

第08章电磁感应 电磁场.

第08章电磁感应 电磁场.

感生电场
非保守场 dΦ L Ek dl dt 0 由变化的磁场产生
静电场
保守场 E静 dl 0
L
由电荷产生
28
第八章 电磁感应 电磁场
物理学
第五版
8-3
自感和互感

自感电动势
自感
由线圈电流变化产生的感生电动势又分为 自感和互感 (1)自感 Φ LI L Φ I B 若线圈有 N 匝, I NΦ 磁通匝数 自感 L I 注意 无铁磁质时, 自感仅与线圈形 状、磁介质及 N 有关.
第八章 电磁感应 电磁场
29
物理学
第五版
8-3
自感和互感
(2)自感电动势 dΦ dI dL L ( L I ) dt dt dt dL 0 时, 当 dt
dI L L dt
I
B
自感 L L
dI dt
30
第八章 电磁感应 电磁场
物理学
第五版
8-3
自感和互感
电磁感应定律
B
B
I
S N
v
N S
I
v
第八章 电磁感应 电磁场
7
物理学
第五版
8-1
电磁感应定律
楞次定律 闭合的导线回路中所出现的 感应电流,总是使它自己所激发的磁场反抗 任何引发电磁感应的原因.
×B × × × × × × F ×m ×
× ×
× × ×
×
× ×
×
× ×
×
I × i×
×
i
第八章 电磁感应 电磁场
17
物理学
第五版
8-2
L

大学物理课后答案第八章 电流与磁场

大学物理课后答案第八章  电流与磁场

习题86-3 大小:drr dI dB σωμμ00212==方向:垂直纸面向外。

环心O 处的磁感应强度)(2)(2121000b a Q a b dr B ba +=-==⎰πωμσωμσωμ方向:垂直纸面向外。

8-7闭合载流导线弯成如图例8-7所示的形状,载有电流I ,试求:半圆圆心O 处的磁感应强度。

【解】 闭合导线是由直导线和圆弧线组成,根据载流直导线和圆弧导线产生的磁场公R I ⋅=πμπ16240R I ⋅=πμ820R I 40μ8-8解:① Wb i k j i S B 135.0)15.0()5.136(2=⋅++=⋅=Φ② ⎰⎰=⋅=Φ0S d B8-9 已知磁感应强度0.2=B Wb ·m-2方向沿x 轴正方向,如题8-9图所示.试求:(1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量.解: 如题8-9图所示题8-9图(1)通过abcd 面积1S 的磁通是24.04.03.00.211=⨯⨯=⋅=S BΦWb(2)通过befc 面积2S 的磁通量022=⋅=S BΦ(3)通过aefd 面积3S 的磁通量24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S B ΦWb (或曰24.0-Wb )8-10解: aI u B B p p π21021== T aI u B B B B p p p p 610122211066.5222-⨯===+=⇒π o pp B B 451arctan arctan12===θ8-11 在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题8-11图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为5.0cm .试求A ,B题8-11图解:如题8-11图所示,A B方向垂直纸面向里42010102.105.02)05.01.0(2-⨯=⨯+-=πμπμI I B A T(2)设0=B在2L 外侧距离2L 为r 处 则02)1.0(220=-+rI r Iπμπμ 解得 1.0=r m题8-12图8-12 如题8-12图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心O 的磁感应强度.解: 如题8-12图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。

大学物理第八章电磁感应习题答案

大学物理第八章电磁感应习题答案

第八章 电磁感应习题8-1 一半径r =10cm 的圆形回路放在B =0.8T 的均匀磁场中,回路平面与B 垂直,当回路半径以恒定速率d =80d r t cm/s 收缩时,求回路中感应电动势的大小。

解:2πr B BS m ==Φ,40.0d d π2)π(d d d d 2====tr r B r B t t m Φε(V ) 8-2 如图所示,载有电流I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直。

半圆环的半径为b ,环心O 与导线相距a 。

设半圆环以速度v 平行导线平移,求半圆环内感应电动势的大小和方向及MN 两端的电压U MN 。

解:用直导线连接MN 构成闭合导体回路,则在闭合回路沿v 方向运动时,磁通量的变化d 0m Φ=,得0MeNM ε=即MeN MN εε=下面求εMN ,在导线MN 上距电流l 处取线元d l ,方向由M 到N ,则线元d l 处磁感应强度为02I B lμπ=,方向垂直画面向下。

00d d ()d ln 22d L a b MN i L d a b I I l a b B l l a bμμεεππ++-+==⨯⋅=-=--⎰⎰⎰v v v 方向由N 到M 0ln 2MeN MN I a b a bμεεπ+==--v 方向由N 经e 到M M 点电势高于N 点电势,即0ln 2MN I a b U a bμπ+=-v 8-3 如图所示,有两根相距为d 的无限长平行直导线,它们通以大小相等流向相反的电流,且电流均以tI d d 的变化率增长。

若有一边长为d 的正方形线圈与两导线处于同一平面内,距右侧导线d 。

求线圈中的感应电动势。

解:选取线圈逆时针方向为绕行正方向(1)面元所在处磁感应强度为0001122()2I I I B x x d x x d μμμπππ⎛⎫=-=- ⎪++⎝⎭通过线圈的磁通量200114d ln 223d m d Id Id x x x d μμΦππ⎛⎫=-= ⎪+⎝⎭⎰ (2)0d 4d ln d 23d m d I t tΦμεπ=-=- 顺时针方向 8-4 如图所示,长直导线通以电流I =5 A ,在其右方放一长方形线圈,两者共面,线圈长b =0.06 m ,宽a =0.04 m ,线圈以速度v =0.03 m/s 垂直于直线平移远离。

大学物理第8章习题答案

大学物理第8章习题答案

µId 1
d
d
d B
dΦ µ d dI 4 Ei = − ln = 2 π dt 3 dt
0
Ei
顺时针方向
习题答案
8-12 解:
第八章电磁感应 电磁场 第八章电磁感应
r v v dEi = ( v × B ) ⋅ dl
O′
= vBdlsinθ
= ωrBsinθdl
= Bωl sin θdl
2
v B
O
a
l
L
b
Ei 方向
a
b
习题答案
第八章电磁感应 电磁场 第八章电磁感应
v v b 解:Eab = ∫a E k ⋅ d l
b
r dB r < R Ek = 2 dt
× × × × × × × × × × × × × × × ×
× × × × r dB dl cos θ = ∫a B × × × × × 2 dt × × × × × L h dB = ∫0 dl O × × × × × 2 dt EK h = r cosθ h θ hL dB × = a b 2 dt dl
L = µn V
2
N 2 πd 2 N 2 πd 2 L = µ 0 n 2V = µ0 ( ) l = µ0 l 4 l 4
2 2 2 2 2
1 2 1 N πd ε 2 µ 0 N πd ε Wm = LI = µ 0 ( ) = = 3.28 × 10 −5 J 2 2 l 4 R 8R 2l
2
习题答案
8-18
+
第八章电磁感应 电磁场 第八章电磁感应 连接oa和 与 构成回路 构成回路oab. 解:连接 和ob与ab构成回路

大学物理B2 复习重点题目答案

大学物理B2 复习重点题目答案

l1)
ln
d)
其中 d 随时间的变化率为速率 v ,即 d v 。
由电磁感应定律有
E
d dt
0Il2 ( 1 d 1 d ) 2π d l1 d
0I vl2l1
2πd d l1
由楞次定律可知,线框中电动势方向为顺时针方向.
第九章 振动 9-7 (知识点 9.5 相位和位置、速度的关系:求导)
解2 如图(a)所示设坐标系,由安培环路定理,在坐标x处的磁感应强度为 B μ0I 。在 2πx
矩形上取宽为dx、长为 l2 的面元dS,则 dS l2dx ,穿过面元的磁通量为
d
B
dS
μ0 I 2πx
l2dx
积分得到穿过矩形的总磁通量为
d l1 d
0Il2 dx 2πx
0 Il2 2π
(ln(d
,导线gh的动生电动势为
E gh
v
0 2π(d
I
l1
)
l2
,且如图(b)所示两导线电动
势相互抵消,则总电动势为
习题答案 4
E
=E ef
-E gh
v
0 I 2πd
l2
v
0 2π(d
I
l1)
l2
0I vl1l2
2π d l1
由右手法则及 E > E 可知,线框中的电动势方向为顺时针方向.
ef
gh
(2)t 0s 时,若物体在平衡位置,向负方向运动,即 x0 0 ,v0 0 。由 x0 Acos 0 ,
有 cos
0 ,则
2
。又 v0
A sin
0
,故
2
。因此简谐振动方程为

大学物理第八章课后习题答案

大学物理第八章课后习题答案

第八章电磁感应电磁场8 -1一根无限长平行直导线载有电流I,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动(如图所示),则()(A)线圈中无感应电流(B)线圈中感应电流为顺时针方向(C)线圈中感应电流为逆时针方向(D)线圈中感应电流方向无法确定分析与解由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为(B).8 -2将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则()(A)铜环中有感应电流,木环中无感应电流(B)铜环中有感应电流,木环中有感应电流(C)铜环中感应电动势大,木环中感应电动势小(D)铜环中感应电动势小,木环中感应电动势大分析与解根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等,但在木环中不会形成电流.因而正确答案为(A).8 -3 有两个线圈,线圈1 对线圈2 的互感系数为M 21 ,而线圈2 对线圈1的互感系数为M 12 .若它们分别流过i 1 和i 2 的变化电流且t i t i d d d d 21<,并设由i 2变化在线圈1 中产生的互感电动势为ε12 ,由i 1 变化在线圈2 中产生的互感电动势为ε21 ,下述论断正确的是( ).(A )2112M M = ,1221εε=(B )2112M M ≠ ,1221εε≠(C )2112M M =, 1221εε<(D )2112M M = ,1221εε<分析与解 教材中已经证明M21 =M12 ,电磁感应定律t i M εd d 12121=;ti M εd d 21212=.因而正确答案为(D ). 8 -4 对位移电流,下述四种说法中哪一种说法是正确的是( )(A ) 位移电流的实质是变化的电场(B ) 位移电流和传导电流一样是定向运动的电荷(C ) 位移电流服从传导电流遵循的所有定律(D ) 位移电流的磁效应不服从安培环路定理分析与解 位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为(A ).8 -5 下列概念正确的是( )(A ) 感应电场是保守场(B ) 感应电场的电场线是一组闭合曲线(C ) LI Φm =,因而线圈的自感系数与回路的电流成反比(D ) LI Φm =,回路的磁通量越大,回路的自感系数也一定大分析与解 对照感应电场的性质,感应电场的电场线是一组闭合曲线.因而 正确答案为(B ).8 -6 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为()Wb π100sin 100.85t Φ⨯=,求在s 100.12-⨯=t 时,线圈中的感应电动势.分析 由于线圈有N 匝相同回路,线圈中的感应电动势等于各匝回路的感应电动势的代数和,在此情况下,法拉第电磁感应定律通常写成t ψt ΦN ξd d d d -=-=,其中ΦN ψ=称为磁链. 解 线圈中总的感应电动势()()t tΦNξπ100cos 51.2d d =-= 当s 100.12-⨯=t 时,V 51.2=ξ. 8 -7 有两根相距为d 的无限长平行直导线,它们通以大小相等流向相反的电流,且电流均以tI d d 的变化率增长.若有一边长为d 的正方形线圈与两导线处于同一平面内,如图所示.求线圈中的感应电动势.分析 本题仍可用法拉第电磁感应定律tΦξd d -=来求解.由于回路处在非均匀磁场中,磁通量就需用⎰⋅=S ΦS B d 来计算(其中B 为两无限长直电流单独存在时产生的磁感强度B 1 与B 2 之和).为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即()B B x =,故取一个平行于长直导线的宽为dx 、长为d 的面元dS ,如图中阴影部分所示,则x d S d d =,所以,总磁通量可通过线积分求得(若取面元y x S d d d =,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式tl ME M d d -=求解. 解1 穿过面元dS 的磁通量为 ()x d xI μx d d x I μΦd π2d π2d d d d 0021-+=⋅+⋅=⋅=S B S B S B 因此穿过线圈的磁通量为 ()43ln π2d π2d π2d 02020Id μx x Id μx d x Id μΦΦd d dd =-+==⎰⎰⎰ 再由法拉第电磁感应定律,有tI d μt ΦE d d 43ln π2d d 0⎪⎭⎫ ⎝⎛=-= 解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为43ln π20dI μΦ=线圈与两长直导线间的互感为 43ln π20d μI ΦM ==当电流以tl d d 变化时,线圈中的互感电动势为 tI d μt I M E d d 43ln π2d d 0⎪⎭⎫ ⎝⎛=-= 试想:如线圈又以速率v 沿水平向右运动,如何用法拉第电磁感应定律求图示位置的电动势呢?此时线圈中既有动生电动势,又有感生电动势.设时刻t ,线圈左端距右侧直导线的距离为ξ,则穿过回路的磁通量()ξf ΦS ,1d =⋅=⎰S B ,它表现为变量I 和ξ的二元函数,将Φ代入tΦE d d -= 即可求解,求解时应按复合函数求导,注意,其中v =tξd d ,再令ξ=d 即可求得图示位置处回路中的总电动势.最终结果为两项,其中一项为动生电动势,另一项为感生电动势.8 -8 有一测量磁感强度的线圈,其截面积S =4.0 cm 2 、匝数N =160 匝、电阻R =50Ω.线圈与一内阻R i =30Ω的冲击电流计相连.若开始时,线圈的平面与均匀磁场的磁感强度B 相垂直,然后线圈的平面很快地转到与B 的方向平行.此时从冲击电流计中测得电荷值54.010C q -=⨯.问此均匀磁场的磁感强度B 的值为多少?分析 在电磁感应现象中,闭合回路中的感应电动势和感应电流与磁通量变化的快慢有关,而在一段时间内,通过导体截面的感应电量只与磁通量变化的大小有关,与磁通量变化的快慢无关.工程中常通过感应电量的测定来确定磁场的强弱.解 在线圈转过90°角时,通过线圈平面磁通量的变化量为 NBS NBS ΦΦΦ=-=-=0Δ12 因此,流过导体截面的电量为ii R R NBS R R Φq +=+=Δ 则 ()T 050.0=+=NSR R q B i 8 -9 如图所示,一长直导线中通有I =5.0 A 的电流,在距导线9.0 cm 处,放一面积为0.10 cm 2 ,10 匝的小圆线圈,线圈中的磁场可看作是均匀的.今在1.0 ×10-2 s 内把此线圈移至距长直导线10.0 cm 处.求:(1) 线圈中平均感应电动势;(2) 设线圈的电阻为1.0×10-2Ω,求通过线圈横截面的感应电荷.分析 虽然线圈处于非均匀磁场中,但由于线圈的面积很小,可近似认为穿过线圈平面的磁场是均匀的,因而可近似用NBS ψ=来计算线圈在始、末两个位置的磁链.解 (1) 在始、末状态,通过线圈的磁链分别为1011π2r IS μN S NB ψ==,2022π2r IS μN S NB ψ== 则线圈中的平均感应电动势为V 1011.111πΔ2ΔΔ8210-⨯=⎪⎪⎭⎫ ⎝⎛-==r r t IS μN t ΦE 电动势的指向为顺时针方向.(2) 通过线圈导线横截面的感应电荷为tΦE d d -= 8 -10 如图(a)所示,把一半径为R 的半圆形导线OP 置于磁感强度为B 的均匀磁场中,当导线以速率v 水平向右平动时,求导线中感应电动势E 的大小,哪一端电势较高?分析 本题及后面几题中的电动势均为动生电动势,除仍可由t ΦE d d -=求解外(必须设法构造一个闭合回路),还可直接用公式()l B d ⋅⨯=⎰l E v 求解.在用后一种方法求解时,应注意导体上任一导线元dl 上的动生电动势()l B d d ⋅⨯=v E .在一般情况下,上述各量可能是dl 所在位置的函数.矢量(v ×B )的方向就是导线中电势升高的方向.解1 如图(b)所示,假想半圆形导线OP 在宽为2R 的静止形导轨上滑动,两者之间形成一个闭合回路.设顺时针方向为回路正向,任一时刻端点O 或端点P 距 形导轨左侧距离为x ,则B R Rx Φ⎪⎭⎫ ⎝⎛+=2π212 即B R tx RB t ΦE v 2d d 2d d -=-=-= 由于静止的 形导轨上的电动势为零,则E =-2RvB .式中负号表示电动势的方向为逆时针,对OP 段来说端点P 的电势较高.解2 建立如图(c )所示的坐标系,在导体上任意处取导体元dl ,则()θR θB l θB E o d cos d cos 90sin d d v v ==⋅⨯=l B vB R θθBR E v v 2d cos d E π/2π/2===⎰⎰- 由矢量(v ×B )的指向可知,端点P 的电势较高.解3 连接OP 使导线构成一个闭合回路.由于磁场是均匀的,在任意时刻,穿过回路的磁通量==BS Φ常数.由法拉第电磁感应定律t ΦE d d -=可知,E =0又因 E =E OP +E PO即 E OP =-E PO =2RvB由上述结果可知,在均匀磁场中,任意闭合导体回路平动所产生的动生电动势为零;而任意曲线形导体上的动生电动势就等于其两端所连直线形导体上的动生电动势.上述求解方法是叠加思想的逆运用,即补偿的方法.8 -11 长为L 的铜棒,以距端点r 处为支点,以角速率ω绕通过支点且垂直于铜棒的轴转动.设磁感强度为B 的均匀磁场与轴平行,求棒两端的电势差.分析 应该注意棒两端的电势差与棒上的动生电动势是两个不同的概念,如同电源的端电压与电源电动势的不同.在开路时,两者大小相等,方向相反(电动势的方向是电势升高的方向,而电势差的正方向是电势降落的方向).本题可直接用积分法求解棒上的电动势,亦可以将整个棒的电动势看作是O A 棒与O B 棒上电动势的代数和,如图(b)所示.而E O A 和E O B 则可以直接利用第8 -2 节例1 给出的结果.解1 如图(a)所示,在棒上距点O 为l 处取导体元dl ,则()()r L lB ωl lB ωE L-r r AB AB 221d d --=-=⋅⨯=⎰⎰-l B v 因此棒两端的电势差为()r L lB ωE U AB AB 221--== 当L >2r 时,端点A 处的电势较高解2 将AB 棒上的电动势看作是O A 棒和O B 棒上电动势的代数和,如图(b)所示.其中221r ωB E OA =,()221r L B ωE OB -= 则 ()r L BL ωE E E OB OA AB 221--=-= 8 -12 如图所示,长为L 的导体棒OP ,处于均匀磁场中,并绕OO ′轴以角速度ω旋转,棒与转轴间夹角恒为θ,磁感强度B 与转轴平行.求OP 棒在图示位置处的电动势.分析 如前所述,本题既可以用法拉第电磁感应定律tΦE d d -= 计算(此时必须构造一个包含OP 导体在内的闭合回路, 如直角三角形导体回路OPQO ),也可用()l B d ⋅⨯=⎰lE v 来计算.由于对称性,导体OP 旋转至任何位置时产生的电动势与图示位置是相同的.解1 由上分析,得()l B d ⋅⨯=⎰OP OP E v l αB l o d cos 90sin ⎰=v()()l θB θωl o d 90cos sin ⎰-=l()⎰==L θL B ωl l θB ω022sin 21d sin 由矢量B ⨯v 的方向可知端点P 的电势较高.解2 设想导体OP 为直角三角形导体回路OPQO 中的一部分,任一时刻穿 过回路的磁通量Φ为零,则回路的总电动势QO PQ OP E E E t ΦE ++==-=0d d 显然,E QO =0,所以 ()221PQ B ωE E E QO PQ OP ==-= 由上可知,导体棒OP 旋转时,在单位时间内切割的磁感线数与导体棒QP 等效.后者是垂直切割的情况.8 -13 如图(a)所示,金属杆AB 以匀速12.0m s -=⋅v 平行于一长直导线移动,此导线通有电流I =40A .求杆中的感应电动势,杆的哪一端电势较高?分析 本题可用两种方法求解.(1) 用公式()l B d ⋅⨯=⎰lE v 求解,建立图(a )所示的坐标系,所取导体元x l d d =,该处的磁感强度xI μB π20=.(2) 用法拉第电磁感应定律求解,需构造一个包含杆AB 在内的闭合回路.为此可设想杆AB 在一个静止的形导轨上滑动,如图(b)所示.设时刻t ,杆AB距导轨下端CD 的距离为y ,先用公式⎰⋅=S ΦS B d 求得穿过该回路的磁通量,再代入公式tΦE d d -=,即可求得回路的电动势,亦即本题杆中的电动势. 解1 根据分析,杆中的感应电动势为()V 1084.311ln 2πd 2πd d 50m 1.1m 1.00-⨯-=-=-==⋅⨯=⎰⎰v v v I μx x μxl E AB AB l B 式中负号表示电动势方向由B 指向A ,故点A 电势较高.解2 设顺时针方向为回路ABCD 的正向,根据分析,在距直导线x 处,取宽为dx 、长为y 的面元dS ,则穿过面元的磁通量为x y xI μΦd 2πd d 0=⋅=S B 穿过回路的磁通量为 11ln 2πd 2πd 0m1.1m 1.00⎰⎰-===S Iy μx y x I μΦΦ 回路的电动势为V 1084.32πd d 11ln 2πd d 500-⨯-=-=-=-=Iy μt y x I μt ΦE 由于静止的形导轨上电动势为零,所以V 1084.35-⨯-==E E AB 式中负号说明回路电动势方向为逆时针,对AB 导体来说,电动势方向应由B 指向A ,故点A 电势较高.8 -14 如图(a)所示,在“无限长”直载流导线的近旁,放置一个矩形导体线框,该线框在垂直于导线方向上以匀速率v 向右移动,求在图示位置处,线框中感应电动势的大小和方向.分析 本题亦可用两种方法求解.其中应注意下列两点:1.当闭合导体线框在磁场中运动时,线框中的总电动势就等于框上各段导体中的动生电动势的代数和.如图(a)所示,导体eh 段和fg 段上的电动势为零[此两段导体上处处满足()0l B =⋅⨯d v ],因而线框中的总电动势为()()()()hg ef hgef gh ef E E E -=⋅⨯-⋅⨯=⋅⨯+⋅⨯=⎰⎰⎰⎰l B l B l B l B d d d d v v v v 其等效电路如图(b)所示.2.用公式tΦE d d -=求解,式中Φ是线框运动至任意位置处时,穿过线框的磁通量.为此设时刻t 时,线框左边距导线的距离为ξ,如图(c )所示,显然ξ是时间t 的函数,且有v =tξd d .在求得线框在任意位置处的电动势E (ξ)后,再令ξ=d ,即可得线框在题目所给位置处的电动势.解1 根据分析,线框中的电动势为hg ef E E E -=()()⎰⎰⋅⨯-⋅⨯=hgef l B l B d d v v ()⎰⎰+-=2201000d 2πd 2πl l l l d I μl d I μv v ()1202πl d I I μ+=1vI 由E ef >E hg 可知,线框中的电动势方向为efgh .解2 设顺时针方向为线框回路的正向.根据分析,在任意位置处,穿过线框的磁通量为()()ξl ξξx Il μdx ξx Il μΦl 120020ln π2π21++=+=⎰相应电动势为 ()()1120π2d d l ξξl l I μt ΦξE +=-=v 令ξ=d ,得线框在图示位置处的电动势为 ()1120π2l d d l l I μE +=v 由E >0 可知,线框中电动势方向为顺时针方向.*8 -15 有一长为l ,宽为b 的矩形导线框架,其质量为m ,电阻为R .在t =0时,框架从距水平面y =0 的上方h 处由静止自由下落,如图所示.磁场的分布为:在y =0 的水平面上方没有磁场;在y =0 的水平面下方有磁感强度为B 的均匀磁场,B 的方向垂直纸面向里.已知框架在时刻t 1 和t 2 的位置如图中所示.求在下述时间内,框架的速度与时间的关系:(1) t 1 ≥t >0,即框架进入磁场前;(2) t 2 ≥t ≥t 1 ,即框架进入磁场, 但尚未全部进入磁场;(3)t >t 2 ,即框架全部进入磁场后.分析 设线框刚进入磁场(t 1 时刻)和全部进入磁场(t 2 时刻)的瞬间,其速度分别为v 10 和v 20 .在情况(1)和(3)中,线框中无感应电流,线框仅在重力作用下作落体运动,其速度与时间的关系分别为v =gt (t <t 1)和v =v 20 +g (t -t 2 )(t >t 2 ).而在t 1<t <t 2这段时间内,线框运动较为复杂,由于穿过线框回路的磁通量变化,使得回路中有感应电流存在,从而使线框除受重力外,还受到一个向上的安培力F A ,其大小与速度有关,即()A A F F =v .根据牛顿运动定律,此时线框的运动微分方程为()tv v d d mF mg A =-,解此微分方程可得t 1<t <t 2 时间内线框的速度与时间的关系式. 解 (1) 根据分析,在1t t ≤时间内,线框为自由落体运动,于是()11t t gt ≤=v 其中1t t =时,gh 2101==v v(2) 线框进入磁场后,受到向上的安培力为v Rl B IlB F A 22==根据牛顿运动定律,可得线框运动的微分方程tv m v d d 22=-R l B mg 令mRl B K 22=,整理上式并分离变量积分,有 ⎰⎰=-t t t g 110d d v v Kv v 积分后将gh 210=v 代入,可得 ()()[]1212t t K e gh K g g K ----=v (3) 线框全部进入磁场后(t >t 2),作初速为v 20 的落体运动,故有()()()[]()222031221t t g e gh K g g Kt t g t t K -+--=-+=--v v 8 -16 有一磁感强度为B 的均匀磁场,以恒定的变化率t d d B 在变化.把一块质量为m 的铜,拉成截面半径为r 的导线,并用它做成一个半径为R 的圆形回路.圆形回路的平面与磁感强度B 垂直.试证:这回路中的感应电流为 td d π4B d ρm I = 式中ρ 为铜的电阻率,d 为铜的密度. 解 圆形回路导线长为πR 2,导线截面积为2πr ,其电阻R ′为22rR ρS l ρR ==' 在均匀磁场中,穿过该回路的磁通量为BS Φ=,由法拉第电磁感应定律可得回路中的感应电流为tt t d d 2πd d π1d d 122B ρRr B R R ΦR R E I ='='='= 而2ππ2r R d m =,即dm Rr π2π2=,代入上式可得t d d π4B d ρm I = 8 -17 半径为R =2.0 cm 的无限长直载流密绕螺线管,管内磁场可视为均匀磁场,管外磁场可近似看作零.若通电电流均匀变化,使得磁感强度B 随时间的变化率td d B 为常量,且为正值,试求:(1) 管内外由磁场变化激发的感生电场分布;(2) 如1s T 010.0d d -⋅=tB ,求距螺线管中心轴r =5.0 cm 处感生电场的大小和方向.分析 变化磁场可以在空间激发感生电场,感生电场的空间分布与场源———变化的磁场(包括磁场的空间分布以及磁场的变化率t d d B 等)密切相关,即S B l E d d ⋅∂∂-=⎰⎰S S k t.在一般情况下,求解感生电场的分布是困难的.但对于本题这种特殊情况,则可以利用场的对称性进行求解.可以设想,无限长直螺线管内磁场具有柱对称性,其横截面的磁场分布如图所示.由其激发的感生电场也一定有相应的对称性,考虑到感生电场的电场线为闭合曲线,因而本题中感生电场的电场线一定是一系列以螺线管中心轴为圆心的同心圆.同一圆周上各点的电场强度E k 的大小相等,方向沿圆周的切线方向.图中虚线表示r <R 和r >R 两个区域的电场线.电场线绕向取决于磁场的变化情况,由楞次定律可知,当0d d <t B 时,电场线绕向与B 方向满足右螺旋关系;当0d d >tB 时,电场线绕向与前者相反. 解 如图所示,分别在r <R 和r >R 的两个区域内任取一电场线为闭合回路l (半径为r 的圆),依照右手定则,不妨设顺时针方向为回路正向.(1) r <R , tB r t r E E k l k d d πd d d π2d 2-=⋅-=⋅=⋅=⎰⎰S B l E tB r E k d d 2-= r >R , tB R t r E E k l k d d πd d d π2d 2-=⋅-=⋅=⋅=⎰⎰S B l E tB r R E k d d 22-= 由于0d d >tB ,故电场线的绕向为逆时针. (2) 由于r >R ,所求点在螺线管外,因此tB r R E k d d 22-= 将r 、R 、tB d d 的数值代入,可得15m V 100.4--⋅⨯-=k E ,式中负号表示E k 的方向是逆时针的.8 -18 在半径为R 的圆柱形空间中存在着均匀磁场,B 的方向与柱的轴线平行.如图(a)所示,有一长为l 的金属棒放在磁场中,设B 随时间的变化率tB d d 为常量.试证:棒上感应电动势的大小为分析 变化磁场在其周围激发感生电场,把导体置于感生电场中,导体中的自由电子就会在电场力的作用下移动,在棒内两端形成正负电荷的积累,从而产生感生电动势.由于本题的感生电场分布与上题所述情况完全相同,故可利用上题结果,由⎰⋅=l k E l E d 计算棒上感生电动势.此外,还可连接OP 、OQ ,设想PQOP 构成一个闭合导体回路,用法拉第电磁感应定律求解,由于OP 、OQ 沿半径方向,与通过该处的感生电场强度E k 处处垂直,故0d =⋅l E k ,OP 、OQ 两段均无电动势,这样,由法拉第电磁感应定律求出的闭合回路的总电动势,就是导体棒PQ 上的电动势.证1 由法拉第电磁感应定律,有22Δ22d d d d d d ⎪⎭⎫ ⎝⎛-==-==l R l t B t B S t ΦE E PQ 证2 由题8 -17可知,在r <R 区域,感生电场强度的大小t B r E k d d 2= 设PQ 上线元dx 处,E k 的方向如图(b )所示,则金属杆PQ 上的电动势为()()222202/2d d d 2/d d 2d cos d l R l t B x r l R t B r x θE E l k k PQ -=-==⋅=⎰⎰x E 讨论 假如金属棒PQ 有一段在圆外,则圆外一段导体上有无电动势? 该如何求解?8 -19 截面积为长方形的环形均匀密绕螺绕环,其尺寸如图(a)所示,共有N 匝(图中仅画出少量几匝),求该螺绕环的自感L .分析 如同电容一样,自感和互感都是与回路系统自身性质(如形状、匝数、介质等)有关的量.求自感L 的方法有两种:1.设有电流I 通过线圈,计算磁场穿过自身回路的总磁通量,再用公式IΦL =计算L .2.让回路中通以变化率已知的电流,测出回路中的感应电动势E L ,由公式t I E L L d /d =计算L .式中E L 和tI d d 都较容易通过实验测定,所以此方法一般适合于工程中.此外,还可通过计算能量的方法求解.解 用方法1 求解,设有电流I 通过线圈,线圈回路呈长方形,如图(b)所示,由安培环路定理可求得在R 1 <r <R 2 范围内的磁场分布为 x NI μB π20= 由于线圈由N 匝相同的回路构成,所以穿过自身回路的磁链为12200ln π2d π2d 21R R hI N μx h x NI μN N ψS R R ==⋅=⎰⎰S B 则1220ln π2R R h N μI ψL = 若管中充满均匀同种磁介质,其相对磁导率为μr ,则自感将增大μr 倍. 8 -20 如图所示,螺线管的管心是两个套在一起的同轴圆柱体,其截面积分别为S 1 和S 2 ,磁导率分别为μ1 和μ2 ,管长为l ,匝数为N ,求螺线管的自感.(设管的截面很小)分析 本题求解时应注意磁介质的存在对磁场的影响.在无介质时,通电螺线管内的磁场是均匀的,磁感强度为B 0 ,由于磁介质的存在,在不同磁介质中磁感强度分别为μ1 B 0 和μ2 B 0 .通过线圈横截面的总磁通量是截面积分别为S 1 和S 2 的两部分磁通量之和.由自感的定义可解得结果.解 设有电流I 通过螺线管,则管中两介质中磁感强度分别为I L N μnl μB 111==,I LN μnl μB 222== 通过N 匝回路的磁链为 221121S NB S NB ΨΨΨ+=+=则自感2211221S μS μlN I ψL L L +==+= 8 -21 有两根半径均为a 的平行长直导线,它们中心距离为d .试求长为l的一对导线的自感(导线内部的磁通量可略去不计).分析 两平行长直导线可以看成无限长但宽为d 的矩形回路的一部分.设在矩形回路中通有逆时针方向电流I ,然后计算图中阴影部分(宽为d 、长为l )的磁通量.该区域内磁场可以看成两无限长直载流导线分别在该区域产生的磁场的叠加.解 在如图所示的坐标中,当两导线中通有图示的电流I 时,两平行导线间的磁感强度为()r d I μr I μB -+=π2π200 穿过图中阴影部分的磁通量为a a d l μr Bl ΦS a d a -==⋅=⎰⎰-ln πd d 0S B 则长为l 的一对导线的自感为aa d l μI ΦL -==ln π0 如导线内部磁通量不能忽略,则一对导线的自感为212L L L +=.L 1 称为外自感,即本题已求出的L ,L 2 称为一根导线的内自感.长为l 的导线的内自感8π02l μL =,有兴趣的读者可自行求解. 8 -22 如图所示,在一柱形纸筒上绕有两组相同线圈AB 和A ′B ′,每个线圈的自感均为L ,求:(1) A 和A ′相接时,B 和B ′间的自感L 1 ;(2) A ′和B 相接时,A 和B ′间的自感L 2 .分析 无论线圈AB 和A ′B ′作哪种方式连接,均可看成一个大线圈回路的两个部分,故仍可从自感系数的定义出发求解.求解过程中可利用磁通量叠加的方法,如每一组载流线圈单独存在时穿过自身回路的磁通量为Φ,则穿过两线圈回路的磁通量为2Φ;而当两组线圈按(1)或(2)方式连接后,则穿过大线圈回路的总磁通量为2Φ±2Φ,“ ±”取决于电流在两组线圈中的流向是相同或是相反.解 (1) 当A 和A ′连接时,AB 和A ′B ′线圈中电流流向相反,通过回路的磁通量亦相反,故总通量为0221=-=ΦΦΦ,故L 1 =0.(2) 当A ′和B 连接时,AB 和A ′B ′线圈中电流流向相同,通过回路的磁通量亦相同,故总通量为ΦΦΦΦ4222=+=, 故L I ΦI ΦL 4422===. 本题结果在工程实际中有实用意义,如按题(1)方式连接,则可构造出一个无自感的线圈.8 -23 如图所示,一面积为4.0 cm 2 共50 匝的小圆形线圈A ,放在半径为20 cm 共100 匝的大圆形线圈B 的正中央,此两线圈同心且同平面.设线圈A 内各点的磁感强度可看作是相同的.求:(1) 两线圈的互感;(2) 当线圈B 中电流的变化率为-50 A ·s-1 时,线圈A 中感应电动势的大小和方向.分析 设回路Ⅰ中通有电流I 1 ,穿过回路Ⅱ的磁通量为Φ21 ,则互感M =M 21 =Φ21I 1 ;也可设回路Ⅱ通有电流I 2 ,穿过回路Ⅰ的磁通量为Φ12 ,则21212I ΦM M == . 虽然两种途径所得结果相同,但在很多情况下,不同途径所涉及的计算难易程度会有很大的不同.以本题为例,如设线圈B 中有电流I 通过,则在线圈A 中心处的磁感强度很易求得,由于线圈A 很小,其所在处的磁场可视为均匀的,因而穿过线圈A 的磁通量Φ≈BS .反之,如设线圈A 通有电流I ,其周围的磁场分布是变化的,且难以计算,因而穿过线圈B 的磁通量也就很难求得,由此可见,计算互感一定要善于选择方便的途径.解 (1) 设线圈B 有电流I 通过,它在圆心处产生的磁感强度R I μN B B 200=穿过小线圈A 的磁链近似为 A B A A A A S RI μN N S B N ψ200== 则两线圈的互感为H 1028.6260-⨯===R S μN N I ψM A B A A (2)V 1014.3d d 4-⨯=-=tI M E A 互感电动势的方向和线圈B 中的电流方向相同.8 -24 如图所示,两同轴单匝线圈A 、C 的半径分别为R 和r ,两线圈相距为d .若r 很小,可认为线圈A 在线圈C 处所产生的磁场是均匀的.求两线圈的互感.若线圈C 的匝数为N 匝,则互感又为多少?解 设线圈A 中有电流I 通过,它在线圈C 所包围的平面内各点产生的磁 感强度近似为()2/322202d R IR μB +=穿过线圈C 的磁通为 ()22/32220π2r d R IR μBS ψC +==则两线圈的互感为 ()2/3222202πd R R r μI ψM +== 若线圈C 的匝数为N 匝,则互感为上述值的N 倍.8 -25 如图所示,螺绕环A 中充满了铁磁质,管的截面积S 为2.0 cm 2 ,沿环每厘米绕有100 匝线圈,通有电流I 1 =4.0 ×10 -2 A ,在环上再绕一线圈C ,共10 匝,其电阻为0.10 Ω,今将开关S 突然开启,测得线圈C 中的感应电荷为2.0 ×10 -3 C .求:当螺绕环中通有电流I 1 时,铁磁质中的B 和铁磁质的相对磁导率μr .分析 本题与题8 -8 相似,均是利用冲击电流计测量电磁感应现象中通过回路的电荷的方法来计算磁场的磁感强度.线圈C 的磁通变化是与环形螺线管中的电流变化相联系的.解 当螺绕环中通以电流I 1 时,在环内产生的磁感强度110I n μμB r =则通过线圈C 的磁链为S I n μμN BS N ψr c 11022==设断开电源过程中,通过C 的感应电荷为q C ,则有()RS I n μμN ψR ψR qc r c c 110201Δ1=--=-= 由此得 T 10.02110===S N Rqc I n μμB r 相对磁导率1991102==I n μS N Rqc μr 8 -26 一个直径为0.01 m ,长为0.10 m 的长直密绕螺线管,共1 000 匝线圈,总电阻为7.76 Ω.求:(1) 如把线圈接到电动势E =2.0 V 的电池上,电流稳定后,线圈中所储存的磁能有多少? 磁能密度是多少?*(2) 从接通电路时算起,要使线圈储存磁能为最大储存磁能的一半,需经过多少时间?分析 单一载流回路所具有的磁能,通常可用两种方法计算:(1) 如回路自感为L (已知或很容易求得),则该回路通有电流I 时所储存的磁能221LI W m =,通常称为自感磁能.(2) 由于载流回路可在空间激发磁场,磁能实际是储存于磁场之中,因而载流回路所具有的能量又可看作磁场能量,即V w W V m m d ⎰=,式中m w 为磁场能量密度,积分遍及磁场存在的空间.由于μB w m 22=,因而采用这种方法时应首先求载流回路在空间产生的磁感强度B 的分布.上述两种方法还为我们提供了计算自感的另一种途径,。

大学物理第八章电磁感应部分的习题及答案

大学物理第八章电磁感应部分的习题及答案

第八章 电磁感应一、简答题1、简述电磁感应定律答:当穿过闭合回路所围面积的磁通量发生变化时,不论这种变化是什么原因引起的,回路中都会建立起感应电动势,且此感应电动势等于磁通量对时间变化率的负值,即dtd i φε-=。

2、简述动生电动势和感生电动势答:由于回路所围面积的变化或面积取向变化而引起的感应电动势称为动生电动势。

由于磁感强度变化而引起的感应电动势称为感生电动势。

3、简述自感和互感答:某回路的自感在数值上等于回路中的电流为一个单位时,穿过此回路所围成面积的磁通量,即LI LI =Φ=Φ。

两个线圈的互感M M 值在数值上等于其中一个线圈中的电流为一单位时,穿过另一个线圈所围成面积的磁通量,即212121MI MI ==φφ或。

4、简述感应电场与静电场的区别? 答:感生电场和静电场的区别5、写出麦克斯韦电磁场方程的积分形式。

答:⎰⎰==⋅svqdv ds D ρdS tB l E sL⋅∂∂-=⋅⎰⎰d0d =⋅⎰S S B dS t D j l H s l ⋅⎪⎭⎫ ⎝⎛∂∂+=⋅⎰⎰d6、简述产生动生电动势物理本质答:在磁场中导体作切割磁力线运动时,其自由电子受洛仑滋力的作用,从而在导体两端产生电势差7、 简述何谓楞次定律答:闭合的导线回路中所出现的感应电流,总是使它自己所激发的磁场反抗任何引发电磁感应的原因(反抗相对运动、磁场变化或线圈变形等).这个规律就叫做楞次定律。

二、选择题1、有一圆形线圈在均匀磁场中做下列几种运动,那种情况在线圈中会产生感应电流 ( D )A 、线圈平面法线沿磁场方向平移B 、线圈平面法线沿垂直于磁场方向平移C 、线圈以自身的直径为轴转动,轴与磁场方向平行D 、线圈以自身的直径为轴转动,轴与磁场方向垂直2、对于位移电流,下列四种说法中哪一种说法是正确的 ( A ) A 、位移电流的实质是变化的电场 B 、位移电流和传导电流一样是定向运动的电荷 C 、位移电流服从传导电流遵循的所有规律 D 、位移电流的磁效应不服从安培环路定理3、下列概念正确的是 ( B )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题8-6 一根无限长直导线有交变电流0sin i I t ω=,它旁边有一与它共面的矩形线圈ABCD ,如图所示,长为l 的AB 和CD 两边与直导向平行,它们到直导线的距离分别为a 和b ,试求矩形线圈所围面积的磁通量,以及线圈中的感应电动势。

解 建立如图所示的坐标系,在矩形平面上取一矩形面元dS ldx =,载流长直导线的磁场穿过该面元的磁通量为02m id B dS ldx xμφπ=⋅= 通过矩形面积CDEF 的总磁通量为 0000ln ln sin 222bm ai il I l b bldx t x a aμμμφωπππ===⎰由法拉第电磁感应定律有00ln cos 2m d I l bt dt aφμωεωπ=-=- 8-7 有一无限长直螺线管,单位长度上线圈的匝数为n ,在管的中心放置一绕了N 圈,半径为r 的圆形小线圈,其轴线与螺线管的轴线平行,设螺线管内电流变化率为dI dt,球小线圈中感应的电动势。

解 无限长直螺线管内部的磁场为0B nI μ= 通过N 匝圆形小线圈的磁通量为20m NBS N nI r φμπ==由法拉第电磁感应定律有20m d dIN n r dt dtφεμπ=-=- 8-8 一面积为S 的小线圈在一单位长度线圈匝数为n ,通过电流为i 的长螺线管内,并与螺线管共轴,若0sin i i t ω=,求小线圈中感生电动势的表达式。

解 通过小线圈的磁通量为0m BS niS φμ==由法拉第电磁感应定律有000cos m d dinS nSi t dt dtφεμμωω=-=-=- 8-9 如图所示,矩形线圈ABCD 放在16.010B T -=⨯的均匀磁场中,磁场方向与线圈平面的法线方向之间的夹角为60α=︒,长为0.20m 的AB 边可左右滑动。

若令AB 边以速率15.0v m s -=•向右运动,试求线圈中感应电动势的大小及感应电流的方向。

解 利用动生电动势公式0.20()50.6sin(60)0.30()2B Av B dl dl V πε=⨯•=⨯⨯-︒=⎰⎰感应电流的方向从A B →.8-10 如图所示,两段导体AB 和BC 的长度均为10cm ,它们在B 处相接成角30︒;磁场方向垂直于纸面向里,其大小为22.510B T -=⨯。

若使导体在均匀磁场中以速率11.5v m s-=•运动,方向与AB 段平行,试问AC 间的电势差是多少? 哪一端的电势高?解 导体AB 段与运动方向平行,不切割磁场线,没有电动势产生。

BC 段产生的动生电动势为1.10230() 1.5 2.510cos 60 1.910()C Bv B dl dl V ε--=⨯•=⨯⨯⨯︒=⨯⎰⎰AC 间的电势差是31.910()AC U V ε-=-=-⨯C 端的电势高。

8-11 长为l 的一金属棒ab ,水平放置在均匀磁场B 中,如图所示,金属棒可绕O 点在水平面内以角速度ω旋转,O 点离a 端的距离为l k 。

试求a,b 两端的电势差,并指出哪端电势高(设k>2)解 建立如图所示的坐标系,在Ob 棒上任一位置x 处取一微元dx ,该微元产生的动生电动势为()d v B dx xBdx εω=⨯•=- Ob 棒产生的动生电动势为22011(1)2l l kOb xBdx Bl kεωω-=-=--⎰同理,Oa 棒产生的动生电动势为 2122012Oa l xBdx Bl kεωω=-=-⎰金属棒a,b 两端的电电势差22222211112(1)(1)222ab ab Oa Obl U Bl Bl Bl k k kεεεωωω=-=-=---=- 因k>2,所以a 端电势高。

8-12 如图所示,真空中一载有稳恒电流I 的无限长直导线旁有一半圆形导线回路,其半径为r ,回路平面与长直导线垂直,且半圆形直径cd 的延长线与长直导线相交,导线与圆心O 之间距离为l ,无限长直导线的电流方向垂直纸面向内,当回路以速度v 垂直纸面向外运动时,求:(1)回路中感应电动势的大小;(2)半圆弧导线cd 中感应电动势的大小。

解 (1) 由于无限长直导线所产生的磁场方向与半圆形导线所在平面平行,因此当导线回路运动时,通过它的磁通量不随时间改变,导线回路中感应电动势0ε=。

(2)半圆形导线中的感应电动势与直导线中的感应电动势大小相等,方向相反,所以可由直导线计算感应电动势的大小选取x 轴如图8.7所示,在x 处取线元dx,dx 中产生感应电动势大小为 ()d v B dl ε=⨯• 其中02IB xμπ=导线cd 及圆弧cd 产生感应电动势的大小均为00ln22l rl r l rl r Iv Iv dx l rvBdx x l rμμεππ++--+===-⎰⎰ 8-13 在半径0.50R m =的圆柱体内有均匀磁场,其方向与圆柱体的轴线平行,且211.010dB dt T s --=⨯•,圆柱体外无磁场,试求离开中心O 的距离分别为0.1,0.25,0.50,1.0m m m m 和各点的感生电场的场强。

解 变化的磁场产生感生电场线是以圆柱轴线为圆心的一系列同心圆,因此有LSBE dl dS t∂•=-•∂⎰⎰⎰感 而22,LSB dB E dl E r dS r t dtππ∂•=-•=-∂⎰⎰⎰感感 当r R <时, 22dB E r r dt ππ=-感 12dBE r dt=-感所以0.1r m =时,415.010E V m --=⨯•感;0.25r m =时,。

311.310E V m --=⨯•感当r R >时 22dBE r R dtππ=-感 22R dBE r dt=-感所以0.50r m =时, 312.510E V m --=⨯•感; 1.0r m =时311.2510E V m --=⨯•感8-14 如图所示,磁感应强度为B 的均匀磁场充满在半径为R 的圆柱体内,有一长为l 的金属棒ab 放在该磁场中,如果B 以速率dB dt 变化,试证:由变化磁场所产生并作用于棒两端的电动势等于12dB dt 证明 方法一 连接Oa,Ob,设想Oab 构成闭合回路,由于Oa,Ob 沿半径方向,与通过该处的感生电场处垂直,所以Oa,Ob 两段均无电动势,这样由法拉第电磁感应定律求出的闭合回路Oab 的总电动势就是棒ab 两端电动势。

根据法拉第电磁感应定律12ab OabdB dB S dt dt εε==-= 方法二 变化的磁场在圆柱体内产生的感生电场为 12dB E r dt=-感 棒ab 两端的电动势为11cos 22l l lab dB E dx E dx dt εθ=•==-=⎰⎰⎰感感8-15 如图所示,两根横截面半径为a 的平行长直导线,中心相距d ,它们载有大小相等、方向相反的电流,属于同一回路,设导线内部的磁通量可以忽略不计,试证明这样一对导线长为l 的一段的自感为0lnl d aL aμπ-=。

解 两根平行长直导线在它们之间产生的磁感应强度为 ()0022I IB x d x μμππ=+- 穿过两根导线间长为dx 的一段的磁通量为()00022ln d ad am aaI I B dS ldx x d x lI d aaμμφππμπ--⎡⎤=•=+⎢⎥-⎣⎦-=⎰⎰所以,一对长为的一段导线的自感为0lnml d aL I aφμπ-==8-16一均匀密绕的环形螺线管,环的平均半径为R ,管的横截面积为S ,环的总匝数为N ,管内充满磁导率为μ的磁介质。

求此环形螺线管的自感系数L 。

解 当环形螺线管中通有电流I 时,管中的磁感应强度为 2INB nI Rμμπ== 通过环形螺线管的磁链为22m m IN SN Rμψφπ==则环形螺线管的自感系数为22mN S L I Rψμπ== 8-17由两薄圆筒构成的同轴电缆,内筒半径1R ,外筒半径为2R ,两筒间的介质1r μ=。

设内圆筒和外圆筒中的电流方向相反,而电流强度I 相等,求长度为l 的一段同轴电缆所储磁能为多少?解 有安培环路定理可求得同轴电缆在空间不同区域的磁感应强度为1r R <时, 10B = 12R r R <<时, 022I B rμπ= 2r R >时, 30B =在长为L ,内径为r ,外径为r dr +的同轴薄圆筒的体积2dV rldr π=中磁场能量为22020124m I l B dW dV dr rμμπ==所以,长度为l 的一段同轴电缆所储能为 21220021ln 44R m R I r I l R W dr r R μμππ==⎰补充在同时存在电场和磁场的空间区域中,某点P 的电场强度为E ,磁感应强度为B ,此空间区域介质的介电常数0εε≈,磁导率0μμ≈。

求P 点处电场和磁场的总能量体密度w 。

解 电场能量密度为2012e w E ε= 磁场能量密度为212m B w μ=总能量密度为22001122e m B w w w E εμ=+=+8-19 一小圆线圈面积为21 4.0S cm =,由表面绝缘的细导线绕成,其匝数为150N =,把它放在另一半径220R cm =,2100N =匝的圆线圈中心,两线圈同轴共面。

如果把大线圈在小线圈中产生的磁场看成是均匀的,试求这两个线圈之间的互感;如果大线圈导线中的电流每秒减少50A ,试求小线圈中的感应电动势。

解 当大圆形线圈通有2I 时,它在小圆形线圈中心处的磁感应强度大小为 022222I B N R μ=若把大圆形线圈在小圆形线圈中产生的磁场看成是均匀的,则通过小圆形线圈的磁链为 0212112122m I N B S N N S R μψ==两个线圈之间的互感为74612012250100410 4.010 6.2810()220.2mN N S M H I R ψμπ---⨯⨯⨯⨯⨯====⨯⨯如果大线圈导线中的电流每秒减少50A ,则小线圈中的感应电动势为646.281050 3.1410()diMV dtε--=-=⨯⨯=⨯ 8-20 一螺线管长为30cm 。

由2500匝漆包导线均匀密绕而成,其中铁芯的相对磁导率100r μ=,当它的导线中通有2.0A 的电流时,求螺线管中心处的磁场能量密度。

解 螺线管中的磁感应强度为00r r N B nI I lμμμμ== 螺线管中的磁场能量密度为25301 1.7410/2m rB w J m μμ==⨯ 8-21 一根长直导线载有电流I ,且I 均匀地分布在导线的横截面上,试求在长度为l 的一段导线内部的磁场能量。

解 有安培环路定理可得长直导线内部的磁感应强度为 022IrB Rμπ=在长度为l 的一段导线内部的磁场能量2222002400122416R m I r I l B W dV rldr R μμπμππ===⎰⎰⎰⎰8-22一同轴线由很长的直导线和套在它外面的同轴圆筒构成,它们之间充满了相对磁导率为1r μ=的介质,假定导线的半径为1R ,圆筒的内外半径分别为2R 和3R ,电流I 由圆筒流出,由直导线流回,并均匀地分布在它们的横截面上,试求:(1)在空间各个范围内的磁能密度表达式;(2)当12310, 4.0, 5.0,10R mm R mm R mm I A ====时,在每米长度的同轴线中所储存的磁场能量。

相关文档
最新文档