2013—2014交大附中初一(七年级)上学期数学期中试题_题型归纳

合集下载

2013—2014学年度七年级数学上册期中试题及答案

2013—2014学年度七年级数学上册期中试题及答案

2013——2014学年度第一学期期中考试七年级数学试卷(时间120分钟 满分150分)亲爱的同学,这份试卷将记录你的自信、沉着、智慧和收获. 我们一直投给你信任的目光。

请认真审题,看清要求,仔细答题. 预祝你取得好成绩!一、精心选一选(本大题共8题,每小题3分,共24分。

每题给出四个答案,其中只有一个符合题目的要求,请把选出的答案编号填在答卷上。

) 1.-3的相反数是A .3B .-3C .13 D .13- 2.已知矩形周长为20cm ,设长为x cm ,则宽为A. x -20B. 220x- C.x 220- D. x -103.下列化简,正确的是A .-(-3)= -3B .-[-(-10)]= -10C .-(+5)=5D .-[-(+8)]= -8 4.据统计,截止5月31日上海世博会累计入园人数为803万.这个数字用科学记数法表示为 A .8×106B .8.03×107C .8.03×106D .803×1045.绝对值大于2且小于5的所有整数的和是 A .0 B .7 C .14 D .28 6.若3<a<4时,化简|3||4|a a -+-= A .2a-7B .2a-1C .1D .77.已知代数式x +2y +1的值是3,则代数式2x +4y +1的值是 A .4B .5C .7D .不能确定8.观察下列各式:()1121230123⨯=⨯⨯-⨯⨯ ()1232341233⨯=⨯⨯-⨯⨯()1343452343⨯=⨯⨯-⨯⨯……计算:3×(1×2+2×3+3×4+…+99×100)=A .97×98×99B .98×99×100C .99×100×101D .100×101×102 二、细心填一填(本大题共10题,每小题3分,共30分)9.如果-20%表示减少20%,那么+6%表示10.单项式25xy -的系数是11.表示“x 与4的差的3倍”的代数式为_____________ 12.若15423-+-n m b a b a与的和仍是一个单项式,则m +=n13.多项式223(2)1mx y m x y ++-是四次三项式,则m 的值为 14.化简: =-++-)7()35(x y y x _______________. 15.若关于a ,b 的多项式()()2222222a ab bamab b ---++不含ab 项,则m=16.M 、N 是数轴上的二个点,线段MN 的长度为2,若点M 表示的数为﹣1,则点N 表示的数为 。

2024-2025学年上海市交通大学附属中学上学期七年级数学期中卷

2024-2025学年上海市交通大学附属中学上学期七年级数学期中卷

2024-2025学年上海市交通大学附属中学上学期七年级数学期中卷1.下列单项式的次数是次的是()A.B.C.D.2.下列语句中正确的是()A.是单项式B.C.(是有理数)D.底数是3.下列多项式能用完全平方公式因式分解的是()A.B.C.D.4.下列式子:①;②;③;④;⑤;⑥中符合平方差公式特征的有()A.个B.个C.个D.个5.若,则的值是()A.0B.1C.D.26.已知实数a,b,c,d满足,且,,则()A.a、c都是正数B.a、c都是负数C.a、c互为相反数D.以上都不对7.多项式的常数项是______8.多项式的公因式是________.9.关于、的单项式与是同类项,则______10.将整式按的升幂排列______11.已知,,则____.12.若,,则______.13.计算:______14.因式分解:______15.如果,那么_________.16.如果关于的二次三项式是完全平方式,那么的值是______.17.已知,则______18.式子,此时,叫做以为底的对数,记为(即).一般地,若(且,),则叫做以为底的对数,记为(即).如,则叫做以为底的对数,记为,则,同理,.由此可以得到下列式子:,根据以上的信息及运算关系,若,则______19.计算:20.计算:21.计算:22.计算:23.因式分解:24.分解因式25.先化简,再求值:,其中26.若的展开式中不含的二次项和一次项,求、的值.27.如图,已知长方形的边长为a,边长为b,正方形的边长为c,点G在上,用a、b、c表示下列图形的面积.(1)求的面积;(2)以G为圆心,以c为半径画弧,求图中虚线所围图形的面积(结果保留)28.阅读理解:条件①:无论代数式A中的字母取什么值,A都不小于常数M;条件②:代数式A中的字母存在某个取值,使得A等于常数M;我们把同时满足上述两个条件的常数M叫做代数式A的下确界.例如:,,(满足条件①)当时,(满足条件②)4是的下确界.又例如:,由于,所以,(不满足条件②)故4不是的下确界.请根据上述材料,解答下列问题:(1)求的下确界.(2)若代数式的下确界是1,求m的值.(3)求代数式的下确界.。

2013-2014学年七年级(上)期中数学试卷答案

2013-2014学年七年级(上)期中数学试卷答案

2013-2014学年七年级(上)期中数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.解:﹣的倒数等于﹣.故选D.点评:主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.要求掌握并熟练运用.2.解:∵﹣1<0,2>0,0=0,﹣(﹣3)>0,>0,∴正数有3个,故选:B.点评:本题考查了正数和负数,大于0是判断数是正数的标准,不能只看符号.3.解:67万=670 000=6.7×105.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.解:A、所含字母不同,不是同类项,选项错误;B、所含字母不同,不是同类项,选项错误;C、相同字母的指数不同,不是同类项,选项错误;D、正确.故选D.点评:本题考查了同类项定义,定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.5.解:A、2a+3b不属于同类项,不能合并,此选项错误;B、﹣a﹣a=﹣2a,原题计算错误,此选项错误;C、ab﹣ba=0,计算正确,此选项正确;D、5a3﹣4a3=a3,原题计算错误,此选项错误.故选:C.点评:此题考查合并同类项,注意正确判定和运算.6.解:近似数8.6的准确值a的取值范围是8.55≤a<8.65.故选C.点评:本题考查了近似数和有效数字:经过四舍五入得到的数称为近似数;从一个近似数左边第一个不为0的数数起到这个数完,所有这些数字都叫这个近似数的有效数字.7.解:设另一边为y,则2(x+y)=30,∴y=15﹣x,该模具的面积=x(15﹣x).故选A.点评:本题考查了列代数式,主要利用了长方形的周长与面积,是基础题.8.解:∵a<﹣1,∴a<﹣1<1<﹣a.故选D.点评:本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.也考查了数轴.9.解:a2+1一定是正数,所以①正确;近似数5.20精确到百分位,而5.2的精确到十分位,所以②错误;若ab>0,a+b<0,则a<0,b<0,所以③正确;代数式、是整式,是分式,所以④错误;若a<0,则|a|=﹣a,所以⑤正确.故选C.点评:本题考查了近似数和有效数字:经过四舍五入得到的数称为近似数;从一个近似数左边第一个不为0的数数起到这个数完,所以这些数字都叫这个近似数的有效数字.也考查了绝对值、有理数的运算和整式.10.解:根据题意得:A1=﹣1,A2=1,A3=﹣2,A4=2,…,当n为奇数时,An=﹣,当n为偶数时,An=,∴A2013=﹣=﹣1007,A2014==1007.故选:D.点评:此题主要考查了数字变化规律,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.二、填空题:(每题3分,共30分)11.解:以4.00米为标准,若小东跳出了3.85米,记作﹣0.15米,那么小东跳了4.22米,可记作0.22米,故答案为:0.22米.点评:本题考查了正数和负数,理解正负数表示相反意义的量是解题关键.12.解:∵(﹣1)3=﹣1,(﹣0.5)2=0.25,而|﹣1|=1,|﹣2|=2,∴﹣1>﹣2,∴﹣2<(﹣1)3<(﹣0.5)2.故答案为﹣2<(﹣1)3<(﹣0.5)2.点评:本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.13.解:∵单项式﹣0.25a3b的数字因数是﹣0.25,所有字母指数的和=3+1=4,∴此单项式的系数为﹣0.25,次数为4,∴(﹣0.25)×4=﹣1.故答案为:﹣1.点评:本题考查的是单项式,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解答此题的关键.14.解:∵单项式﹣5x m y3与7x2y n是同类项,∴m=2,n=3,则(m﹣n)2012=(﹣1)2012=1.故答案为:1.点评:本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.15.解:∵个位数字为m,十位数字为n,∴这个两位数是10n+m;故答案为:10n+m.点评:此题考查了列代数式,要能读懂题意,找到所求的量的等量关系,关键是掌握两位数=十位数字×10+个位数字.16.解:多项式a3+5﹣3ab2+b3﹣3a2b的各项分别为a3、5、﹣3ab2、b3、3a2b;按照字母a的降幂排列为:a3﹣3a2b﹣3ab2+b3+5,则第三项为:﹣3ab2;故答案是:﹣3ab2.点评:本题考查了多项式.我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.17.解:∵多项式3x3﹣2x2+x+|k|x2﹣5中不含x2的项,∴﹣2+|k|=0,解得:k=±2,故答案为:±2.点评:本题考查了对多项式的应用,关键是能根据题意得出算式﹣2+|k|=0.18.解:由题意得:1﹣m+2m﹣3=0,解得:m=2.故填2.点评:本题考查相反数及解方程的知识,比较简单,注意细心运算.19.解:∵a+b=﹣3,c+2b=﹣5,∴原式=a+2c﹣c+3b=a+c+b+2b=(a+b)+(c+2b)=﹣3﹣5=﹣8.故答案为:﹣8点评:此题考查了整式的加减,熟练掌握运算法则是解本题的关键.20.解:∵==×(1﹣),==×(﹣),==×(﹣),==×(﹣),…,∴前20个数的和=×(1﹣)+×(﹣)+×(﹣)+×(﹣)+…+×(﹣),=×(1﹣+﹣+﹣+﹣+…+﹣),=×(1﹣),=.故答案为:.点评:本题是对数字变化规律的考查,根据分母的特点写出乘积的形式并裂项是解题的关键,也是本题的难点.三、解答题(共90分)21.解:(1)原式=﹣4﹣6=﹣10;(2)原式=4×5+8÷4=20+2=22 ;(3)原式=﹣(﹣2)+9×(﹣2)=2﹣18=﹣16;(4)原式=﹣1﹣×(9+1)=﹣1﹣×10=﹣1﹣2=﹣3.点评:本题考查的是有理数的运算与整式的加减运算.注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.绝对值符号有括号的作用.22.解:(1)2a﹣5b﹣3a+b=﹣a﹣4b;(2)﹣2(2x2﹣xy)+4(x2+xy﹣1),=﹣4x2+2xy+4x2+4xy﹣4,=6xy﹣4.点评:本题考查了合并同类项法则,单项式乘多项式,整式化简一般先去括号,然后合并同类项,细心运算即可.23.解:原式=x﹣2×+2×y2﹣x+y2,=x﹣x,=﹣x+y2,当x=,y=﹣2时,原式=﹣+(﹣2)2=﹣+4=.点评:本题考查了整式的加减﹣化简求值;做题时要按照题目的要求进行,注意格式及符号的处理是正确解答本题的关键.24.解:(1)移项合并得:3x=﹣12,解得:x=﹣4;(2)去括号得:6x﹣3=2﹣2x﹣1,移项合并得:8x=4,解得:x=;(3)去分母得:12﹣2(2x﹣5)=3(3﹣x),去括号得:12﹣4x+10=9﹣3x,移项合并得:x=13.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.25.解:(1)根据题意得:A=(5x2﹣2x+7)﹣(x2+3x﹣2)=5x2﹣2x+7﹣x2﹣3x+2=4x2﹣5x+9;(2)∵(x﹣2)2=0,∴x﹣2=0,即x=2,则原式=16﹣10+9=15.点评:此题考查了整式的加减,熟练掌握运算法则是解本题的关键.26.解:(1).(2)C村与A村相距10+(﹣5)﹣(﹣3)=8(千米).(3)3+2+10=15(千米),答:邮递员一共骑车15千米.点评:本题考查了数轴和有理数的计算的应用,关键是能根据题意列出算式.27.解:解方程5(x﹣5)+2x=﹣4得,x=3;解方程2x+m﹣1=0得,x=,∵两方程有相同的解,∴=3,解得m=﹣5.点评:本题考查的是同解方程,熟知如果两个方程的解相同,那么这两个方程叫做同解方程是解答此题的关键.28.解:(1)如图:;(2)原式=﹣(2a﹣b)﹣(b﹣c)﹣2(c﹣a)=﹣2a+b﹣b+c﹣2c+2a=﹣c.点评:本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.也考查了数轴.29.(10分)某校七年级四个班的学生去植树,一班植a棵,二班植的棵树比一班的2倍少40棵,三班植的棵树比二班植的一半多30 棵,四班植的棵树比三班的一半多30棵(1)用a的代数式表示三班植树多少棵?(2)用a的代数式表示四个班共植树多少棵?(3)求a=80时,四个班中哪个班植的树最少?考点:列代数式;代数式求值.分析:(1)根据一班植树a棵,二班植树的棵数比一班的2倍少40棵得出二班植树(2a﹣40)棵,三班植树的棵数比二班的一半多30棵,得出三班植树=(2a﹣40)+30=(a+10)棵;(2)利用四班植树的棵数比三班的一半多30棵,得出四班植树=(a+10)+30=(a+35)棵,进而得出答案.(3)把a=80代入分别计算出四个班植树棵树即可.解答:解:(1)∵一班植树a棵,∴二班植树(2a﹣40)棵,三班植树=(2a﹣40)+30=(a+10)棵;四班植树=(a+10)+30=(a+35)棵,(2)四个班共植树:a+(2a﹣40)+(a+10)+(a+35)=(a+5)棵;(3)把a=80时,一班植树80棵,二班植树:2×80﹣40=120(棵),三班植树:80+10=90(棵),四班植树:80+35=75(棵),故三班植树最少.点评:本题主要考查了用字母列式表示数量关系及整式的化简和求值,分别表示出各班植树棵数是解题关键.30.(10分)如图,从左到右,在每个小格子中填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.8 &# x ﹣5 2 …(1)可求得x=8,第2006个格子中的数为﹣5;(2)判断:前m个格子中所填整数之和是否可能为2008?若能,求m的值;若不能,请说出理由;(3)如果a、b为前三个格子中的任意两个数,那么所有的|a﹣b|的和可以通过计算|8﹣&|+|8﹣#|+|&﹣#|+|#﹣&|+|&﹣8|+|8﹣&|得到,若a、b为前19个格子中的任意两个数,则所有的|a﹣b|的和为2436.考点:一元一次方程的应用;绝对值;有理数的加法.分析:(1)根据三个相邻格子的整数的和相等列式求出、x的值,再根据第9个数是2可得#=2,然后找出格子中的数每3个为一个循环组依次循环,在用2006除以3,根据余数的情况确定与第几个数相同即可得解.(2)可先计算出这三个数的和,再照规律计算.(3)由于是三个数重复出现,因此可用前三个数的重复多次计算出结果.解答:解:∵任意三个相邻格子中所填整数之和都相等,∴8+*+#=+#+x,解得x=8,+#+x=#+x﹣5,∴=﹣5,所以,数据从左到右依次为8、﹣5、#、8、﹣5、#、,第9个数与第三个数相同,即#=2,所以,每3个数“8、﹣5、2”为一个循环组依次循环,∵2006÷3=668…2,∴第2006个格子中的整数与第2个格子中的数相同,为﹣5.故答案为:8,﹣5.(2)8﹣5+2=5,2008÷5=401…3,且8﹣5=3,故前m个格子中所填整数之和可能为2008;m的值为:401×3+2=1205.(3)由于是三个数重复出现,那么前19个格子中,这三个数中,8出现了七次,﹣5和2都出现了6次.故代入式子可得:(|8+5|×6+|8﹣2|×6)×7+(|﹣5﹣2|×7+|2+5|×6)×6+(|﹣5﹣8|×7+|8+5|×7)×6=2436.故答案为2436.点评:本题考查了列一元一次方程解实际问题的运用,规律推导的运用,此类题的关键是找出是按什么规律变化的,然后再按规律找出字母所代表的数,再进行进一步的计算.。

2013-2014学年七年级上册数学期中试卷及答案【苏州市高新区】(精编文档).doc

2013-2014学年七年级上册数学期中试卷及答案【苏州市高新区】(精编文档).doc

【最新整理,下载后即可编辑】苏州市高新区2013-2014学年度第一学期期中测试七年级数学试卷2013年11月(满分:100分考试时间:100分钟)一、选择题(每小题2分,共20分,请将正确答案填写在下面表格里)1.-3的相反数是A.3 B.-3 C.13D.-132.下列比较大小的式子中,正确的是A.2<-(+5) B.-1>-0.01 C.33-<+D.-(-5)>+(-7)3.下列运算正确的是A、3a+2b=5abB、3a2b-3ba2=0C、3x2+2x3=5x5D、3m4-2m4=14.在-227,-π,0,3.14,0.1010010001,-313中,无理数的个数有A、1个B、2个C、3个D、4个5.下列说法不正确的是A.任何一个有理数的绝对值都是正数B.0既不是正数也不是负数C.有理数可以分为正有理数,负有理数和零D.0的绝对值等于它的相反数6.如图,数轴的单位长度为1.如果点B、C表示的数的绝对值相等,那么点A表示的数是A.-2 B.-5 C.-4 D.-6 7.数a、b、c在数轴上对应的位置如下图,化简a b c b+--的结果是A .a +cB .c -aC .-c -aD .a +2b -c8.若m -n =-1,则(m -n)2-2m +2n 的值是A .3B .2C .1D .-19.若a =2,b =a ,则a +b 为A .±4B .0C .0、±4D .以上都不对10.今年苹果的价格比去年便宜了20%,已知今年苹果的价格是每千克a 元,则去年的价格是每千克( )元A .(1+20%) aB .(1-20%)aC .120%a - D .120%a + 二、填空题(每小题2分,共20分)11.如果“+200元”表示收入200元,那么“-100元”的实际意义是_______.12.我国南海面积约为350万平方千米,“350万”这个数用科学记数法表示为_______13.写出在-212和1之间的负整数:_______. 14.已知(b +3)2+2a -=0,则b a 的值是_______.15.在数轴上,点A 表示数-1,距A 点2.5个单位长度的点表示的数是_______.16.如图,是一个简单的数值运算程序,当输入x 的值为-4时,则输出的数值为_______.17.若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2,则2a b m cd m ++-的值是_______.18.当k =_______时,多项式x 2+(k -1)xy -3y 2-2xy -5中不含xy 项.19.下列图形是由一些小正方形和实心圆按一定规律排列而成的,如图所示,按此规律排列下去,第n 个图形中有_______个实心圆.20.设[x)表示大于x 的最小整数,如[3)=4,[-1.2)=-1,则下列结论中正确的是_______.(填写所有正确结论的序号)①[0)=0;②[x)-x 的最小值是0;③[x)-x 的最大值是0;④存在实数x ,使[x)-x =0.5成立。

成都西南交通大学附属中学初中数学七年级上期中经典练习卷

成都西南交通大学附属中学初中数学七年级上期中经典练习卷

一、选择题1.甲乙两个超市为了促销一种定价相等的商品,甲超市连续两次降价10%,乙超市一次性降价20%,在哪家超市购买同样的商品最合算( )A .甲B .乙C .相同D .和商品的价格有关2.下列计算正确的是( )A .a 2+a 3=a 5B .a 2•a 3=a 6C .(a 2)3=a 6D .(ab )2=ab 2 3.如图,长方形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,∠BAF=600,那么∠DAE 等于( )A .45°B .30 °C .15°D .60°4.如图,从左面看该几何体得到的形状是( )A .B .C .D .5.下列运用等式的性质,变形正确的是( )A .若x=y ,则x-5=y+5B .若a=b ,则ac=bcC .若23a b c c =,则2a=3bD .若x=y ,则x y a b= 6.利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为a ,b ,c ,d ,那么可以转换为该生所在班级序号,其序号为32102222a b c d ⨯+⨯+⨯+⨯.如图2第一行数字从左到右依次为0,1,0,1,序号为3210021202125⨯+⨯+⨯+⨯=,表示该生为5班学生.表示6班学生的识别图案是( )A.B.C.D.7.某超市以同样的价格卖出甲、乙两件商品,其中甲商品获利20%,乙商品亏损20%,若甲商品的成本价是80元,则乙商品的成本价是()A.90元B.72元C.120元D.80元8.一个多项式加上3y2-2y-5得到多项式5y3-4y-6,则原来的多项式为().A.5y3+3y2+2y-1B.5y3-3y2-2y-6C.5y3+3y2-2y-1D.5y3-3y2-2y-1 9.已知x=2是关于x的一元一次方程mx+2=0的解,则m的值为()A.﹣1 B.0 C.1 D.210.已知|m+3|与(n﹣2)2互为相反数,那么m n等于()A.6 B.﹣6 C.9 D.﹣911.有理数a、b、c在数轴上的对应点如图,下列结论中,正确的是()A.a>c>b B.a>b>c C.a<c<b D.a<b<c12.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b|B.|ac|=ac C.b<d D.c+d>013.一周时间有604800秒,604800用科学记数法表示为()A.2⨯D.66.048100.604810⨯6.04810604810⨯B.5⨯C.614.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km.用科学记数法表示1.496亿是()A.7⨯D.80.1496101.49610⨯14.9610⨯C.81.49610⨯B.715.周长为68的长方形ABCD被分成7个全等的长方形,如图所示,则长方形ABCD的面积为()A.98 B.196 C.280 D.284二、填空题16.A ∠与B 的两边分别平行,且A ∠比B 的2倍少45°,则A ∠=__________.17.一个角与它的补角之差是20°,则这个角的大小是____. 18.如图,半径为1个单位长度的圆从点A 沿数轴向右滚动(无滑动)一周到达点B ,若点A 对应的数是-1,则点B 对应的数是______.19.观察以下一列数:3,54,79,916,1125,…则第20个数是_____. 20.如图,依次用火柴棒拼三角形:照这样的规律拼下去,拼n 个这样的三角形需要火柴棒______________根.21.若x 、y 互为相反数,a 、b 互为倒数,c 的绝对值等于2,则201820182()()2x y ab c +--+=_____. 22.一个边长为1的正方形,第一次截去正方形的一半,第二次截去剩下的一半,如此截下去,第六次后剩下的面积为_____米.23.如图,AB ∥ED ,AG 平分∠BAC ,∠ECF =80°,则∠F AG =_____.24.已知实数x ,y 满足150x y ++-=,则y x 的值是____.25.有理数a 、b 、c 在数轴上的位置如图所示,化简:-|c-a|+|b|+|a|-|c|= ________.三、解答题26.小明早晨跑步,他从自己家出发,向东跑了2km 到达小彬家,继续向东跑了1.5km 到达小红家,然后又向西跑了4.5km 到达学校,最后又向东跑回到自己家.(1)以小明家为原点,向东为正方向,用1个单位长度表示1km ,在图中的数轴上,分别用点A 表示出小彬家,用点B 表示出小红家,用点C 表示出学校的位置;(2)求小彬家与学校之间的距离;(3)如果小明跑步的速度是250米/分钟,那么小明跑步一共用了多长时间?27.如图,已知A ,B 两点在数轴上,点A 表示的数为-10,点B 到点O 的距离是点A到点O 距离的3倍,点M 以每秒3个单位长度的速度从点A 向右运动.点N 以每秒2个单位长度的速度从点O 向右运动(点M 、N 同时出发)(1)数轴上点B 对应的数是______.(2)经过几秒,点M 、点N 分别到原点O 的距离相等.28.阅读理解与计算:(1)用“⊕”定义新运算:对于任意有理数,a b ,都有21a b b ⊕=+.例如:2744117⊕=+=.则①填空:53⊕= ; ②当m 为有理数时,求()2m m ⊕⊕的值;(2)已知,m n 互为相反数,,x y 互为倒数,1=a ,试求()()201220122a m n xy -++-的值.29.把下列各数填在相应的集合里:1,﹣1,﹣2013,0.5,110,﹣13,﹣0.75,0,2014,20%,π. 正数集合:{ …}负数集合:{ …}整数集合:{ …}正分数集合:{ …}.30.将一副三角板中的两块直角板中的两个直角顶点重合在一起,即按如图所示的方式叠放在一起,其中∠A =60°,∠B =30,∠D =45°.(1)若∠BCD =45°,求∠ACE 的度数.(2)若∠ACE =150°,求∠BCD 的度数.(3)由(1)、(2)猜想∠ACE 与∠BCD 存在什么样的数量关系并说明理由.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题二、填空题16.或【解析】【分析】由∠A与∠B的两边分别平行可得到∠A=∠B或者∠A与∠B互补再结合已知条件即可求出∠A的度数【详解】∵∠A和∠B的两边分别平行∴∠A=∠B或∠A+∠B=180°当∠A=∠B时∠A=17.100°【解析】【分析】设这个角为α根据互为补角的两个角的和等于180°表示出它的补角然后列出方程求出α即可【详解】设这个角为α则它的补角180°-α根据题意得α-(180°-α)=20°解得:α=18.-1+2π【解析】试题解析:由圆的周长计算公式得:AB的长度为:C=2πd=2π点B对应的数是2π﹣119.【解析】【分析】观察已知数列得到一般性规律写出第20个数即可【详解】解:观察数列得:第n个数为则第20个数是故答案为【点睛】本题考查了规律型:数字的变化类弄清题中的规律是解答本题的关键20.【解析】【分析】首先正确数出前三个图形中的火柴棒的根数:第一个三角形是3根火柴;第二个三角形是5根火柴第三个三角形是7根火柴依次多2个可推出第n个这样的三角形需要多少根火柴【详解】∵第一个三角形是321.3【解析】【分析】根据xy互为相反数ab互为倒数c的绝对值等于2得出x+y=0ab=1c=±2代入计算即可【详解】由题意知或则所以原式=0﹣1+4=3故答案为:3【点睛】本题主要考查相反数倒数及绝对22.【解析】【分析】【详解】解:第一次截后剩下米;第二次截后剩下米;第三次截后剩下米;则第六次截后剩下=米故答案为:23.140°【解析】【分析】根据平行线的性质求出∠BAC求出∠BAF和∠BAG即可得出答案【详解】∵AB∥ED∠ECF=80°∴∠BAC=∠FCE=80°∴∠BAF=180°﹣80°=100°∵AG平分24.【解析】∵∴且∴∴点睛:(1)两个非负数的和为0则这两个数都为0;(2)的奇数次方仍为25.b+2c【解析】【分析】由图可知c-a<0根据正数的绝对值等于它本身负数的绝对值等于它的相反数分别求出绝对值再根据整式的加减运算去括号合并同类项即可【详解】由图可知c<00<a<b则c-a<0原式=三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题16.或【解析】【分析】由∠A与∠B的两边分别平行可得到∠A=∠B或者∠A与∠B互补再结合已知条件即可求出∠A的度数【详解】∵∠A和∠B的两边分别平行∴∠A=∠B或∠A+∠B=180°当∠A=∠B时∠A=解析:45︒或105︒【解析】【分析】由∠A与∠B的两边分别平行,可得到∠A=∠B或者∠A与∠B互补,再结合已知条件即可求出∠A的度数.【详解】∵∠A和∠B的两边分别平行∴∠A=∠B或∠A+∠B=180°,当∠A=∠B时,∠A=45°当∠A+∠B=180°时∵∠A比∠B的两倍少45°,∴∠A=2∠B-45°,∵∠A=2∠B-45°,∠A+∠B=180°∴∠A=105︒.综上可知∠A的度数为45︒或105︒故答案为:45︒或105︒.【点睛】此题考查了平行线的性质与方程组的解法.此题难度不大,解题的关键是由∠A和∠B的两边分别平行,即可得∠A=∠B或∠A+∠B=180°,注意分类讨论思想的应用.17.100°【解析】【分析】设这个角为α根据互为补角的两个角的和等于180°表示出它的补角然后列出方程求出α即可【详解】设这个角为α则它的补角180°-α根据题意得α-(180°-α)=20°解得:α=解析:100°【解析】【分析】设这个角为α,根据互为补角的两个角的和等于180°表示出它的补角,然后列出方程求出α即可.【详解】设这个角为α,则它的补角180°-α,根据题意得,α-(180°-α)=20°,解得:α=100°,故答案为100°.【点睛】本题考查了余角和补角的概念,是基础题,设出这个角并表示出它的补角是解题的关键.18.-1+2π【解析】试题解析:由圆的周长计算公式得:AB的长度为:C=2πd=2π点B对应的数是2π﹣1【解析】试题解析:由圆的周长计算公式得:AB 的长度为:C=2πd=2π,点B 对应的数是2π﹣1.19.【解析】【分析】观察已知数列得到一般性规律写出第20个数即可【详解】解:观察数列得:第n 个数为则第20个数是故答案为【点睛】本题考查了规律型:数字的变化类弄清题中的规律是解答本题的关键 解析:41400【解析】【分析】 观察已知数列得到一般性规律,写出第20个数即可.【详解】解:观察数列得:第n 个数为221n n ,则第20个数是41400. 故答案为41400. 【点睛】本题考查了规律型:数字的变化类,弄清题中的规律是解答本题的关键. 20.【解析】【分析】首先正确数出前三个图形中的火柴棒的根数:第一个三角形是3根火柴;第二个三角形是5根火柴第三个三角形是7根火柴依次多2个可推出第n个这样的三角形需要多少根火柴【详解】∵第一个三角形是3解析:21n【解析】【分析】首先正确数出前三个图形中的火柴棒的根数:第一个三角形是3根火柴;第二个三角形是5根火柴,第三个三角形是7根火柴, 依次多2个,可推出第n个这样的三角形需要多少根火柴.【详解】∵第一个三角形是3根火柴;第二个三角形是5根火柴,第三个三角形是7根火柴,发现依次多2个,即可推出第n个这样的三角形需要2n+1根火柴.【点睛】本题考查图形的变换规律,得到每个图形中火柴的根数与图形的个数的关系式解决本题的关键.21.3【解析】【分析】根据xy 互为相反数ab 互为倒数c 的绝对值等于2得出x+y=0ab=1c=±2代入计算即可【详解】由题意知或则所以原式=0﹣1+4=3故答案为:3【点睛】本题主要考查相反数倒数及绝对解析:3【解析】根据x 、y 互为相反数,a 、b 互为倒数,c 的绝对值等于2得出x+y=0、ab=1,c=±2,代入计算即可.【详解】由题意知x y 0+=,ab 1=,c 2=或c 2=-,则2c 4=,所以原式()20182018014--+=0﹣1+4=3,故答案为:3.【点睛】本题主要考查相反数、倒数及绝对值的计算,掌握互为相反数的两数和为0、互为倒数的两数积为1是解题的关键. 22.【解析】【分析】【详解】解:第一次截后剩下米;第二次截后剩下米;第三次截后剩下米;则第六次截后剩下=米故答案为: 解析:164【解析】【分析】【详解】 解:第一次截后剩下12米; 第二次截后剩下212⎛⎫ ⎪⎝⎭米; 第三次截后剩下312⎛⎫ ⎪⎝⎭米; 则第六次截后剩下612⎛⎫ ⎪⎝⎭= 164米. 故答案为:164. 23.140°【解析】【分析】根据平行线的性质求出∠BAC 求出∠BAF 和∠BAG 即可得出答案【详解】∵AB∥ED∠ECF=80°∴∠BAC=∠FCE=80°∴∠BAF=180°﹣80°=100°∵AG 平分解析:140°.【解析】【分析】根据平行线的性质求出∠BAC ,求出∠BAF 和∠BAG ,即可得出答案.∵AB ∥ED ,∠ECF =80°,∴∠BAC =∠FCE =80°,∴∠BAF =180°﹣80°=100°,∵AG 平分∠BAC ,∴∠BAG =12∠BAC =40°, ∴∠F AG =∠BAF +∠BAG =100°+40°=140°,故答案为140°.【点睛】本题考查了平行线的性质和角平分线定义,能正确根据平行线的性质求出∠BAC 是解此题的关键,注意:两直线平行,内错角相等.24.【解析】∵∴且∴∴点睛:(1)两个非负数的和为0则这两个数都为0;(2)的奇数次方仍为解析:1-【解析】50y -=,∴10x +=且50y -=,∴1?5x y =-=,, ∴5(1)1y x =-=-.点睛:(1)两个非负数的和为0,则这两个数都为0;(2)1-的奇数次方仍为1-. 25.b+2c 【解析】【分析】由图可知c-a<0根据正数的绝对值等于它本身负数的绝对值等于它的相反数分别求出绝对值再根据整式的加减运算去括号合并同类项即可【详解】由图可知c<00<a <b 则c-a<0原式=解析:b+2c【解析】【分析】由图可知, c-a<0,根据正数的绝对值等于它本身,负数的绝对值等于它的相反数,分别求出绝对值,再根据整式的加减运算,去括号,合并同类项即可.【详解】由图可知c<0,0<a <b ,则c-a<0,原式=(c-a )+b+a-(-c)=c-a+b+a+c=b+2c .【点睛】本题考查的知识点是整式的加减和绝对值,解题关键是熟记整式的加减运算实际上就是去括号、合并同类项.三、解答题26.(1)画图见解析;(2)小彬家与学校之间的距离是3km ;(3)小明跑步共用了36分钟.【解析】试题分析:(1)根据题意画出即可;(2)计算 2﹣(﹣1)即可求出答案;(3)求出每个数的绝对值,相加可求小明一共跑了的路程,再根据时间=÷速 度即可求出答案.试题解析:(1)如图所示:(2)小彬家与学校的距离是:2﹣(﹣1)=3(km ).故小彬家与学校之间的距离是 3km ;(3)小明一共跑了(2+1.5+1)×2=9(km ), 小明跑步一共用的时间是:9000÷250=36(分钟).答:小明跑步一共用了 36 分钟长时间.27.(1)30(2)2秒或10秒【解析】【分析】(1)根据点A 表示的数为-10,OB=3OA ,可得点B 对应的数;(2)分①点M 、点N 在点O 两侧;②点M 、点N 重合两种情况讨论求解;【详解】(1)∵OB=3OA=30.故B 对应的数是30;(2)设经过x 秒,点M 、点N 分别到原点O 的距离相等;①点M 、点N 在点O 两侧,则10-3x=2x ,解得x=2;②点M 、点N 重合,则3x-10=2x ,解得x=10.所以经过2秒或10秒,点M 、点N 分别到原点O 的距离相等.【点睛】此题主要考查了一元一方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.28.(1)①10;②26;(2)2【解析】【分析】(1)根据新定义运算法则可得:①53⊕=32+1;②()2221551m m ⊕+=⊕=+;(2)根据互为相反数和互为倒数的两个数的关系,和绝对值定义可得:m+n=0,xy=1,a 2=1,代入式子可得.【详解】解:(1)根据新定义运算法则可得:①53⊕=32+1=10故答案为:10②()222155126m m ⊕+=⊕=+=(2)因为,m n 互为相反数,,x y 互为倒数,1=a ,所以m+n=0,xy=1,a 2=1所以()()201220122a m n xy -++-=1-0+1=2【点睛】考核知识点:新定义运算,有理数运算.理解新定义运算法则,掌握有理数运算法则是关键. 29.见解析.【解析】【分析】根据有理数的分类,可得答案.【详解】正数集合:{ 1,0.5,110,2014,20%,π…} 负数集合:{﹣1,﹣2013,13-,﹣0.75…}整数集合:{1,﹣1,﹣2013,0,2014…}正分数集合:{0.5,110,20%…}, 故答案为1,0.5,110,2014,20%,π;﹣1,﹣2013,13-,﹣0.75;1,﹣1,﹣2013,0,2014;0.5,110,20%. 【点睛】本题考查了有理数,利用有理数的分类是解题关键. 30.(1)∠ACE =135°;(2)∠BCD =30°;(3)∠ACE 与∠BCD 互补.理由见解析.【解析】【分析】(1)先求得∠ACD的度数,即可得到∠ACE的度数;(2)先求得∠ACD的度数,即可得到∠BCD的度数;(3)依据∠BCD=∠ACB﹣∠ACD=90°﹣∠ACD,∠ACE=∠DCE+∠ACD=90°+∠ACD,即可得到∠ACE与∠BCD互补.【详解】解:(1)∵∠BCD=45°,∠ACB=90°,∴∠ACD=∠ACB﹣∠DCB=45°,又∵∠DCE=90°,∴∠ACE=∠ACD+∠DCE=45°+90°=135°;(2)∵∠ACE=150°,∠DCE=90°,∴∠ACD=∠ACE﹣∠DCE=150°﹣90°=60°,又∵∠ACB=90°,∴∠BCD=∠ACB﹣∠ACD=90°﹣60°=30°;(3)由(1)、(2)猜想∠ACE与∠BCD互补.理由:∵∠BCD=∠ACB﹣∠ACD=90°﹣∠ACD,∠ACE=∠DCE+∠ACD=90°+∠ACD,∴∠BCD+∠ACE=90°﹣∠ACD+90°+∠ACD=180°,∴∠ACE与∠BCD互补.【点睛】此题主要考查了角的计算,关键是理清图中角的和差关系.。

2013-2014学年度第一学期七年级数学期中试卷( 沪科版)

2013-2014学年度第一学期七年级数学期中试卷( 沪科版)

2013-2014学年度第一学期七年级数学期中试卷亲爱的同学,这份试卷将再次记录你的自信、沉着、智慧和收获. 我们一直投给你信任的目光.请认真审题,看清要求,仔细答题. 预祝你取得好成绩!一、选择题(每题3分,共30分)1.在-1,0,2,-3这四个数中,绝对值最小的数是 ………………………………【 ▲ 】 A.-1 B.0 C.2 D.-32.多项式2321xy xy -+的次数及最高次项的系数分别是…………………………【 ▲ 】A .3 3-,B .3 2-,C .3 5-,D .3 2, 3.下列各对数中,互为相反数的是 …………………………………………………【 ▲ 】 A.()2--和2 B. )(和3)3(+--+ C. 221-和 D. ()55----和 4.化简()()2x y y x --+得到的最后结果等于 ……………………………………【 ▲ 】 A.2x y - B.x y - C.2x y -- D.x y -+5.由四舍五入法得到的近似数6.50×104是精确到 …………………………………【 ▲ 】 A.百分位 B.百位 C.十位 D.个位6.已知关于x 的方程290x a +-=的解是2x =,则a 的值为…………………【 ▲ 】 A.2 B.3 C.4 D.57.下列式子中,正确的是 ……………………………………………………………【 ▲ 】 A.4657-<- B.10.42-<- C.()()4334->- D.()()3432->-学校 班级 姓名 考号_8.若()b a b a 则,032122=-+-等于………………………………………………【 ▲ 】A.18 B. 21- C. 6 D. 16 9.某商店积压了一批商品,为尽快售出,该商店采取如下销售方案:将原价每件m 元,加价50%,再做两次降价处理,第一次降价30%,第二次降价10%.经过两次降价后的价格n 元与原价m 元比较 ……………………………………………………………………………………【 ▲ 】 A.原价m 高B.两次降价后的价格n 高C.两个价格相同D.不能确定10.把地球看成一个表面光滑的球体,假设沿地球赤道绕紧一圈钢丝,然后把钢丝加长10米,使钢丝圈沿赤道处处高出球面,留出一些缝隙,那么这个缝隙可以通过最大的是 ………………………………………………………………………………………【 ▲ 】 A.一只蚂蚁 B.一只高0.4米狗 C.一个高1.5米的人 D.一辆高4米的客车二、填空题(每题3分,共18分)11.某种零件设计图形上标明的要求是Φ20±0.02(Φ表示直径,单位:mm).某质检员检查一个这种零件的直径是19.9mm ,则该零件 .(填“合格”,或“不合格”) 12.若53mx y 与1234nxy --是同类项,则m n += . 13.下面是一个简单的数值运算程序,当输入x 的值为-3时,则输出的数值是 .14.某种型号的纸100张厚度约为lcm ,那么这种型号的纸13亿张厚度约为 m (用科学记数法表示).15.若22P y =-,23Q y =+,21P Q -=,则y 的值等于 .16.汪老师与学生们做“同时猜两数”游戏,他说:同座的两位同学在1—9之间各选取一个幸运数字,第一个同学将自己选定的幸运数字减去1后乘以5,再减去2后乘以2,再将得到的结果再加上第二个同学的幸运数字,只要将最后的结果告诉他,他就能同时猜出这两位同学的幸运数字各是多少.如果按照以上的规则得到的最后结果是44,那么第一、二位同学选定的幸运数字之和..是 .三、(本题共3小题,共24分) 17. 计算:(每小题5分,共10分) (1) ()2243033⎛⎫-÷+-⨯- ⎪⎝⎭; (2)()313248522⨯-÷+-+-.18.(7分)先化简,再求值:()()()2225325232a a a a a +-+---,其中2a =-.19.(7分)解方程: 2151164x x -+-=四、(本题共8分) 20.观察与探究:同样大小的黑色棋子按如图所示的规律摆放:(1)第5个图形有多少颗黑色棋子?(2)第几个图形有2013颗棋子?说明理由.第1个 第2个 第3个 第4个五、(本题共10分)21.理解与应用:某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):六、(本题共10分)22.理解与思考:(1)求出下列每对数在数轴上的对应点间的距离:①3与-2在数轴上对应点间的距离是,②-7与-3在数轴上对应点间的距离是,③4与6在数轴上对应点间的距离是,④-3与2在数轴上对应点间的距离是 . (2)若数轴上的点A表示的数为x,点B表示的数为-1,则A与B两点间的距离可以表示为 .(3)结合数轴直接写出x -3+x +2的最小值,并写出取得最小值时x的取值范围.。

七年级上册西安交通大学附属中学数学期末试卷专题练习(解析版)

七年级上册西安交通大学附属中学数学期末试卷专题练习(解析版)

七年级上册西安交通大学附属中学数学期末试卷专题练习(解析版)一、初一数学上学期期末试卷解答题压轴题精选(难)1.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离记作AB.当A、B两点中有一点为原点时,不妨设A点在原点.如图①所示,则AB=OB=|b|=|a﹣b|.当A、B两点都不在原点时:⑴如图②所示,点A、B都在原点的右边,不妨设点A在点B的左侧,则AB=OB﹣OA=|b|﹣|a|=b﹣a=|b﹣a|=|a﹣b|⑵如图③所示,点A、B都在原点的左边,不妨设点A在点B的右侧,则AB=OB﹣OA=|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|⑶如图④所示,点A、B分别在原点的两边,不妨设点A在点O的右侧,则AB=OB+OA=|b|+|a|=a+(﹣b)=|a﹣b|回答下列问题:(1)综上所述,数轴上A、B两点之间的距离AB=________.(2)数轴上表示2和﹣4的两点A和B之间的距离AB=________.(3)数轴上表示x和﹣2的两点A和B之间的距离AB=________,如果AB=2,则x的值为________.(4)若代数式|x+2|+|x﹣3|有最小值,则最小值为________.【答案】(1)(2)6(3);0或-4(4)5【解析】【解答】(1)综上所述,数轴上A、B两点之间的距离 (2)数轴上表示2和-4的两点A和B之间的距离 (3)数轴上表示和-2的两点A和B之间的距离如果,则的值为或由题意可知:当x在−2与3之间时,此时,代数式|x+2|+|x−3|取最小值,最小值为故答案为:(1);(2)6;(3),0或-4;(4)5.【分析】(1)发现规律:在数轴上两点之间的距离为这两点所表示的数的差的绝对值,故可求解;(2)根据(1),即可直接求出结果;(3)先根据(1)即可表示出AB;当AB=2时,得到方程,解出x的值即可;(4)|x+2|+|x-3|表示数轴上一点到-2与3两点的距离的和,当这点是-2或5或在它们之间时和最小,最小距离是-2与3之间的距离。

2013-2014年陕西省西安交大附中七年级(下)期中数学试卷(解析版)

2013-2014年陕西省西安交大附中七年级(下)期中数学试卷(解析版)

2013-2014学年陕西省西安交大附中七年级(下)期中数学试卷一、选择题.1.(3分)计算(﹣a2)3的结果是()A.a5B.﹣a5C.a6D.﹣a62.(3分)下列各式计算正确的是()A.x4+x4=2x8B.(x2y)3=x6yC.(x2)3=x5D.﹣x3•(﹣x)5=x83.(3分)如图,AB∥CD,下列结论中错误的是()A.∠1=∠2B.∠5+∠2=180°C.∠3+∠4=180°D.∠3+∠2=180°4.(3分)在电子显微镜下测得一个圆球体细胞的直径是5×10﹣5cm,2×103个这样的细胞排成的细胞链的长是()A.10﹣2cm B.10﹣1cm C.10﹣3cm D.10﹣4cm 5.(3分)下列各式可以用平方差公式计算的是()A.(m+n)﹣(m﹣n)B.(2x+3)(3x﹣2)C.(﹣4x﹣3)(4x﹣3)D.(a2﹣2bc2)(a2+2b2c)6.(3分)下列计算中错误的有()①4a3b÷2a2=2a,②﹣12x4y3÷2x2y=6x2y2,③﹣16a2bc÷a2b=﹣4c,④(﹣ab2)3÷(﹣ab2)=a2b4.A.1个B.2个C.3个D.4个7.(3分)若a=0.32,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣)0,则()A.a<b<c<d B.b<a<d<c C.a<d<c<b D.c<a<d<b8.(3分)如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠A B.∠1=∠2C.∠D=∠DCE D.∠D+∠ACD=180°9.(3分)如图表示某加工厂今年前5个月每月生产某种产品的产量c(件)与时间t(月)之间的关系,则对这种产品来说,该厂()A.1月至3月每月产量逐月增加,4,5两月产量逐月减小B.1月至3月每月产量逐月增加,4,5两月产量与3月持平C.1月至3月每月产量逐月增加,4,5两月产量均停止生产D.1月至3月每月产量不变,4,5两月均停止生产10.(3分)小强和小敏练短跑,小敏在小强前面12米.如图,OA、BA分别表示小强、小敏在短跑中的距离S(单位:米)与时间t(单位:秒)的变量关系的图象.根据图象判断小强的速度比小敏的速度每秒快()A.2.5米B.2米C.1.5D.1米二、填空题.11.(3分)如图,若AB∥CD,∠C=50°,则∠A+∠E=.12.(3分)正方形的边长是3,若边长增加x,则面积增加y的函数关系式为.13.(3分)2﹣2﹣(π﹣3)0=.14.(3分)任意给定一个非零数,按下列程序计算,最后输出的结果是(用含m的代数式表示).15.(3分)如图,∠1=∠2=35°,则AB∥CD,理由是.16.(3分)在式子①(﹣2y﹣1)2;②(﹣2y﹣1)(﹣2y+1);③(﹣2y+1)(2y+1);④(2y﹣1)2;⑤(2y+1)2中相等的是.三、解答题:17.(16分)计算:(1)2(y6)2﹣(y4)3(2)(2b+3b)2﹣(2a﹣b)(2a+b)(3)(x+7)(x﹣6)﹣(x﹣2)(x+1)(4)(3x2)2•(﹣4y3)÷(6xy)2.18.(4分)化简求值:(a+b)2﹣2a(b﹣1)﹣a2b÷b,其中a=﹣2,b=2.19.(6分)如图,点E在DF上,点B在AC上,∠1=∠2,∠C=∠D,试说明:AC∥DF,将过程补充完整.解:∵∠1=∠2(已知)∠1=∠3()∴∠2=∠3(等量代换)∴EC∥DB()∴∠C=∠ABD()又∵∠C=∠D(已知)∴∠D=∠ABD()∴AC∥DF()20.(6分)如图,∠2=∠CFE,直线EF别交AB、CD于点E、F,∠AEG=∠FEG,交CD于G,已知∠1=40°,求∠2的度数.21.(6分)(1)已知2x+3y﹣4=0,求9x•27y的值;(2)若102a=200,10b=5﹣1,求9a÷3b的值.22.(4分)一个角的余角比它的补角的还少20°,求这个角.23.(10分)小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况(如图所示)(1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量?(2)10时和13时,他分别离家多远?(3)他到达离家最远的地方是什么时间?离家多远?(4)11时到12时他行驶了多少千米?(5)他可能在哪段时间内休息,并吃午餐?(6)他由离家最远的地方返回时的平均速度是多少?2013-2014学年陕西省西安交大附中七年级(下)期中数学试卷参考答案与试题解析一、选择题.1.(3分)计算(﹣a2)3的结果是()A.a5B.﹣a5C.a6D.﹣a6【解答】解:(﹣a2)3=﹣a2×3=﹣a6.故选:D.2.(3分)下列各式计算正确的是()A.x4+x4=2x8B.(x2y)3=x6yC.(x2)3=x5D.﹣x3•(﹣x)5=x8【解答】解:A、x4+x4=2x4,故本选项错误;B、(x2y)3=x6y3,故本选项错误;C、(x2)3=x6,故本选项错误;D、﹣x3•(﹣x)5=x8,故本选项正确;故选:D.3.(3分)如图,AB∥CD,下列结论中错误的是()A.∠1=∠2B.∠5+∠2=180°C.∠3+∠4=180°D.∠3+∠2=180°【解答】解:此题主要根据平行线的性质进行推理证明.因为该题只指明了AB ∥CD,A、根据两条直线平行,内错角相等,即可得到∠1=∠2是正确的;B、根据A的结论结合平角的定义,即可得到∠5+∠2=180°是正确的;C、根据两条直线平行,同旁内角互补,即可得到∠3+∠4=180°是正确的;D、因为EF和GH的位置不确定,故结论不一定成立.故选:D.4.(3分)在电子显微镜下测得一个圆球体细胞的直径是5×10﹣5cm,2×103个这样的细胞排成的细胞链的长是()A.10﹣2cm B.10﹣1cm C.10﹣3cm D.10﹣4cm【解答】解:5×10﹣5×2×103=10﹣1cm.故选B.5.(3分)下列各式可以用平方差公式计算的是()A.(m+n)﹣(m﹣n)B.(2x+3)(3x﹣2)C.(﹣4x﹣3)(4x﹣3)D.(a2﹣2bc2)(a2+2b2c)【解答】解:A、(m+n)﹣(m﹣n)=m+n﹣m+n=2n,不符合平方差公式;B、(2x+3)(3x﹣2)=6x2+5x﹣6,不符合平方差公式;C、(﹣4x﹣3)(4x﹣3)=﹣(4x+3)(4x﹣3)=﹣[(4x)2﹣32],符合平方差公式;D、(a2﹣2bc2)(a2+2b2c)=a4+2a2bc2﹣2a2b2c﹣4b3c3,不符合平方差公式.故选:C.6.(3分)下列计算中错误的有()①4a3b÷2a2=2a,②﹣12x4y3÷2x2y=6x2y2,③﹣16a2bc÷a2b=﹣4c,④(﹣ab2)3÷(﹣ab2)=a2b4.A.1个B.2个C.3个D.4个【解答】解:①4a3b÷2a2=2ab,原式计算错误,故本项正确;②﹣12x4y3÷2x2y=﹣6x2y2,原式计算错误,故本项正确;③﹣16a2bc÷a2b=﹣64c,原式计算错误,故本项正确;④(﹣ab2)3÷(﹣ab2)=a2b4,计算正确,故本项错误.则错误的有:①②③,共3个.故选:C.7.(3分)若a=0.32,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣)0,则()A.a<b<c<d B.b<a<d<c C.a<d<c<b D.c<a<d<b 【解答】解:a=0.32=0.09,b=﹣3﹣2=﹣()2=﹣;c=(﹣)﹣2=(﹣3)2=9,d=(﹣)0=1,∵﹣<0.09<1<9,∴b<a<d<c,故选:B.8.(3分)如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠A B.∠1=∠2C.∠D=∠DCE D.∠D+∠ACD=180°【解答】解:A、∠3=∠A,无法得到,AB∥CD,故此选项错误;B、∠1=∠2,根据内错角相等,两直线平行可得:AB∥CD,故此选项正确;C、∠D=∠DCE,根据内错角相等,两直线平行可得:BD∥AC,故此选项错误;D、∠D+∠ACD=180°,根据同旁内角互补,两直线平行可得:BD∥AC,故此选项错误;故选:B.9.(3分)如图表示某加工厂今年前5个月每月生产某种产品的产量c(件)与时间t(月)之间的关系,则对这种产品来说,该厂()A.1月至3月每月产量逐月增加,4,5两月产量逐月减小B.1月至3月每月产量逐月增加,4,5两月产量与3月持平C.1月至3月每月产量逐月增加,4,5两月产量均停止生产D.1月至3月每月产量不变,4,5两月均停止生产【解答】解:由图中可以看出,函数图象在1月至3月,图象由低到高,说明随着月份的增加,产量不断提高,从3月份开始,函数图象的高度不再变化,说明产量不再变化,和3月份是持平的.故选:B.10.(3分)小强和小敏练短跑,小敏在小强前面12米.如图,OA、BA分别表示小强、小敏在短跑中的距离S(单位:米)与时间t(单位:秒)的变量关系的图象.根据图象判断小强的速度比小敏的速度每秒快()A.2.5米B.2米C.1.5D.1米【解答】解:根据图象得小强跑64米用了8秒,所以小强的速度==8米/秒,小敏跑了(64﹣12)米用了8秒,所以小敏的速度==6.5米/秒,所以强的速度比小敏的速度每秒快8米/秒﹣6.5米/秒=1.5米/秒.故选:C.二、填空题.11.(3分)如图,若AB∥CD,∠C=50°,则∠A+∠E=50°.【解答】解:如图,∵AB∥CD,∠C=50°,∴∠1=∠C=50°,∴∠A+∠E=∠1=50°.故答案为:50°.12.(3分)正方形的边长是3,若边长增加x,则面积增加y的函数关系式为y=x2+6x.【解答】解:新正方形的边长是(x+3),则y=(x+3)2﹣32=x2+6x.13.(3分)2﹣2﹣(π﹣3)0=﹣.【解答】解:原式=()2﹣1=﹣,故答案为:﹣.14.(3分)任意给定一个非零数,按下列程序计算,最后输出的结果是m+1(用含m的代数式表示).【解答】解:(m2﹣m)÷m+2=m﹣1+2=m+1.15.(3分)如图,∠1=∠2=35°,则AB∥CD,理由是同位角相等,两直线平行.【解答】解:∵∠2与∠3是对顶角,∴∠3=∠2.∵∠1=∠2=35°,∴∠1=∠3=35°,∴AB∥CD.故答案为:同位角相等,两条直线平行.16.(3分)在式子①(﹣2y﹣1)2;②(﹣2y﹣1)(﹣2y+1);③(﹣2y+1)(2y+1);④(2y﹣1)2;⑤(2y+1)2中相等的是①⑤.【解答】解:由题意,①(﹣2y﹣1)2=4y2+4y+1,②(﹣2y﹣1)(﹣2y+1)=﹣(2y+1)(1﹣2y)=4y2﹣1,③(﹣2y+1)(2y+1)=1﹣4y2,④(2y﹣1)2=4y2﹣4y+1,⑤(2y+1)2=4y2+4y+1,所以①⑤相等.故答案为:①⑤.三、解答题:17.(16分)计算:(1)2(y6)2﹣(y4)3(2)(2b+3b)2﹣(2a﹣b)(2a+b)(3)(x+7)(x﹣6)﹣(x﹣2)(x+1)(4)(3x2)2•(﹣4y3)÷(6xy)2.【解答】解:(1)原式=2y12﹣y12=y12;(2)原式=25b2﹣(4a2﹣b2)=26b2﹣4a2;(3)原式=x2﹣6x+7x﹣42﹣x2﹣x+2x+2=2x﹣40;(4)原式=9x4•(﹣4y3)÷(36x2y2)=﹣x2y.18.(4分)化简求值:(a+b)2﹣2a(b﹣1)﹣a2b÷b,其中a=﹣2,b=2.【解答】解:原式=a2+2ab+b2﹣2ab+2a﹣a2=b2+2a,当a=﹣2,b=2时,原式=0.19.(6分)如图,点E在DF上,点B在AC上,∠1=∠2,∠C=∠D,试说明:AC∥DF,将过程补充完整.解:∵∠1=∠2(已知)∠1=∠3(对顶角相等)∴∠2=∠3(等量代换)∴EC∥DB(同位角相等,两直线平行)∴∠C=∠ABD(两直线平行,同位角相等)又∵∠C=∠D(已知)∴∠D=∠ABD(等量代换)∴AC∥DF(内错角相等,两直线平行)【解答】解:∵∠1=∠2(已知)∠1=∠3(对顶角相等)∴∠2=∠3(等量代换)∴EC∥DB(同位角相等,两直线平行)∴∠C=∠ABD(两直线平行,同位角相等)又∵∠C=∠D(已知)∴∠D=∠ABD(等量代换)∴AC∥DF(内错角相等,两直线平行)故答案为:对顶角相等;同位角相等,两条直线平行;两条直线平行,同位角相等;等量代换;内错角相等,两条直线平行.20.(6分)如图,∠2=∠CFE,直线EF别交AB、CD于点E、F,∠AEG=∠FEG,交CD于G,已知∠1=40°,求∠2的度数.【解答】解:∵∠2=∠CFE,∴AB∥CD,∴∠AEG=∠1=∠FEG,∵∠AEF+∠2=180°,∴2∠1+∠2=180°,∴∠2=180°﹣2∠1=180°﹣80°=100°.21.(6分)(1)已知2x+3y﹣4=0,求9x•27y的值;(2)若102a=200,10b=5﹣1,求9a÷3b的值.【解答】解:(1)∵2x+3y﹣4=0,∴2x+3y=4,则9x•27y=32x•33y=32x+3y=34=81;(2)102a÷10b=200÷5﹣1=1000=103,即2a﹣b=3,则9a÷3b=32a﹣b=33=27.22.(4分)一个角的余角比它的补角的还少20°,求这个角.【解答】解:设这个角为α,由题意得,(180°﹣α)﹣(90°﹣α)=20°,解得:α=40°.23.(10分)小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况(如图所示)(1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量?(2)10时和13时,他分别离家多远?(3)他到达离家最远的地方是什么时间?离家多远?(4)11时到12时他行驶了多少千米?(5)他可能在哪段时间内休息,并吃午餐?(6)他由离家最远的地方返回时的平均速度是多少?【解答】解:(1)由函数图象,得图象表示了时间、距离的关系,自变量是时间,因变量是距离;(2)由纵坐标看出10时他距家15千米,13时他距家30千米;(3)由横坐标看出12:00时离家最远,由纵坐标看出离家30千米;(4)由纵坐标看出11时距家19千米,12时距家30千米,11时到12时他行驶了30﹣19=11(千米);(5)由纵坐标看出12:00﹣13:00时距离没变且时间较长,得12:00﹣13:00休息并吃午饭;(6)由横坐标看出回家时用了2两小时,由纵坐标看出路程是30千米,回家的速度是30÷2=15(千米/小时).。

北京交大附中七年级(上)期中数学模拟试卷

北京交大附中七年级(上)期中数学模拟试卷
【解析】
解:根据将绳三折测之,绳多四尺,则绳长为:3(x+4),根据绳四折测之,绳多 一尺,则绳长为:4(x+1), 故 3(x+4)=4(x+1). 故选:A. 用代数式表示井深即可得方程.此题中的等量关系有:①将绳三折测之,绳 多 四尺;②绳四折测之,绳多一尺. 此题主要考查了由实际问题抽象出一元一次方程,不变的是井深,用代数式 表示井深是此题的关键.
故选:C. 直接利用偶次方的性质以及绝对值的性质分别化简得出答案. 此题主要考查了非负数的性质,正确得出 a,b 的值是解题关键. 8.【答案】C
【解析】
解:a-(2b-3c)=a-2b+3c=-(-a+2b-3c), 故选:C. 先去括号,然后再添括号即可. 本题考查了去括号与添括号的知识,解答本题的关键是熟记去括号及添括号 的法则. 9.【答案】A
A. 0
B. 1
C. −1
8. 在 a-(2b-3c)=-□中的□内应填的代数式为( )
A. −a−2b+3c
B. a−2b+3c
C. −a+2b−3c
9. 《算法统宗》是中国古代数学名著,作者是我国明代
数学家程大位.在《算法统宗》中记载:“以绳测井,
D. 2016 D. a+2b−3c
若将绳三折测之,绳多 4 尺,若将绳四折测之,绳多 1 尺,绳长井深各几何?” 译文:“用绳子测水井深度,如果将绳子折成三等份, 井外余绳 4 尺;如果将绳子折成四等份,井外余绳 1 尺.问绳长、井深各是多少尺?” 设井深为 x 尺,根据题意列方程,正确的是( )
【解析】
解:单项式- y 的系数是- ,次数是 3,
故答案为:- ,3.

北方交大附中七年级数学上学期期中试题(无答案)人教新课标版

北方交大附中七年级数学上学期期中试题(无答案)人教新课标版

北方交大附中初一期中数学试题一、选择1.-4的绝对值是() A 4 B -4 C41 D 41-2.某市一月份的平均气温为-18C ,三月份的平均气温为2C ,则三月份的平均气温比一月份的平均气温高() A 16C B 20C C -16C D -20C3.去括号正确的是() A -2(a-b )=-2a-b B -2(a-b)=-2a+b C -2(a-b )=-2a-2b D -2(a-b )=-2a+2b4.下列各式中运算正确的是() A 222)2(=-- B 6)32()3(2=-⨯- C 44)3(3-=- D 221.0)1.0(=-5.28400吨用科学记数法表示为()A 吨510284.0⨯B 吨41084.2⨯C 吨1034.28⨯D 吨510284.0⨯6.实数a,b 在数轴上的对应点如图所示,则下列不等式中错误的是() A ab>0 B a+b<0 C1<ab D a-b<07.如果a-3b=-3,那么代数式5-a+3b 的值是() A 0 B 2 C 5 D 8 8.下列运算正确的是()A 6a-5a=1B 422a a a =+C b a ba b a 22243-=-D 532523a a a =+ 9.下列各式中,符合等式的性质的变形是() A 若a=b,则a+c=b+c B 若(a-1)x=2,则12-=a xC 若a=2b,则a=4bD 若a=b+1,则2a=2b+110.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知有一种密码,将英文26个小写字母a,b,c,d …z 依次对应0,1,2,3…25这26个自然数(见表格),当明文中的字母对应的序号为β时,将β+10除以26后得到的余数作为密文中的字母对应的序号,例如明s 对应密文cA wkdrcB wkhtcC eqdjcD eqhjc 二、填空题 11.51-的相反数是 立方等于-8的数是12.一筐苹果总重x 千克,筐本身重2千克,若将苹果平均分成5份,则每份重 13.国家体育场建筑面积达25.8万平方米,将25.8万平方米(四舍五入保留2个有效数字)表示为 万平方米14.多项式222332y y x x +-是 次 项式 15.已知代数式221332b aba m n -+-与是同类项,则2m+3n=16.代数式4)3(22--++y x 的最小值是 ,取这个最小值时xy= 17. 已知x=-2是关于x 的方程42124+=-++x a x 的解,则a 的值是18三、解答题19.直接写计算结果 (1)=--2121 (2)=⎪⎭⎫ ⎝⎛-⨯-21)21( (3) =-3)32( (4)=⨯-2)32((5)=-2253x x (6) =+-n m n m 22512 (7)=---)4(532ax x a(8)(8x-7y )+(4x-5y)=20~23.计算 -8-6+22-9 32008)2(43)1(-÷+⨯-)976543()36(+-⨯- )61()65(53)21(22232-÷---⨯--⨯-24.化简)22(3)6421(31b c a b a a +-+---25.先化简再求值 []3,21,)(223)2(322-=-=++---y x y xy y x xy x 当26.已知a-b=5,ab=-1求:代数式(2a+3b-2ab )-(a+4b+ab)-(3ab+2b-2a)的值27.解方程 2x-1=x+3 28. 解方程 -x+1=2-(13-x)29. 已知三角形的第一条边长是a+2b,第二边长是(b-2),第三边比第二边小5, (1)求三角形的周长(2)当a=2,b=3时求三角形的周长(3)当a=2,三角形周长为29时,求各边长30.已知a,b,c 在数轴上对应的点如图所示,化简c b a c b a a ++-+-- 31.观察:22333241921⨯⨯==+;22333434136321⨯⨯==++;22333343411004321⨯⨯==+++;……(1)若n 为正整数,猜想=++++3333......321n(2)利用上题中的结论来比较3333100...321++++与2)5000(-的大小32.(1)数轴上表示-2和-5的点之间的距离为 ;表示1和-3 的点之间的距离为 (2)数轴上表示x 与-1的点之间的距离为 ;若AB =2,则x= (3)当-3<x<2时,=-++23x x(4)当代数式12++-x x 取最小值时相应的x 的取值范围是 (5)2010...321-++-+-+-x x x x 的最小值是33.按下列的程序计算,若开始输入的x 值为正数,最后输出的结果为656,请写出所有满足条件的x 的值为输出结果。

2013-2014初一(七年级)第一学期期中数学试题含答案(四)_题型归纳

2013-2014初一(七年级)第一学期期中数学试题含答案(四)_题型归纳

2013-2014初一(七年级)第一学期期中数学试题含答案(四)_题型归纳
数学网讯:2013-2014学年度第一学期的期中考试已经在陆续进行了,下面是2013-2014初一(七年级)第一学期期中数学试题四,包含答案,供大家参考练习。

2013-2014初一(七年级)第一学期期中数学试题四
A卷(共100分)
一、细心、选一选(本大题共8小题,每小题2分,共16分.每小题都有四个选项;其中有且只有一个选项是正确的,答案需填在下面的表格中)
A.1个
B.2个
C.3个
D.4个
3.下列说法正确的是( )
4.上海世博会的召开,引来了世人的充分关注,大家纷纷前往参观,据统计10月16日参观人数达到了130万人,若用科学记数法表示当日的参观人数为( )
A.130X104人
B.13X105人
C.1.3X106人
D.1.3X107人
5.下列计算正确的是( )
A、a3+a3=a6 B.a3+a3=2a3 C.a3+a3=2a6 D.a3+a3=a9
6.小亮从一列火车的第m节车厢数起,一直数到第n节车厢(nm),他数过的车厢节数是( )
A.m+n
B.n-m
C.n-m-1
D.n-m+1
2013-2014初一(七年级)第一学期期中数学试题含答案(四)
以上“2013-2014初一(七年级)第一学期期中数学试题含答案(四)”的全部内容是由数学网整理的,更多的关于期中数学试题请查看数学网。

2014寒春尖子班来袭,快来巨人搜课网疯狂抢购!。

2013--2014七年级数学上册期中考试题_PDF压缩

2013--2014七年级数学上册期中考试题_PDF压缩

四. 解答题 (每小题题 6 分,共 36 分)
27.先化简,再求值: 5x 2
1 2xy 3 xy 2
3
4 x2 。其中 x
1 2, y
2
28、已知 A x3 5x2 , B x2 11x 6,求 A — 2B 的值
31、某自行车厂计划一周生产自行车 1400 辆,平均每天生产 200 辆,但由于种种原因,实
元 /件。
19、观察下列算式: 21 2,2 2 4, 23 8,2 4 16 ,2 5 32 ,2 6 64,2 7 128 , 根据上述算
式中的规律,你认为 22012 的末位数字是

20、按照下面所示的操作步骤,若输入 x 的值为- 4,则输出的值为

输入 x
平方
乘以 3
减去 5
输出
三、计算题(每题 4 分,共计 24 分) 21、 12 ( 18) ( 7) 15
4、若 a+b<0,ab<0, 则下列说法正确的是(

A、a、b同号
B
、a、b异号且负数的绝对值较大
C、a、b异号且正数的绝对值较大 、以上均有可能5、 下列计算正确的是(

A、 3a b 3ab
B
、 3a a 2
C、 x3 x2 x
D
、 a2b 2a 2b a 2b
6、下列式子中正确的是(

A. 24 ( 2) 2 ( 2) 3
B.
( 2)3 24 ( 2)2
C. 24 ( 2) 3 ( 2)2
D.
( 2) 2 ( 3)3 2 4
7、绝对值大于 2 且小于 5 的所有整数的和是(

A.0

2013~2014学年人教版七年级上期中数学试卷含答案

2013~2014学年人教版七年级上期中数学试卷含答案

12013-2014学年度第一学期期中考试七年级数学试卷第Ⅰ卷(选择题,共30分)一、选择题(每题3分,共30分)1.-2的相反数是( )A .2B .-2C .21-D .212.在有理数2(1)-、3()2--、|2|--、3(2)-中负数有( )个 A.4 B.3 C.2 D.1 3.若233mxy -与42n x y 是同类项,那么m n -=( )A.0B.1C.-1D.-24.据测试,未拧紧的水龙头4小时会滴水1440毫升。

1440毫升用科学记数法表示为 ( )毫升。

A.33.610⨯ B.31.4410⨯ C.41.4410⨯ D.43.610⨯ 5. 已知,2,3=+=-d c b a 则)()(d a c b --+的值是( )A.15B.1C.-5D. 1- 6. 如果a 和2b 互为相反数,且b ≠0,那么a 的倒数是( )A . -12b B. 12b C. -2b D. 2b7.下列各式中正确的是( )A .|| 33a a =B .33)(a a -=C .|| 22a a -=-D .22)(a a -=8.有理数a 、b 、c 在数轴上的位置如图,化简│a+b │-│c-b │的结果为( )A.a+cB.-a-2b+cC.a+2b-cD.-a-c_b_029.已知96.7362.82=,若7396.02=x ,则x 的值( ) A. 86. 2 B. 0.862 C. ±0.862 D. ±86.2 10.已知a 、b 为有理数,下列式子:①||ab ab >②0a b <③||a ab b=-④330a b +=其中一定能够表示a 、b 异号的有( )个A.1B.2C.3D.4第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,共18分)11.在数5-、 1、 3-、 5、 2-中任取两个数相乘,其中最大的积是___________. 12.已知代数式x +2y 的值是3,则代数式2x+4y +1= ___________. 13.|x-2|与(y+1)2互为相反数,则x+2y= .14.按照下图所示的操作步骤,若输出y 的值为22,则输入的值x 为 .15.表2是从表1中截取的一部分,则a = .16.任何一个正整数n 都可以进行这样的分解:n s t =⨯ (s 、t 是正整数,且s ≤t ),如果p q ⨯在n 的所有这种分解中两因数之差的绝对值最小,我们就称p q ⨯(p q ≤)是n 的最佳分解,并规定()n p F q =.例如:18可以分解成1×18,2×9,3×6,这时就有(18)3162F ==.结合以上信息,给出下列关于()n F 的说法:①(2)12F =;②(24)38F =;③(27)13F =;④若n 是一个整数的平方,则()1n F =.其中正确的说法有_________.(只填序号)第15题图3三、解答题:17.计算(本题满分6分)(1)11112()342-⨯+-() (2)()313248522⨯-÷+-+-18.计算(本题满分6分)(1)ab ba ab 86++- (2))2(2)35(b a b a ---19.(本题满分6分) 先化简,再求值:2233132x x xy xy +⎪⎭⎫⎝⎛+-。

西安交通大学附属中学七年级上册数学 压轴题 期末复习试卷(带答案)-百度文库

西安交通大学附属中学七年级上册数学 压轴题 期末复习试卷(带答案)-百度文库

西安交通大学附属中学七年级上册数学 压轴题 期末复习试卷(带答案)-百度文库一、压轴题1.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______;(3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.2.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC ,∠BOD 的平分线OM 、ON ,然后提出如下问题:求出∠MON 的度数.特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM 和ON 仍然是∠AOC 和∠BOD 的角平分线.其中,按图2方式摆放时,可以看成是ON 、OD 、OB 在同一直线上.按图3方式摆放时,∠AOC 和∠BOD 相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON 的度数为 °.图3中∠MON 的度数为 °.发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:小明:由于图1中∠AOC 和∠BOD 的和为90°,所以我们容易得到∠MOC 和∠NOD 的和,这样就能求出∠MON 的度数.小华:设∠BOD 为x °,我们就能用含x 的式子分别表示出∠NOD 和∠MOC 度数,这样也能求出∠MON 的度数.(2)请你根据他们的谈话内容,求出图1中∠MON 的度数.类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC 、∠BOD 的平分线OM 、ON ,他们认为也能求出∠MON 的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON 的度数;若不同意,请说明理由.3.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.4.借助一副三角板,可以得到一些平面图形(1)如图1,∠AOC=度.由射线OA,OB,OC组成的所有小于平角的和是多少度?(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;(3)利用图3,反向延长射线OA到M,OE平分∠BOM,OF平分∠COM,请按题意补全图(3),并求出∠EOF的度数.5.如图1,线段AB的长为a.(1)尺规作图:延长线段AB到C,使BC=2AB;延长线段BA到D,使AD=AC.(先用尺规画图,再用签字笔把笔迹涂黑.)(2)在(1)的条件下,以线段AB所在的直线画数轴,以点A为原点,若点B对应的数恰好为10,请在数轴上标出点C,D两点,并直接写出C,D两点表示的有理数,若点M 是BC的中点,点N是AD的中点,请求线段MN的长.(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D处开始,在点C,D之间进行往返运动;乙从点N开始,在N,M之间进行往返运动,甲、乙同时开始运动,当乙从M点第一次回到点N时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.6.如图,数轴上点A表示的数为4-,点B表示的数为16,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t0)>.()1A,B两点间的距离等于______,线段AB的中点表示的数为______;()2用含t的代数式表示:t秒后,点P表示的数为______,点Q表示的数为______;()3求当t为何值时,1PQ AB2=?()4若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN的长.7.对于数轴上的点P,Q,给出如下定义:若点P到点Q的距离为d(d≥0),则称d为点P 到点Q的d追随值,记作d[PQ].例如,在数轴上点P表示的数是2,点Q表示的数是5,则点P 到点Q 的d 追随值为d[PQ]=3.问题解决:(1)点M ,N 都在数轴上,点M 表示的数是1,且点N 到点M 的d 追随值d[MN]=a(a≥0),则点N 表示的数是_____(用含a 的代数式表示);(2)如图,点C 表示的数是1,在数轴上有两个动点A ,B 都沿着正方向同时移动,其中A 点的速度为每秒3个单位,B 点的速度为每秒1个单位,点A 从点C 出发,点B 表示的数是b ,设运动时间为t(t>0).①当b=4时,问t 为何值时,点A 到点B 的d 追随值d[AB]=2;②若0<t≤3时,点A 到点B 的d 追随值d[AB]≤6,求b 的取值范围.8.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线.(1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,< 且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.9.如图,己知数轴上点A 表示的数为8,B 是数轴上一点,且AB=22.动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B 表示的数____,点P 表示的数____(用含t 的代数式表示);(2)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q?(列一元一次方程解应用题)(3)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问 秒时P 、Q 之间的距离恰好等于2(直接写出答案)(4)思考在点P 的运动过程中,若M 为AP 的中点,N 为PB 的中点.线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长.10.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角尺(∠M =30°)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.(1)若将图1中的三角尺绕点O 以每秒5°的速度,沿顺时针方向旋转t 秒,当OM 恰好平分∠BOC 时,如图2.①求t值;②试说明此时ON平分∠AOC;(2)将图1中的三角尺绕点O顺时针旋转,设∠AON=α,∠COM=β,当ON在∠AOC内部时,试求α与β的数量关系;(3)若将图1中的三角尺绕点O以每秒5°的速度沿顺时针方向旋转的同时,射线OC也绕点O以每秒8°的速度沿顺时针方向旋转,如图3,那么经过多长时间,射线OC第一次平分∠MON?请说明理由.11.已知:A、O、B三点在同一条直线上,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB 上,此时三角板旋转的角度为度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM所在直线恰好平分∠BOC时,时间t的值为(直接写结果).12.如图,数轴上有A、B两点,且AB=12,点P从B点出发沿数轴以3个单位长度/s的速度向左运动,到达A点后立即按原速折返,回到B点后点P停止运动,点M始终为线段BP的中点(1)若AP=2时,PM=____;(2)若点A表示的数是-5,点P运动3秒时,在数轴上有一点F满足FM=2PM,请求出点F 表示的数;(3)若点P从B点出发时,点Q同时从A点出发沿数轴以2.5个单位长度/s的速度一直..向右运动,当点Q的运动时间为多少时,满足QM=2PM.13.已知:∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=70°时,求∠DOE的度数;(2)如图②,若射线OC在∠AOB内部绕O点旋转,当∠BOC=α时,求∠DOE的度数.(3)如图③,当射线OC在∠AOB外绕O点旋转时,画出图形,直接写出∠DOE的度数.14.(阅读理解)若A,B,C为数轴上三点,若点C到A的距离是点C到B的距离的2倍,我们就称点C是(A,B)的优点.例如,如图①,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的优点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的优点,但点D是(B,A)的优点.(知识运用)如图②,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.(1)数所表示的点是(M,N)的优点;(2)如图③,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的优点?15.如图所示,已知数轴上A,B两点对应的数分别为-2,4,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,B的距离相等,求点P对应的数x的值.(2)数轴上是否存在点P,使点P到点A,B的距离之和为8?若存在,请求出x的值;若不存在,说明理由.(3)点A,B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以5个单位长度/分的速度从O 点向左运动.当遇到A 时,点P 立即以同样的速度向右运动,并不停地往返于点A 与点B 之间.当点A 与点B 重合时,点P 经过的总路程是多少?【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)4;(2)12或72;(3)27或2213或2 【解析】【分析】(1)根据题目得出棋子一共运动了t+2t+3t=6t 个单位长度,当t=4时,6t=24,为MN 长度的整的偶数倍,即棋子回到起点M 处,点3Q 与M 点重合,从而得出13Q Q 的长度.(2)根据棋子的运动规律可得,到3Q 点时,棋子运动运动的总的单位长度为6t,,因为t<4,由(1)知道,棋子运动的总长度为3或12+9=21,从而得出t 的值.(3)若t 2,≤则棋子运动的总长度10t 20≤,可知棋子或从M 点未运动到N 点或从N 点返回运动到2Q 的左边或从N 点返回运动到2Q 的右边三种情况可使242Q Q =【详解】解:(1)∵t+2t+3t=6t,∴当t=4时,6t=24,∵24122=⨯,∴点3Q 与M 点重合,∴134Q Q =(2)由已知条件得出:6t=3或6t=21, 解得:1t 2=或7t 2= (3)情况一:3t+4t=2, 解得:2t 7= 情况二:点4Q 在点2Q 右边时:3t+4t+2=2(12-3t) 解得:22t 13= 情况三:点4Q 在点2Q 左边时:3t+4t-2=2(12-3t)解得:t=2.综上所述:t 的值为,2或27或2213.本题是一道探索动点的运动规律的题目,考查了学生数形结合的能力,探索规律的能力,用一元一次方程解决问题的能力.最后要注意分多种情况讨论.2.(1)135,135;(2)∠MON=135°;(3)同意,∠MON=(90°﹣12x°)+x°+(45°﹣12x°)=135°.【解析】【分析】(1)由题意可得,∠MON=12×90°+90°,∠MON=12∠AOC+12∠BOD+∠COD,即可得出答案;(2)根据“OM和ON是∠AOC和∠BOD的角平分线”可求出∠MOC+∠NOD,又∠MON =(∠MOC+∠NOD)+∠COD,即可得出答案;(3)设∠BOC=x°,则∠AOC=180°﹣x°,∠BOD=90°﹣x°,进而求出∠MOC和∠BON,又∠MON=∠MOC+∠BOC+∠BON,即可得出答案.【详解】解:(1)图2中∠MON=12×90°+90°=135°;图3中∠MON=1 2∠AOC+12∠BOD+∠COD=12(∠AOC+∠BOD)+90°=1290°+90°=135°;故答案为:135,135;(2)∵∠COD=90°,∴∠AOC+∠BOD=180°﹣∠COD=90°,∵OM和ON是∠AOC和∠BOD的角平分线,∴∠MOC+∠NOD=12∠AOC+12∠BOD=12(∠AOC+∠BOD)=45°,∴∠MON=(∠MOC+∠NOD)+∠COD=45°+90°=135°;(3)同意,设∠BOC=x°,则∠AOC=180°﹣x°,∠BOD=90°﹣x°,∵OM和ON是∠AOC和∠BOD的角平分线,∴∠MOC=12∠AOC=12(180°﹣x°)=90°﹣12x°,∠BON=12∠BOD=12(90°﹣x°)=45°﹣12x°,∴∠MON=∠MOC+∠BOC+∠BON=(90°﹣12x°)+x°+(45°﹣12x°)=135°.【点睛】本题考查的是对角度关系及运算的灵活运用和掌握,此类问题的练习有利于学生更好的对3.(1)40º;(2)84º;(3)7.5或15或45【解析】【分析】(1)利用角的和差进行计算便可;(2)设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON 在不同情况下的定值,再根据角的和差确定t 的不同方程进行解答便可.【详解】解:(1))∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD又∵∠AOD+∠BOC=160°且∠AOB=120°∴COD AOD BOC AOB ∠=∠+∠-∠160120=︒-︒40=︒(2)3DOE AOE ∠=∠,3COF BOF ∠=∠∴设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒则3COF y ∠=︒,44120COD AQD BOC AOB x y ∴∠=∠+∠-∠=︒+︒-︒EOF EOD FOC COD ∠=∠+∠-∠()()3344120120x y x y x y =︒+︒-︒+︒-︒=︒-︒+︒72EOF COD ∠=∠ 7120()(44120)2x y x y ∴-+=+- 36x y ∴+=120()84EOF x y ∴︒+︒︒∠=-=(3)当OI 在直线OA 的上方时,有∠MON=∠MOI+∠NOI=12(∠AOI+∠BOI ))=12∠AOB=12×120°=60°,∠PON=12×60°=30°,∵∠MOI=3∠POI,∴3t=3(30-3t)或3t=3(3t-30),解得t=152或15;当OI在直线AO的下方时,∠MON═12(360°-∠AOB)═12×240°=120°,∵∠MOI=3∠POI,∴180°-3t=3(60°-61202t-)或180°-3t=3(61202t--60°),解得t=30或45,综上所述,满足条件的t的值为152s或15s或30s或45s.【点睛】此是角的和差的综合题,考查了角平分线的性质,角的和差计算,一元一次方程(组)的应用,旋转的性质,有一定的难度,体现了用方程思想解决几何问题,分情况讨论是本题的难点,要充分考虑全面,不要漏掉解.4.(1)75°,150°;(2)15°;(3)15°.【解析】【分析】(1)根据三角板的特殊性角的度数,求出∠AOC即可,把∠AOC、∠BOC、∠AOB相加即可求出射线OA,OB,OC组成的所有小于平角的和;(2)依题意设∠2=x,列等式,解方程求出即可;(3)依据题意求出∠BOM,∠COM,再根据角平分线的性质得出∠MOE,∠MOF,即可求出∠EOF.【详解】解:(1)∵∠BOC=30°,∠AOB=45°,∴∠AOC=75°,∴∠AOC+∠BOC+∠AOB=150°;答:由射线OA,OB,OC组成的所有小于平角的和是150°;故答案为:75;(2)设∠2=x,则∠1=3x+30°,∵∠1+∠2=90°,∴x+3x+30°=90°,∴x=15°,∴∠2=15°,答:∠2的度数是15°;(3)如图所示,∵∠BOM=180°﹣45°=135°,∠COM=180°﹣15°=165°,∵OE为∠BOM的平分线,OF为∠COM的平分线,∴∠MOF=12∠COM=82.5°,∠MOE=12∠MOB=67.5°,∴∠EOF=∠MOF﹣∠MOE=15°.【点睛】本题主要考查了三角板各角的度数、角平分线的性质及列方程解方程在几何中的应用,熟记概念是解题的关键.5.(1)详见解析;(2)35;(3)﹣5、15、1123、﹣767.【解析】【分析】(1)根据尺规作图的方法按要求做出即可;(2)根据中点的定义及线段长度的计算求出;(3)认真分析甲、乙物体运行的轨迹来判断它们相遇的可能性,分情况建立一元一次方程来计算相遇的时间,然后计算出位置.【详解】解:(1)如图所示;(2)根据(1)所作图的条件,如果以点A为原点,若点B对应的数恰好为10,则有点C对应的数为30,点D对应的数为﹣30,MN=|20﹣(﹣15)|=35(3)设乙从M点第一次回到点N时所用时间为t,则t=223522MN⨯==35(秒)那么甲在总的时间t内所运动的长度为s=5t=5×35=175可见,在乙运动的时间内,甲在C,D之间运动的情况为175÷60=2……55,也就是说甲在C,D之间运动一个来回还多出55长度单位.①设甲乙第一次相遇时的时间为t1,有5t1=2t1+15,t1=5(秒)而﹣30+5×5=﹣5,﹣15+2×5=﹣5这时甲和乙所对应的有理数为﹣5.②设甲乙第二次相遇时的时间经过的时间t2,有5t2+2t2=25+30+5+10,t2=10(秒)此时甲的位置:﹣15×5+60+30=15,乙的位置15×2﹣15=15这时甲和乙所对应的有理数为15.③设甲乙第三次相遇时的时间经过的时间t3,有5t3﹣2t3=20,t3=203(秒)此时甲的位置:30﹣(5×203﹣15)=1123,乙的位置:20﹣(2×203﹣5)=1123这时甲和乙所对应的有理数为112 3④从时间和甲运行的轨迹来看,他们可能第四次相遇.设第四次相遇时经过的时间为t4,有5t4﹣1123﹣30﹣15+2t4=1123,t4=91621(秒)此时甲的位置:5×91621﹣45﹣1123=﹣767,乙的位置:1123﹣2×91621=﹣767这时甲和乙所对应的有理数为﹣767.四次相遇所用时间为:5+10+203+91621=3137(秒),剩余运行时间为:35﹣3137=347(秒)当时间为35秒时,乙回到N点停止,甲在剩余的时间运行距离为5×347=5257=1767.位置在﹣767+1767=10,无法再和乙相遇,故所有相遇点对应的有理数为﹣5、15、1123、﹣767.【点睛】本题考查数轴作图及线段长度计算的基础知识,重要的是两个点在数轴上做复杂运动时的运动轨迹和相遇的位置,具有比较大的难度.正确分析出可能相遇的情况并建立一元一次方程是解题的关键.6.(1)20,6;(2)43t -+,162t -;(3)t 2=或6时;(4)不变,10,理由见解析.【解析】【分析】(1)由数轴上两点距离先求得A ,B 两点间的距离,由中点公式可求线段AB 的中点表示的数;(2)点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,向右为正,所以-4+3t ;Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,向左为负,16-2t.(3)由题意,1PQ AB 2=表示出线段长度,可列方程求t 的值; (4)由线段中点的性质可求MN 的值不变.【详解】 解:()1点A 表示的数为4-,点B 表示的数为16,A ∴,B 两点间的距离等于41620--=,线段AB 的中点表示的数为41662-+= 故答案为20,6 ()2点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,∴点P 表示的数为:43t -+,点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,∴点Q 表示的数为:162t -,故答案为43t -+,162t -()13PQ AB 2= ()43t 162t 10∴-+--=t 2∴=或6答:t 2=或6时,1PQ AB 2= ()4线段MN 的长度不会变化,点M 为PA 的中点,点N 为PB 的中点,1PM PA 2∴=,1PN PB 2= ()1MN PM PN PA PB 2∴=-=-1MN AB 102∴== 【点睛】本题考查了一元一次方程的应用,数轴上两点之间的距离,找到正确的等量关系列出方程是本题的关键.7.(1)1+a 或1-a ;(2)12或52;(3)1≤b≤7. 【解析】【分析】(1)根据d 追随值的定义,分点N 在点M 左侧和点N 在点M 右侧两种情况,直接写出答案即可;(2)①分点A 在点B 左侧和点A 在点B 右侧两种情况,类比行程问题中的追及问题,根据“追及时间=追及路程÷速度差”计算即可;②【详解】解:(1)点N 在点M 右侧时,点N 表示的数是1+a ;点N 在点M 左侧时,点N 表示的数是1-a ;(2)①b=4时,AB 相距3个单位,当点A 在点B 左侧时,t=(3-2)÷(3-1)=12, 当点A 在点B 右侧时,t=(3+2)÷(3-1)=52; ②当点B 在点A 左侧或重合时,即d ≤1时,随着时间的增大,d 追随值会越来越大, ∵0<t≤3,点A 到点B 的d 追随值d[AB]≤6,∴1-d+3×(3-1)≤6,解得d ≥1,∴d=1,当点B 在点A 右侧时,即d>1时,在AB 重合之前,随着时间的增大,d 追随值会越来越小,∵点A 到点B 的d 追随值d[AB]≤6,∴d ≤7∴1<d ≤7,综合两种情况,d 的取值范围是1≤d ≤7.故答案为(1)1+a 或1-a ;(2)①12或52;②1≤b≤7. 【点睛】本题考查了数轴上两点之间的距离和动点问题.8.(1)图1中∠AOD=60°;图2中∠AOD=10°;(2)图1中∠AOD=n m 2+;图2中∠AOD=n m 2-. 【解析】【分析】 (1)图1中∠BOC=∠AOC ﹣∠AOB=20°,则∠BOD=10°,根据∠AOD=∠AOB+∠BOD 即得解;图2中∠BOC=∠AOC+∠AOB=120°,则∠BOD=60°,根据∠AOD=∠BOD ﹣∠AOB 即可得解;(2)图1中∠BOC=∠AOC ﹣∠AOB=n ﹣m ,则∠BOD=n m 2﹣,故∠AOD=∠AOB+∠BOD=n m 2+;图2中∠BOC=∠AOC+∠AOB=m+n ,则∠BOD=n m 2+,故∠AOD=∠BOD ﹣∠AOB=n m 2-. 【详解】 解:(1)图1中∠BOC=∠AOC ﹣∠AOB=70°﹣50°=20°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=10°, ∴∠AOD=∠AOB+∠BOD=50°+10°=60°;图2中∠BOC=∠AOC+∠AOB=120°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=60°, ∴∠AOD=∠BOD ﹣∠AOB=60°﹣50°=10°;(2)根据题意可知∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,如图1中,∠BOC=∠AOC ﹣∠AOB=n ﹣m ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2﹣, ∴∠AOD=∠AOB+∠BOD=n m 2+;如图2中,∠BOC=∠AOC+∠AOB=m+n ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2+, ∴∠AOD=∠BOD ﹣∠AOB=n m 2-. 【点睛】 本题主要考查角平分线,解此题的关键在于根据题意进行分类讨论,所有情况都要考虑,切勿遗漏.9.(1)-14,8-4t (2)点P 运动11秒时追上点Q (3)103或4(4)线段MN 的长度不发生变化,都等于11【解析】【分析】(1)根据AB 长度即可求得BO 长度,根据t 即可求得AP 长度,即可解题;(2)点P 运动x 秒时,在点C 处追上点Q ,则AC=5x ,BC=3x ,根据AC-BC=AB ,列出方程求解即可;(3)分①点P 、Q 相遇之前,②点P 、Q 相遇之后,根据P 、Q 之间的距离恰好等于2列出方程求解即可;(4)分①当点P 在点A 、B 两点之间运动时,②当点P 运动到点B 的左侧时,利用中点的定义和线段的和差求出MN 的长即可.【详解】(1)∵点A 表示的数为8,B 在A 点左边,AB=22,∴点B 表示的数是8-22=-14,∵动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒,∴点P 表示的数是8-4t .故答案为-14,8-4t ;(2)设点P 运动x 秒时,在点C 处追上点Q ,则AC=5x ,BC=3x ,∵AC-BC=AB ,∴4x-2x=22,解得:x=11,∴点P运动11秒时追上点Q;(3) ①点P、Q相遇之前,4t+2+2t =22,t=103,②点P、Q相遇之后,4t+2t -2=22,t=4,故答案为103或4(4)线段MN的长度不发生变化,都等于11;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=12×22=11②当点P运动到点B的左侧时:MN=MP﹣NP=12AP﹣12BP=12(AP﹣BP)=12AB=11∴线段MN的长度不发生变化,其值为11.【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.10.(1)①t=3;②见解析;(2)β=α+60°;(3)t=5时,射线OC第一次平分∠MON.【解析】【分析】(1)根据角平分线的性质以及余角补角的性质即可得出结论;(2)根据∠NOC=∠AOC-∠AON=90°-∠MOC即可得到结论;(3)分别根据转动速度关系和OC平分∠MON列方程求解即可.【详解】(1)①∵∠AOC=30°,OM平分∠BOC,∴∠BOC=2∠COM=2∠BOM=150°,∴∠COM=∠BOM=75°.∵∠MON=90°,∴∠CON=15°,∠AON+∠BOM=90°,∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,∴∠AON=∠CON,∴t=15°÷3°=5秒;②∵∠CON=15°,∠AON=15°,∴ON平分∠AOC.(2)∵∠AOC=30°,∴∠NOC=∠AOC-∠AON=90°-∠MOC,∴30°-α=90°-β,∴β=α+60°;(3)设旋转时间为t秒,∠AON=5t,∠AOC=30°+8t,∠CON=45°,∴30°+8t=5t+45°,∴t=5.即t=5时,射线OC第一次平分∠MON.【点睛】本题考查了一元一次方程的应用以及角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.11.(1)90°;(2)30°;(3)12秒或48秒.【解析】【分析】(1)依据图形可知旋转角=∠NOB,从而可得到问题的答案;(2)先求得∠AOC的度数,然后依据角的和差关系可得到∠NOC=60°-∠AON,∠AOM=90°-∠AON,然后求得∠AOM与∠NOC的差即可;(3)可分为当OM为∠BOC的平分线和当OM的反向延长为∠BOC的平分线两种情况,然后再求得旋转的角度,最后,依据旋转的时间=旋转的角度÷旋转的速度求解即可.【详解】(1)由旋转的定义可知:旋转角=∠NOB=90°.故答案为:90°(2)∠AOM﹣∠NOC=30°.理由:∵∠AOC:∠BOC=1:2,∠AOC+∠BOC=180°,∴∠AOC=60°.∴∠NOC=60°﹣∠AON.∵∠NOM=90°,∴∠AOM=90°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.(3)如图1所示:当OM为∠BOC的平分线时,∵OM为∠BOC的平分线,∴∠BOM=∠BOC=60°,∴t=60°÷5°=12秒.如图2所示:当OM的反向延长为∠BOC的平分线时,∵ON 为为∠BOC 的平分线,∴∠BON =60°.∴旋转的角度=60°+180°=240°.∴t =240°÷5°=48秒.故答案为:12秒或48秒.【点睛】本题主要考查的是三角形的综合应用,解答本题主要应用了旋转的定义、直角三角形的定义以及角的和差计算,求得三角板旋转的角度是解题的关键.12.(1)5 ;(2)点F 表示的数是11.5或者-6.5;(3)127t =或6t =. 【解析】【分析】(1)由AP=2可知PB=12-2=10,再由点M 是PB 中点可知PM 长度;(2)点P 运动3秒是9个单位长度,M 为PB 的中点,则可求解出点M 表示的数是2.5,再由FM=2PM 可求解出FM=9,此时点F 可能在M 点左侧,也可能在其右侧;(3)设Q 运动的时间为t 秒,由题可知t=4秒时,点P 到达点A ,再经过4秒点P 停止运动;则分04t ≤≤和48t <≤两种情况分别计算,由题可知即可QM=2PM=BP ,据此进行解答即可.【详解】(1)5 ;(2)∵点A 表示的数是5-∴点B 表示的数是7∵点P 运动3秒是9个单位长度,M 为PB 的中点 ∴PM=12PB=4.5,即点M 表示的数是2.5 ∵FM=2PM∴FM=9∴点F 表示的数是11.5或者-6.5(3)设Q 运动的时间为t 秒, 当04t ≤≤时,由题可知QM=2PM=BP ,故点Q 位于点P 左侧,则AB=AQ+QP+PB ,而QP=QM-PM=2PM-PM= 12BP ,则可得12=2.5t+12⨯3t+3t=7t ,解得t=127; 当48t <≤时,由题可知QM=2PM=BP ,故点Q 位于点B 右侧,则PB=2QB ,则可得,()()123422.512t t --=-,整理得8t=48,解得6t =.【点睛】本题结合数轴上的动点问题考查了一元一次方程的应用,第3问要根据题干条件分情况进行讨论,作出图形更易理解.13.(1)45°;(2)45°;(3)45°或135°.【解析】【分析】(1)由∠BOC 的度数求出∠AOC 的度数,利用角平分线定义求出∠COD 与∠COE 的度数,相加即可求出∠DOE 的度数;(2)∠DOE 度数不变,理由为:利用角平分线定义得到∠COD 为∠AOC 的一半,∠COE 为∠COB 的一半,而∠DOE=∠COD+∠COE ,即可求出∠DOE 度数为45度;(3)分两种情况考虑,同理如图3,则∠DOE 为45°;如图4,则∠DOE 为135°.【详解】(1)如图,∠AOC=90°﹣∠BOC=20°,∵OD 、OE 分别平分∠AOC 和∠BOC ,∴∠COD=∠AOC=10°,∠COE=12∠BOC=35°, ∴∠DOE=∠COD+∠COE=45°; (2)∠DOE 的大小不变,理由是:∠DOE=∠COD+∠COE=12∠AOC+12∠COB=12(∠AOC+∠COB )=12∠AOB=45°; (3)∠DOE 的大小发生变化情况为:如图③,则∠DOE 为45°;如图④,则∠DOE 为135°,分两种情况:如图3所示,∵OD 、OE 分别平分∠AOC 和∠BOC ,∴∠COD=12∠AOC ,∠COE=12∠BOC ,∴∠DOE=∠COD﹣∠COE=12(∠AOC﹣∠BOC)=45°;如图4所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=12∠AOC,∠COE=12∠BOC,∴∠DOE=∠COD+∠COE=12(∠AOC+∠BOC)=12×270°=135°.【点睛】此题主要考查了角平分线的性质以及角的有关计算,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.14.(1)2或10;(2)当t为5秒、10秒或7.5秒时,P、A和B中恰有一个点为其余两点的优点.【解析】【分析】(1)设所求数为x,根据优点的定义分优点在M、N之间和优点在点N右边,列出方程解方程即可;(2)根据优点的定义可知分三种情况:①P为(A,B)的优点;②P为(B,A)的优点;③B为(A,P)的优点.设点P表示的数为x,根据优点的定义列出方程,进而得出t的值.【详解】解:(1)设所求数为x,当优点在M、N之间时,由题意得x﹣(﹣2)=2(4﹣x),解得x=2;当优点在点N右边时,由题意得x﹣(﹣2)=2(x﹣4),解得:x=10;故答案为:2或10;(2)设点P表示的数为x,则PA=x+20,PB=40﹣x,AB=40﹣(﹣20)=60,分三种情况:①P为(A,B)的优点.由题意,得PA=2PB,即x﹣(﹣20)=2(40﹣x),解得x=20,∴t=(40﹣20)÷4=5(秒);②P为(B,A)的优点.由题意,得PB=2PA,即40﹣x=2(x+20),解得x=0,∴t=(40﹣0)÷4=10(秒);③B为(A,P)的优点.由题意,得AB=2PA,即60=2(x+20)解得x=10,此时,点P为AB的中点,即A也为(B,P)的优点,∴t=30÷4=7.5(秒);综上可知,当t为5秒、10秒或7.5秒时,P、A和B中恰有一个点为其余两点的优点.【点睛】本题考查了一元一次方程的应用及数轴,解题关键是要读懂题目的意思,理解优点的定义,找出合适的等量关系列出方程,再求解.15.(1)x=1;(2) x=-3或x=5;(3) 30.【解析】【分析】(1)根据题意可得4-x=x-(-2),解出x的值;(2)此题分为两种情况,当点P在B的右边时,当点P在B的左边时,分别列出方程求解即可;(3)设经过x分钟点A与点B重合,根据题意得:2x=6+x进而求出即可.【详解】(1)4-x=x-(-2),解得:x=1,(2)①当点P在B的右边时得:x-(-2)+x-4=8,解得:x=5,②当点P在B的左边时得:-2-x+4-x=8,解得:x=-3,则x=-3或x=5.(3)设经过x分钟点A与点B重合,根据题意得:2x=6+x,解得:x=6,则5x=30,故答案为30个单位长度.【点睛】本题主要考查了一元二次方程的应用,解此题的要点在于根据数轴得出点的位置.。

2013-2014年陕西省西安交大附中七年级(上)期末数学试卷和参考答案

2013-2014年陕西省西安交大附中七年级(上)期末数学试卷和参考答案


13. (3 分)当 a= ,b=﹣8 时,代数式(6a2﹣6ab﹣12b2)﹣3(2a2﹣4b2)的值 为 .
第 2 页(共 16 页)
三、解答题(共 9 小题,计 58+10 分,解答题应写出过程) 14. (6 分)附加题: 如图,已知∠1=65°15′,∠2=78°30′,求∠1+∠2 和∠3.
C. 2. (3 分)下列说法正确的是( A.有理数是整数 C.有理数包括整数和分数 )
D.
B.整数一定是正数 D.有理数是整数和负数的统称 )
3. (3 分)下列调查中,适宜采用全面调查(普查)方式的是( A.某水库中鱼的种类 B.某班同学立定跳远的成绩 C.某型号节能灯的使用寿命 D.某鞋厂生产的鞋底承受的弯折次数 4. (3 分)把 18°15′36″化为用度表示,下列正确的是( A.18.15° B.18.16° C.18.26° )
第 3 页(共 16 页)
20. (8 分)妈妈为小华存了一个 3 年期的教育储蓄(设 3 年期的年利率为 5%) , 3 年后能取 10350 元,妈妈开始存入了多少元? 21. (10 分) 某天, 一蔬菜经营户用 114 元从蔬菜批发市场购进黄瓜和土豆共 40kg 到菜市场去卖,黄瓜和土豆这天的批发价和零售价(单位:元/kg)如下表所 示: 品名 黄瓜 土豆 批发价 2.4 3 零售价 4 5
本文部分内容来自网络,本人不为其真实性负责,如有异议请及时联系,本人将予以删除
2013-2014 学年陕西省西安交大附中七年级上学期数学期末试卷
一、选择题(共 9 小题,每小题 3 分,共 30 分,每小题只有一个选项符合题意 的) 1. (3 分)下列四个图中,是三棱锥的表面展开图的是( )

2013-2014学年度七年级上数学中期考试题

2013-2014学年度七年级上数学中期考试题

三合中学2013-2014学年度第一学期中期考试试题(卷)七年级数学题号A 卷B 卷一二 三 合计 27 28 29 30 31 合计 得分A 卷 (100分)一、 选择题 (本大题共10小题,每小题3分,共30分。

将答案填在表格内)1、-3的倒数是( )A .-3B .3C .31D .31-2、冬季某天我国三个城市的最高气温分别是-10°C ,1°C ,-7°C ,把他们从高到低排列正确的是 ( )A. -10°C , -7°C ,1°C ,B. -7°C , -10°C ,1°C ,C. 1°C ,-7°C ,-10°C ,D. 1°C ,-10°C , -7°C 3、长城总长约为6700000米,用科学记数法表示为( )A .6.7510⨯米 B .6.7610⨯米 C .6.7710⨯米 D .6.7810⨯米 4、下列各式中,正确的是( )A .y x y x y x 2222-=- B .ab b a 532=+C .437=-ab abD .523a a a =+5、a-b 的相反数是( )A .a-bB . b - aC .- a-bD 、不能确定 6、两个有理数的积为负数,和也为负数,那么这两个数( )A .都是负数B .绝对值较大的数是正数,另一个是负数C .互为相反数D .绝对值较大的数是负数,另一个是正数7、已知496b a -和445b a n 是同类项,则代数式1012-n 的值是( )A .17B .37C .–17D .988、下列说法中①-a 一定是负数;②|-a|一定是正数;③倒数等它本身的数是±1; ④绝对值等于它本身的数是1。

其中正确的个数是( )A .1个B .2个C .3个D .4个9、右图是一数值转换机,若输入的x 为-5,则输出的结果为( )A. 11B. -9C. -17D. 2110、已知代数式y x 2+的值是3,则代数式142++y x 的值是( )A .1B .4C .7D .不能确定二、填空题(本大题共8小题,每小题4分,共32分)11、如果运进72吨记作+72吨,那么运出56吨记作_________; 12、用四舍五入法取近似数,保留3个有效数字后1.804≈ 13、若|a+2|+()23-b =0,则a+b=____________.14、某校去年初一招收新生x 人,今年比去年增加20%,用代数式表示今年该校初一学生人数为_____15、单项式33yx -的系数是_____16、 “a,b 两数的平方的差”用代数式表示为17、一个单项式加上22x y +-后等于22y x +,则这个单项式为18、 如下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中的基础图形个数为______________(用n 的式子表示).命题人 孙臻得 分 评卷人得 分 评卷人输 出×(-3) 输入x -2三、解答题 (本大题共6小题,共38分) 19、计算(每小题4分,本题共16分,)(1) 0×(-2008)×2009+(-1)÷(-2) (2) )3214785163()32(-+-⨯- (3))145()2(52825-⨯-÷+- (4))61()61(514-÷-⨯--20、化简:(每小题5分,共10分)(1) ()()b a b a 45392222--++ (2) ()1223522---+x x x x21. (6分)先化简,再求值 )53()13(52222-+---b a ab ab b a ,其中21-=a ,31=b22.(本小题6分)某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入。

西南交通大学附属中学数学七年级上精华试卷(含答案)下载

西南交通大学附属中学数学七年级上精华试卷(含答案)下载

西南交通大学附属中学数学七上精华试卷(含答案)下载第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.多项式3x2-2xy3-y-1是( ).A.三次四项式 B.三次三项式 C.四次四项式 D.四次三项式2.-1/2的相反数等于()A.-1/2 B.2 C.1/2 D.-23.在数轴上与-3的距离等于4的点表示的数是().A.1B.-7C.1或-7D.无数个4.地球的表面积约为510 000 000 km2,用科学计数法表示为()km2 A.51×108B.5.1×108C.51×107D.5.1×1075..............( )A.B.C.D.6.在-6,0,1/6,1 这四个数中,最大的数是()A.-6 B.0 C.1/6 D.17.下列各组数中,数值相等的是()A.34和43B.﹣42和(﹣4)2C.﹣23和(﹣2)3D.(﹣2×3)2和﹣22×328...........( )A...............B...............C................D.............9......L1.L2...α.( )A.150°B.140°C.130°D.120°10.现有一个长方体水箱,从水箱里面量得它的深是30cm,底面的长是25cm,宽是20cm.水箱里盛有深为acm(0<a≤8)的水,若往水箱里放入棱长为10cm的立方体铁块,则此时水深为()A. B. C. D.第Ⅱ卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11、如果节约16度电记作+16度,那么浪费5度电记作度;12. “早穿皮袄午穿纱”这句民谣形象地描绘了新疆奇妙的气温变化现象.乌鲁木齐五月的某天,最高气温17℃,最低气温-2℃,则当天的最大温差是℃.13、一个两位数,十位上的数字是a,个位上的数字比十位上的数字的2倍大3,则这个两位数是_______.14.利用数轴填空(1)在数轴上与表示-5的点距离2个单位点是;(2)数轴上点A表示的数为-5,将A先向右移2个单位,再向左移10个单位,则这个点表示的数是;(3)在数轴上,到原点距离不大于2的所有整数的积是 ;15..........“.•.”........2015.2016.......400.........40.....“.......”.............你最喜欢的活动 猜谜 唱歌 投篮 跳绳 其它人 数6 8 16 8 2 ......2015.2016.............“..”....... ..三、解答题 (本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16... .1.÷..+..2..14..1.0.5.÷...×[.1...3.2] .3..[2m.3.m.n+1.].17.计算:① 8+(-10)―(―5)+(-2); ② 31+(-34)-(-16)+54③ (12-59+712)×(-36) ④ (-1)2013+(-5)×[(-2)3+2]-(-4)2÷(-12)18.如图,所有小正方形的边长都为1,A 、B 、C 都在格点上. (1)过点C 画直线AB 的平行线(不写画法,下同);(2)过点A画直线BC的垂线,并注明垂足..为G;过点A画直线AB的垂线,交BC于点H.(3)线段的长度是点A到直线BC的距离;(4)线段AG、AH的大小..关系为AG AH.(填写下列符号>,<,之一)19.李师傅打算把一个长、宽、高分别为50cm,8cm,20cm的长方体铁块锻造成一个立方体铁块,问锻造成的立方体铁块的棱长是多少cm?20.用长为10m的铝合金做成如图的长方形窗框,设窗框横档的长为m,中间一条直档与横档长度相等.(1)用含的代数式表示这个窗户的面积(中间的横档与直档所占的面积忽略不计);(2)当横档长取1.4m时,求窗户的面积.21.(12分)初中生对待学习的态度一直是教育工作者关注的问题之一.为此某市教育局对该市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计该市近20000名初中生中大约有多少名学生学习态度达标(达标包括A级和B级)?图①图②22. 仔细观察下面的日历,回答下列问题:⑴在日历中,用正方形框圈出四个日期(如图)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档