《数列》单元测试题(含答案)
数列测试题及答案
![数列测试题及答案](https://img.taocdn.com/s3/m/698fa5dbe43a580216fc700abb68a98271feacbc.png)
数列测试题及答案一、选择题1. 已知数列\( a_n \)的通项公式为\( a_n = 3n - 1 \),那么第10项的值为:A. 29B. 28C. 27D. 26答案:A2. 若数列\( b_n \)的前n项和为\( S_n \),且\( S_n = n^2 \),求数列\( b_n \)的第3项:A. 5B. 6C. 7D. 8答案:B二、填空题1. 给定等差数列\( c_n \),首项\( c_1 = 5 \),公差\( d = 3 \),其第5项为________。
答案:202. 若数列\( d_n \)是等比数列,且\( d_1 = 2 \),公比\( q = 4 \),求第4项:________。
答案:64三、解答题1. 已知数列\( e_n \)的前n项和为\( S_n \),若\( S_3 = 21 \),\( S_5 = 45 \),求\( e_4 + e_5 \)。
解:由题意得\( e_4 + e_5 = S_5 - S_3 = 45 - 21 = 24 \)。
2. 某等差数列的前5项和为50,且第3项为15,求该数列的首项和公差。
解:设该等差数列的首项为\( a \),公差为\( d \),则有:\[ 5a + 10d = 50 \]\[ a + 2d = 15 \]解得:\( a = 5 \),\( d = 5 \)。
四、证明题1. 证明等差数列中,任意两项的等差中项等于它们的算术平均数。
证明:设等差数列\( f_n \)的首项为\( f_1 \),公差为\( d \),任取两项\( f_m \)和\( f_n \)(\( m < n \)),则它们的等差中项为\( f_{\frac{m+n}{2}} \)。
根据等差数列的性质,有:\[ f_{\frac{m+n}{2}} = f_1 + \left(\frac{m+n}{2} -1\right)d \]而算术平均数为:\[ \frac{f_m + f_n}{2} = \frac{f_1 + (m-1)d + f_1 + (n-1)d}{2} = f_1 + \frac{(m+n-2)d}{2} \]由于\( \frac{m+n}{2} - 1 = \frac{m+n-2}{2} \),所以两者相等,证明了等差中项等于算术平均数。
拉萨市选修二第一单元《数列》测试卷(含答案解析)
![拉萨市选修二第一单元《数列》测试卷(含答案解析)](https://img.taocdn.com/s3/m/7ae1c509b14e852459fb5714.png)
一、选择题1.设n S 是等比数列{}n a 的前n 项和,若423S S =,则64S S =( ) A .2B .73 C .310 D .12或2.已知无穷等比数列{}n a 的各项的和为3,且12a =,则2a =( ) A .13B .25C .23D .323.已知等差数列{}n a 前n 项和为n S ,且351024a a a ++=,则13S 的值为( ) A .8B .13C .26D .1624.已知数列{}n a 满足112a =,121n n a a n n +=++,则n a =( )A .312n- B .321n -+ C .111n -+ D .312n+ 5.已知定义在R 上的函数()f x 是奇函数,且满足3()(),(1)32f x f x f -=-=,数列{}n a 满足11a =,且21n nS a n n=-,(n S 为{}n a 的前n 项和,*)n N ∈,则56()()f a f a +=( )A .1B .3C .-3D .06.十九世纪下半叶集合论的创立,奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段12(,)33,记为第一次操作;再将剩下的两个区间1[0,]3,2[,1]3分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度之和不小于910,则需要操作的次数n 的最小值为( )(参考数据:lg 20.3010=,lg30.4771=)A .4B .5C .6D .77.数列{}n a 是等差数列,51260a a =>,数列{}n b 满足123n n n n b a a a +++=,*n N ∈,设n S 为{}n b 的前n 项和,则当n S 取得最大值时,n 的值等于( )A .9B .10C .11D .128.已知正项数列{a n }的前n 项和为S n ,a 1>1,且6S n =a n 2+3a n +2.若对于任意实数a ∈[﹣2,2].不等式()2*1211+<+-∈+n a t at n N n 恒成立,则实数t 的取值范围为( ) A .(﹣∞,﹣2]∪[2,+∞) B .(﹣∞,﹣2]∪[1,+∞) C .(﹣∞,﹣1]∪[2,+∞) D .[﹣2,2]9.等比数列{} n a 的前n 项和为n S ,若63:3:1S S =,则93:S S =( ) A .4:1B .6:1C .7:1D .9:110.已知等差数列{}n a 中,50a >,470a a +<则{}n a 的前n 项和n S 的最大值为( ) A .4SB .5SC .6SD .7S11.设等比数列{}n a 的前n 项和为n S ,且510315S S ==,,则20S =( ) A .255B .375C .250D .20012.在公差不为零的等差数列{}n a 中,1a ,3a ,7a 依次成等比数列,前7项和为35,则数列{}n a 的通项n a 等于( ) A .nB .1n +C .21n -D .21n二、填空题13.数列{}n a 满足2121231722222n n a a a a n n -+++⋅⋅⋅+=-,若对任意0λ>,所有的正整数n 都有22n k a λλ-+>成立,则实数k 的取值范围是_________.14.数列{}n a 的前n 项和2n S n n =-+,则它的通项公式是n a =__________.15.设数列{}n a 是以4为首项,12为公比的等比数列,其前n 项和为{}n S ,则{}n S 的前n 项和为_________.16.将数列{2}n 与{32}n -的公共项从小到大排列得到数列{}n a ,则{}n a 的前n 项和n S =___.17.已知正项等比数列满足:,若存在两项使得,则的最小值为 .18.下表给出一个“直角三角形数阵”:满足每一列成等差数列,从第三行起,每一行的数成等比数列,且每一行的公比相等,记第i 行第j 列的数为(,)i j a (i ,j ∈N *),则(20,20)a =_____.19.根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式n a =__________.20.等比数列{}n a 中,11a =,且2436a a a +=,则5a =________.三、解答题21.若数列{}n a ,12,a =且132n n a a +=+. (1)证明{}1n a +是等比数列; (2)设()131n n n a b n n +=⋅+,n T 是其前n 项和,求n T .22.设数列{}n a 的前n 项和为n S ,已知()*214,21n n S a S n N +==+∈.数列{}nb 是首项为1a ,公差不为零的等差数列,且127,,b b b 成等比数列. (1)求数列{}n a 和{}n b 的通项公式; (2)若nn nb c a =,数列{}n c 的前n 项和为n T ,且n T m <恒成立,求m 的取值范围. 23.已知等差数列{}n a 的前n 项和为n S ,若2512a a +=,424S S =. (1)求数列{}n a 的通项公式n a 及n S ; (2)若11n n n n a b S S ++=⋅,求数列{}n b 的前n 项和n T .24.已知数列{}n a 是等差数列,数列{}n b 是等比数列,且满足112a b ==,35730a a a ++=,2316b b a =.(1)求数列{}n a 与和{}n b 的通项公式;(2)设数列{}n a ,{}n b 的前n 项和分别为n S ,n T .①是否存在正整数k ,使得132k k k T T b +=++成立?若存在,求出k 的值,若不存在,请说明理由;②解关于n 的不等式n n S b ≥.25.已知数列{}n a 的前n 项和为n S ,点(),n n a s 在直线22y x =-,上n *∈N .(1)求{}n a 的通项公式;(2)若n n b n a =+,求数列{}n b 的前n 项和n T . 26.已知数列{}n a 满足1122n n n a a a +=+()N n *∈,11a =. (1)证明:数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,并求数列{}n a 的通项公式.(2)若记n b 为满足不等式11122k nn a -⎛⎫⎛⎫<≤ ⎪ ⎪⎝⎭⎝⎭()N n *∈的正整数k 的个数,数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,求关于n 的不等式4032n S <的最大正整数解.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据等比数列的性质求解.在1q ≠-时,24264,,S S S S S --仍成等比数列. 【详解】设24,3S k S k ==,由数列{}n a 为等比数列(易知数列{}n a 的公比1q ≠-),得24264,,S S S S S --为等比数列又242,2S k S S k =-=644S S k ∴-= 67,S k ∴=647733S k S k ∴== 故选:B . 【点睛】结论点睛:数列{}n a 是等比数列,若0m S ≠,则232,,m m m m m S S S S S --成等比数列.简称等比数列的片断和仍成等比数列.注意{}n a 是等比数列与232,,m m m m m S S S S S --成等比数列之间不是充要条件.2.C解析:C 【分析】设等比数列的公比为q ,进而根据题意得()21lim lim31n n n n q S q→+∞→+∞-==-,且()0,1q ∈,从而解得13q =,故223a =【详解】解:设等比数列的公比为q ,显然1q ≠, 由于等比数列{}n a 中,12a = 所以等比数列{}n a 的前n 项和为:()()112111n n n a q q S qq--==--,因为无穷等比数列{}n a 的各项的和为3, 所以()21lim lim31n n n n q S q→+∞→+∞-==-,且()0,1q ∈,所以231q =-,解得13q =, 所以2123a a q ==. 故选:C. 【点睛】本题解题的关键在于根据题意将问题转化为()21lim lim31n n n n q S q→+∞→+∞-==-,且()0,1q ∈,进而根据极限得13q =,考查运算求解能力,是中档题. 3.B解析:B 【分析】先利用等差数列的下标和性质将35102a a a ++转化为()410724a a a +=,再根据()11313713132a a S a +==求解出结果.【详解】因为()351041072244a a a a a a ++=+==,所以71a =,又()1131371313131132a a S a +===⨯=, 故选:B. 【点睛】结论点睛:等差、等比数列的下标和性质:若()*2,,,,m n p q t m n p q t N+=+=∈,(1)当{}n a 为等差数列,则有2m n p q t a a a a a +=+=; (2)当{}n a 为等比数列,则有2m n p q t a a a a a ⋅=⋅=.4.A解析:A 【分析】利用已知条件得到121111n n a a n n n n +-==-++,再用累加法求出数列的通项,用裂项相消法求数的和. 【详解】 由121n n a a n n +=++得:121111n na a n n n n +-==-++, 即1111n n a a n n--=--, 所以()()()121321n n n a a a a a a a a -=+-+-++-111111*********n n n=+-+-++-=--. 故选:A . 【点睛】 方法点睛:递推公式求通项公式,有以下几种方法:型如:()1n n a a f n +-=的数列的递推公式,采用累加法求通项; 形如:()1n na f n a +=的数列的递推公式,采用累乘法求通项; 形如:1n n a pa q +=+ ()()10pq p -≠的递推公式,通过构造转化为()1n n a t p a t +-=-,构造数列{}n a t -是以1a t -为首项,p 为公比的等比数列,形如:1nn n a pa q +=+ ()()10pq p -≠的递推公式,两边同时除以1n q +,转化为1n n b mb t +=+的形式求通项公式;形如:11n n n n a a d a a ++=-,可通过取倒数转化为等差数列求通项公式.5.C解析:C 【分析】判断出()f x 的周期,求得{}n a 的通项公式,由此求得56()()f a f a +. 【详解】依题意定义在R 上的函数()f x 是奇函数,且满足3()()2f x f x -=,所以()333332222f x f x f x fx ⎛⎫⎛⎫⎛⎫⎛⎫+=---=--=-+ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭ ()()()32f x f x f x ⎛⎫=---=--= ⎪⎝⎭,所以()f x 是周期为3的周期函数.由21n n S a n n=-得2n n S a n =-①, 当1n =时,11a =,当2n ≥时,()1121n n S a n --=--②,①-②得11221,21n n n n n a a a a a --=--=+(2n ≥),所以21324354213,217,2115,2131a a a a a a a a =+==+==+==+=,652163a a =+=.所以56()()f a f a +=()()()()()()()316331013211013f f f f f f f +=⨯++⨯=+=--=-故选:C 【点睛】如果一个函数既是奇函数,图象又关于()0x a a =≠对称,则这个函数是周期函数,且周期为4a .6.C解析:C 【分析】依次求出第次去掉的区间长度之和,这个和构成一个等比数列,再求其前n 项和,列出不等式解之可得. 【详解】第一次操作去掉的区间长度为13;第二次操作去掉两个长度为19的区间,长度和为29;第三次操作去掉四个长度为127的区间,长度和为427;…第n 次操作去掉12n -个长度为13n 的区间,长度和为123n n -,于是进行了n 次操作后,所有去掉的区间长度之和为1122213933nn n n S -⎛⎫=++⋅⋅⋅+=- ⎪⎝⎭,由题意,902131n⎛⎫-≥ ⎪⎝⎭,即21lg lg1031n ≤=-,即()lg3lg21n -≥,解得:115.679lg3lg 20.47710.3010n ≥=≈--,又n 为整数,所以n 的最小值为6. 故选:C . 【点睛】本题以数学文化为背景,考查等比数列通项、前n 项和等知识及估算能力,属于中档题.7.D解析:D 【分析】由51260a a =>,得到首项和公差的关系以及公差的范围,然后求得通项公式,判断,n n a b 的正负,再利用通项与前n 项和关系求解.【详解】设数列{}n a 的公差为d , 因为51260a a =>,所以()1104116a a d d +=>+,即1625a d =-, 因为512a a >, 所以0d <,所以167(1)5n a n d n d a ⎛⎫=+-=-⎪⎝⎭, 当113n ≤≤时,0n a >,当14n ≥时,0n a <, 所以12101314...0...b b b b b >>>>>>>, 又因为()111213141215131405db b a a a a a a +=+=>, 所以1210S S >,故n S 中12S 最大 , 故选:D 【点睛】本题主要考查等差数列的通项公式以及数列前n 项和的最值问题,还考查逻辑推理的能力,属于中档题.8.A解析:A 【分析】根据a n 与S n 的关系,由6S n =a n 2+3a n +2,得6S n ﹣1=a n ﹣12+3a n ﹣1+2,两式相减整理得a n ﹣a n﹣1=3,由等差数列的定义求得a n 的通项公式,然后将不等式()2*1211+<+-∈+n a t at n N n 恒成立,转化为2t 2+at ﹣4≥0,对于任意的a ∈[﹣2,2],n ∈N *恒成立求解. 【详解】由6S n =a n 2+3a n +2,当n =1时,6a 1=a 12+3a 1+2.解得a 1=2, 当n ≥2时,6S n ﹣1=a n ﹣12+3a n ﹣1+2, 两式相减得6a n =a n 2+3a n ﹣(a n ﹣12+3a n ﹣1), 整理得(a n +a n ﹣1)(a n ﹣a n ﹣1﹣3)=0, 由a n >0,所以a n +a n ﹣1>0,所以a n ﹣a n ﹣1=3, 所以数列{a n }是以2为首项,3为公差的等差数列, 所以a n +1=2+3(n +1﹣1)=3n +2, 所以11n a n ++=321++n n =3﹣11n +<3, 因此原不等式转化为2t 2+at ﹣1≥3,对于任意的a ∈[﹣2,2],n ∈N *恒成立, 即为:2t 2+at ﹣4≥0,对于任意的a ∈[﹣2,2],n ∈N *恒成立, 设f (a )=2t 2+at ﹣4,a ∈[﹣2,2], 则f (2)≥0且f (﹣2)≥0,即有222020t t t t ⎧+-⎨--⎩,解得t ≥2或t ≤﹣2,则实数t 的取值范围是(﹣∞,﹣2]∪[2,+∞) 故选:A . 【点睛】本题主要考查数列与不等式的,a n 与S n 的关系,等差数列的定义,方程的根的分布问题,还考查了转化化归思想和运算求解的能力,属于中档题.9.C解析:C 【分析】利用等比数列前n 项和的性质k S ,2k k S S -,32k k S S -,43k k S S -,成等比数列求解.【详解】因为数列{} n a 为等比数列,则3S ,63S S -,96S S -成等比数列, 设3S m =,则63S m =,则632S S m -=,故633S S S -=96632S S S S -=-,所以964S S m -=,得到97S m =,所以937S S =. 故选:C. 【点睛】本题考查等比数列前n 项和性质的运用,难度一般,利用性质结论计算即可.10.B解析:B 【分析】根据50a >和470a a +<判断出数列的单调性,根据数列的单调性确定出n S 的最大值. 【详解】因为470a a +<,所以560a a +<,又因为50a >,所以60a <, 因为{}n a 为等差数列,所以650d a a =-<,所以{}n a 为单调递减数列, 所以n S 的最大值为5S , 故选:B. 【点睛】本题考查根据等差数列的单调性求解前n 项和的最大值,难度一般.求解等差数列前n 项和的最值,关键是分析等差数列的单调性,借助单调性可说明n S 有最大值还是最小值并且求解出对应结果.11.A解析:A 【分析】由等比数列的性质,510515102015,,,S S S S S S S ---仍是等比数列,先由51051510,,S S S S S --是等比数列求出15S ,再由10515102015,,S S S S S S ---是等比数列,可得20S . 【详解】由题得,51051510,,S S S S S --成等比数列,则有210551510()()S S S S S -=-,215123(15)S =-,解得1563S =,同理有215101052015()()()S S S S S S -=--,2204812(63)S =-,解得20255S =.故选:A 【点睛】本题考查等比数列前n 项和的性质,这道题也可以先由510315S S ==,求出数列的首项和公比q ,再由前n 项和公式直接得20S 。
高中数学--《数列》测试题(含答案)
![高中数学--《数列》测试题(含答案)](https://img.taocdn.com/s3/m/f5b9426e5bcfa1c7aa00b52acfc789eb162d9e58.png)
高中数学--《数列》测试题(含答案)1.已知数列,它的第5项的值为()A. B. C. D.【答案解析】D2.若成等比数列,则下列三个数:①②③,必成等比数列的个数为()A、3B、2C、1D、0【答案解析】C3.在数列{}中,,则等于()。
A B 10 C 13 D 19【答案解析】解析:C。
由2得,∴{}是等差数列∵4.是成等比数列的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案解析】解析:不一定等比如若成等比数列则选D5.x=是a、x、b成等比数列的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【答案解析】D6.已知为等差数列,且-2=-1, =0,则公差d=(A)-2 (B)-(C)(D)2【答案解析】B解析:a7-2a4=a3+4d-2(a3+d)=2d=-1 Þ d=-7.(2009福建卷理)等差数列的前n项和为,且 =6,=4,则公差d等于A.1 B C.- 2 D 3【试题来源】【答案解析】C解析∵且.故选C8.(2009广东卷理)已知等比数列满足,且,则当时,A. B. C. D.【答案解析】C解析:由得,,则,,选C.9.(2009年广东卷)已知等比数列的公比为正数,且·=2,=1,则=A. B. C. D.2【答案解析】B解析:设公比为,由已知得,即,又因为等比数列的公比为正数,所以,故,选B10.已知数列…,则是该数列的A.第项B.第项C.第项D.第项【答案解析】C11.等差数列中,,那么的值是A. 12 B. 24 C .16 D. 48【答案解析】B12.等差数列,,,则数列前9项的和等于A.66 B.99 C. 144 D. 297【答案解析】B13.等差数列中,,则A.8 B.12 C.24 D.25【答案解析】B14.等比数列{an}中,a4=4,则等于A.4 B.8 C.16 D.32【答案解析】C15.设等比数列的公比q=2,前n项和为Sn,则=A. B. C. D.【答案解析】C17若数列的前项和,则A.7B.8C.9D.17【答案解析】A18.等差数列的前项和为,若,则A.1004B.2008C.2009D.2010【答案解析】C19.若等差数列{an}的前5项和S5=25,且a2=3,则a4=() A.12 B.7C.9 D.15【答案解析】B20.()A. B. C. D.【答案解析】D。
《数列》单元测试题(含答案解析)
![《数列》单元测试题(含答案解析)](https://img.taocdn.com/s3/m/0dd042f6b4daa58da1114ac9.png)
《数列》单元练习试题一、选择题1.已知数列}{n a 的通项公式432--=n n a n (∈n N *),则4a 等于( )(A )1 (B )2 (C )3 (D )02.一个等差数列的第5项等于10,前3项的和等于3,那么( )(A )它的首项是2-,公差是3 (B )它的首项是2,公差是3- (C )它的首项是3-,公差是2 (D )它的首项是3,公差是2- 3.设等比数列}{n a 的公比2=q ,前n 项和为n S ,则=24a S ( ) (A )2 (B )4 (C )215 (D )2174.设数列{}n a 是等差数列,且62-=a ,68=a ,n S 是数列{}n a 的前n 项和,则( )(A )54S S < (B )54S S = (C )56S S < (D )56S S = 5.已知数列}{n a 满足01=a ,1331+-=+n n n a a a (∈n N *),则=20a ( )(A )0 (B )3- (C )3 (D )236.等差数列{}n a 的前m 项和为30,前m 2项和为100,则它的前m 3项和为( )(A )130 (B )170 (C )210 (D )2607.已知1a ,2a ,…,8a 为各项都大于零的等比数列,公比1≠q ,则( )(A )5481a a a a +>+ (B )5481a a a a +<+(C )5481a a a a +=+ (D )81a a +和54a a +的大小关系不能由已知条件确定 8.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )(A )13项 (B )12项 (C )11项 (D )10项9.设}{n a 是由正数组成的等比数列,公比2=q ,且30303212=⋅⋅⋅⋅a a a a ,那么30963a a a a ⋅⋅⋅⋅ 等于( )(A )210(B )220(C )216(D )21510.古希腊人常用小石子在沙滩上摆成各种形状来研究数,比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…这样的数为正方形数.下列数中既是三角形数又是正方形数的是( )二、填空题11.已知等差数列}{n a 的公差0≠d ,且1a ,3a ,9a 成等比数列,则1042931a a a a a a ++++的值是.12.等比数列}{n a 的公比0>q .已知12=a ,n n n a a a 612=+++,则}{n a 的前4项和=4S . 13.在通常情况下,从地面到10km 高空,高度每增加1km ,气温就下降某一固定值.如果1km 高度的气温是8.5℃,5km 高度的气温是-17.5℃,那么3km 高度的气温是℃. 14.设21=a ,121+=+n n a a ,21n n n a b a +=-,∈n N *,则数列}{n b 的通项公式=n b . 15.设等差数列}{n a 的前n 项和为n S ,则4S ,48S S -,812S S -,1216S S -成等差数列.类比以上结论有:设等比数列}{n b 的前n 项积为n T ,则4T ,,,1216T T 成等比数列. 三、解答题16.已知}{n a 是一个等差数列,且12=a ,55-=a .(Ⅰ)求}{n a 的通项n a ;(Ⅱ)求}{n a 的前n 项和n S 的最大值.17.等比数列}{n a 的前n 项和为n S ,已知1S ,3S ,2S 成等差数列.(Ⅰ)求}{n a 的公比q ; (Ⅱ)若331=-a a ,求n S .18.甲、乙两物体分别从相距70m 的两处同时相向运动.甲第1分钟走2m ,以后每分钟比前1分钟多走1m ,乙每分钟走5m .(Ⅰ)甲、乙开始运动后几分钟相遇?(Ⅱ)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1m ,乙继续每分钟走5m ,那么开始运动几分钟后第二次相遇?19.设数列}{n a 满足333313221n a a a a n n =++++- ,∈n N *. (Ⅰ)求数列}{n a 的通项;(Ⅱ)设nn a nb =,求数列}{n b 的前n 项和n S .20.设数列}{n a 的前n 项和为n S ,已知11=a ,241+=+n n a S .(Ⅰ)设n n n a a b 21-=+,证明数列}{n b 是等比数列; (Ⅱ)求数列}{n a 的通项公式.21.已知数列{}n a 中,12a =,23a =,其前n 项和n S 满足1121n n n S S S +-+=+(2n ≥,*n ∈N ).(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设n an n n b 2)1(41⋅-+=-λ(λ为非零整数,*n ∈N ),试确定λ的值,使得对任意*n ∈N ,都有n n b b >+1成立.数列测试题一、选择题(每小题5分,共60分)1.等差数列{a n }中,若a 2+a 8=16,a 4=6,则公差d 的值是( )A .1B .2C .-1D .-22.在等比数列{a n }中,已知a 3=2,a 15=8,则a 9等于( )A .±4B .4C .-4D .163.数列{a n }中,对所有的正整数n 都有a 1·a 2·a 3…a n =n 2,则a 3+a 5=( )A.6116B.259C.2519D.31154.已知-9,a 1,a 2,-1四个实数成等差数列,-9,b 1,b 2,b 3,-1五个实数成等比数列,则b 2(a 2-a 1)=( )A .8B .-8C .±8D.985.等差数列{a n }的前n 项和为S n ,若a 2+a 7+a 12=30,则S 13的值是( )A .130B .65C .70D .756.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )A .6B .7C .8D .97.已知{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,n ∈N +,则S 10的值为( )8.等比数列{a n }是递减数列,前n 项的积为T n ,若T 13=4T 9,则a 8a 15=( )A .±2B .±4 C.2D .49.首项为-24的等差数列,从第10项开始为正数,则公差d 的取值围是( ) A .d >83 B .d <3C.83≤d <3D.83<d ≤3 10.等比数列{}n a 中,首项为1a ,公比为 q ,则下列条件中,使{}n a 一定为递减数列的条件是( ) A .1q < B 、10,1a q >< C 、10,01a q ><<或10,1a q <> D 、1q >11. 已知等差数列{}n a 共有21n +项,所有奇数项之和为130,所有偶数项之和为120,则n 等于( )A.9B.10C.11D.12 12.设函数f (x )满足f (n +1)=2)(2nn f + (n ∈N +),且f (1)=2,则f (20)为( ) A .95B .97C .105D .192二、填空题(每小题5分,共20分.把答案填在题中的横线上)13.已知等差数列{a n }满足:a 1=2,a 3=6.若将a 1,a 4,a 5都加上同一个数,所得的三个数依次成等比数列,则所加的这个数为________. 14.已知数列{a n } 中,a 1=1且31111+=+n n a a (n ∈ N +),则a 10= 15.在数列{a n }中,a 1=1,a 2=2,且满足)2)(1(31≥-=+-n n a a n n ,则数列{a n }的通项公式为=n a 16.已知数列满足:a 1=1,a n +1=a na n +2,(n ∈N *),若b n +1=(n -λ)⎝ ⎛⎭⎪⎫1a n +1,b 1=-λ,且数列{b n }是单调递增数列,则实数λ的取值围为三、解答题(本大题共70分.解答应写出必要的文字说明、证明过程或演算步骤) 17.(10分)在数列{a n }中,a 1=8,a 4=2,且满足a n +2-2a n +1+a n =0(n ∈N +). (1)求数列{a n }的通项公式;(2)求数列{a n }的前20项和为S 20.18.(12分)已知数列}{n a 前n 项和n n S n 272-=,(1)求|}{|n a 的前11项和11T ;(2) 求|}{|n a 的前22项和22T ;19.(12分)已知数列}{n a 各项均为正数,前n 项和为S n ,且满足2S n =2n a + n -4(n ∈N +). (1)求证:数列}{n a 为等差数列;(2)求数列}{n a 的前n 项和S n .20.(12分)数列{}n a 的前n 项和记为n S ,()111,211n n a a S n +==+≥. (1)求{}n a 的通项公式;(2)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T .21.(12分)已知数列{a n },{b n }满足a 1=2,2a n =1+a n a n +1,b n =a n -1(b n ≠0). (1)求证数列{1b n}是等差数列;(2)令11+=n n a c ,求数列{n c }的通项公式.22.(12分)在等差数列{}n a 中,已知公差2d =,2a 是1a 与4a 的等比中项. (1)求数列{}n a 的通项公式;(2)设(1)2n n n b a +=,记1234(1)nn n T b b b b b =-+-+-+-…,求n T .《数列》单元测试题 参考答案 一、选择题1.D 2.A 3.C 4.B5.B 6.C 7.A 8.A 9.B 10.C 二、填空题11.1613 12.21513.-4.5 14.12+n 15.48T T ,812T T 三、解答题16.(Ⅰ)设}{n a 的公差为d ,则⎩⎨⎧-=+=+.54,111d a d a 解得⎩⎨⎧-==.2,31d a ∴52)2()1(3+-=-⨯-+=n n a n .(Ⅱ)4)2(4)2(2)1(322+--=+-=-⨯-+=n n n n n n S n .∴当2=n 时,n S 取得最大值4.17.(Ⅰ)依题意,有3212S S S =+,∴)(2)(2111111q a q a a q a a a ++=++,由于01≠a ,故022=+q q ,又0≠q ,从而21-=q . (Ⅱ)由已知,得3)21(211=--a a ,故41=a ,从而])21(1[38)21(1])21(1[4n n n S --=----⨯=.18.(Ⅰ)设n 分钟后第1次相遇,依题意,有7052)1(2=+-+n n n n , 整理,得0140132=-+n n ,解得7=n ,20-=n (舍去). 第1次相遇是在开始运动后7分钟. (Ⅱ)设n 分钟后第2次相遇,依题意,有70352)1(2⨯=+-+n n n n , 整理,得0420132=-+n n ,解得15=n ,28-=n (舍去). 第2次相遇是在开始运动后15分钟.19.(Ⅰ)∵333313221na a a a n n =++++- ,① ∴当2≥n 时,31333123221-=++++--n a a a a n n . ② 由①-②,得3131=-n n a ,n n a 31=.在①中,令1=n ,得311=a .∴n n a 31=,∈n N *. (Ⅱ)∵nn a n b =,∴n n n b 3⋅=,∴nn n S 33332332⋅++⨯+⨯+= ,③ ∴14323333233+⋅++⨯+⨯+=n n n S . ④即31)31(3321---⋅=+n n n n S ,∴4343)12(1+-=+n n n S . 20.(Ⅰ)由11=a ,241+=+n n a S ,有24121+=+a a a ,∴52312=+=a a ,∴32121=-=a a b .∵241+=+n n a S ,①∴241+=-n n a S (2≥n ), ②由①-②,得1144-+-=n n n a a a ,∴)2(2211-+-=-n n n n a a a a ,∵n n n a a b 21-=+,∴12-=n n b b ,∴数列}{n b 是首项为3,公比为2的等比数列.(Ⅱ)由(Ⅰ),得11232-+⋅=-=n n n n a a b ,∴432211=-++n n n n a a , ∴数列}2{nn a 是首项为21,公差为43的等差数列, ∴414343)1(212-=⨯-+=n n a nn ,∴22)13(-⋅-=n n n a . 21.(Ⅰ)由已知,得()()111n n n n S S S S +----=(2n ≥,*n ∈N ),即11n n a a +-=(2n ≥,*n ∈N ),且211a a -=,∴数列{}n a 是以12a =为首项,1为公差的等差数列,∴1n a n =+.(Ⅱ)∵1n a n =+,∴114(1)2n n n n b λ-+=+-⋅,要使n n b b >+1恒成立,∴()()112114412120n n n n n n n n b b λλ-++++-=-+-⋅--⋅>恒成立, ∴()11343120n nn λ-+⋅-⋅->恒成立,∴()1112n n λ---<恒成立.(ⅰ)当n 为奇数时,即12n λ-<恒成立,当且仅当1n =时,12n -有最小值为1,∴1λ<.(ⅱ)当n 为偶数时,即12n λ->-恒成立,当且仅当2n =时,12n --有最大值2-,∴2λ>-.∴21λ-<<,又λ为非零整数,则1λ=-.综上所述,存在1λ=-,使得对任意*n ∈N ,都有1n n b b +>.数列试题答案1---12:BBAB AAD C DCDB13---16:-11,41,⎪⎪⎩⎪⎪⎨⎧--=)(223)(213为偶数为奇数n n n n a n ,λ<2 17.解:(1)∵数列{a n }满足a n +2-2a n +1+a n =0,∴数列{a n }为等差数列,设公差为d .∴a 4=a 1+3d ,d 2-8=-2.∴a =a +(n -1)d =8-2(n -1)=10-2n .(2) S =)9(n n -得S = -22018.解:n n S n 272-=282-=∴n a n ∴当14<n 时,0<n a 14≥n 时0≥n a(1)||||||112111a a a T +++= 176)(11111=-=++-=S a a (2)|)||(|)||||(|2214132122a a a a a T ++++++=2215141321)(a a a a a a +++++++-= 132213S S S -+-=25421322=-=S S19.(1)证明:当n=1时,有2a 1=+1-4,即-2a 1-3=0,解得a 1=3(a 1=-1舍去). 当n ≥2时,有2S n-1=+n-5,又2S n =+n-4,两式相减得2a n =-+1,即-2a n +1=,也即(a n -1)2=,因此a n -1=a n-1或a n -1=-a n-1.若a n -1=-a n-1,则a n +a n-1=1.而a 1=3,所以a 2=-2,这与数列{a n }的各项均为正数相矛盾, 所以a n -1=a n-1,即a n -a n-1=1,因此数列{a n }为等差数列.(2)解:由(1)知a 1=3,d=1,所以数列{a n }的通项公式a n =3+(n-1)×1=n+2,即a n =n+2.得252nn S n +=21.(1)证明:∵b n =a n -1,∴a n =b n +1.又∵2a n =1+a n a n +1,∴2(b n +1)=1+(b n +1)(b n +1+1).化简得:b n -b n +1=b n b n +1.∵b n ≠0,∴b n b n b n +1-b n +1b n b n +1=1.即1b n +1-1b n=1(n ∈N +). 又1b 1=1a 1-1=12-1=1,∴{1b n }是以1为首项,1为公差的等差数列. (2)∴1b n =1+(n -1)×1=n .∴b n =1n .∴a n =1n +1=n +1n.∴1211+=+=n na c n n。
中职数列单元测试题及答案
![中职数列单元测试题及答案](https://img.taocdn.com/s3/m/f1813f5703020740be1e650e52ea551810a6c9ab.png)
中职数列单元测试题及答案一、选择题(每题2分,共10分)1. 等差数列的通项公式是:A. \( a_n = a_1 + (n-1)d \)B. \( a_n = a_1 + nd \)C. \( a_n = a_1 + (n-1) \times 2d \)D. \( a_n = a_1 + n \times 2d \)2. 等比数列的前n项和公式是:A. \( S_n = a_1 \times \frac{1 - r^n}{1 - r} \)B. \( S_n = a_1 \times \frac{1 - r^n}{r - 1} \)C. \( S_n = a_1 \times \frac{1 - r^n}{1 + r} \)D. \( S_n = a_1 \times \frac{1 - r^n}{r + 1} \)3. 已知等差数列的第3项为6,第5项为10,求第1项a1和公差d:A. \( a_1 = 2, d = 2 \)B. \( a_1 = 4, d = 1 \)C. \( a_1 = 2, d = 1 \)D. \( a_1 = 4, d = 2 \)4. 等比数列中,若第3项为8,第5项为32,则该数列的公比r为:A. 2B. 4C. 8D. 165. 一个数列的前5项分别为1, 3, 6, 10, 15,这个数列是:A. 等差数列B. 等比数列C. 既不是等差数列也不是等比数列D. 无法确定答案:1-5 A B A B C二、填空题(每题2分,共10分)6. 等差数列中,若第4项为-1,第7项为6,则第10项为________。
7. 等比数列中,若首项为2,公比为3,第5项为__________。
8. 已知数列{an}的通项公式为an = 2n - 1,求第6项a6的值为________。
9. 等差数列的前n项和公式为Sn = n(a1 + an)/2,若S5 = 40,a1 = 4,求第5项a5的值为________。
(完整版)数列单元测试卷含答案
![(完整版)数列单元测试卷含答案](https://img.taocdn.com/s3/m/a4251000daef5ef7bb0d3c6c.png)
数列单元测试卷注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.2.答题前,考生务必将自己的姓名、准考证号等信息填涂在答卷相应位置.第Ⅰ卷(选择题)一.选择题:本大题共12小题,每小题5分,共60分。
每小题给出的四个选项中,只有一项是符合题目要求的.1.数列3,5,9,17,33,…的通项公式a n等于( )A.2n B.2n+1 C.2n-1 D.2n+12.下列四个数列中,既是无穷数列又是递增数列的是( )A.1,12,13,14,…B.-1,2,-3,4,…C.-1,-12,-14,-18,…D.1,2,3,…,n3..记等差数列的前n项和为S n,若a1=1/2,S4=20,则该数列的公差d=________.( ) A.2 B.3 C.6 D.74.在数列{a n}中,a1=2,2a n+1-2a n=1,则a101的值为( )A.49 B.50 C.51 D.525.等差数列{a n}的公差不为零,首项a1=1,a2是a1和a5的等比中项,则数列的前10项之和是( )A.90 B.100 C.145 D.1906.公比为2的等比数列{a n}的各项都是正数,且a3a11=16,则a5=( )A.1 B.2 C.4 D.87.等差数列{a n }中,a 2+a 5+a 8=9,那么关于x 的方程:x 2+(a 4+a 6)x +10=0( ) A .无实根B.有两个相等实根 C .有两个不等实根 D .不能确定有无实根8.已知数列{a n }中,a 3=2,a 7=1,又数列⎩⎨⎧⎭⎬⎫11+a n 是等差数列,则a 11等于( ) A .0 B.12 C.23 D .-19.等比数列{a n }的通项为a n =2·3n -1,现把每相邻两项之间都插入两个数,构成一个新的数列{b n },那么162是新数列{b n }的( )A .第5项 B.第12项 C .第13项 D .第6项10.设数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,则A .1 033 B.1 034 C .2 057 D .2 05811.设n S 为等差数列{}n a 的前n 项和,且28,171==S a .记[]n n a b lg =,其中[]x 表示不超过x 的最大整数,如[]09.0=,[]199lg =.则b 11的值为( ) A.11 B.1 C. 约等于1 D.212.我们把1,3,6,10,15,…这些数叫做三角形数,因为这些数目的点可以排成一个正三角形,如下图所示:则第七个三角形数是( )A .27 B.28 C .29 D .30第II 卷(非选择题)二、填空题(本题共4小题,每小题5分,共20分)13.若数列{a n }满足:a 1=1,a n +1=2a n (n ∈N *),则前8项的和S 8=________(用数字作答).14.数列{a n }满足a 1=1,a n =a n -1+n (n ≥2),则a 5=________.15.已知数列{a n }的前n 项和S n =-2n 2+n +2.则{a n }的通项公式a n =________16.在等差数列{a n }中,其前n 项的和为S n ,且S 6<S 7,S 7>S 8,有下列四个命题: ①此数列的公差d <0; ②S 9一定小于S 6; ③a 7是各项中最大的一项; ④S 7一定是S n 中的最大项.其中正确的命题是________.(填入所有正确命题的序号)三.解答题(共70分,解答应写出必要的文字说明、证明过程或演算步骤)17.(12分) (1) (全国卷)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,求S n(2) 已知{b n }是各项都是正数的等比数列,若b 1=1,且b 2,12b 3,2b 1成等差数列,求数列{b n }的通项公式.18.(12分)等比数列{a n }中,已知a 1=2,a 4=16,(1)求数列{a n }的通项公式; (2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .19. (12分)已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前10项和.20.(12分)数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),若a n +S n =n ,c n =a n -1.(1)求证:数列{c n }是等比数列; (2)求数列{b n }的通项公式.21.(12分)(全国卷)设数列{}n a 满足+3+…+(2n -1) =2n ,.(1)求{}n a 的通项公式; (2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和.22.(12分)数列{a n }满足a 1=1,a n +1=2n +1a na n +2n(n ∈N *).(1)证明:数列{2na n}是等差数列;(2)求数列{a n }的通项公式a n ;(3)设b n =n (n +1)a n ,求数列{b n }的前n 项和S n .数列单元测试卷(解答)一、选择题(共12小题,每小题5分,共60分)1.数列3,5,9,17,33,…的通项公式a n等于( )A.2n B.2n+1 C.2n-1 D.2n+1解析:选B 由于3=2+1,5=22+1,9=23+1,…,所以通项公式是a n=2n+1,故选B. 2.下列四个数列中,既是无穷数列又是递增数列的是( )A.1,12,13,14,…B.-1,2,-3,4,…C.-1,-12,-14,-18,…D.1,2,3,…,n解析:选C A为递减数列,B为摆动数列,D为有穷数列.3.记等差数列的前n项和为S n,若a1=1/2,S4=20,则该数列的公差d=________.( ) A.2 B.3 C.6 D.7解析:选B S4-S2=a3+a4=20-4=16,∴a3+a4-S2=(a3-a1)+(a4-a2)=4d=16-4=12,∴d=3.4.在数列{a n}中,a1=2,2a n+1-2a n=1,则a101的值为( )A.49 B.50 C.51 D.52解析:选D ∵2a n+1-2a n=1,∴a n+1-a n=12,∴数列{a n}是首项a1=2,公差d=12的等差数列,∴a101=2+12(101-1)=52.5.等差数列{a n}的公差不为零,首项a1=1,a2是a1和a5的等比中项,则数列的前10项之和是( )A.90 B.100 C.145 D.190解析:选B 设公差为d , ∴(1+d )2=1×(1+4d ), ∵d ≠0,∴d =2,从而S 10=100.6.公比为2的等比数列{a n }的各项都是正数,且a 3a 11=16,则a 5=( ) A .1 B.2 C .4 D .8解析:选A 因为a 3a 11=a 27,又数列{a n }的各项都是正数,所以解得a 7=4,由a 7=a 5·22=4a 5,求得a 5=1.7.等差数列{a n }中,a 2+a 5+a 8=9,那么关于x 的方程:x 2+(a 4+a 6)x +10=0( ) A .无实根B.有两个相等实根 C .有两个不等实根D .不能确定有无实根解析:选A 由于a 4+a 6=a 2+a 8=2a 5,即3a 5=9, ∴a 5=3,方程为x 2+6x +10=0,无实数解.8.已知数列{a n }中,a 3=2,a 7=1,又数列⎩⎨⎧⎭⎬⎫11+a n 是等差数列,则a 11等于( ) A .0 B.12 C.23 D .-1解析:选B 设数列{b n }的通项b n =11+a n ,因{b n }为等差数列,b 3=11+a 3=13,b 7=11+a 7=12,公差d =b 7-b 34=124, ∴b 11=b 3+(11-3)d =13+8×124=23,即得1+a 11=32,a 11=12.9.等比数列{a n }的通项为a n =2·3n -1,现把每相邻两项之间都插入两个数,构成一个新的数列{b n },那么162是新数列{b n }的( )A .第5项 B.第12项 C .第13项 D .第6项解析:选C 162是数列{a n }的第5项,则它是新数列{b n }的第5+(5-1)×2=13项.10.设数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,则A .1 033 B.1 034 C .2 057 D .2 058 解析:选A 由已知可得a n =n +1,b n =2n -1,于是ab n =b n +1, 因此(b 1+1)+(b 2+1)+…+(b 10+1)=b 1+b 2+…+b 10+10=20+21+…+29+10 =1-2101-2+10=1 033.11.设n S 为等差数列{}n a 的前n 项和,且28,171==S a .记[]n n a b lg =,其中[]x 表示不超过x 的最大整数,如[]09.0=,[]199lg =.则b 11的值为( ) A.11 B.1 C. 约等于1 D.2解析:设{}n a 的公差为d ,据已知有1×72128d +=, 解得 1.d =所以{}n a 的通项公式为.n a n = b 11=[lg11 ]=112.我们把1,3,6,10,15,…这些数叫做三角形数,因为这些数目的点可以排成一个正三角形,如下图所示:则第七个三角形数是( )A .27 B.28 C .29 D .30解析:选 B 法一:∵a 1=1,a 2=3,a 3=6,a 4=10,a 5=15,a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,a 5-a 4=5,∴a 6-a 5=6,a 6=21,a 7-a 6=7,a 7=28. 法二:由图可知第n 个三角形数为n n +12,∴a 7=7×82=28.二、填空题(共4小题,每小题5分,共20分)13.若数列{a n }满足:a 1=1,a n +1=2a n (n ∈N *),则前8项的和S 8=________(用数字作答). 解析:由a 1=1,a n +1=2a n (n ∈N *)知{a n }是以1为首项,以2为公比的等比数列,由通项公式及前n 项和公式知S 8=a 11-q 81-q =1·1-281-2=255.答案: 25514.数列{a n }满足a 1=1,a n =a n -1+n (n ≥2),则a 5=________.解析:由a n =a n -1+n (n ≥2),得a n -a n -1=n .则a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,a 5-a 4=5,把各式相加,得a 5-a 1=2+3+4+5=14,∴a 5=14+a 1=14+1=15. 答案:1515.已知数列{a n }的前n 项和S n =-2n 2+n +2. 则{a n }的通项公式a n =________ [解] ∵S n =-2n 2+n +2,当n ≥2时,S n -1=-2(n -1)2+(n -1)+2 =-2n 2+5n -1, ∴a n =S n -S n -1=(-2n 2+n +2)-(-2n 2+5n -1) =-4n +3.又a 1=S 1=1,不满足a n =-4n +3, ∴数列{a n }的通项公式是a n =⎩⎪⎨⎪⎧1,n =1,-4n +3,n ≥2.16.在等差数列{a n }中,其前n 项的和为S n ,且S 6<S 7,S 7>S 8,有下列四个命题: ①此数列的公差d <0; ②S 9一定小于S 6; ③a 7是各项中最大的一项; ④S 7一定是S n 中的最大项.其中正确的命题是________.(填入所有正确命题的序号) 解析:∵S 7>S 6,即S 6<S 6+a 7, ∴a 7>0.同理可知a 8<0. ∴d =a 8-a 7<0.又∵S 9-S 6=a 7+a 8+a 9=3a 8<0, ∴S 9<S 6.∵数列{a n }为递减数列,且a 7>0,a 8<0, ∴可知S 7为S n 中的最大项. 答案:①②④三、解答题(共4小题,共50分)17.(12分) (1) (全国卷)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,求S n(2) 已知{b n }是各项都是正数的等比数列,若b 1=1,且b 2,12b 3,2b 1成等差数列,求数列{b n }的通项公式.解: (1)设等差数列首项为a 1,公差为d, 则a 4+a 5=2a 1+7d=24,① S 6=6a 1+d=6a 1+15d=48,②由①②得d=4.a 1=-2S N =-2n+n(n-1) ×4/2=2n 2-4n(2)由题意可设公比为q ,则q >0,由b 1=1,且b 2,12b 3,2b 1成等差数列得b 3=b 2+2b 1,∴q 2=2+q ,解得q =2或q =-1(舍去), 故数列{b n }的通项公式为b n =1×2n -1=2n -1.18.(12分)等比数列{a n }中,已知a 1=2,a 4=16,(1)求数列{a n }的通项公式; (2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .解:(1)设{a n }的公比为q ,由已知得16=2q 3,解得q =2, ∴a n =2n.(2)由(1)得a 3=8,a 5=32,则b 3=8,b 5=32. 设{b n }的公差为d ,则有⎩⎪⎨⎪⎧b 1+2d =8, b 1+4d =32,解得⎩⎪⎨⎪⎧b 1=-16,d =12.从b n =-16+12(n -1)=12n -28, 所以数列{b n }的前n 项和S n =n -16+12n -282=6n 2-22n .19. (12分)已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前10项和. 解:(1)设等差数列{a n }的公差为d, 则a 2=a 1+d,a 3=a 1+2d, 由题意得解得或所以由等差数列通项公式可得a n =2-3(n-1)=-3n+5,或a n =-4+3(n-1)=3n-7. 故a n =-3n+5,或a n =3n-7.(2)当a n =-3n+5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列; 当a n =3n-7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件. 故|a n |=|3n-7|=记数列{|a n |}的前n 项和为S n . S 10=|a 1|+|a 2|+|a 3|+|a 4|+……+|a 10|=4+1+(3×3-7)+(3×4-7)+……+(3×10-7) =5+[2×8+8×7×3/2] =10520.(12分)数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),若a n +S n =n ,c n =a n -1.(1)求证:数列{c n }是等比数列; (2)求数列{b n }的通项公式.解:(1)证明:∵a 1=S 1,a n +S n =n ①,∴a 1+S 1=1,得a 1=12. 又a n +1+S n +1=n +1②,①②两式相减得2(a n +1-1)=a n -1,即a n +1-1a n -1=12,也即c n +1c n =12, 故数列{c n }是等比数列. (2)∵c 1=a 1-1=-12, ∴c n =-12n ,a n =c n +1=1-12n , a n -1=1-12n -1.故当n ≥2时,b n =a n -a n -1=12n -1-12n =12n . 又b 1=a 1=12, 所以b n =12n . 21.(12分)(全国卷)设数列{}n a 满足+3+…+(2n -1) =2n ,. (1)求{}n a 的通项公式;(2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和. 解:(1)因为+3+…+(2n -1)=2n ,故当n ≥2时, +3+…+(-3) =2(n -1) 两式相减得(2n -1)=2所以= (n≥2)又因题设可得 =2.从而{} 的通项公式为 =.(2)记 {}的前n 项和为 ,由(1)知 = = - . 则 = - + - +…+ - = .22.(12分)数列{a n }满足a 1=1,a n +1=2n +1a n a n +2n (n ∈N *). (1)证明:数列{2n a n}是等差数列; (2)求数列{a n }的通项公式a n ;(3)设b n =n (n +1)a n ,求数列{b n }的前n 项和S n . 解:(1)证明:由已知可得a n +12n +1=a na n +2n , 即2n +1a n +1=2n a n+1,即2n +1a n +1-2na n =1. ∴数列{2n a n}是公差为1的等差数列. (2)由(1)知2na n =2a 1+(n -1)×1=n +1, ∴a n =2nn +1. (3)由(2)知b n =n ·2n . S n =1·2+2·22+3·23+…+n ·2n , 2S n =1·22+2·23+…+(n -1)·2n +n ·2n +1, 相减得-S n =2+22+23+…+2n -n ·2n +1 =21-2n 1-2-n ·2n +1 =2n +1-2-n ·2n +1,∴S n =(n -1)·2n +1+2.。
数列》单元测试题(附答案解析).doc
![数列》单元测试题(附答案解析).doc](https://img.taocdn.com/s3/m/92d24baccc7931b764ce156d.png)
《数列》单元练习试题一、选择题1.已知数列{ a n}的通项公式a n n23n 4 ( n N*),则a4等于()(A)1(B)2(C)3(D)02.一个等差数列的第 5 项等于 10,前 3 项的和等于 3,那么()( A)它的首项是 2 ,公差是 3 ( B)它的首项是 2 ,公差是 3 ( C)它的首项是 3 ,公差是 2 ( D)它的首项是 3 ,公差是 2S4()3.设等比数列{ a n}的公比q 2,前n项和为S n,则a2(A)2 (B)4 (C)15(D)17 2 24.设数列a n是等差数列,且a2 6 , a8 6 , S n是数列 a n 的前 n 项和,则()(A)S4 S5 (B)S4 S5(C)S6 S5 (D)S6 S5a n 3N*),则a20 ()5.已知数列{ a n}满足a10,a n 1 ( n3a n 1(A)0 (B)3 (C) 3 ( D) 326.等差数列a n的前 m 项和为30,前2m项和为100,则它的前3m 项和为()( A) 130 ( B)170 ( C) 210 ( D) 2607.已知a1,a2,,a8为各项都大于零的等比数列,公比q 1 ,则()( A)a1 a8 a4 a5 ( B)a1 a8 a4 a5( C)a1 a8 a4 a5 ( D)a1 a8和 a4 a5的大小关系不能由已知条件确定8.若一个等差数列前 3 项的和为 34,最后 3 项的和为146,且所有项的和为390,则这个数列有()( A)13 项(B)12 项(C) 11 项(D)10 项9.设{ a n}是由正数组成的等比数列,公比q 2 ,且 a1 a2 a3a30 230,那么a3 a6 a9 a30等于()( A) 210 ( B) 220 ( C) 216 ( D)21510.古希腊人常用小石子在沙滩上摆成各种形状来研究数,比如:他们研究过图 1 中的 1,3,6, 10,,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的 1,4,9, 16,这样的数为正方形数.下列数中既是三角形数又是正方形数的是()( A) 289 ( B) 1024 (C) 1225 ( D)1378 二、填空题11.已知等差数列{ a n}的公差d 0 ,且a1,a3,a9成等比数列,则a1 a3 a9的值是.a2 a4 a1012.等比数列{ a n}的公比q 0 .已知 a2 1, a n 2 a n 1 6a n,则 { a n } 的前4项和 S4 .13.在通常情况下,从地面到10km 高空,高度每增加1km ,气温就下降某一固定值.如果1km 高度的气温是℃,5km 高度的气温是-℃,那么3km 高度的气温是℃.14.设a1 2 , a n 1 2 , b n a n 2, n N*,则数列{ b n}的通项公式b n .a n 1 a n 115.设等差数列{ a n}的前n项和为S n,则S4 , S8 S4, S12 S8, S16 S12成等差数列.类比以上结论有:设等比数列{ b n} 的前 n 项积为 T n,则 T4,,, T16 成等比数列.T12三、解答题16.已知{ a n}是一个等差数列,且a2 1 , a5 5 .(Ⅰ)求 { a n } 的通项 a n;(Ⅱ)求 { a n } 的前 n 项和 S n的最大值.17.等比数列{ a n}的前n项和为S n,已知S1,S3,S2成等差数列.(Ⅰ)求 { a n } 的公比q;(Ⅱ)若 a1a3 3 ,求 S n.18.甲、乙两物体分别从相距70m 的两处同时相向运动.甲第1 分钟走 2m,以后每分钟比前 1 分钟多走 1m,乙每分钟走5m.(Ⅰ)甲、乙开始运动后几分钟相遇(Ⅱ)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前 1 分钟多走1m ,乙继续每分钟走 5m,那么开始运动几分钟后第二次相遇19.设数列{ a n}满足a13a232a3 3n 1 a n n, n N*.3(Ⅰ)求数列 { a n } 的通项;(Ⅱ)设 b nn,求数列 { b n } 的前 n 项和 S n.a n20.设数列{ a n } 的前n 项和为S n,已知a1 1 , S n 1 4a n 2 .(Ⅰ)设b n a n 1 2a n,证明数列{ b n } 是等比数列;(Ⅱ)求数列{ a n} 的通项公式.21.已知数列a n中,a1 2,a2 3,其前 n 项和S n满足Sn 1Sn 12Sn 1 n 2,n N* ).((Ⅰ)求数列a n 的通项公式;(Ⅱ)设 b n 4 n ( 1) n 1 2a n(为非零整数, n N *),试确定的值,使得对任意n N * ,都有 b n 1 b n成立.数列测试题一、选择题 (每小题 5 分,共 60 分)1.等差数列 {a n}中,若 a2+ a8= 16, a4= 6,则公差 d 的值是 ( )A.1 B. 2 C.- 1 D.- 22.在等比数列 {a n}中,已知a3= 2, a15= 8,则 a9等于 ( )A.± 4 B.4 C.- 4 D. 163.数列 {a n }中,对所有的正整数 n 都有 a1·a2·a3 a n= n2,则 a3+a 5= ( )4.已知- 9,a ,a ,- 1 四个实数成等差数列,-9,b ,b ,b ,- 1 五个实数成等比数列,则 b (a1 2 1 2 3 2 2- a1)= ()A.8 B.- 8 C.± 85.等差数列 {a n}的前 n 项和为 S n,若 a2+ a7+ a12= 30,则 S13 的值是 ( )A.130 B.65 C. 70 D. 756.设等差数列 {a }的前 n 项和为 S .若 a =- 11, a + a =- 6,则当 S 取最小值时, n 等于 ( ) n n 1 46 nA.6 B.7 C. 8 D. 97.已知 {a n }为等差数列,其公差为-2,且 a7是 a3与 a9的等比中项, S n为 {a n}的前 n 项和, n∈ N+,则 S10的值为 ( )A.- 110 B.- 90 C. 90 D.1108.等比数列 {a }是递减数列,前 n 项的积为 T ,若 T = 4T ,则 a a 15 =()nn139 8A .± 2B .± 4C .2D . 489.首项为- 24 的等差数列, 从第 10 项开始为正数, 则公差 d 的取值范围是 ( ) A .d>3B .d<38 C.3≤d<3 <d ≤310.等比数列 a n 中,首项为 a 1 ,公比为 q ,则下列条件中,使 a n 一定为递减数列的条件是().q 1、 a 1 0, q 1、 a 1 0,0q 1 或 a 10, q 1、 q1A BCD11. 已知等差数列 a n 共有 2n 1 项,所有奇数项之和为 130,所有偶数项之和为 120 ,则 n 等于( )A. 9B. 10C. 11D. 1212.设函数 f(x)满足 f(n + 1)= 2 f (n) n (n ∈ N + ),且 f(1)= 2,则 f(20)为 ()2A . 95B . 97C . 105D . 192二、填空题 (每小题 5 分,共 20 分.把答案填在题中的横线上 )13.已知等差数列 {a n }满足: a 1= 2,a 3= 6.若将 a 1,a 4,a 5 都加上同一个数,所得的三个数依次成等 比数列,则所加的这个数为________.14.已知数列 {a } 中 ,a =1 且1 1 (n ∈ N ),则 a =n11+ 10a n1a n315.在数列 {a n }中,a 1=1,a 2=2 ,且满足 a n a n13( n 1)( n 2) ,则数列 {a n }的通项公式为 a na n , (n ∈N*116.已知数列满足: 1= 1, a n + 1n +1=(n - λ)+ 1 , b 1na=a n + 2 ),若 ba n=- λ,且数列 {b }是单调递增数列,则实数 λ的取值范围为三、解答题 (本大题共 70 分.解答应写出必要的文字说明、证明过程或演算步骤 )17.( 10 分)在数列 {a n }中, a 1=8, a 4=2,且满足 a n +2- 2a n + 1+ a n =0(n ∈ N +). (1) 求数列 {a }的通项公式; (2)求数列 {a }的前 20 项和为 Snn 20.18. (12 分)已知数列{ a n}前n 项和 S n n 2 27n ,(1)求{| a n|}的前11项和T11;(2) 求{| a n|}的前 22 项和T22 ;2 (n∈N ).19. (12 分)已知数列 { a n } 各项均为正数 ,前 n 项和为 S ,且满足 2S = a n + n-4n n +(1)求证 :数列{ a n}为等差数列 ;(2)求数列{ a n}的前 n 项和 S n.20. (12 分 )数列a 的前 n 项和记为 S ,a11,a n 12S n 1 n 1.n n( 1)求a n的通项公式;( 2)等差数列b n的各项为正,其前n 项和为 T n,且 T315 ,又a1b1 , a2b2 , a3b3成等比数列,求 T n.nn1nn n + 1nn- 1(b n≠ 0).21. (12 分)已知数列 {a },{b }满足 a = 2, 2a = 1+ a a , b = a 1(1) 求证数列 { }是等差数列;b n(2) 令 c n1 ,求数列 { c n }的通项公式.a n122.( 12 分)在等差数列 { a n } 中,已知公差d2 , a 2 是 a 1 与 a 4 的等比中项 .(1) 求数列 { a n } 的通项公式;(2) 设 b na n( n 1) ,记Tnb 1 b 2 b 3 b 4( 1)n b n ,求 T n .2《数列》单元测试题 参考答案一、选择题1.D2.A3.C 4.B 5.B 6.C 7.A8.A 9. B 10.C二、填空题11. 1312. 1513.-14. 2n 115.T 8 ,T12162T 4T 8三、解答题16(. Ⅰ)设 { a n } 的公差为 d ,则a 1 d 1 ,a 13 ,∴ a n3 (n1)(2)2n 5 .a 14d解得2 .5 .d(Ⅱ)S n3n n( n 1) ( 2) n 24n( n2) 2 4 .∴当 n 2 时, S n 取得最大值 4.217.(Ⅰ)依题意,有 S 1S 22S 3 ,∴ a 1 (a 1 a 1q) 2( a 1 a 1q a 1q 2 ) ,由于 a 10 ,故 2q 2q 0 ,又 q 0 ,从而 q1 . 214 [1 ( 1) n ] 81(Ⅱ)由已知,得 a 1a 1 ( ) 23 ,故 a 14 ,从而 S n2n ] .21[1 ()1(32)218.(Ⅰ)设 n 分钟后第 1 次相遇,依题意,有 2nn(n1)5n 70 ,2整理,得 n 213n 140 0 ,解得 n 7 , n20 (舍去).第 1 次相遇是在开始运动后7 分钟.(Ⅱ)设 n 分钟后第 2 次相遇,依题意,有2nn( n 1) 5n3 70 ,2整理,得 n 213 n 420 0 ,解得 n 15 , n28 (舍去).第 2 次相遇是在开始运动后15 分钟.19.( Ⅰ)∵ a 1 3a 2 32 a 33n 1 a n n ,①3∴当 n 2时, a 13a 2 32 a 33n 2 a n 1 n 1 .②3由① -② ,得3 n 1 1 ,a n1,得 a 11 a nn .在① 中,令 n 1.∴ a n333( Ⅱ )∵ b nn,∴ b n n 3n ,∴ S n32323 33n 3n ,a n∴ 3S n32 2 333 34n 3n 1 . ④由④ -③ ,得 2Sn 3n 1(3 32333n ) ,n13n ,nN * .③即 2S n n 3n 13(1 3n ) ,∴ S n(2n 1)3n 13 .1 34 420.( Ⅰ)由 a 1 1 , S n 14a n 2 ,有 a 1 a 24a 12 ,∴ a 2 3a 1 2 5 ,∴ b 1a 2 2a 1 3 .∵ S n 1 4a n2 ,①∴ S n4a n 12 ( n 2),②由 ① -② ,得 a n 1 4a n4a n 1 ,∴ a n 1 2a n 2(a n 2a n 1 ) ,∵ b na n 1 2a n ,∴b n2b n 1 ,∴数列 { b n } 是首项为 3 ,公比为 2 的等比数列.( Ⅱ )由( Ⅰ ),得 b na n2a n32 n 1a n 1 a n3 ,1,∴2n42n1a n } 是首项为 1 ,公差为 3的等差数列,∴数列 {242n∴a n1 (n1)3 31,∴ a n (3n1) 2 n 2 .2n2 4n4 421.(Ⅰ)由已知,得S n1S nS n S n 1 1( n 2 , n N * ),即 a n 1 a n 1 ( n2 , n N * ),且 a 2 a 1 1 ,∴数列 a n 是以 a 1 2 为首项, 1为公差的等差数列,∴a n n 1.(Ⅱ) ∵a nn1, ∴ b4n ( 1)n 12n 1 ,要使 bn 1b n 恒成立,n∴ b nb n 4n 1 4n1 n2n 2n 12n 10 恒成立,11∴ 3 4n3n 10 恒成立,∴1 n 12n 1 恒成立.12n 1(ⅰ)当 n 为奇数时,即2 n 1恒成立,当且仅当nn1有最小值为 , ∴1 .1时, 2 1(ⅱ)当 n 为偶数时,即2n 1 恒成立,当且仅当 n 2 时, 2n 1有最大值 2 , ∴2 .∴21,又 为非零整数,则1 .综上所述,存在1 ,使得对任意 n N * ,都有b n 1 b n .数列试题答案1--- 12: BBABAAD C DCDB3n 1 为奇数 )a n2 (n113---16 :- 11,,3n 2, λ<24为偶数2 (n)17.解: (1)∵数列 {a }满足 a- 2a +a = 0,∴ 数列 {a }为等差数列,设公差为 d.∴ a =a + 3d ,nn + 2n + 1nn412-8=- 2.∴ a n1n 20d = 3= a + (n - 1)d = 8- 2(n - 1)=10- 2n.(2) S = n(9 n) 得 S = - 22018.解: S nn 2 27 na n 2n 28 ∴当 n 14 时, a nn 14 时 a n 0(1) T 11 | a 1 | | a 2 | | a 11 |(a 1a 11 ) S 11 176(2) T 22(| a 1 | | a 2 | | a 13 |) ( a 14 || a 22 |)( a 1a 2a 13)a14 a15a22S13S22S 13S222S 1325419.(1) 证明 :当 n=1 时 ,有 2a =+1-4,即 -2a-3=0,解得 a =3( a =-1 舍去 ).[来源 :学11 1 1当 n ≥2时 ,有 2S n-1= +n-5,又 2S n = +n-4,两式相减得 2a n = - +1,即 -2a n +1=,也即 (a n -1)2 =,因此 a n -1=a n-1 或 a n -1=-a n-1 .若 a n -1=-a n-1,则 a n +a n-1=1.而 a 1 =3,所以 a 2 =-2,这与数列 {a n }的各项均为正数相矛盾 ,所以 a n -1=a n-1,即 a n -a n-1=1,因此数列 {a n }为等差数列 .(2) 解:由(1)知 a 1=3,d=1,所以数列 {a n }的通项公式 a n =3+(n-1)× 1=n+2,即a n=n+2.n 25n 得 S n221.(1) 证明: ∵ b = a -1,∴ a = b + 1.又 ∵2a = 1+a a, ∴ 2(b + 1)= 1+ (b + 1)(b+ 1).化简nnnnnn n + 1 nnn + 1得: b+ + b n - b n + 1 =1.即 1 - 1= 1(n ∈N + ).n - b n1= b n b n1.∵ b n ≠0, ∴ n n +1n n +1n + 1b nb bb bb又 1=1 =1=1, ∴{ 1 }是以 1 为首项, 1 为公差的等差数列.b 11b na - 1 2-1(2) ∴ 1 = 1+ (n - 1) 1 1 + 1= n + 1 .∴ c n1 n ×1=n.∴ b n =.∴ a n = n a n 1 2n 1b n n n。
数列单元测试题及答案解析
![数列单元测试题及答案解析](https://img.taocdn.com/s3/m/1260c13859fafab069dc5022aaea998fcc224085.png)
数列单元测试题及答案解析一、选择题1. 已知等差数列的首项为a1=3,公差为d=2,求第10项的值。
A. 23B. 25C. 27D. 292. 等比数列的首项为a1=2,公比为r=3,求第5项的值。
A. 162B. 243B. 324D. 4863. 一个数列的前5项为1, 3, 6, 10, 15,这个数列是:A. 等差数列B. 等比数列C. 既不是等差数列也不是等比数列D. 无法判断二、填空题4. 等差数列的前n项和公式为:S_n = _______。
5. 等比数列的前n项和公式为:S_n = _______。
三、解答题6. 已知等差数列的前10项和为S10=185,求公差d。
7. 已知等比数列的前3项和为S3=28,首项a1=2,求公比r。
四、证明题8. 证明:等差数列中,任意两项的等差中项等于它们的算术平均数。
答案解析:一、选择题1. 答案:A。
解析:根据等差数列的通项公式an = a1 + (n-1)d,代入n=10,得a10 = 3 + 9*2 = 21。
2. 答案:B。
解析:根据等比数列的通项公式an = a1 * r^(n-1),代入n=5,得a5 = 2 * 3^4 = 243。
3. 答案:C。
解析:数列1, 3, 6, 10, 15不是等差也不是等比数列,因为相邻两项的差和比值都不是常数。
二、填空题4. 答案:S_n = n/2 * (2a1 + (n-1)d)。
解析:等差数列前n项和的公式。
5. 答案:S_n = a1 * (1 - r^n) / (1 - r),当r≠1时。
解析:等比数列前n项和的公式。
三、解答题6. 解:根据等差数列前n项和的公式,S10 = 10/2 * (2*3 + 9d) = 185,解得d = 3。
7. 解:根据等比数列前n项和的公式,S3 = a1 * (1 - r^3) / (1 - r) = 28,代入a1=2,解得r = 3。
四、证明题8. 证明:设等差数列中任意两项为an和am,它们的等差中项为a,即a = (an + am) / 2。
新人教版高中数学选修二第一单元《数列》检测题(包含答案解析)
![新人教版高中数学选修二第一单元《数列》检测题(包含答案解析)](https://img.taocdn.com/s3/m/70b7b0a731b765ce04081481.png)
一、选择题1.设数列{}n a 满足11a =,()*112n n n a a n +-=∈N ,则数列{}n a 的通项公式为( ). A .()*2212n n a n ⎛⎫=-∈ ⎪⎝⎭N B .()*2112n n a n ⎛⎫=-∈ ⎪⎝⎭N C .()*1112n n a n -=-∈ND .()*122n n a n =-∈N 2.设等差数列{}n a 的前n 项和为*,n S n ∈N .若12130,0S S ><,则数列{}n a 的最小项是( ) A .第6项B .第7项C .第12项D .第13项3.已知等比数列{}n a 的n 项和2n n S a =-,则22212n a a a +++=( )A .()221n -B .()1213n- C .41n -D .()1413n- 4.在等差数列{}n a 中,n S 为其前n 项和,若202020210,0S S <>,则下列判断错误的是( )A .数列{}n a 单调递增B .10100a <C .数列{}n a 前2020项最小D .10110a >5.已知数列{}n a 满足111n n n n a a a a ++-=+,且113a =,则{}n a 的前2021项之积为( ) A .23B .13C .2-D .3-6.数学著作《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),问物几何?”现将1到2020共2020个整数中,同时满足“三三数之剩二,五五数之剩三”的数按从小到大的顺序排成一列,构成数列{},n a 则该数列共有( ) A .132项B .133项C .134项D .135项7.已知数列{}n a 满足11a =,24a =,310a =,且{}1n n a a +-是等比数列,则81ii a==∑( ) A .376B .382C .749D .7668.已知数列{}n a 是等比数列,数列{}n b 是等差数列,若1611a a a ⋅⋅=-16117b b b π++=,则3948tan1b b a a +-⋅的值是( )A .B .1-C .-D9.等差数列{}n a 的前n 项和为n S ,已知1210,a a =为整数,且4n S S ≤,设11n n n b a a +=,则数列{}n b 的前项和n T 为( ) A .310(103)nn -B .10(103)nn -C .103nn-D .10(133)nn -10.已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12= A .40 B .60 C .32D .5011.设等比数列{}n a 的前n 项和为n S ,且510315S S ==,,则20S =( ) A .255B .375C .250D .20012.定义12...nnp p p +++为n 个正数12,,......n p p p 的“均倒数”,若已知正整数数列{}n a 的前n 项的“均倒数”为121n +,又14n n a b +=,则12231920111b b b b b b +++=( ) A .1920 B .120C .1011 D .111二、填空题13.若数列{}n a 满足,111nn na a a ++=-,12a =,则数列{}n a 前2022项的积等于________. 14.将数列{2}n 与{32}n -的公共项从小到大排列得到数列{}n a ,则{}n a 的前n 项和n S =___.15.已知数列{}n a 的前n 项和为n S ,且满足:11a =,22a =,()*211n n n S a a n +++=-∈N ,则n S =______.16.朱载堉(1536-1611)是中国明代一位杰出的音乐家、数学家和天文历算家,他的著作《律学新说》中制作了最早的“十二平均律”.十二平均律是目前世界上通用的把一组音(八度)分成十二个半音音程的律制,各相邻两律之间的频率之比完全相等,亦称“十二等程律”,即一个八度13个音,相邻两个音之间的频率之比相等,且最后一个音是最初那个音的频率的2倍.设第三个音的频率为1f ,第七个音的频率为2f ,则21f f =______. 17.已知正项数列{}n a 和{}n b 满足:①11a =,23a =;②12n n n a a b ++=,211n n n b b a ++=.则数列{}n a 的通项公式为na =___________. 18.已知数列{}n a 的前n 项和2231n S n n =-+,则n a =__________.19.已知等比数列{}n a 满足()143nn n a a n N*++=⋅∈,的前n 项和为nS,若不等式n n S ka ≥对于任意n *∈N 恒成立,则实数k 的取值范围是______.20.已知首项为1a ,公比为q 的等比数列{}n a 满足443210q a a a ++++=,则首项1a 的取值范围是________.参考答案三、解答题21.在等比数列{}n a 中,24a =,532a =. (1)求n a(2)设23log n n b a =,n n n c b a =⋅,求数列{}n c 的前n 项和n T .22.诺贝尔奖每年发放一次,把奖金总金额平均分成6份,奖励在6项(物理、化学、文学、经济学、生理学和医学、和平)为人类做出最有贡献人.每年发放奖金的总金额是基金在该年度所获利息的一半,另一半利息用于增加基金总额,以便保证奖金数逐年递增.资料显示:1998年诺贝尔奖发奖后的基金总额(即1999年的初始基金总额)已达19516万美元,基金平均年利率为 6.24%r =.(1)求1999年每项诺贝尔奖发放奖金为多少万美元(精确到0.01);(2)设n a 表示()1998n +年诺贝尔奖发奖后的基金总额,其中*n N ∈,求数列{}n a 的通项公式,并因此判断“2020年每项诺贝尔奖发放奖金将高达193.46万美元”的推测是否具有可信度.23.数列{}n a 满足()1121nn n a a n ++-=-,n *∈N 且1a a =(a 为常数).(1)(i )当n 为偶数时,求4n n a a +-的值; (ii )求{}n a 的通顶公式;(2)设n S 是数列{}n a 的前n 项和,求证:48411114n S S S ++⋅⋅⋅+< 24.已知数列{a n }的前n 项和S n =3n +1-t ,求证:数列{a n }是等比数列的充要条件为t =3. 25.数列{}n a 的前n 项的和为n S ,11a =,()1112n n S a +=-. (1)证明数列{}n a 是等比数列,并求通项n a ; (2)若等差数列{}n b 的各项均为正数,且4124i i b ==∑,11ab +,22a b +,33a b +成等比数列,求数列{}n n a b 的前n 项和n T26.已知正项等比数列{}n a 满足2139nn a +=⋅,3log n n b a =,且n b ,n c ,4n +成等差数列.(1)求数列{}n c 的通项公式;(2)求数列()1n n c n b ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭的前100项和100T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用累加法可求得结果. 【详解】112n n n a a +-=, 所以当2n ≥时,1112n n n a a ---=,12212n n n a a ----=,,21112a a -=, 将上式累加得:1121111222n n a a --=++⋅⋅⋅+,1111221112n n a -⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-=-1112n -⎛⎫=- ⎪⎝⎭,即1122n n a -⎛⎫=- ⎪⎝⎭(2)n ≥, 又1n =时,11a =也适合,1122n n a -∴=-1212n⎛⎫=- ⎪⎝⎭. 故选:B . 【点睛】关键点点睛:利用累加法求解是解题关键.2.B解析:B 【分析】可利用等差数列的前n 项和的性质,等差数列下标的性质进行判断即可 【详解】由题意12130,0S S ><及()()()12112671311371366,132S a a a a S a a a =+=+=+=,得6770,0a a a +><,所以6670,a a a >>,且公差0d <,所以7a ,最小.故选B .【点睛】等差数列的前n 项和n S 具有以下性质()2121n n S n a -=-,()21n n n S n a a +=+.3.D解析:D 【分析】由n a 与n S 的关系可求得12n n a ,进而可判断出数列{}2n a 也为等比数列,确定该数列的首项和公比,利用等比数列的求和公式可求得所化简所求代数式.【详解】已知等比数列{}n a 的n 项和2n n S a =-. 当1n =时,112a S a ==-;当2n ≥时,()()111222nn n n n n a S S a a ---=-=---=.由于数列{}n a 为等比数列,则12a a =-满足12n na ,所以,022a -=,解得1a =,()12n n a n N -*∴=∈,则()221124n n na --==,2121444n n n n a a +-∴==,且211a =,所以,数列{}2n a 为等比数列,且首项为1,公比为4, 因此,222121441143n n na a a --+++==-. 故选:D. 【点睛】方法点睛:求数列通项公式常用的七种方法:(1)公式法:根据等差数列或等比数列的通项公式()11n a a n d +-=或11n n a a q -=进行求解;(2)前n 项和法:根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩进行求解;(3)n S 与n a 的关系式法:由n S 与n a 的关系式,类比出1n S -与1n a -的关系式,然后两式作差,最后检验出1a 是否满足用上面的方法求出的通项;(4)累加法:当数列{}n a 中有()1n n a a f n --=,即第n 项与第1n -项的差是个有规律的数列,就可以利用这种方法; (5)累乘法:当数列{}n a 中有()1nn a f n a -=,即第n 项与第1n -项的商是个有规律的数列,就可以利用这种方法;(6)构造法:①一次函数法:在数列{}n a 中,1n n a ka b -=+(k 、b 均为常数,且1k ≠,0k ≠).一般化方法:设()1n n a m k a m -+=+,得到()1b k m =-,1bm k =-,可得出数列1n b a k ⎧⎫+⎨⎬-⎩⎭是以k 的等比数列,可求出n a ;②取倒数法:这种方法适用于()112,n n n ka a n n N ma p*--=≥∈+(k 、m 、p 为常数,0m ≠),两边取倒数后,得到一个新的特殊(等差或等比)数列或类似于1n n a ka b-=+的式子;⑦1nn n a ba c +=+(b 、c 为常数且不为零,n *∈N )型的数列求通项n a ,方法是在等式的两边同时除以1n c +,得到一个1n n a ka b +=+型的数列,再利用⑥中的方法求解即可.4.C解析:C 【分析】结合等差数列的求和公式及等差数列的性质可得101010110,0a a <>,从而可求出公差的符号,进而可确定单调性,进而可确定和最小问题. 【详解】因为202020210,0S S <>,即()()12021202012020210,02022a a a a ++<>,所以12020120210,0a a a a +<+>.因为10101011120201011120210,20,a a a a a a a +=+<=+> 所以101010110,0a a <>,所以101110100d a a =->,所以数列{}n a 是单调递增数列, 前1010项和最小,所以C 错误. 故选:C . 【点睛】 关键点睛:本题的关键是由等差数列的求和公式对已知条件进行变形,整理出12020120210,0a a a a +<+>,再结合等差数列的性质求出101010110,0a a <>,确定公差后即可确定单调性及最值问题.5.B解析:B 【分析】由111n n n n a a a a ++-=+,且113a =,可得:111n n na a a ++=-,可得其周期性,进而得出结论.【详解】因为111n n n n a a a a ++-=+,且113a =, 所以111nn na a a ++=-,21132113a +∴==-,33a =-,412a =-,513a =,⋯⋯, 4n n a a +∴=.123411···2(3)()132a a a a ∴=⨯⨯--⋅⨯=.则{}n a 的前2021项之积50511133=⨯=.故选:B 【点睛】方法点睛:已知递推关系式求通项:(1)用代数的变形技巧整理变形,然后采用累加法、累乘法、迭代法、构造法或转化为基本数列(等差数列或等比数列)等方法求得通项公式.(2)通过具体的前几项找到其规律,如周期性等求解.6.D解析:D 【分析】由题意抽象出数列是等差数列,再根据通项公式计算项数. 【详解】被3除余2且被5除余3的数构成首项为8,公差为15的等差数列,记为{}n a ,则()8151157n a n n =+-=-,令1572020n a n =-≤,解得:213515n ≤, 所以该数列的项数共有135项. 故选:D 【点睛】关键点点睛:本题以数学文化为背景,考查等差数列,本题的关键是读懂题意,并能抽象出等差数列.7.C解析:C 【分析】利用累加法求出通项n a ,然后利用等比数列的求和公式,求解81i i a =∑即可【详解】由已知得,213a a -=,326a a -=,而{}1n n a a +-是等比数列,故2q,∴11221()()()n n n n a a a a a a ----+-+-=23632n -+++⨯1133232312n n ---⨯==⨯--,1n a a ∴-=1323n -⨯-,化简得1322n n a -=⨯-,8712818123(122)2831612i iaa a a =-=++=⨯+++-⨯=⨯--∑83219749=⨯-=故选:C 【点睛】关键点睛:解题关键在于利用累加法求出通项,难度属于中档题8.A解析:A 【分析】由等比数列和等差数的性质先求出39b b +和48a a ⋅的值,从而可求出3948tan 1b b a a +-⋅的值【详解】解:因为数列{}n a 是等比数列,数列{}n b是等差数列,1611a a a ⋅⋅=-16117b b b π++=,所以36a =-,637b π=,所以6a =673b π=, 所以3961423b b b π+==,24863a a a ⋅==,所以39481473tan tan tan()tan(2)tan 113333b b a a πππππ+==-=-+=-=-⋅-,故选:A 【点睛】此题考查等差数列和等比数列的性质的应用,考查三角函数求值,属于中档题9.B解析:B 【分析】根据已知条件求得{}n a 的通项公式,利用裂项求和法求得n T . 【详解】依题意等差数列{}n a 的前n 项和为n S ,已知1210,a a =为整数,且4nS S ≤,所以4151030040a a d a a d ≥+≥⎧⎧⇒⎨⎨<+<⎩⎩,即10301040d d +≥⎧⎨+<⎩,解得10532d -≤<-,由于2a 为整数,1a 为整数,所以d 为整数,所以3d =-.所以()11313n a a n d n =+-=-+. 所以()13113310n a n n +=-++=-+,()()1111113133103310313n n n b a a n n n n +⎛⎫===⨯- ⎪-+-+-+-+⎝⎭, 所以1111111371047310313n T n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥-+-+⎝⎭⎝⎭⎝⎭⎣⎦()()()10310111133101031010310103n nn n n --+⎡⎤=-=⨯=⎢⎥-+--⎣⎦. 故选:B 【点睛】本小题主要考查裂项求和法,属于中档题.10.B解析:B 【解析】由等比数列的性质可知,数列S 3,S 6−S 3,S 9−S 6,S 12−S 9是等比数列,即数列4,8,S 9−S 6,S 12−S 9是等比数列,因此S 12=4+8+16+32=60,选B .11.A解析:A 【分析】由等比数列的性质,510515102015,,,S S S S S S S ---仍是等比数列,先由51051510,,S S S S S --是等比数列求出15S ,再由10515102015,,S S S S S S ---是等比数列,可得20S . 【详解】由题得,51051510,,S S S S S --成等比数列,则有210551510()()S S S S S -=-,215123(15)S =-,解得1563S =,同理有215101052015()()()S S S S S S -=--,2204812(63)S =-,解得20255S =.故选:A 【点睛】本题考查等比数列前n 项和的性质,这道题也可以先由510315S S ==,求出数列的首项和公比q ,再由前n 项和公式直接得20S 。
(完整word版)中职数学《数列》单元测试题
![(完整word版)中职数学《数列》单元测试题](https://img.taocdn.com/s3/m/882123c2a32d7375a41780f0.png)
第六章《数列》测试题一.选择题1. 数列-3,3,—3,3,…的一个通项公式是( )A . a n =3(-1)n+1B . a n =3(-1)nC . a n =3-(—1)nD . a n =3+(—1)n2.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A .667B .668C .669D .6703.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ). A .33B .72C .84D .1894.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A .81 B .120 C .168 D .192 5.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ). A .-4B .-6C .-8D . -106..公比为2的等比数列{n a } 的各项都是正数,且 3a 11a =16,则5a = (A) 1 (B )2 (C ) 4 (D )8 7.在等差数列{a n }中,已知a 4+a 8=16,则a 2+a 10= (A) 12 (B) 16 (C ) 20 (D )248.设{n a }为等差数列,公差d = —2,n S 为其前n 项和.若1011S S =,则1a =( )A .18B .20C .22D .24 9在等比数列{a n }中,a 2=8,a 5=64,,则公比q 为( )A .2B .3C .4D .810.在等比数列{}n a (n ∈N*)中,若11a =,418a =,则该数列的前10项和为( ) A .4122-B .2122-C .10122-D .11122-二.填空题11.在等差数列{}n a 中,(1)已知,10,3,21===n d a 求n a = ; (2)已知,2,21,31===d a a n 求=n ;12. 设n S 是等差数列*{}()n a n N ∈的前n 项和,且141,7a a ==,则5______S =;13.在等比数列{a n }中,a 1=12,a 4=—4,则公比q=______________;14.等比数列{}n a 中,已知121264a a a =,则46a a 的值为_____________;15.等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =_______. 三.解答题 16.(本小题满分12分)已知等差数列{a n }中,a 1=1,a 3=—3. (I )求数列{a n }的通项公式;(II)若数列{a n }的前k 项和k S =-35,求k 的值.17.在等差数列{a n }中,解答下列问题:(1)已知a 1+a 2+a 312=,与a 4+a 5+a 618=,求a 7+a 8+a 9的值 (2)设10123=a 与3112=n a 且d=70, 求项数n 的值 (3)若11=a 且211=-+n n a a ,求11a18.在等差数列{a n }中,已知74=a 与47=a ,解答下列问题: (1)求通项公式n a(2)前n 项和n s 的最大值及n s 取得最大值时项数n 的值。
最新人教版高中数学选修二第一单元《数列》检测题(有答案解析)
![最新人教版高中数学选修二第一单元《数列》检测题(有答案解析)](https://img.taocdn.com/s3/m/f42c07883c1ec5da51e27001.png)
一、选择题1.已知数列{}n a 中,12a =,111(2)n n a n a -=-≥,则2021a 等于( ) A .1-B .12-C .12D .22.在函数()y f x =的图像上有点列{},n n x y ,若数列{}n x 是等比数列,数列{}n y 是等差数列,则函数()y f x =的解析式可能是( ) A .3(4)f x x =+B .2()4f x x =C .3()4xf x ⎛⎫= ⎪⎝⎭D .4()log f x x =3.已知正项数列{}n a 满足11a =,1111114n n n n a a a a ++⎛⎫⎛⎫+-=⎪⎪⎝⎭⎝⎭,数列{}n b 满足1111n n nb a a +=+,记{}n b 的前n 项和为n T ,则20T 的值为( ) A .1B .2C .3D .44.在等差数列{}n a 中,25812a a a ++=,则{}n a 的前9项和9S =( ) A .36B .48C .56D .725.设等差数列{}n a 的前n 项和为*,n S n ∈N .若12130,0S S ><,则数列{}n a 的最小项是( ) A .第6项B .第7项C .第12项D .第13项6.已知数列{}n a 满足2122111,16,2n n n a a a a a ++===则数列{}n a 的最大项为( ) A .92B .102C .8182D .1127.已知单调递增数列{}n a 的前n 项和n S 满足()()*21n n n S a a n =+∈N ,且0n S >,记数列{}2nn a ⋅的前n 项和为n T ,则使得2020n T >成立的n 的最小值为( )A .7B .8C .10D .118.两等差数列{}n a 和{}n b ,前n 项和分别为n S ,n T ,且723n n S n T n +=+,则220715a ab b ++的值为( ) A .14924B .7914C .165D .51109.已知数列{}n a 是等比数列,数列{}n b是等差数列,若1611a a a ⋅⋅=-16117b b b π++=,则3948tan1b b a a +-⋅的值是( )A.B .1-C.-D10.删去正整数1,2,3,4,5,…中的所有完全平方数与立方数(如4,8),得到一个新数列,则这个数列的第2020项是( ) A .2072B .2073C .2074D .207511.已知等差数列{}n a 的前n 项和为n S ,若633S S =,则129SS =( ) A .43B .53C .2D .312.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .174B .184C .188D .160二、填空题13.将正整数12分解成两个正整数的乘积有112⨯,26⨯,34⨯,三种,其中34⨯是这三种分解中两数差的绝对值最小的,我们称34⨯为12的最佳分解,当(),,p q p q p N q N **⨯≤∈∈是正整数n 的最佳分解时,我们定义函数()f n q p =-,例如(12)431f =-=,则数列(){}3nf 的前2020项和为______.14.天干地支纪看法源于中国,中国自古便有十天干与十二地支.十天干:甲、乙、丙、丁、戊、已、庚、辛、壬、癸.十二地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,…,以此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,之后地支回到“子”重新开始,即“丙子”,…,以此类推,已知2020年为庚子年,那么到建国100年时,即2049年以天干地支纪年法为__________.15.已知数列{}n a 与2n a n ⎧⎫⎨⎬⎩⎭均为等差数列(n *∈N ),且12a =,则{}n a 的公差为______.16.设n S 是数列{}n a 的前n 项和,满足212n n n a a S +=,且0n a >,则64S =____.17.已知正项数列{}n a 和{}n b 满足:①11a =,23a =;②12n n n a a b ++=,211n n n b b a ++=.则数列{}n a 的通项公式为n a =___________.18.设数列{}n a 满足11a =,且()*11n n a a n n N +-=+∈,则数列1n a ⎧⎫⎨⎬⎩⎭前2020项的和为________.19.已知等比数列{}n a 的前n 项和为n S ,若37S =,663S =,则789a a a ++=________.20.数列{}n a 满足()211122,3,1n n nn n a a a a n a -+--+==+,21a =,33a =,则7a =________.三、解答题21.设数列{}n a 前n 项和为n S ,满足()*3142n n a S n N =+∈. (1)求数列{}n a 的通项公式;(2)令n n b na =,求数列{}n b 的前n 项和n T .22.在①1,n a ,n S 成等差数列;②递增等比数列{}n a 中的项2a ,4a 是方程21090x x -+=的两根;这二个条件中任选一个,补充在下面的问题中,若问题中的k 存在,求k 的值;若k 不存在,说明理由.已知数列{}n a 和等差数列{}n b 满足__________,且14b a =,223b a a =-,是否存在()320,k k k N <<∈使得k T 是数列{}n a 中的项?(n S 为数列{}n a 的前n 项和,n T 为数列{}n b 的前n 项和)23.已知数列{}n a 的前n 项和为n S ,当2n ,*n N ∈时,112n n S a -=-,且112a =. (1)求数列{}n a 的通项公式;(2)设n n b na =,数列{}n b 的前n 项和n T ,求使得158n T <成立的n 的最大值. 24.在①{}n a 是等比数列,且11a =,其中1a ,21a +,31a +成等差数列;②数列{}n a 中,12a =,且()13212n n S S n n n --=-;③11a =,120n n a a ++=.这三个条件中任选一个,补充在下面问题中,若问题中的k 存在,求k 的值;若k 不存在,说明理由. 已知数列{}n a 和等差数列{}n b 满足___________,且14b a =,223b a a =-,是否存在(320,)k k k N <<∈使得k T 是数列{}n a 中的项?(n S 为数列{}n a 的前n 项和,n T 为数列{}n b 的前n 项和)注:如果选择多个条件分别解答,按第一个解答计分.25.设数列{}n a 的前n 项和为n S ,从条件①()11n n na n a +=+,②()12n n n a S +=,③22n n n a a S +=中任选一个,补充到下面问题中,并给出解答.已知各项都为正数的数列{}n a 的前n 项和为n S ,11a =,____. (1)求数列{}n a 的通项公式;(2)若2nn n b a =-,求数列{}n b 的前n 和nT.26.已知数列}{n a 满足11a =,)(121n n a a n N *+=+∈.(1)求数列}{na 的通项公式.(2)设n b n =,求数列1n n b a ⎧⎫⎪⎨⎬+⎪⎭⎩的前n 项和n S .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先计算出{}n a 的前几项,然后分析{}n a 的周期性,根据周期可将2021a 转化为2a ,结合12a =求解出结果.【详解】因为12a =,所以23412311111,11,12,......2a a a a a a =-==-=-=-= 所以3211111111111111111111n n nn n n n na a a a a a a a +++-=-=-=-=-=-=------, 所以{}n a 是周期为3的周期数列,所以20213673+2212a a a ⨯===, 故选:C. 【点睛】思路点睛:根据递推公式证明数列{}n a 为周期数列的步骤:(1)先根据已知条件写出数列{}n a 的前几项,直至出现数列中项循环,判断循环的项包含的项数A ;(2)证明()*n A n a a A N+=∈,则可说明数列{}na 是周期为A 的数列.2.D解析:D把点列代入函数解析式,根据{x n }是等比数列,可知1n nx x +为常数进而可求得1n n y y +-的结果为一个与n 无关的常数,可判断出{y n }是等差数列. 【详解】对于A ,函数3(4)f x x =+上的点列{x n ,y n },有y n =43n x +,由于{x n }是等比数列,所以1n nx x +为常数, 因此1n n y y +-=()()()()114343441n n n n n x x x x x q +++-+=-=-这是一个与n 有关的数,故{y n }不是等差数列;对于B ,函数2()4f x x =上的点列{x n ,y n },有y n =24n x ,由于{x n }是等比数列,所以1n nx x +为常数,因此1n n y y +-=()222214441n n n x x x q +-=-这是一个与n 有关的数,故{y n }不是等差数列;对于C ,函数3()4xf x ⎛⎫= ⎪⎝⎭上的点列{x n ,y n },有y n =3()4n x ,由于{x n }是等比数列,所以1n nx x +为常数, 因此1n n y y +-=133()()44n n x x+-=33()()144n qx⎡⎤-⎢⎥⎣⎦,这是一个与n 有关的数,故{y n }不是等差数列;对于D ,函数4()log f x x =上的点列{x n ,y n },有y n =4log n x,由于{x n }是等比数列,所以1n nx x +为常数, 因此1n n y y +-=114444log log log log n n n nx x x x q ++-==为常数,故{y n }是等差数列;故选:D . 【点睛】 方法点睛:判断数列是不是等差数列的方法:定义法,等差中项法.3.B解析:B 【分析】 由题意可得221114n n a a +-=,运用等差数列的通项公式可得2143n n a =-,求得14n b =,然后利用裂项相消求和法可求得结果解:由11a =,1111114n n n n a a a a ++⎛⎫⎛⎫+-= ⎪⎪⎝⎭⎝⎭,得221114n na a +-=, 所以数列21n a ⎧⎫⎨⎬⎩⎭是以4为公差,以1为首项的等差数列,所以2114(1)43nn n a =+-=-,因为0n a >,所以n a =,所以1111n n nb a a +=+=所以14n b ==,所以201220T b b b =++⋅⋅⋅+111339(91)244=++⋅⋅⋅+=⨯-=, 故选:B 【点睛】关键点点睛:此题考查由数列的递推式求数列的前n 项和,解题的关键是由已知条件得221114n n a a +-=,从而数列21n a ⎧⎫⎨⎬⎩⎭是以4为公差,以1为首项的等差数列,进而可求n a =,14n b ==,然后利用裂项相消法可求得结果,考查计算能力和转化思想,属于中档题4.A解析:A 【分析】根据等差数列的性质,由题中条件,得出54a =,再由等差数列前n 项和公式,即可得出结果. 【详解】因为{}n a 为等差数列,25812a a a ++=, 所以5312a =,即54a =, 所以()1999983622a a S +⨯===. 故选:A . 【点睛】熟练运用等差数列性质的应用及等差数列前n 项和的基本量运算是解题关键.5.B解析:B 【分析】可利用等差数列的前n 项和的性质,等差数列下标的性质进行判断即可 【详解】由题意12130,0S S ><及()()()12112671311371366,132S a a a a S a a a =+=+=+=,得6770,0a a a +><,所以6670,a a a >>,且公差0d <,所以7a ,最小.故选B .【点睛】等差数列的前n 项和n S 具有以下性质()2121n n S n a -=-,()21n n n S n a a +=+.6.B解析:B 【分析】本题先根据递推公式进行转化得到21112n n n n a a a a +++=.然后令1n n na b a +=,可得出数列{}n b 是等比数列.即11322nn n a a +⎛⎫= ⎪⎝⎭.然后用累乘法可求出数列{}n a 的通项公式,根据通项公式及二次函数的知识可得数列{}n a 的最大项. 【详解】解:由题意,可知: 21112n n n na a a a +++=. 令1n n n ab a +=,则112n n b b +=. 21116a b a ==, ∴数列{}n b 是以16为首项,12为公比的等比数列. 111163222n nn b -⎛⎫⎛⎫∴== ⎪⎪⎝⎭⎝⎭.∴11322nn n a a +⎛⎫= ⎪⎝⎭. ∴1211322a a ⎛⎫= ⎪⎝⎭,2321322a a ⎛⎫= ⎪⎝⎭,111322n n n a a --⎛⎫= ⎪⎝⎭.各项相乘,可得: 12111111(32)222n n na a --⎛⎫⎛⎫⎛⎫=⋯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)2511()22n n n --⎛⎫= ⎪⎝⎭ 2115(1)221122n n n ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭211552212n n n --+⎛⎫= ⎪⎝⎭21(1110)212n n -+⎛⎫= ⎪⎝⎭.令2()1110f n n n =-+,则,根据二次函数的知识,可知:当5n =或6n =时,()f n 取得最小值. ()2551151020f =-⨯+=-,()2661161020f =-⨯+=-,()f n ∴的最小值为20-.∴211(1110)(20)1022101112222n n -+⨯--⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.∴数列{}n a 的最大项为102.故选:B . 【点睛】本题主要考查根据递推公式得出通项公式,构造新数列的方法,累乘法通项公式的应用,以及利用二次函数思想求最值;7.B解析:B 【分析】由数列n a 与n S 的关系转化条件可得11n n a a -=+,结合等差数列的性质可得n a n =,再由错位相减法可得()1122n n T n +=-⋅+,即可得解.【详解】由题意,()()*21n n n S a a n N=+∈,当2n ≥时,()11121n n n S a a ---=+,所以()()11122211n n n n n n n a S S a a a a ---=-=+-+, 整理得()()1110n n n n a a a a --+--=,因为数列{}n a 单调递增且0n S >,所以110,10n n n n a a a a --+≠--=,即11n n a a -=+, 当1n =时,()11121S a a =+,所以11a =, 所以数列{}n a 是以1为首项,公差为1的等差数列, 所以n a n =,所以1231222322n n T n =⋅+⋅+⋅+⋅⋅⋅+⋅,()23412122232122n n n T n n +=⋅+⋅+⋅+⋅⋅⋅+-⋅+⋅,所以()()234111212222222212212n n n n n n T n n n +++--=++++⋅⋅⋅+-⋅=-⋅=-⋅--,所以()1122n n T n +=-⋅+,所以876221538T =⨯+=,987223586T =⨯+=,所以2020n T >成立的n 的最小值为8. 故选:B. 【点睛】关键点点睛:解决本题的关键是数列n a 与n S 关系的应用及错位相减法的应用.8.A解析:A 【分析】在{}n a 为等差数列中,当(m n p q m +=+,n ,p ,)q N +∈时,m n p q a a a a +=+.所以结合此性质可得:2202171521a a Sb b T +=+,再根据题意得到答案.【详解】解:在{}n a 为等差数列中,当(m n p q m +=+,n ,p ,)q N +∈时,m n p q a a a a +=+.所以1212202171521121121()2121()2a a a a Sb b T b b ⨯+⨯+==+⨯+⨯, 又因为723n n S n T n +=+, 所以22071514924a ab b +=+.故选:A . 【点睛】本题主要考查等差数列的下标和性质,属于中档题.9.A解析:A 【分析】由等比数列和等差数的性质先求出39b b +和48a a ⋅的值,从而可求出3948tan 1b b a a +-⋅的值【详解】解:因为数列{}n a 是等比数列,数列{}n b是等差数列,1611a a a ⋅⋅=-16117b b b π++=,所以36a =-,637b π=,所以6a =673b π=, 所以3961423b b b π+==,24863a a a ⋅==,所以39481473tan tan tan()tan(2)tan 113333b b a a πππππ+==-=-+=-=-⋅-,故选:A 【点睛】此题考查等差数列和等比数列的性质的应用,考查三角函数求值,属于中档题10.C解析:C 【分析】由于数列22221,2,3,2,5,6,7,8,3,45⋯共有2025项,其中有45个平方数,12个立方数,有3个既是平方数,又是立方数的数,所以还剩余20254512+31971--=项,所以去掉平方数和立方数后,第2020项是在2025后的第()20201971=49-个数,从而求得结果. 【详解】∵2452025=,2462116=,20202025<,所以从数列22221,2,3,2,5,6,7,8,3,45⋯中去掉45个平方数,因为331217282025132197=<<=,所以从数列22221,2,3,2,5,6,7,8,3,45⋯中去掉12个立方数,又66320254<<,所以在从数列22221,2,3,2,5,6,7,8,3,45⋯中有3个数即是平方数, 又是立方数的数,重复去掉了3个即是平方数,又是立方数的数, 所以从数列22221,2,3,2,5,6,7,8,3,45⋯中去掉平方数和立方数后还有20254512+31971--=项,此时距2020项还差2020197149-=项, 所以这个数列的第2020项是2025492074+=, 故选:C. 【点睛】本题考查学生的实践创新能力,解决该题的关键是找出第2020项的大概位置,所以只要弄明白在数列22221,2,3,2,5,6,7,8,3,45⋯去掉哪些项,去掉多少项,问题便迎刃而解,属于中档题.11.B解析:B 【分析】由已知条件利用等差数列前n 项和公式推导出a 1=2d ,由此能求出129S S 的值【详解】∵等差数列{a n }的前n 项和为S n ,63S S =3, ∴1165623232a d a d⨯+=⨯+3,整理,得a 1=2d , ∴112191112111212665298936392a dS a d S a d a d ⨯++===⨯++. 故选:B . 【点睛】本题考查等差数列的前n 项和比值的求法,是基础题,解题时要注意等差数列的前n 项和公式的合理运用.12.A解析:A 【分析】根据已知条件求得11n n n a a -=--,利用累加法求得19a . 【详解】 依题意:3,4,6,9,13,18,24,1,2,3,4,5,6,所以11n n n a a -=--(2n ≥),且13a =, 所以()()()112211n n n n n a a a a a a a a ---=-+-++-+()()12213n n =-+-++++()()()11113322n n n n -+--=+=+.所以19191831742a ⨯=+=. 故选:A 【点睛】本小题主要考查累加法,属于中档题.二、填空题13.【分析】先通过归纳得再利用等比数列求和得解【详解】由题意得归纳得则故答案为:【点睛】关键点睛:解答本题的关键在通过特殊值归纳出归纳出这个结论之后后面利用等比数列求和就迎刃而解了 解析:101031-【分析】 先通过归纳得()()2111233323,3330k kk k k k k f f ---=-=⨯=-=,再利用等比数列求和得解. 【详解】由题意得()()232(3)312,3330,333236f f f =-==-==-=⨯=,()4223330f =-=,归纳得()()2111233323,3330k kk k kkkf f ---=-=⨯=-=,则()()()()()()232020352019(3)333(3)333f f f f f f f f ++++=++++012100923232323=⨯+⨯+⨯++⨯()10101210091010132333323113-=⨯++++=⨯=--.故答案为:101031- 【点睛】关键点睛:解答本题的关键在通过特殊值归纳出()()2111233323,3330k k k k k k k f f ---=-=⨯=-=,归纳出这个结论之后,后面利用等比数列求和就迎刃而解了.14.已巳【分析】本题由题意可得数列天干是10个为一个循环的循环数列地支是以12个一个循环的循环数列以2020年的天干和地支分别为首项即可求解【详解】由题意可知数列天干是10个为一个循环的循环数列地支是以解析:已巳 【分析】本题由题意可得数列天干是10个为一个循环的循环数列,地支是以12个一个循环的循环数列,以2020年的天干和地支分别为首项,即可求解. 【详解】由题意可知数列天干是10个为一个循环的循环数列,地支是以12个一个循环的循环数列,从2020年到2049年一共有30年,且2020年为庚子年, 则30103÷=,2049年的天干为已,30122÷=余6,2049年的地支为巳, 故2049年为已巳年, 故答案为:已巳. 【点睛】关键点点睛:本题主要考查了循环数列的实际应用,能否根据题意得出天干是10个为一个循环的循环数列以及地支是以12个一个循环的循环数列是解决本题的关键,着重考查了分析问题和解答问题的能力,是中档题.15.【分析】本题首先可设数列的公差为则然后根据题意得出最后通过计算即可得出结果【详解】设数列的公差为因为所以因为数列是等差数列所以即解得故答案为:【点睛】关键点点睛:本题考查等差数列的公差的求法主要考查 解析:2【分析】本题首先可设数列{}n a 的公差为d ,则22a d =+、322a d =+,然后根据题意得出2123221322a a a +=⨯,最后通过计算即可得出结果. 【详解】设数列{}n a 的公差为d ,因为12a =,所以22a d =+,322a d =+,因为数列2n a n ⎧⎫⎨⎬⎩⎭是等差数列,所以2123221322a a a +=⨯,即()()2222342d d +=++,解得2d =, 故答案为:2. 【点睛】关键点点睛:本题考查等差数列的公差的求法,主要考查等差中项的应用,若数列{}n a 是等差数列且2n mk ,则2n m k a a a ,考查计算能力,是中档题.16.8【分析】由与的关系化简结合等差数列的定义得出数列是等差数列进而求出【详解】当时当时由题意可知整理得所以数列是以为首项为公差的等差数列则故答案为:【点睛】解决本题的关键是由与的关系对化简结合等差数列解析:8【分析】由n S 与n a 的关系化简212n n n a a S +=,结合等差数列的定义得出数列{}2n S 是等差数列,进而求出2n S n =,【详解】当1n =时,111S a ==当2n ≥时,由题意可知()()21112n n n n n S S S S S ---+=-,整理得2211n n S S --=所以数列{}2n S 是以1为首项,1为公差的等差数列,则2n S n =64264S ∴=,0n a >,648S ∴=故答案为:8 【点睛】解决本题的关键是由n S 与n a 的关系对212n n n a a S +=化简,结合等差数列的定义进行求解.17.【分析】根据条件②联立化简得数列是等差数列再根据条件①可得的通项再代入②即可得数列的通项公式【详解】则时时即数列是等差数列又首项公差其中适合此式故答案为:【点睛】本题考查数列的通项公式考查对数列相关解析:()112n n +【分析】根据条件②12n n n a a b ++=,211n n n b b a ++=联立化简得数列是等差数列,再根据条件①可得的通项,再代入②即可得数列{}na 的通项公式.【详解】0n a >,0n b >,211n n n b b a ++=,1n a +∴=则2n ≥2n b =,2n ∴≥==∴数列是等差数列.又1212a a b +=,12b ∴=,222192a b b ==,=2d ==,))11n n =-=+. ()2112n b n ∴=+,()()11122n a n n +∴==++. ()112n a n n ∴=+,其中11a =适合此式, ()112n a n n ∴=+. 故答案为:()112n n +. 【点睛】本题考查数列的通项公式,考查对数列相关知识的理解与运用,解题关键是对题目条件的转化,属于中等题.18.【分析】由得到用累加法求得从而得到然后利用裂项相消法求解【详解】因为所以左右分别相加得所以所以所以故答案为:【点睛】本题主要考查累加法求通项裂项相消法求和还考查了运算求解的能力属于中档题 解析:40402021【分析】由()*11n n a a n n N+-=+∈得到1122321,1,2,...,2------=-=--=--=n n n n n n a a n a a n a a n a a ,用累加法求得22n n na +=,从而得到2121121n a n nnn ,然后利用裂项相消法求解.【详解】因为()*11n n a a n n N+-=+∈,所以1122321,1,2,...,2------=-=--=--=n n n n n n a a n a a n a a n a a , 左右分别相加得()()112234 (2)-+=++++=-n n n n a a ,所以22n n na +=,所以2121121na n nnn ,所以20201111111140402...2122320202021120212021⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪⎝⎭⎝⎭S , 故答案为:40402021【点睛】本题主要考查累加法求通项,裂项相消法求和,还考查了运算求解的能力,属于中档题.19.【分析】可得出并计算出利用等比数列片断和的性质得出成等比数列可得出的值【详解】且成等比数列即因此故答案为:【点睛】本题考查利用等比数列片断和性质求值考查计算能力属于中等题 解析:448【分析】可得出78996a a a S S ++=-,并计算出6356S S -=,利用等比数列片断和的性质得出3S 、63S S -、96S S -成等比数列,可得出789a a a ++的值.【详解】6363756S S -=-=,且78996a a a S S ++=-,3S 、63S S -、96S S -成等比数列,即()()263396S S S S S -=-,因此,()2263789963564487S S a a a S S S -++=-===. 故答案为:448. 【点睛】本题考查利用等比数列片断和性质求值,考查计算能力,属于中等题.20.【分析】由等式变形可得出利用等比中项法可判断出数列为等比数列求出该等比数列的公比利用等比数列的通项公式即可求出的值【详解】即由等比中项法可知数列为等比数列且公比为解得故答案为:【点睛】本题考查了数列 解析:63【分析】由等式211121n n n n n a a a a a -+--+=+变形可得出()()()211111n n n a a a +-++=+,利用等比中项法可判断出数列{}1n a +为等比数列,求出该等比数列的公比,利用等比数列的通项公式即可求出7a 的值. 【详解】()()()22211111111121111n n n n n n n n n n a a a a a a a a a a --+---+-++-+===-+++,即()211111nn n a a a +-++=+, ()()()211111n n n a a a +-∴++=+,由等比中项法可知,数列{}1n a +为等比数列,且公比为32121a a +=+, ()55721122264a a ∴+=+⨯=⨯=,解得763a =.故答案为:63. 【点睛】本题考查了数列递推关系、等比数列的通项公式,考查了推理能力与计算能力,属于中档题.三、解答题21.(1)212n n a -=;(2)211(31)229n n T n +⎡⎤=-⋅+⎣⎦.【分析】(1)利用1(2)n n n a S S n -=-≥得出数列{}n a 的递推关系,结合1a ,得数列为等比数列,从而易得通项公式;(2)用错位相减法求得和n T . 【详解】 (1)31()42n n a S n N *=+∈ 1131(2)42n n a S n --=+≥ 两式相减,得()113344n n n n n a a S S a ---=-=. 所以,114n n a a -=,14(2)n n a n a -=≥ 又113142a S =+,即113142a a =+∴12a = ∴{}n a 是首项为2,公比是4的等比数列.1222124222n n n n a ---=⋅=⋅=.(2)212n n n b n a n -=⋅=⋅. 35211222322n n T n -=⋅+⋅+⋅++⋅ ①35212141222(1)22n n n T n n -+=⋅+⋅++-⋅+⋅ ②①-②,得()352121322222n n n T n -+-=++++-⋅212(14)214n n n --=-⋅-,故211(31)229n n T n +⎡⎤=-⋅+⎣⎦. 【点睛】本题考查求等经数列的通项公式,错位相减法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和. 22.任选①②,结论都是:不存在()320,k k k N <<∈使得k T 是数列{}n a 中的项. 【分析】选①,由1(2)n n n a S S n -=-≥得出数列{}n a 是系数,求得其通项公式后,可得12,b b ,公差为21d b b =-,从而得n T ,n T 根据的表达式知3n ≥时,0n T <,结合n a 表达式可得结论.选②,由方程的根,及数列的性质得出24,a a ,从而可得n a ,求出12,b b ,得公差d 后可得n T ,在2n ≥时,0n T <,结合n a 可得结论. 【详解】若选①,∵1,n a ,n S 成等差数列,∴21n n a S =+, 即21n n S a =-,显然11121a S a ==-,11a =,2n ≥时,11(21)(21)n n n n n a S S a a --=-=---,化简得12n n a a -=,∴{}n a 是等比数列,公比为2,∴12n na ,∴148b a ==,223242b a a =-=-=-,{}n b 是等差数列,则2110d b b =-=-,21(1)(1)8(10)51322n n n n n T nb d n n n --=+=+⨯-=-+, 18T =,26T =,36T =-,3n ≥时都有0n T <,而120n n a -=>,∴不存在()320,k k k N <<∈使得k T 是数列{}n a 中的项.若选②,∵递增等比数列{}n a 中的项2a ,4a 是方程21090x x -+=的两根,∴241,9a a ==,则2429a q a ==,3q =,2223n n n a a q --==, 149b a ==,223132b a a =-=-=-,2111d b b =-=-,1(1)1(1)(11)232n n n n n T nb d n --=+=⨯+⨯-2113526n n =-+, 易知19T =,2n ≥时,0n T <,而0n a >,∴不存在()320,k k k N <<∈使得k T 是数列{}n a 中的项. 【点睛】关键点点睛:本题考查注等比数列的通项公式,求等差数列的前n 项和,解题关键是由基本量法法求得n a 和n T ,然后分析n T 与n a 的性质,确定结论.23.(1) 12nn a ⎛⎫= ⎪⎝⎭(2)5 【分析】(1)由n S 与n a 的关系求数列的通项公式; (2)由错位相减法求和,作差判断单调性,即可求解. 【详解】(1)当2n ≥,N n *∈时,112n n S a -=-,所以()1121n n S a n +=-≥ 相减整理可得:()1122n n a a n +=≥,(*) 当2n =时,1121122S a a ===-,解得214a =. 所以2112a a =,即1n =时,(*)式也成立. 所以()1112n n a a n +=≥, 所以数列{}n a 是等比数列,首项与公比都为12. 所以12nn a ⎛⎫= ⎪⎝⎭. (2)因为2n nn b =, 所以231232222n nn T =++++, 所以2311122222n n n T +=+++, 所以2311111111122222222n n n n n n n T ++=++++-=-- 所以222n nn T +=-因为111321220222n n n n n n n n T T ++++++⎛⎫⎛⎫-=---=> ⎪ ⎪⎝⎭⎝⎭, 所以n T 单调递增. 因为6158n T T <=,所以6n <,所以n 的最大值是5. 【点睛】关键性点睛:对于形如等差数列与等比数列相乘的形式,求和可用错位相减法,判断数列和的单调性可采用作差法,本题考查了运算能力,属于中档题.24.若选①或②则不存在(320,)k k k N <<∈使得k T 是数列{}n a 中的项,选③存在8k ,使得k T 是数列{}n a 中的项.【分析】若选①解方程可得等差数列{}n a 的通项公式,求出n T ,根据通项公式验证即可;若选②, 由()13212n n S S n n n --=≥-,得数列n S n ⎧⎫⎨⎬⎩⎭是以32为公差的等差数列,利用1n n n a S S -=-求出即可求解;若选③由120n n a a ++=可得12nn a a -=-,数列为等比数列,求出()12n n a -=-即可求解. 【详解】选①,设数列{}n a 是公比为q 的等比数列, 且11a =,其中1a ,21a +,31a +成等差数列, 可得()213211a a a +=++,即()2212q q +=+,解得2q(0舍去),则1112n n n a a q --==;故148b a ==,2232b a a =-=-, 则等差数列{}n b 的公差10d =-,()()218101352n n n T n n n -=+-=-, 当3n ≥时,0n T <,0n a >,故不存在()320,N k k n <<∈使得使得k T 是数列{}n a 中的项; 选②由()13212n n S S n n n --=≥-,得数列n S n ⎧⎫⎨⎬⎩⎭是以32为公差的等差数列, 又11211S a ==,所以()33121222n S n n n =+-=+, 则23122n S n n =+;所以()1312n n n a S S n n -=-=-≥ 验证12a =适合上式,所以31n a n =-;1411b a ==,2235830b a a =-=-=-<,则等差数列{}n b 的公差14d =-,()()2111147182n n n T n n n -=+-=-+, 当3n ≥时,0n T <,0n a >,故不存在()320,N k k n <<∈使得使得k T 是数列{}n a 中的项;选③由11a =,120n n a a ++=可得,12nn a a -=-, 以数列{}n a 是以2-为公比以1为首项的等比数列,所以()12n n a -=-,148b a ==-,2236b a a =-=-,则等差数列{}n b 的公差2d =,29n T n n =-,()38482T a ==-=,故存在8k ,使得k T 是数列{}n a 中的项;【点睛】关键点点睛:本题主要根据所选的条件,去求数列{}n a 的通项公式,求出通项公式后,利用公式判断项是否在数列中即可,属于中档题. 25.(1)()*n a n n N =∈;(2)()1122n nT n +=-⋅-.【分析】 (1)若选①可得n a n ⎧⎫⎨⎬⎩⎭为常数数列,即可求出n a ;若选②利用1n n n a S S -=-可得()11n n n a na --=,即可得n a n ⎧⎫⎨⎬⎩⎭为常数数列,即可求出n a ;若选③利用1n n n a S S -=-可得11n n a a --=,即可得到数列{}n a 是以1为首项,1为公差的等差数列,从而得解;(2)利用错位相减法求和; 【详解】 选条件①时,(1)()11n n na n a +=+时,整理得11111n n a a a n n +===+,所以n a n =. (2)由(1)得:2nn b n =-⋅, 设2nn c n =⋅,其前n 项和为n C ,所以1212222n n C n =⨯+⨯++⋅ ①,231212222n n C n +=⨯+⨯++⋅ ②,①-②得:()()12112212222221n n n n nC n n ++⨯--=+++-⋅=-⋅-,故()1122n n C n +=-⋅+, 所以()1122n n T n +=-⋅-.选条件②时, (1)由于()12n n n a S +=,所以()21nn Sn a =+①,当2n ≥时,112n n S na --=②,①-②得:()121n n n a n a na -=+-,()11n n n a na --=,整理得1111n n na a a n n -===-,所以n a n =. (2)由(1)得:2nn b n =-⋅, 设2nn c n =⋅,其前n 项和为n C ,所以1212222n n C n =⨯+⨯++⋅ ①, 231212222n n C n +=⨯+⨯++⋅ ②,①-②得:()()12112212222221n n n n nC n n ++⨯--=+++-⋅=-⋅-,故()1122n n C n +=-⋅+, 所以()1122n n T n +=-⋅-.选条件③时,由于22n n n a a S +=, ①21112n n n a a S ---+= ②①-②时,2211n n n n a a a a ---=+,整理得11n n a a --=(常数),所以数列{}n a 是以1为首项,1为公差的等差数列. 所以n a n =.(2)由(1)得:2nn b n =-⋅, 设2nn c n =⋅,其前n 项和为n C ,所以1212222n n C n =⨯+⨯++⋅①, 231212222n n C n +=⨯+⨯++⋅②,①-②得:()()12112212222221n nn n nC n n ++⨯--=+++-⋅=-⋅-,故()1122n n C n +=-⋅+, 所以()1122n n T n +=-⋅-.【点睛】数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.26.(1)21nn a =-;(2))(1222nn S n ⎛⎫=-+⋅⎪ ⎭⎝.【分析】( 1)先化简已知)(1121n n a a ++=+,构造等比数列}{1n a +,求出数列{}n a 的通项公式;(2)先求出1122nn n n b nn a ⎛⎫==⋅⎪ +⎭⎝,再利用错位相减求出前n 项和n S .【详解】(1)∵)(121n n a a n N*+=+∈,∴)(1121n n aa ++=+,由已知10n a +≠,∴1121n n a a ++=+,∴}{1n a +是以112a +=为首项,以2为公比的等比数列,∴11222n nn a -+=⨯=,∴21n n a =-.(2)1122n n n n b nn a ⎛⎫==⋅⎪ +⎭⎝,12311111232222nn S n ⎛⎛⎛⎛⎫⎫⎫⎫=⨯+⨯+⨯+⋅⋅⋅+⋅⎪⎪⎪⎪ ⎭⎭⎭⎭⎝⎝⎝⎝,)(2211111112122222n n n S n n +⎛⎛⎛⎛⎫⎫⎫⎫=⨯+⨯+⋅⋅⋅+-⋅+⋅⎪⎪⎪⎪ ⎭⎭⎭⎭⎝⎝⎝⎝,∴1231111111222222n n n S n +⎛⎛⎛⎛⎛⎫⎫⎫⎫⎫=+++⋅⋅⋅+-⋅⎪⎪⎪⎪⎪ ⎭⎭⎭⎭⎭⎝⎝⎝⎝⎝,)(1111122111212212nn n n n ++⎡⎤⎛⎫-⎢⎥⎪ ⎭⎝⎢⎥⎛⎛⎫⎫⎣⎦=-⋅=-+⋅⎪⎪ ⎭⎭⎝⎝-,∴)(1222n n S n ⎛⎫=-+⋅⎪ ⎭⎝.【点睛】本题主要考查由递推数列求通项,若数列{}·n n b c ,其中{}n b 是等差数列,{}n c 是等比数列,则采用错位相减法,意在考查学生对这些知识的掌握水平和分析推理能力.。
高二数列单元测试题及答案
![高二数列单元测试题及答案](https://img.taocdn.com/s3/m/1368981132687e21af45b307e87101f69e31fb2f.png)
高二数列单元测试题及答案一、选择题(每题3分,共15分)1. 已知数列{an}是等差数列,且a3=5,a5=9,则a7的值为:A. 13B. 11B. 9D. 72. 等比数列{bn}的首项b1=2,公比q=3,求该数列的第5项b5:A. 486B. 243C. 81D. 1623. 已知数列{cn}的前n项和S(n)=n^2,求第5项c5:A. 14B. 15C. 16D. 174. 若数列{dn}满足d1=1,且对于任意的n≥2,有dn=2dn-1+1,该数列为:A. 等差数列B. 等比数列C. 非等差也非等比数列D. 几何数列5. 对于数列{en},若e1=2,且en+1=en+n,求e5的值:A. 12B. 14C. 16D. 18二、填空题(每题4分,共20分)6. 已知数列{fn}是等差数列,且f1=3,f3=9,求公差d。
__________7. 已知数列{gn}是等比数列,且g1=8,g3=64,求公比q。
__________8. 若数列{hn}的前n项和S(n)=n^2+n,求第3项h3。
__________9. 已知数列{in}满足i1=1,且对于任意的n≥2,有in=in-1+n,求i3的值。
__________10. 若数列{jn}的前n项和S(n)=n^3,求第2项j2。
__________三、解答题(每题10分,共30分)11. 已知数列{kn}是等差数列,首项k1=1,公差d=2,求数列的前10项和S(10)。
12. 已知数列{ln}是等比数列,首项l1=1,公比q=4,求数列的前5项和S(5)。
13. 已知数列{mn}的前n项和S(n)=2n^2-n,求数列的第n项mn。
四、综合题(每题25分,共25分)14. 某工厂生产的产品数量按照等差数列增长,若第1年生产100件,每年增长50件。
求第5年的产量,并求前5年的总产量。
答案:一、选择题1. A2. C3. B4. A5. B二、填空题6. d=27. q=48. h3=109. i3=510. j2=9三、解答题11. S(10)=10×1+(10×9)/2×2=11012. S(5)=1+4+16+64+256=34113. mn=2n^2-n-1四、综合题14. 第5年产量为100+4×50=250件,前5年总产量为100+150+200+250+300=1000件。
(必考题)高中数学选修二第一单元《数列》测试题(含答案解析)(1)
![(必考题)高中数学选修二第一单元《数列》测试题(含答案解析)(1)](https://img.taocdn.com/s3/m/3b63b2c2fad6195f302ba671.png)
一、选择题1.对大于1的自然数m 的三次幂可用奇数进行以下形式的“分裂”:仿此,若3m 的“分裂数”中有一个是2017,则m 的值为( )3331373152,39,4,5171119⎧⎧⎪⎧⎪⎪⎨⎨⎨⎩⎪⎪⎩⎪⎩A .44B .45C .46D .472.已知等比数列{}n a 的n 项和2n n S a =-,则22212n a a a +++=( )A .()221n -B .()1213n- C .41n -D .()1413n- 3.已知数列{}n a 满足111n n n n a a a a ++-=+,且113a =,则{}n a 的前2021项之积为( ) A .23B .13C .2-D .3-4.数列{}n a 的通项公式为12n n a +=,其前n 项和为n T ,若不等式()2log 4(1)73n n T n n λ+-++对任意*n N ∈恒成立,则实数λ的取值范围为( )A .3λB .4λC .23λ D .34λ5.定义:在数列{}n a 中,若满足211n n n na a d a a +++-=(n N +∈,d 为常数),称{}n a 为“等差比数列”。
已知在“等差比数列”{}n a 中,1231,3a a a ===则20152013a a =( ) A .2420151⨯- B .2420141⨯- C .2420131⨯-D .242013⨯6.数列{}n a 是等差数列,51260a a =>,数列{}n b 满足123n n n n b a a a +++=,*n N ∈,设n S 为{}n b 的前n 项和,则当n S 取得最大值时,n 的值等于( )A .9B .10C .11D .127.数列{}n a 是等比数列,若21a =,518a =,则12231n n a a a a a a ++++的取值范围是( ) A .8,3⎛⎫-∞ ⎪⎝⎭B .2,23⎛⎤ ⎥⎝⎦C .81,3⎡⎫⎪⎢⎣⎭D .82,3⎡⎫⎪⎢⎣⎭8.数列{a n }中,已知对任意n ∈N *,a 1+a 2+a 3+…+a n =3n ﹣1,则a 12+a 22+a 32+…+a n 2等于( )A .n 2(31)-B .()n1912- C .n 91- D .()n1314- 9.已知正项数列{a n }的前n 项和为S n ,a 1>1,且6S n =a n 2+3a n +2.若对于任意实数a ∈[﹣2,2].不等式()2*1211+<+-∈+n a t at n N n 恒成立,则实数t 的取值范围为( ) A .(﹣∞,﹣2]∪[2,+∞) B .(﹣∞,﹣2]∪[1,+∞) C .(﹣∞,﹣1]∪[2,+∞) D .[﹣2,2]10.函数()2cos 2f x x x =-{}n a ,则3a =( ) A .1312πB .54π C .1712πD .76π 11.已知数列{}n a 是等比数列,11a >,且前n 项和n S 满足11lim n n S a →∞=,那么1a 的取值范围是( ) A.(B .()1,4C .()1,2D .()1,+∞12.已知数列{}n a 满足:11a =,()*12nn n a a n N a +=∈+.若()*+11()1n n b n n N a λ⎛⎫=-+∈ ⎪⎝⎭,1b λ=-,且数列{}n b 是单调递增数列,则实数λ的取值范围为( ) A .2λ>B .3λ>C .2λ<D .3λ<二、填空题13.数列{}n a 的前n 项和是11,1,0,31n n n n n S a a S a a +=≠=+,若2020k a =,则k =______.14.将正整数12分解成两个正整数的乘积有112⨯,26⨯,34⨯,三种,其中34⨯是这三种分解中两数差的绝对值最小的,我们称34⨯为12的最佳分解,当(),,p q p q p N q N **⨯≤∈∈是正整数n 的最佳分解时,我们定义函数()f n q p =-,例如(12)431f =-=,则数列(){}3nf 的前2020项和为______.15.已知{}{},n n a b 均为等差数列,其前n 项和分别为,n n S T ,且233n n S n T n -=+,则55a b =________.16.如图所示,正方形ABCD 的边长为5cm ,取正方形ABCD 各边的中点,,,E F G H ,作第2个正方形EFGH ,然后再取正方形EFGH 各边的中点,,,I J K L ,作第3个正方形IJKL ,依此方法一直继续下去.如果这个作图过程可以一直继续下去,那么所有这些正方形的面积之和将趋近于___2cm ?17.设n S 是数列{}n a 的前n 项和,若点(),n n S a 在直线21y x =+上,则5a =__________. 18.设公差不为零的等差数列{}n a 的前n 项和为n S ,12a =.若存在常数λ,使得2n n a a λ=()*N n ∈恒成立,则910nn S ⎛⎫ ⎪⎝⎭取最大值时,n =________. 19.下表给出一个“直角三角形数阵”:满足每一列成等差数列,从第三行起,每一行的数成等比数列,且每一行的公比相等,记第i 行第j 列的数为(,)i j a (i ,j ∈N *),则(20,20)a =_____. 20.若数列{}n a 满足11a =,且()*1111n nn a a N +∈-=,则 ①数列{}na e是等比数列;②满足不等式:1112n n a a +++≥ ③若函数()f x 在R 上单调递减,则数列(){}n f a 是单调递减数列; ④存在数列{}n a 中的连续三项,能组成三角形的三条边; ⑤满足等式:122311n n n a a a a a a n +++⋅⋅⋅+=+. 正确的序号是________三、解答题21.直线:2l x =与x 轴交于点M ,过动点P 作直线l 的垂线交l 于点N ,若OM 、OP 、PN 成等比数列,其中O 为坐标原点.(1)求动点P 的轨迹方程. (2)求OP PN -的最大值.22.数列{}n a 满足()1121nn n a a n ++-=-,n *∈N 且1a a =(a 为常数).(1)(i )当n 为偶数时,求4n n a a +-的值; (ii )求{}n a 的通顶公式;(2)设n S 是数列{}n a 的前n 项和,求证:48411114n S S S ++⋅⋅⋅+< 23.设等差数列{}n a 的前n 项和为n S ,34a =,43a S =.数列{}n b 满足:对每个*n N ∈,n n S b +,1n n S b ++,2n n S b ++成等比数列.(1)求数列{}n a ,{}n b 的通项公式; (2)记n c =*n N ∈,证明:12n c c c +++<.24.已知数列{}n a 是等差数列,数列{}n b 是等比数列,且满足112a b ==,35730a a a ++=,2316b b a =.(1)求数列{}n a 与和{}n b 的通项公式;(2)设数列{}n a ,{}n b 的前n 项和分别为n S ,n T .①是否存在正整数k ,使得132k k k T T b +=++成立?若存在,求出k 的值,若不存在,请说明理由;②解关于n 的不等式n n S b ≥.25.已知数列{a n }的前n 项和S n =3n +1-t ,求证:数列{a n }是等比数列的充要条件为t =3. 26.已知n S 是数列{}n a 的前n 项和,131n n S S +=+,11a =. (1)证明:数列{}n a 是等比数列,并求n a 的通项公式; (2)若()11n n n b na -=-⋅,求数列{}n b 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由题意,从32到3m ,正好用去从3开始的连续奇数,共123(2)(1)2m m m +++=+-个,再由2017是从3开始的第1008个奇数,可得选项. 【详解】由题意,从32到3m ,正好用去从3开始的连续奇数,共123(2)(1)2m m m +++=+-个,212017n += ,得1008n =, 所以2017是从3开始的第1008个奇数,当45m =时,从32到345,用去从3开始的连续奇数共474410342⨯=个, 当44m =时,从32到344,用去从3开始的连续奇数共46439892⨯=个, 所以45m =, 故选:B . 【点睛】方法点睛:对于新定义的数列问题,关键在于找出相应的规律,再运用等差数列和等比数列的通项公式和求和公式,得以解决.2.D解析:D 【分析】由n a 与n S 的关系可求得12n n a ,进而可判断出数列{}2n a 也为等比数列,确定该数列的首项和公比,利用等比数列的求和公式可求得所化简所求代数式.【详解】已知等比数列{}n a 的n 项和2n n S a =-. 当1n =时,112a S a ==-;当2n ≥时,()()111222nn n n n n a S S a a ---=-=---=.由于数列{}n a 为等比数列,则12a a =-满足12n na ,所以,022a -=,解得1a =,()12n n a n N -*∴=∈,则()221124n n na --==,2121444n n n n a a +-∴==,且211a =, 所以,数列{}2n a 为等比数列,且首项为1,公比为4, 因此,222121441143n n na a a --+++==-. 故选:D. 【点睛】方法点睛:求数列通项公式常用的七种方法:(1)公式法:根据等差数列或等比数列的通项公式()11n a a n d +-=或11n n a a q -=进行求解;(2)前n 项和法:根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩进行求解;(3)n S 与n a 的关系式法:由n S 与n a 的关系式,类比出1n S -与1n a -的关系式,然后两式作差,最后检验出1a 是否满足用上面的方法求出的通项;(4)累加法:当数列{}n a 中有()1n n a a f n --=,即第n 项与第1n -项的差是个有规律的数列,就可以利用这种方法; (5)累乘法:当数列{}n a 中有()1nn a f n a -=,即第n 项与第1n -项的商是个有规律的数列,就可以利用这种方法;(6)构造法:①一次函数法:在数列{}n a 中,1n n a ka b -=+(k 、b 均为常数,且1k ≠,0k ≠).一般化方法:设()1n n a m k a m -+=+,得到()1b k m =-,1bm k =-,可得出数列1n b a k ⎧⎫+⎨⎬-⎩⎭是以k 的等比数列,可求出n a ;②取倒数法:这种方法适用于()112,n n n ka a n n N ma p*--=≥∈+(k 、m 、p 为常数,0m ≠),两边取倒数后,得到一个新的特殊(等差或等比)数列或类似于1n n a ka b-=+的式子;⑦1nn n a ba c +=+(b 、c 为常数且不为零,n *∈N )型的数列求通项n a ,方法是在等式的两边同时除以1n c +,得到一个1n n a ka b +=+型的数列,再利用⑥中的方法求解即可.3.B解析:B 【分析】由111n n n n a a a a ++-=+,且113a =,可得:111n n n a a a ++=-,可得其周期性,进而得出结论. 【详解】因为111n n n n a a a a ++-=+,且113a =, 所以111nn na a a ++=-, 21132113a +∴==-,33a =-,412a =-,513a =,⋯⋯,4n n a a +∴=.123411···2(3)()132a a a a ∴=⨯⨯--⋅⨯=.则{}n a 的前2021项之积50511133=⨯=.故选:B 【点睛】方法点睛:已知递推关系式求通项:(1)用代数的变形技巧整理变形,然后采用累加法、累乘法、迭代法、构造法或转化为基本数列(等差数列或等比数列)等方法求得通项公式.(2)通过具体的前几项找到其规律,如周期性等求解.4.A解析:A 【分析】将不等式()2log 4(1)73n n T n n λ+-++对任意*n N ∈恒成立,转化为271n n n λ-++对任意*n N ∈恒成立,由2min71n n n λ⎛⎫-+ ⎪+⎝⎭求解.【详解】 依题意得,()24122412n n nT +-==--,∴不等式()2log 4(1)73n n T n n λ+-++可化为22log 2(1)73n n n n λ+-++,即27(1)n n n λ-++.又*n N ∈,∴271n n n λ-++对任意*n N ∈恒成立.只需满足2min71n n n λ⎛⎫-+ ⎪+⎝⎭即可.设1n t +=,则*t N ∈,2t ,∴27931n n t n tλ-+=+-+.∵993233t t t t+-⋅-=,当且仅当3t =,即2n =时等号成立, ∴2min731n n n ⎛⎫-+= ⎪+⎝⎭.∴3λ,故选:A. 【点睛】方法点睛:恒(能)成立问题的解法:若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<. 5.C解析:C 【分析】 利用定义,可得1n n a a +⎧⎫⎨⎬⎩⎭是以1为首项,2为公差的等差数列,从而121n na n a +=-,利用201520152014201320142013a a a a a a =⋅,可得结论. 【详解】121a a ==,33a =,32212a a a a ∴-=, 1n n a a +⎧⎫∴⎨⎬⎩⎭是以1为首项,2为公差的等差数列, 121n na n a +∴=-, ()()20152015201420132014201322014122013140274025a a a a a a ∴=⋅=⨯-⨯-=⨯ 22(40261)(40261)40261420131=+-=-=⨯-.故选:C. 【点睛】数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项.6.D解析:D 【分析】由51260a a =>,得到首项和公差的关系以及公差的范围,然后求得通项公式,判断,n n a b 的正负,再利用通项与前n 项和关系求解.【详解】设数列{}n a 的公差为d , 因为51260a a =>,所以()1104116a a d d +=>+,即1625a d =-, 因为512a a >, 所以0d <,所以167(1)5n a n d n d a ⎛⎫=+-=-⎪⎝⎭, 当113n ≤≤时,0n a >,当14n ≥时,0n a <, 所以12101314...0...b b b b b >>>>>>>, 又因为()111213141215131405db b a a a a a a +=+=>, 所以1210S S >,故n S 中12S 最大 , 故选:D 【点睛】本题主要考查等差数列的通项公式以及数列前n 项和的最值问题,还考查逻辑推理的能力,属于中档题.7.D解析:D 【分析】由题意计算出{}n a 的公比q ,由等比数列的性质可得{}1n n a a +也为等比数列,由等比数列前n 项和计算即可得结果. 【详解】因为数列{}n a 是等比数列,21a =,518a =,所以35218a q a ==,即12q =,所以12a =,由等比数列的性质知{}1n n a a +是以2为首项,以14为公比的等比数列. 所以12122311214881813343142n n n n a a a a a a a a +⎛⎫⎛⎫- ⎪⎪ ⎪⎝⎭⎛⎫⎝⎭≤==-< ⎪⎝⎭=+++-, 故选:D. 【点睛】本题主要考查了等比数列的性质以及等比数列前n 项和的计算,属于中档题.8.B解析:B 【分析】由a 1+a 2+a 3+…+a n =3n ﹣1,可求得a n ,从而可知2n a ,利用等比数列的求和公式即可求得答案. 【详解】∵a 1+a 2+a 3+…+a n =3n ﹣1,①,∴a 1+a 2+a 3+…+a n +1=3n +1﹣1,② ②﹣①得:a n +1=3n +1﹣3n =2×3n ,∴a n =2×3n ﹣1()2n ≥. 当n =1时,a 1=31﹣1=2,符合上式,∴a n =2×3n ﹣1. ∴221211249,4,9n n nna a a a -+=⨯∴==,∴{}2n a 是以4为首项,9为公比的等比数列, ∴a 12+a 22+a 32+…+a n 2=()()419191921n n⨯-=--. 故选B . 【点睛】本题考查数列通项公式的确定及等比数列的判断与求和公式的综合应用,属于中档题.9.A解析:A 【分析】根据a n 与S n 的关系,由6S n =a n 2+3a n +2,得6S n ﹣1=a n ﹣12+3a n ﹣1+2,两式相减整理得a n ﹣a n﹣1=3,由等差数列的定义求得a n 的通项公式,然后将不等式()2*1211+<+-∈+n a t at n N n 恒成立,转化为2t 2+at ﹣4≥0,对于任意的a ∈[﹣2,2],n ∈N *恒成立求解. 【详解】由6S n =a n 2+3a n +2,当n =1时,6a 1=a 12+3a 1+2.解得a 1=2, 当n ≥2时,6S n ﹣1=a n ﹣12+3a n ﹣1+2,两式相减得6a n =a n 2+3a n ﹣(a n ﹣12+3a n ﹣1), 整理得(a n +a n ﹣1)(a n ﹣a n ﹣1﹣3)=0,由a n >0,所以a n +a n ﹣1>0,所以a n ﹣a n ﹣1=3, 所以数列{a n }是以2为首项,3为公差的等差数列, 所以a n +1=2+3(n +1﹣1)=3n +2,所以11n a n ++=321++n n =3﹣11n +<3,因此原不等式转化为2t 2+at ﹣1≥3,对于任意的a ∈[﹣2,2],n ∈N *恒成立, 即为:2t 2+at ﹣4≥0,对于任意的a ∈[﹣2,2],n ∈N *恒成立, 设f (a )=2t 2+at ﹣4,a ∈[﹣2,2], 则f (2)≥0且f (﹣2)≥0,即有222020t t t t ⎧+-⎨--⎩,解得t ≥2或t ≤﹣2,则实数t 的取值范围是(﹣∞,﹣2]∪[2,+∞) 故选:A . 【点睛】本题主要考查数列与不等式的,a n 与S n 的关系,等差数列的定义,方程的根的分布问题,还考查了转化化归思想和运算求解的能力,属于中档题.10.B解析:B 【分析】先将函数化简为()2sin 26f x x π⎛⎫=-⎪⎝⎭4x k ππ=+或512x k ππ=+,k Z ∈,再求3a 即可. 【详解】 解:∵()2cos 22sin 26f x x x x π⎛⎫=-=-- ⎪⎝⎭∴ 令()0f x =得:2263x k πππ-=+或22263x k πππ-=+,k Z ∈, ∴4x k ππ=+或512x k ππ=+,k Z ∈, ∴ 正数零点从小到大构成数列为:12355,,,4124a a a πππ===故选:B. 【点睛】本题考查三角函数的性质,数列的概念,考查数学运算求解能力,是中档题.11.A解析:A 【分析】设等比数列{}n a 的公比为q ,可知10q -<<或01q <<,计算出111lim 1n n a S q a →∞==-,可得出q 关于1a 的表达式,结合q 的范围,可解出1a 的取值范围. 【详解】设等比数列{}n a 的公比为q ,由于11lim n n S a →∞=,则10q -<<或01q <<,()111n n a q S q-=-,则()11111lim lim11n n n n a q a S qq a →∞→∞-===--,得211q a =-. ①若10q -<<,则21110a -<-<,即2112a <<,11a >,解得1a <<; ②当01q <<,则21011a <-<,得2101a <<,11a >,则2101a <<不成立.综上所述,1a的取值范围是(. 故选A. 【点睛】本题考查利用极限求等比数列首项的取值范围,解题的关键就是得出公比与首项的关系,结合公比的取值范围得出关于首项的不等式,考查运算求解能力,属于中等题.12.C解析:C 【分析】 数列{a n }满足()*12nn n a a n N a +=∈+,两边取倒数可得1121n na a +=+,从而得到11=2n n a +,于是b n +1=(n ﹣λ)(11a +1)=(n ﹣λ)•2n ,由于数列{b n }是单调递增数列,可得b n +1>b n ,解出即可. 【详解】∵数列{a n }满足:a 1=1,()*12nn n a a n N a +=∈+, ∴1121n n a a +=+,化为111121n n a a +⎛⎫+=+ ⎪⎝⎭, ∴数列11n a ⎧⎫+⎨⎬⎩⎭是首项为11a +1=2,公比为2的等比数列,∴11=2n na +, ∴b n +1=(n ﹣λ)(11a +1)=(n ﹣λ)•2n ,∵数列{b n }是单调递增数列,∴b n +1>b n ,∴n ≥2时,(n ﹣λ)•2n >(n ﹣1﹣λ)•2n ﹣1,化为λ<n +1, ∵数列{n +1}为单调递增数列,∴λ<3.当n =1时,b 2=(1﹣λ)×2>﹣λ=b 1,解得λ<2. 综上可得:实数λ的取值范围为λ<2. 故选:C . 【点睛】本题考查由数列的递推关系式求数列的通项公式、考查由数列的单调性求解参数问题,考查等比数列的通项公式,考查推理能力与计算能力,属于中档题.二、填空题13.1347【分析】当时则两式相减得到得到代入数据计算得到答案【详解】解:当时当时由则两式相减得到因为故数列的奇数项为以为首项3为公差的等差数列;偶数项为以为首项3为公差的等差数列;所以当为奇数时成立;解析:1347 【分析】当2n ≥时131n n n S a a +=+则1131n n n S a a --=+,两式相减得到113n n a a +--=,得到31,2231,2n n n a n n ⎧-⎪⎪=⎨⎪-⎪⎩为奇数为偶数,代入数据计算得到答案.【详解】解:当1n =时,2112312S a a a =+∴=当2n ≥时,由131n n n S a a +=+则1131n n n S a a --=+,两式相减得到()113n n n n a a a a +-=- 因为0n a ≠113n n a a +-∴-=,故数列的奇数项为以1为首项,3为公差的等差数列;偶数项为以2为首项,3为公差的等差数列;所以31,2231,2n n n a n n ⎧-⎪⎪=⎨⎪-⎪⎩为奇数为偶数 当k 为奇数时,202013473122k a k k ==-=∴,成立; 当k 为偶数时,404220203312k a k k ∴==-=,不成立; 故答案为:1347 【点睛】本题考查了数列的通项公式,灵活运用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩是解题的关键.14.【分析】先通过归纳得再利用等比数列求和得解【详解】由题意得归纳得则故答案为:【点睛】关键点睛:解答本题的关键在通过特殊值归纳出归纳出这个结论之后后面利用等比数列求和就迎刃而解了 解析:101031-【分析】 先通过归纳得()()2111233323,3330k kk k k k k f f ---=-=⨯=-=,再利用等比数列求和得解.【详解】由题意得()()232(3)312,3330,333236f f f =-==-==-=⨯=,()4223330f =-=,归纳得()()2111233323,3330k kk k kkkf f ---=-=⨯=-=,则()()()()()()232020352019(3)333(3)333f f f f f f f f ++++=++++012100923232323=⨯+⨯+⨯++⨯()10101210091010132333323113-=⨯++++=⨯=--.故答案为:101031- 【点睛】关键点睛:解答本题的关键在通过特殊值归纳出()()2111233323,3330k k k k k k k f f ---=-=⨯=-=,归纳出这个结论之后,后面利用等比数列求和就迎刃而解了.15.【分析】根据等差数列的前n 项和公式有结合已知条件令即可得进而求【详解】∵均为等差数列令公差分别为则有∴令则有∴故答案为:【点睛】思路点睛:利用等差数列的前n 项和公式结合等差数列通项公式的特点合理假设解析:54【分析】根据等差数列的前n 项和公式有11(1)2n n n S na d -=+,12(1)2n n n T nb d -=+,结合已知条件,令122,1d d ==即可得11,a b ,进而求55a b .【详解】∵{}{},n n a b 均为等差数列,令公差分别为12,d d ,则有11(1)2n n n S na d -=+,12(1)2n n n T nb d -=+, ∴11121222323n n S nd a d n T nd b d n +--==+-+,令122,1d d ==,则有111,22a b =-=, ∴5115124544a a db b d +==+, 故答案为:54【点睛】思路点睛:利用等差数列的前n 项和公式,结合等差数列通项公式的特点合理假设即可得到数列的基本量11(1)2n n n S na d -=+,12(1)2n n n T nb d -=+,则有11121222n n S nd a d T nd b d +-=+-.结合已知233n n S n T n -=+,假设122,1d d ==,即可求11,a b . 16.50【分析】根据题意正方形边长成等比数列正方形的面积等于边长的平方可得代入求出的通项公式然后根据等比数列的前n 项和的公式得到的和即可求解【详解】记第1个正方形的面积为第2个正方形的面积为第n 个正方形解析:50 【分析】根据题意,正方形边长成等比数列,正方形的面积等于边长的平方可得2n n S a =,代入求出n S 的通项公式,然后根据等比数列的前n 项和的公式得到123n s S S S +++⋯+的和即可求解. 【详解】记第1个正方形的面积为1S ,第2个正方形的面积为2S ,⋯,第n 个正方形的面积为n S ,设第n 个正方形的边长为n a ,则第nn , 所以第n +1个正方形的边长为12n n a a +=,12n n a a +∴=, 即数列{n a }是首项为15a =,公比为2的等比数列,15n n a -∴=⋅, 数列{n S }是首项为125S =,公比为12的等比数列, 123125(1)1250(1)1212nn nS S S S -+++⋯+==⋅-∴-,所以如果这个作图过程可以一直继续下去,那么所有这些正方形的面积之和将趋近于50, 故答案为:5017.【分析】由得两式相减得时然后利用等比数列的定义求解【详解】由题意知当时两式相减得即当时所以数列是首项为公比为的等比数列则故答案为:-1【点睛】本题主要考查数列的递推关系还考查了运算求解能力属于中档题解析:1-【分析】由21n n a S =+,得1121n n a S --=+,两式相减得1n n a a -=-,1n =时,11a =-,然后利用等比数列的定义求解. 【详解】由题意知21n n a S =+, 当2n ≥时,1121n n a S --=+, 两式相减,得12n n n a a a --=, 即1n n a a -=-, 当1n =时,11a =-,所以数列{}n a 是首项为1-,公比为1-的等比数列, 则()()45111a =-⨯-=-. 故答案为:-1 【点睛】本题主要考查数列的递推关系,还考查了运算求解能力,属于中档题.18.或19【分析】利用等差数列的通项公式求出再利用等差数列的前项和公式求出记利用作商法判断出数列的单调性即可求解【详解】设等差数列的公差为由题意当时当时所以解得或(舍去)所以记所以当时此时当时时此时所以解析:18或19 【分析】利用等差数列的通项公式求出λ、d ,再利用等差数列的前n 项和公式求出n S ,记910nn n T S ⎛⎫= ⎪⎝⎭,利用作商法判断出数列的单调性即可求解.【详解】设等差数列{}n a 的公差为d ,由题意, 当1n =时,21a a λ=, 当2n =时,42a a λ=,所以()22232d d d λλ+=⎧⎨+=+⎩,解得22d λ=⎧⎨=⎩ 或10d λ=⎧⎨=⎩(舍去),所以()2112n n n dS na n n -=+=+, 记()2991010nnn n n T S n =⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭+,所以()()()12129119210110910n n nnn n T T n n n ++⎛⎫⎡⎤+++ ⎪⎣⎦⎛⎫⎝⎭==+ ⎪⎝⎭⎛⎫+ ⎪⎝⎭, 当118n ≤≤,n *∈N 时,1921110n n T T n +⎛⎫=+≥ ⎪⎝⎭,此时1n n T T +≥, 当10n >时,n *∈N 时,1921110n n T T n +⎛⎫=+< ⎪⎝⎭,此时1n n T T +<, 所以910nn S ⎛⎫ ⎪⎝⎭取最大值时,18n =或19 故答案为:18或19 【点睛】本题考查了差数列的通项公式、等差数列的前n 项和公式、数列的单调性求数列中的最大项,属于中档题.19.【分析】先计算第一列形成的数列再计算第20行形成的数列得到答案【详解】设第一列形成的数列为则是首项为公差为的等差数列故设第20行形成的数列为是首项为公比为的等比数列故即故答案为:【点睛】本题考查了等 解析:1952 【分析】先计算第一列形成的数列205b =,再计算第20行形成的数列201952c =,得到答案. 【详解】设第一列形成的数列为n b ,则{}n b 是首项为14,公差为14的等差数列,故4n n b =,205b =.设第20行形成的数列为n c ,{}n c 是首项为5,公比为12的等比数列,故201952c =. 即(20,20)201952a c ==. 故答案为:1952. 【点睛】本题考查了等差数列和等比数列的综合应用,意在考查学生对于数列公式方法的灵活运用.20.②④⑤【分析】利用所给递推公式求出的通项公式由证明数列不是等比数列根据的单调性求出范围证明②正确根据复合函数的增减性判断规则说明③错误举出例子证明④正确利用裂项相消法求和证明⑤正确【详解】且数列是以解析:②④⑤ 【分析】利用所给递推公式求出{}n a 的通项公式,由3212b b b b ≠证明数列{}n a e 不是等比数列,根据1111(1)1n n a n a n +++=+++的单调性求出范围证明②正确,根据复合函数的增减性判断规则说明③错误,举出例子证明④正确,利用裂项相消法求和证明⑤正确. 【详解】()*1111n n a a n N +-=∈且111a ,∴数列1{}n a 是以1为首项,1为公差的等差数列,则()*1nn n N a =∈, ()*1n a n N n∴=∈. ①设1n n na b e e ==,则1132123,,b e b e b e ===,因为11326212,b b e e b b --==,所以3212b b b b ≠,因此数列{}na e 不是等比数列;②1111(1)1n n a n a n +++=+++,因为1(1)1y n n =+++在[1,)+∞上单调递增,所以115(1)2122n n ++≥+=+,②正确; ③因为若数列{}n a 是单调递减的数列,所以若函数()f x 在R 上单调递减,则数列(){}nf a 是单调递增数列;④234111,,234a a a ===即可构成三角形的三边,所以④正确; ⑤因为1111(1)1n n n n a n a n +==-++,所以1223111112111231n n n a a a a a a n n n +++⋅⋅⋅+=--=++-+++,⑤正确. 故答案为:②④⑤ 【点睛】本题考查由递推公式求数列的通项公式,用定义证明等比数列,复合函数的单调性,裂项相消法求和,属于中档题.三、解答题21.(1)22(1)5x y ++=;(2)4-. 【分析】(1)本题首先可设(,)P x y ,然后根据OM 、OP 、PN 成等比数列得出2222x y x +=⋅-,最后分为2x >、2x <两种情况进行讨论,即可得出结果;(2)本题首先可根据动点P的轨迹方程得出1x ⎡⎤∈⎣⎦,然后将OP PN -转2x +,最后令()2f x x =+,根据导函数性质即可求出最值.【详解】(1)设(,)P x y ,则(2,)N y ,(2,0)M , 因为OM 、OP 、PN 成等比数列,所以2OP P O N M =⋅,即2222x y x +=⋅-,2x ≠, 当2x >时,2224x y x +=-,即22(1)3x y -+=-(舍去);当2x <时,2242x y x +=-,即22(1)5x y ++=,故动点P 的轨迹方程为22(1)5x y ++=.(2)因为动点P 的轨迹方程为22(1)5x y ++=,所以1x ⎡⎤∈⎣⎦,则(2)2OP PN x x -=-=+,令()2f x x =+,则()1f x '=因为当1x ⎡⎤∈⎣⎦时()0f x '>,所以)max ()121134f x f===+=,故OP PN -的最大值为4. 【点睛】关键点点睛:本题考查动点的轨迹方程的求法以及利用导函数求最值,考查等比中项的性质的应用,利用导函数求最值时,可先通过导函数求出函数单调性,然后根据函数单调性求出最值,考查计算能力,体现了综合性,是中档题.22.(1)(i )8;(ii )()()()(),4323,422,4121,4n a n k n a n k a a n k n a n k ⎧=-⎪+-=-⎪=⎨-=-⎪⎪--=⎩;(2)证明见解析. 【分析】(1)(i )推导出当n 为正偶数时,24n n a a n ++=,可得出+4248n n a a n ++=+,两式作差可得出结论成立;(ii )推导出当n 为正奇数时,4n n a a +=,求出2a 、3a 、4a ,对任意的k *∈N ,分43n k =-,42n k =-,41n k =-,4n k =四种情况讨论,结合等差数列的通项公式以及周期数列的定义可求得数列{}n a 的通项公式;(2)计算出4342414n n n n a a a a ---+++,可求得2482n S n n =+,利用放缩法得出4111142121n S n n ⎛⎫<- ⎪-+⎝⎭,结合裂项相消法可证得所证不等式成立. 【详解】(1)(i )当n 为正偶数时,121n n a a n ++=-,2121n n a a n ++-=+, 两式相加得24n n a a n ++=,① 可得+4248n n a a n ++=+,② ②-①得48n n a a +-=;(ii )当n 为正奇数时,121n n a a n +-=-,2121n n a a n +++=+, 两式作差得22n n a a ++=,所以,422n n a a +++=, 上述两个等式作差得4n n a a +=, 又211a a -=,则2111a a a =+=+,323a a +=,则3232a a a =-=-, 435a a -=,则4357a a a =+=-.对任意的k *∈N ,当43n k =-,则1n a a a ==; 当42n k =-时,()()()422811818722723n k a a a k a k a k a n a n -==+-=++-=+-=++-=+-;当41n k =-时,32n a a a ==-;当4n k =时,()()44817818121n k a a a k a k k a n a ==+-=-+-=--=--.综上所述,()()()(),4323,422,4121,4n a n k n a n k a a n k n a n k ⎧=-⎪+-=-⎪=⎨-=-⎪⎪--=⎩; (2)()434241424232241166n n n n a a a a a n a a n a n ---+++=+-+-+-+⨯--=-,()2410166822n n n S n n +-∴==+,()()2241111114212124241n S n n n n n ⎛⎫∴=<=- ⎪-++-⎝⎭, 所以,48411111111111111433521214214n S S S n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫++⋅⋅⋅+<-+-++-=-< ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. 【点睛】方法点睛:证明数列不等式常用放缩法,常用的放缩公式如下: (1)()()21111211n n n n n n<=-≥--; (2)()()()211111211211n n n n n n ⎛⎫<=-≥ ⎪-+-+⎝⎭; (3)()()2221144112141212121214n n n n n n n ⎛⎫<===- ⎪--+-+⎝⎭-; (4()22n =<=≥. 23.(1)22n a n =-,(1)n b n n =+;(2)证明见解析.【分析】(1)根据等差数列的通项公式求出公差d 可得n a ,根据等差数列的求和公式可得n S ,根据n n S b +,1n n S b ++,2n n S b ++成等比数列可得(1)n b n n =+;(2)将n c 放大后再裂项,利用裂项求和方法求解可证不等式成立.【详解】(1)设等差数列{}n a 的公差为d ,由题意得31413124333a a d a a d S a d =+=⎧⎨=+==+⎩,解得102a d =⎧⎨=⎩, 从而22n a n =-,2(1)(1)2n n n S n n -==-. 因为n n S b +,1n n S b ++,2n n S b ++成等比数列所以()()()212n n n n n n S b S b S b +++=++,从而()211222n n n n n n n n S S b S S b S S +++++=++, 所以2221221(1)(1)(1)(2)2(1)(1)2(1)(1)(2)2(1)2n n n nn n n S S Sn n n n n n n n b n nS S S n n nn n n ++++-+--+++====++--+++-+. (2)证明:因为n c ===<=, 所以122(10211)2n c c c n n n +++<-+-++--=【点睛】关键点点睛:将n c 放大后再裂项,利用裂项求和方法求解是解题关键.24.(1)2n a n =,2n n b =;(2)①存在,5k =;②{}1,2,3,4.【分析】(1)由等差数列以及等比数列的性质以及通项公式得出答案;(2)①11k k k b T T ++-=结合数列{}n b 的通项公式得出k 的值;②由()1n S n n =+将不等式化为()210n n n -+≤,令()()21nf n n n =-+并得出其单调性,再由单调性确定解集. 【详解】(1)因为等差数列{}n a 中,3575330a a a a ++==,所以510a =. 设等差数列{}n a 的公差是d ,所以51251a a d -==- 所以()112n a a n d n =+-=.设等比数列{}n b 的公比是q ,因为2316b b a =所以2331432b q q ==,所以2q ,所以112n n n b b q -==. (2)①若存在正整数k ,使得132k k k T T b +=++成立,则132k k b b +=+ 所以12232k k +=+,即232k =,解得5k =.存在正整数5k =满足条件.②()()112n n n a a S n n +==+ 所以()12n n n +≥,即()210n n n -+≤令()()21nf n n n =-+, 因为()()()()()()11121221221n n n f n f n n n n n n +-⎡⎤+-=-++-++=-+⎣⎦ 所以当4n ≥时,(){}f n 单调递增.又()()210f f -<,()()320f f -<,()()430f f -=所以()()()()()1234f f f f f n >>=<<<因为()10f =,()44f =-,()52f =,所以1n =,2,3,4时,()0f n ≤,5n ≥时,()0f n >,所以不等式n n S b ≥,的解集为{}1,2,3,4.【点睛】解决本题的关键是构造新函数,通过作出确定函数的单调性,从而求得()0f n ≤的解集. 25.证明见解析.【分析】由定义法分别结合n a 和n S 的关系分别证明充分性和必要性成立即可.【详解】当n =1时,S 1=32-t =9-t ,当n ≥2时,由S n =3n +1-t 得S n -1=3n -t ,两式相减得a n =3n +1-3n =2·3n (n ≥2), (1)充分性已知t =3,此时S 1=32-t =9-3=6,令n =1,得a 1=2·31=6=S 1,所以a n =2·3n (n ∈N *) 所以13n na a +=,所以数列{a n }是等比数列. (2)必要性因为数列{a n }是等比数列,所以a 1=2·31=6, 又因为S 1=9-t ,所以9-t =6,所以t =3,综上所述:数列{a n }是等比数列的充要条件为t =3.【点睛】关键点睛:本题考查等比数列的判断和证明,解题的关键是利用n a 和n S 的关系得出()232n n a n =⋅≥,再根据充分必要的定义证明.26.(1)证明见解析,13-=n n a ;(2)()11316164n n n T ⎛⎫=-+⋅- ⎪⎝⎭. 【分析】(1)首先根据131n n S S +=+,131n n S S -=+两式相减得()132n n a a n +=≥,即可得到n a 的通项公式.(2)首先求出()13n n b n -=⋅-,再利用错位相减法求前n 项和n T 即可. 【详解】(1)证明:由131n n S S +=+,当2n ≥时,131n n S S -=+,两式相减得()132n n a a n +=≥,当1n =时,2131S S =+即12131a a a +=+,∴23a =,∴213a a =,∴1n ≥时都有13n n a a +=,∴数列{}n a 是首项为1,公比为3的等比数列,∴13-=n n a .(2)解:()()1113n n n n b na n --=-⋅=⋅-, ∴()()()()()122112333133n n n T n n --=+⋅-+⋅-+⋅⋅⋅+-⋅-+⋅-, ()()()()()12131323133n n n T n n --=⋅-+⋅-+⋅⋅⋅+-⋅-+⋅-, ∴()()()()111413333n n n T n -=+-+-+⋅⋅⋅+--⋅-,∴()()()131********nn n n T n n --⎛⎫=-⋅-=-+⋅- ⎪+⎝⎭∴()11316164n n n T ⎛⎫=-+⋅- ⎪⎝⎭. 【点睛】方法点睛:本题主要考查数列的求和,常见的数列求和方法如下:公式法:直接利用等差、等比数列的求和公式计算即可;分组求和法:把需要求和的数列分成熟悉的数列,再求和即可;裂项求和法:通过把数列的通项公式拆成两项之差,再求和即可;错位相减法:当数列的通项公式由一个等差数列和一个等比数列的乘积构成时,可使用此方法求和.。
高考数学 数列单元测试卷及答案 试题
![高考数学 数列单元测试卷及答案 试题](https://img.taocdn.com/s3/m/8c88345076232f60ddccda38376baf1ffc4fe3b2.png)
(文)P1(a1,b1),P2(a2,b2),…,Pn(an,bn)(n∈N*)都在函数y=log x的图象上.
(1)假设数列{bn}是等差数列,求证数列{an}是等比数列;
三、解答题(本大题一一共6小题,一共70分)
17.(本小题满分是10分)数列{an}是首项a1=4的等比数列,且S3,S2,S4成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=log2|an|,Tn为数列{ }的前n项和,求Tn.
解:(1)当q=1时,S3=12,S2=8,S4=16,不成等差数列.
∴n0=2021或者(huòzhě)2021.
(文)(1)∵an+1-2an=0,
∴a3=2a2,a4=2a3,又a3+2是a2、a4的等差中项,
∴a1=2,a2=4,
∴数列(shùliè){an}是以2为首项,2为公比的等比数列(děnɡ bǐ shù liè),那么
an=2n.
(2)∵Sn=2n+1-2,又bn=log2(Sn+2),∴bn=n+1.
12.数列{an}满足an+1= + ,且a1= ,那么该数列的前2021项的和等于()
A. B.3015
C.1005D.2021
答案:A
解析:因为a1= ,又an+1= + ,所以a2=1,
从而(cóng ér)a3= ,a4=1,
即得an= ,故数列(shùliè)的前2021项的和等于S2021=1005(1+ )= .应选(yīnɡ xuǎn)A.
3.设Sn是公差不为0的等差数列{an}的前n项和,且S1,S2,S4成等比数列,那么 等于()
高中数学--《数列》测试题(含答案)
![高中数学--《数列》测试题(含答案)](https://img.taocdn.com/s3/m/525bfc41ac02de80d4d8d15abe23482fb4da0273.png)
高中数学--《数列》测试题(含答案)1.已知等比数列{an}中,a5=4,a7=6,则a9等于()A.7 B.8 C.9 D.10【答案解析】C【考点】等比数列的通项公式.【分析】设等比数列{an}的公比为q,由题意可得q2,由等比数列的通项公式可得a9=a7q2,代入求解可得.【解答】解:设等比数列{an}的公比为q,则q2===,∴a9=a7q2=6×=9故选C【点评】本题考查等比数列的通项公式,属基础题.2.等差数列{an}中,a4+a8=10,a10=6,则公差d等于()A. B. C.2 D.﹣【答案解析】A【考点】等差数列的通项公式.【分析】由已知求得a6,然后结合a10=6代入等差数列的通项公式得答案.【解答】解:在等差数列{an}中,由a4+a8=10,得2a6=10,a6=5.又a10=6,则.故选:A.【点评】本题考查了等差数列的通项公式,考查了等差数列的性质,是基础题.3.+2与﹣2两数的等比中项是()A.1 B.﹣1 C.±1 D.【答案解析】C【考点】等比数列的通项公式.【分析】利用等比中项的定义及其性质即可得出.【解答】解: +2与﹣2两数的等比中项==±1.故选:C.【点评】本题考查了等比中项的定义及其性质,考查了推理能力与计算能力,属于基础题.4.已知数列{an}中,an=3n+4,若an=13,则n等于()A.3 B.4 C.5 D.6【答案解析】A【考点】数列的函数特性;等差数列的通项公式.【分析】由an=3n+4=13,求得n的值即可.【解答】解:由an=3n+4=13,解得 n=3,故选A.【点评】本题主要考查数列的函数特性,属于基础题.5.在各项均为正数的等比数列,若,数列的前项积为,若,则的值为A.4 B.5 C.6 D.7【答案解析】B6.已知等比数列的首项为,公比为,给出下列四个有关数列的命题::如果且,那么数列是递增的等比数列;:如果且,那么数列是递减的等比数列;:如果且,那么数列是递增的等比数列;:如果且,那么数列是递减的等比数列.其中为真命题的个数为A.1 B.2 C.3 D.4【答案解析】C7.等差数列的前项和为,若,则的值A.21 B.24 C.28 D.7【答案解析】C8.等差数列中,若,则的值为A.250 B.260 C.350 D.360D9.等差数列中,若,则等于()A.3 B.4 C.5 D.6【答案解析】C10.在等比数列中,则( )A. B. C. D.【答案解析】A.11.已知数列满足:>0,,则数列{ }是()A. 递增数列B. 递减数列C. 摆动数列D. 不确定【答案解析】B由等比数列的定义可知根据条件>0,可确定数列{ }是等比数列,并且是递减数列.12.在等差数列中,,则此数列前13项的和为()A.36 B.13 C.26 D.52【答案解析】C13.数列前n项的和为()A.B.C.D.B14.已知是等比数列,,则公比=()A B C 2 D【答案解析】D15.数列的一个通项公式是()A.B.C. D.【答案解析】B16.设是等差数列,若,则数列{an}前8项的和为()A.128B.80C.64D.56【答案解析】C17.等比数列{an}中,若a5=5,则a3a7=.A. 5B. 10C. 25D.【答案解析】C18.已知,则数列是( )A.递增数列B.递减数列C.常数列D.摆动数列【答案解析】A19.在等比数列{an}中,an+1<an,a2·a8=6,a4+a6=5,则=________ 【答案解析】20.已知,则数列是( )A.递增数列B.递减数列C.常数列D.摆动数列【答案解析】A。
(必考题)高中数学选修二第一单元《数列》测试(包含答案解析)
![(必考题)高中数学选修二第一单元《数列》测试(包含答案解析)](https://img.taocdn.com/s3/m/97753ec3c281e53a5902ff06.png)
一、选择题1.若数列{}n a 满足12a =,23a =,12n n n a a a --=(3n ≥且*N n ∈),则2018a 等于( ) A .12B .2C .3D .232.数列{}:1,1,2,3,5,8,13,21,34,...,n F 成为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,该数列从第三项开始,每项等于其前两相邻两项之和,记该数{}n F 的前n 项和为n S ,则下列结论正确的是( ) A .201920212S F =+ B .201920211S F =- C .201920202S F =+D .201920201S F =-3.已知无穷等比数列{}n a 的各项的和为3,且12a =,则2a =( ) A .13B .25C .23D .324.已知数列{}n a 满足11a =,()*12nn n a a n a +=∈+N ,若()*11(2)1n n b n n a λ+⎛⎫=-⋅+∈ ⎪⎝⎭N ,1b λ=-,且数列{}n b 是单调递增数列,则实数λ的取值范围是( ) A .23λ>B .32λ>C .23λ<D .32λ<5.已知数列{}n a 的前n 项和为n S ,且11a =,1n n a S +=,若(0,2020)n a ∈,则称项n a 为“和谐项”,则数列{}n a 的所有“和谐项”的平方和为( ) A .1111433⨯- B .1211433⨯- C .1012433⨯+D .1112433⨯+6.数列{}n a 的通项公式为12n n a +=,其前n 项和为n T ,若不等式()2log 4(1)73n n T n n λ+-++对任意*n N ∈恒成立,则实数λ的取值范围为( )A .3λB .4λC .23λ D .34λ7.已知正项等比数列{}n a 的公比不为1,n T 为其前n 项积,若20172021T T =,则20202021ln ln a a =( ) A .1:3B .3:1C .3:5D .5:38.已知数列{}n a 满足112a =,121n n a a n n +=++,则n a =( )A .312n- B .321n -+ C .111n -+ D .312n+ 9.已知数列{}n a 满足:11a =,*1()2nn n a a n N a +=∈+.则 10a =( ) A .11021B .11022 C .11023D .1102410.数列{}n a 是等比数列,若21a =,518a =,则12231n n a a a a a a ++++的取值范围是( ) A .8,3⎛⎫-∞ ⎪⎝⎭B .2,23⎛⎤ ⎥⎝⎦C .81,3⎡⎫⎪⎢⎣⎭D .82,3⎡⎫⎪⎢⎣⎭11.已知数列{}n a 的前n 项和22n S n n =+,那么它的通项公式是( )A .21n a n =-B .21n a n =+C .41n a n =-D .41n a n =+ 12.已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12=A .40B .60C .32D .50二、填空题13.设n S 是数列{}n a 的前n 项和,若()112nn n n S a =-+,则129S S S +++=________.14.已知数列{}n a 满足11a =,11nn n a a a +=+,则5a =_________. 15.设n S 是数列{}n a 的前n 项和,若点(),n n S a 在直线21y x =+上,则5a =__________.16.已知数列{}n a 的前n 项和2n S n =,()1nn n b a =-则数列{}n b 的前n 项n T =________.17.设数列{}n a 满足11a =,且()*11n n a a n n N +-=+∈,则数列1n a ⎧⎫⎨⎬⎩⎭前2020项的和为________.18.数列{}n a 满足()211122,3,1n n nn n a a a a n a -+--+==+,21a =,33a =,则7a =________.19.已知函数()31xf x x =+,对于数列{}n a 有()1n n a f a -=(*n N ∈且2n ≥),如果11a =,那么n a =______.20.已知首项为1a ,公比为q 的等比数列{}n a 满足443210q a a a ++++=,则首项1a 的取值范围是________.参考答案三、解答题21.已知公比q 大于1的等比数列{}n a 满足1310a a +=,24a =. (1)求{}n a 的通项公式;(2)设n b = ,求数列{}n b 的前n 项和n S .请在①n n a ⋅;②22log 9n a -;③()()12121nnn a +++这三个条件中选择一个,补充在上面的横线上,并完成解答.22.已知等差数列{}n a 满足:2414,a a +=613a =.{}n a 的前n 项和为n S (1)求n a 及n S (2)令211n n b a =- (*n N ∈),数列{}n b 的前n 项和为n T ,求证:1184n T ≤< 23.已知数列{}n a 是各项均为正数的等比数列,数列{}n b 为等差数列,且111b a ==,331b a =+,557b a =-.(1)求数列{}n a 与{}n b 的通项公式;(2)设n S 为数列{}2n a 的前n 项和,若对于任意*n N ∈,有123n b n S t +=⋅,求实数t 的值; (3)记212n n n n n b c b b a +++=,数列{}n c 的前n 项和n A ,求证:12n A <.24.设数列{}n a 满足10a =且112n n a a +=-,n *∈N .记11n nb a =-,n *∈N . (1)求证:数列{}n b 为等差数列;(2)设32nna n c ⎛⎫= ⎪⎝⎭,求满足不等式12312311113n n c c c c c c c c ⎛⎫++++>++++⎪⎝⎭的正整数n 的集合.25.在公差不为0的等差数列{}n a 的前10项和为65,1a 、3a 、7a 成等比数列. (1)求数列{}n a 的通项公式;(2)若2n an n b a =+,求数列{}n b 的前n 项和n T .26.设数列{}n a 的前n 项和为n S ,从条件①()11n n na n a +=+,②()12n n n a S +=,③22n n n a a S +=中任选一个,补充到下面问题中,并给出解答.已知各项都为正数的数列{}n a 的前n 项和为n S ,11a =,____. (1)求数列{}n a 的通项公式;(2)若2nn n b a =-,求数列{}n b 的前n 和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先由题设求得数列{}n a 的前几项,然后得到数列{}n a 的周期,进而求得结果. 【详解】因为12a =,23a =,12n n n a a a --=(3n ≥且*N n ∈), 所以23132a a a ==,34231232a a a ===, 453112332a a a ===, 564123132a a a ===,67523213a a a ===,7862323a a a ===,,所以数列{}n a 是周期为6的周期数列, 所以20183366223a a a ⨯+===, 故选:C. 【点睛】思路点睛:该题考查的是有关数列的问题,解题方法如下: (1)根据题中所给的前两项以及递推公式,逐项写出数列的前几项; (2)根据规律判断出数列的周期;(3)根据所求的数列的周期,求得20182a a =,进而求得结果.2.B解析:B【分析】利用迭代法可得21123211n n n n n n n F F F F F F F F F ++---=+=+++++++,可得21n n F S +=+,代入2019n =即可求解.【详解】由题意可得该数列从第三项开始,每项等于其前两相邻两项之和, 则211112n n n n n n n n n n F F F F F F F F F F ++----=+=++=+++1211232n n n n n n n n n F F F F F F F F F -------=+++=++++=123211n n n n F F F F F F ---=+++++++,所以21n n F S +=+,令2019n =,可得201920211S F =-,故选:B 【点睛】关键点点睛:本题的关键点是理解数列新定义的含义得出21n n n F F F ++=+,利用迭代法得出21123211n n n n n n n F F F F F F F F F ++---=+=+++++++,进而得出21n n F S +=+.3.C解析:C 【分析】设等比数列的公比为q ,进而根据题意得()21lim lim31n n n n q S q→+∞→+∞-==-,且()0,1q ∈,从而解得13q =,故223a =【详解】解:设等比数列的公比为q ,显然1q ≠, 由于等比数列{}n a 中,12a = 所以等比数列{}n a 的前n 项和为:()()112111n n n a q q S qq--==--,因为无穷等比数列{}n a 的各项的和为3, 所以()21lim lim31n n n n q S q→+∞→+∞-==-,且()0,1q ∈,所以231q =-,解得13q =, 所以2123a a q ==. 故选:C. 【点睛】本题解题的关键在于根据题意将问题转化为()21lim lim31n n n n q S q→+∞→+∞-==-,且()0,1q ∈,进而根据极限得13q =,考查运算求解能力,是中档题. 4.C解析:C 【分析】 由数列递推式()*12n n n a a n a +=∈+N 得到11n a ⎧⎫+⎨⎬⎩⎭是首项为2,公比为2的等比数列,求出其通项公式后代入1(2)2nn b n λ+=-⋅,当2n ≥时,1n n b b +>,且21b b >求得实数λ的取值范围. 【详解】 解:由12n n n a a a +=+得,1121n na a +=+ 则111121n n a a +⎛⎫+=+ ⎪⎝⎭由11a =,得1112a +=,∴数列11n a ⎧⎫+⎨⎬⎩⎭是首项为2,公比为2的等比数列,∴111222n n na -+=⨯=, 由()*11(2)1n n b n n a λ+⎛⎫=-⋅+∈ ⎪⎝⎭N ,得1(2)2nn b n λ+=-⋅, 因为数列{}n b 是单调递增数列, 所以2n ≥时,1n n b b +>,1(2)2(12)2n n n n λλ--⋅--⋅∴>,即12n λ+<, 所以32λ<, 又∵1b λ=-,2(12)224b λλ=-⋅=-, 由21b b >,得24λλ->-,得23λ<,综上:实数λ的取值范围是2,3⎛⎫-∞ ⎪⎝⎭. 故选:C . 【点睛】解决数列的单调性问题的3种方法:(1)作差比较法根据1n n a a +>的符号判断数列{}n a 是递增数列、递减数列或是常数列;(2)作商比较法根据1n na a +(0n a >或0n a <)与1的大小关系进行判断; (3)数形结合法结合相应函数的图象直观判断.5.D解析:D 【分析】 当2n ≥时,1nn a S -=,又由1n n a S +=,两式相减,得到12n n a a +=,求得22,2n n a n -=≥,得到数列{}n a 的所有“和谐项”为101,1,2,4,8,,2,结合等比数列的求和公式,即可求解. 【详解】由11a =,1n n a S +=,可得1211a S a ===, 当2n ≥时,1nn a S -=,又由1n n a S +=,两式相减,可得11n n n n n a a S S a +--=-=,即12n n a a +=,即12n na a +=, 则数列{}n a 从第二项起是公比为2的等比数列,即22,2n n a n -=≥,又由(0,2020)n a ∈,即222020n -<,可得13,n n N +<∈,所以“和谐项”共有12项,则数列{}n a 的所有“和谐项”为101,1,2,4,8,,2,可得数列{}n a 的所有“和谐项”的平方和为111110(11244)11416413431-+++++=+=⨯+-.故选:D. 【点睛】与数列的新定义有关的问题的求解策略:通过给出一个新的数列的定义,或约定一种新的运算,或给出几个新模型来创设新问题的情景,要求在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实心信息的迁移,达到灵活解题的目的;遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、运算、验证,使得问题得以解决.6.A解析:A 【分析】将不等式()2log 4(1)73n n T n n λ+-++对任意*n N ∈恒成立,转化为271n n n λ-++对任意*n N ∈恒成立,由2min71n n n λ⎛⎫-+ ⎪+⎝⎭求解.【详解】 依题意得,()24122412n n nT +-==--,∴不等式()2log 4(1)73n n T n n λ+-++可化为22log 2(1)73n n n n λ+-++,即27(1)n n n λ-++.又*n N ∈,∴271n n n λ-++对任意*n N ∈恒成立.只需满足2min71n n n λ⎛⎫-+ ⎪+⎝⎭即可.设1n t +=,则*t N ∈,2t ,∴27931n n t n tλ-+=+-+.∵993233t t t t+-⋅-=,当且仅当3t =,即2n =时等号成立, ∴2min731n n n ⎛⎫-+= ⎪+⎝⎭.∴3λ,故选:A. 【点睛】方法点睛:恒(能)成立问题的解法:若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<. 7.A解析:A 【分析】由20172021T T =得20182019202020211a a a a =,由等比数列性质得20182021201920201a a a a ==,这样可把2020a 和2021a 用q 表示出来后,可求得20202021ln ln a a . 【详解】{}n a 是正项等比数列,0n a >,0n T ≠,*n N ∈,所以由2017202120172018201920202021T T T a a a a ==⋅,得20182019202020211a a a a =, 所以20182021201920201a a a a ==,设{}n a 公比为q ,1q ≠,22021201820213()1a a a q ==,2202020192020()1a a a q==,即322021a q =,122020a q =, 所以1220203202121ln ln ln 123ln 3ln ln 2qa q a q q ===. 故选:A . 【点睛】本题考查等比数列的性质,解题关键是利用等比数列性质化简已知条件,然后用公比q 表示出相应的项后可得结论.8.A解析:A 【分析】利用已知条件得到121111n n a a n n n n +-==-++,再用累加法求出数列的通项,用裂项相消法求数的和. 【详解】 由121n n a a n n +=++得:121111n n a a n n n n +-==-++, 即1111n n a a n n--=--, 所以()()()121321n n n a a a a a a a a -=+-+-++-111111*********n n n=+-+-++-=--. 故选:A . 【点睛】 方法点睛:递推公式求通项公式,有以下几种方法:型如:()1n n a a f n +-=的数列的递推公式,采用累加法求通项;形如:()1n na f n a +=的数列的递推公式,采用累乘法求通项; 形如:1n n a pa q +=+ ()()10pq p -≠的递推公式,通过构造转化为()1n n a t p a t +-=-,构造数列{}n a t -是以1a t -为首项,p 为公比的等比数列,形如:1nn n a pa q +=+ ()()10pq p -≠的递推公式,两边同时除以1n q +,转化为1n n b mb t +=+的形式求通项公式;形如:11n n n n a a d a a ++=-,可通过取倒数转化为等差数列求通项公式. 9.C解析:C 【分析】根据数列的递推关系,利用取倒数法进行转化得1121n n a a +=+ ,构造11n a ⎧⎫+⎨⎬⎩⎭为等比数列,求解出通项,进而求出10a . 【详解】 因为12n n n a a a +=+,所以两边取倒数得12121n n n n a a a a ++==+,则111121n n a a +⎛⎫+=+ ⎪⎝⎭, 所以数列11n a ⎧⎫+⎨⎬⎩⎭为等比数列,则11111122n n n a a -⎛⎫+=+⋅= ⎪⎝⎭,所以121n n a =-,故101011211023a ==-. 故选:C 【点睛】方法点睛:对于形如()11n n a pa q p +=+≠型,通常可构造等比数列{}n a x +(其中1qx p =-)来进行求解. 10.D解析:D 【分析】由题意计算出{}n a 的公比q ,由等比数列的性质可得{}1n n a a +也为等比数列,由等比数列前n 项和计算即可得结果. 【详解】因为数列{}n a 是等比数列,21a =,518a =,所以35218a q a ==,即12q =,所以12a =,由等比数列的性质知{}1n n a a +是以2为首项,以14为公比的等比数列.所以12122311214881813343142n n n n a a a a a a a a +⎛⎫⎛⎫- ⎪⎪ ⎪⎝⎭⎛⎫⎝⎭≤==-< ⎪⎝⎭=+++-, 故选:D. 【点睛】本题主要考查了等比数列的性质以及等比数列前n 项和的计算,属于中档题.11.C解析:C 【解析】分类讨论:当1n =时,11213a S ==+=,当2n ≥时,221(2)2(1)141n n n a S S n n n n n -⎡⎤=-=+--+-=-⎣⎦, 且当1n =时:1414113n a -=⨯-== 据此可得,数列的通项公式为:41n a n =-. 本题选择C 选项.12.B解析:B 【解析】由等比数列的性质可知,数列S 3,S 6−S 3,S 9−S 6,S 12−S 9是等比数列,即数列4,8,S 9−S 6,S 12−S 9是等比数列,因此S 12=4+8+16+32=60,选B .二、填空题13.【分析】令计算得出然后推导出当为偶数时当为奇数时利用等比数列的求和公式可求得的值【详解】当时解得;当时当为偶数时可得则;当为奇数时可得则因此故答案为:【点睛】方法点睛:本题考查已知与的关系求和常用的解析:3411024【分析】令1n =计算得出114a =,然后推导出当n 为偶数时,0n S =,当n 为奇数时,112n n S +=,利用等比数列的求和公式可求得129S S S +++的值.【详解】 当1n =时,11112a S a ==-+,解得114a =;当2n ≥时,()()()1111122nnn n n n n n S a S S -=-+=-⋅-+.当n 为偶数时,可得112n n n n S S S -=-+,则112n nS -=; 当()3n n ≥为奇数时,可得112n n n n S S S -=-++,则1112120222n nn n nS S -+=-=-=. 因此,2512924681011111111341240000122222102414S S S ⎛⎫- ⎪⎝⎭+++=++++++++==-.故答案为:3411024. 【点睛】方法点睛:本题考查已知n S 与n a 的关系求和,常用的数列求和方法如下: (1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.14.【分析】由已知可知即数列是首项为1公差为1的等差数列进而可求得数列的通项公式即可求【详解】由题意知:即而∴数列是首项为1公差为1的等差数列有∴则故答案为:【点睛】关键点点睛:由递推关系求数列的通项进解析:15【分析】由已知可知1111n n a a 即数列1{}na 是首项为1,公差为1的等差数列,进而可求得数列{}n a 的通项公式,即可求5a .【详解】由题意知:1(1)n n n a a a ++=,即1111n na a ,而11a =,∴数列1{}n a 是首项为1,公差为1的等差数列,有1nn a ,∴1n a n =,则515a =. 故答案为:15【点睛】关键点点睛:由递推关系求数列1{}na 的通项,进而得到{}n a 的通项公式写出项. 15.【分析】由得两式相减得时然后利用等比数列的定义求解【详解】由题意知当时两式相减得即当时所以数列是首项为公比为的等比数列则故答案为:-1【点睛】本题主要考查数列的递推关系还考查了运算求解能力属于中档题 解析:1-【分析】由21n n a S =+,得1121n n a S --=+,两式相减得1n n a a -=-,1n =时,11a =-,然后利用等比数列的定义求解. 【详解】由题意知21n n a S =+, 当2n ≥时,1121n n a S --=+, 两式相减,得12n n n a a a --=, 即1n n a a -=-, 当1n =时,11a =-,所以数列{}n a 是首项为1-,公比为1-的等比数列, 则()()45111a =-⨯-=-. 故答案为:-1 【点睛】本题主要考查数列的递推关系,还考查了运算求解能力,属于中档题.16.【分析】首先利用求出的通项即可得【详解】∵∴当时;当时又当时符合上式∴∴∴当是偶数时当是奇数时∴∴数列的前项和故答案为:【点睛】本题主要考查了已知求考查了奇偶并项求和属于中档题 解析:()1nn -【分析】首先利用2n S n =求出{}n a 的通项,即可得()()121nn b n =--.【详解】∵2n S n =,∴当1n =时,111a S ==;当2n ≥时,()221121n n n a S S n n n -=-=--=-, 又当1n =时,11a =符合上式,∴21n a n =-, ∴()()()1121nnn n b a n =-=--,∴()()135791113121nn n T =-+-+-+-+-+-当n 是偶数时,22n nT n =⨯=, 当n 是奇数时,()1122n n T n -=-+-⨯=-, ∴()1nn T n =-,∴数列{}n b 的前项和()1nn T n =-.故答案为: ()1nn - 【点睛】本题主要考查了已知n S 求n a ,考查了奇偶并项求和,属于中档题.17.【分析】由得到用累加法求得从而得到然后利用裂项相消法求解【详解】因为所以左右分别相加得所以所以所以故答案为:【点睛】本题主要考查累加法求通项裂项相消法求和还考查了运算求解的能力属于中档题 解析:40402021【分析】由()*11n n a a n n N+-=+∈得到1122321,1,2,...,2------=-=--=--=n n n n n n a a n a a n a a n a a ,用累加法求得22n n na +=,从而得到2121121n a n nnn ,然后利用裂项相消法求解.【详解】因为()*11n n a a n n N+-=+∈,所以1122321,1,2,...,2------=-=--=--=n n n n n n a a n a a n a a n a a , 左右分别相加得()()112234 (2)-+=++++=-n n n n a a , 所以22n n na +=,所以2121121na n nnn ,所以20201111111140402...2122320202021120212021⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪⎝⎭⎝⎭S , 故答案为:40402021【点睛】本题主要考查累加法求通项,裂项相消法求和,还考查了运算求解的能力,属于中档题.18.【分析】由等式变形可得出利用等比中项法可判断出数列为等比数列求出该等比数列的公比利用等比数列的通项公式即可求出的值【详解】即由等比中项法可知数列为等比数列且公比为解得故答案为:【点睛】本题考查了数列 解析:63【分析】由等式211121n n n n n a a a a a -+--+=+变形可得出()()()211111n n n a a a +-++=+,利用等比中项法可判断出数列{}1n a +为等比数列,求出该等比数列的公比,利用等比数列的通项公式即可求出7a 的值. 【详解】()()()22211111111121111n n n n n n n n n n a a a a a a a a a a --+---+-++-+===-+++,即()211111nn n a a a +-++=+, ()()()211111n n n a a a +-∴++=+,由等比中项法可知,数列{}1n a +为等比数列,且公比为32121a a +=+, ()55721122264a a ∴+=+⨯=⨯=,解得763a =.故答案为:63. 【点睛】本题考查了数列递推关系、等比数列的通项公式,考查了推理能力与计算能力,属于中档题.19.【分析】由已知条件得出变形为可知数列为等差数列确定该数列的首项和公差求出进而可得出【详解】且(且)在等式两边取倒数得且所以数列是以为首项以为公差的等差数列因此故答案为:【点睛】本题考查利用构造法求数 解析:132n - 【分析】由已知条件得出()11231n n n a a n a --=≥+,变形为1113n n a a --=,可知数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,确定该数列的首项和公差,求出1na ,进而可得出n a . 【详解】()31xf x x =+,且()11131n n n n a a f a a ---==+(*n N ∈且2n ≥),在等式1131n n n a a a --=+两边取倒数得11113113n n n n a a a a ---+==+,1113n n a a -∴-=且111a ,所以,数列1n a ⎧⎫⎨⎬⎩⎭是以1为首项,以3为公差的等差数列,()113132nn n a ∴=+-=-, 因此,132n a n =-. 故答案为:132n -. 【点睛】本题考查利用构造法求数列的通项公式,涉及等差数列定义的应用,考查计算能力,属于中等题.20.【分析】利用等比数列通项公式可整理已知等式得到令可得到由函数的单调性可求得的取值范围【详解】由得:令则在上单调递减;在上单调递减;综上所述:的取值范围为故答案为:【点睛】本题考查函数值域的求解问题涉解析:[)2,2,3⎛⎤-∞-+∞ ⎥⎝⎦【分析】利用等比数列通项公式可整理已知等式得到211211q q a q q⎛⎫+- ⎪⎝⎭=-++,令1t q q =+可得到1111a t t =-+++,由函数的单调性可求得1a 的取值范围. 【详解】由443210q a a a ++++=得:43211110q a q a q a q ++++=,224213211211111q q q q q a q q q q q q q⎛⎫+-+ ⎪+⎝⎭∴=-=-=-++++++. 令(][)1,22,t q q=+∈-∞-+∞,则()()2211211211111t t t a t t t t +-+--=-=-=-+++++, 111t t -+++在(],2-∞-上单调递减,12112a ∴≥+-=;111t t -+++在[)2,+∞上单调递减,1122133a ∴≤-++=-; 综上所述:1a 的取值范围为[)2,2,3⎛⎤-∞-+∞ ⎥⎝⎦.故答案为:[)2,2,3⎛⎤-∞-+∞ ⎥⎝⎦.【点睛】本题考查函数值域的求解问题,涉及到等比数列通项公式的应用;关键是能够将1a 表示为关于q 的函数,利用分离常数法可确定函数的单调性,进而利用函数单调性求得函数的最值,从而得到所求的取值范围.三、解答题21.答案见解析 【分析】(1)由题设求得等比数列{}n a 的公比q 与首项1a ,即可求得其通项公式;(2)当选条件①时;先由(1)求得n b ,再利用错位相减法求得其前n 项和即可;当选条件②时:先由(1)求得n b ,再对n 分n ≤4与n ≥5两种情况分别求得其前n 项和即可;当选条件③时:先由(1)求得n b ,再利用裂项相消法求得其前n 项和即可. 【详解】(1)2111104a a q a q ⎧+=⎨=⎩,解得122a q =⎧⎨=⎩或1812a q =⎧⎪⎨=⎪⎩1q >,122a q =⎧∴⎨=⎩2n n a ∴=.(2)若选①2n n b n =⋅231122232(1)22n n n S n n -=⨯+⨯+⨯++-+①23121222(1)22n n n S n n +=⨯+⨯+-+②①-②得:23122222n n n S n +-=++++-⋅()()11121222212(1)2212n n n n n n S n n n +++--=-⋅=--⋅=---∴1(1)22n n S n +=-+选②:22log 29|29|nn b n =⋅-=-1n =时,117S b ==2n =时,2127512S b b =+=+=3n =时,312375315S b b b =++=++=4n =时,4123416S b b b b =+++=即2(792)8(4,)2n n nS n n n n N *+-⋅==-+≤∈5n ≥时,2(4)(129)16132916(4)162n n n S n n -+-=++++-=+=-+.选③11211(21)(21)2121n n n n n n b ++==-++++2231111111111122121212121321n n n n S ++=-+-++-=-+++++++. 【点睛】 关键点点睛:本题主要考查等比数列基本量的计算及错位相减法与裂项相消法在数列求和中的应用,对运算能力要求较高,属于中档题. 22.(1)21n a n =+;22n S n n =+;(2)证明见解析. 【分析】(1)利用等差数列通项公式求解首项及公差,再利用求和公式进行求解; (2)由(1)得22111(2+1)1n n b a n ==--,再用裂项相消法求得n T ,并利用单调性求得n T 的范围.【详解】(1)设等差数列{}n a 的公差为d ,因为2414,a a +=613a =,所以有13,2a d ==,所以32(1)21n a n n =+-=+;2(1)3+222n n n S n n n -=⨯=+ (2)由1知21n a n =+,所以221111111=1(2+1)14(1)41n n b a n n n n n ⎛⎫==⋅=⋅- ⎪--++⎝⎭, 所以1111111111+++142231414n T n n n ⎛⎫⎛⎫=⋅---=-< ⎪ ⎪++⎝⎭⎝⎭, 又118n T T ≥=,且单调递增,故1184n T ≤<. 23.(1)12n n a ,21n b n =-;(2)23t =;(3)证明见解析. 【分析】(1)设等比数列{}n a 的公比为()0q q >,等差数列{}n b 的公差为d ,根据题意可得出关于q 、d 的方程组,解出这两个量的值,进而可求得数列{}n a 与{}n b 的通项公式;(2)利用等比数列的求和公式可求得413n n S -=,结合等式123n bn S t +=⋅可计算得出实数t 的值;(3)计算得出()()111212212n n n c n n +=--+,利用裂项相消法可求得n A,即可证得结论成立. 【详解】(1)设等比数列{}n a 的公比为()0q q >,等差数列{}n b 的公差为d ,由111b a ==,331b a =+,557b a =-,可得241211470d q d q q ⎧+=+⎪+=-⎨⎪>⎩,解得2q d ==,因此,1112n n n a a q --==,()1121n b b n d n =+-=-;(2)()212124nn n a --==,2121444n n n n a a +-==, 所以,数列{}2na 为等比数列,且首项为211a =,公比为4,1441143n n n S --∴==-, 由123n b n S t +=⋅可得21423n n t -=⋅,所以,2142323n n t -==⨯; (3)()()()()()()()()2111122212123112121221212212212n n n n n n n n n n n b n c b b a n n n n n n +++++++--+====--+-+-+,()()122334111111111123232525272212212n n n A n n +∴=-+-+-++-⋅⋅⋅⋅⋅⋅-⋅+⋅()111122122n n +=-<+⋅. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.24.(1)证明见解析;(2){}1,2,3. 【分析】 (1)利用112n na a +=-证明出1n n b b +-是常数,进而可证明出数列{}n b 为等差数列; (2)求得132n n c -⎛⎫= ⎪⎝⎭,利用等比数列的求和公式结合已知条件可得出33291122nn⎛⎫⎛⎫⋅+⋅< ⎪ ⎪⎝⎭⎝⎭,设3322nt ⎛⎫=≥ ⎪⎝⎭,可得出不等式221190t t -+<,解出t 的取值范围,由此可得出符合条件的正整数n 的值.【详解】(1)数列{}n a 满足10a =且112n n a a +=-,则211122a a ==-,321223a a ==-, 依次类推可知,对任意的n *∈N ,2n a ≠,()1121111111112111111122n n n n n n n n nn na b b a a a a a a a a ++--∴-=-=-=-==----------, 所以,数列{}n b 是等差数列,且首项为11111b a ==-,公差为1, ()11111n n b n n a ∴==+-⨯=-,解得1n n a n-=; (2)132n n c -⎛⎫= ⎪⎝⎭,则1123n n c -⎛⎫= ⎪⎝⎭,所以,11332232nn n n c c +-⎛⎫ ⎪⎝⎭==⎛⎫ ⎪⎝⎭,则数列{}n c 为等比数列,同理可知,数列1n c ⎧⎫⎨⎬⎩⎭也为等比数列,则1233132223212nnn c c c c ⎛⎫- ⎪⎛⎫⎝⎭++++==⋅- ⎪⎝⎭-,12321111123332313nnn c c c c ⎛⎫- ⎪⎛⎫⎝⎭++++==-⋅ ⎪⎝⎭-,由12312311113n n c c c c c c c c ⎛⎫++++>++++ ⎪⎝⎭可得23912232n n ⎡⎤⎛⎫⎛⎫⋅->⋅-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦, 所以,32291123n n ⎛⎫⎛⎫⋅+⋅< ⎪ ⎪⎝⎭⎝⎭, 设32n t ⎛⎫= ⎪⎝⎭,n N *∈,则32t ≥,可得9211t t +<,整理可得221190t t -+<, 解得912t <<,即39122n ⎛⎫<< ⎪⎝⎭,n N *∈,所以,正整数n 的集合为{}1,2,3. 【点睛】方法点睛:证明等比数列常用以下几种方法:(1)定义法:证明1n n a a +-为常数;(2)等差中项法:对任意的n *∈N ,证明出122n n n a a a ++=+.25.(1)1n a n =+;(2)223242n n n n T ++=-+. 【分析】(1)本题首先可根据前10项和为65得出1104565a d +=,然后根据1a 、3a 、7a 成等比数列得出()()211126a d a a d +=+,最后两者联立,求出1a 、d 的值,即可得出结果;(2)本题首先可根据1n a n =+得出121n n b n +=++,然后采用分组求和法即可求出n T . 【详解】(1)设等差数列{}n a 的公差为d (0d ≠),因为前10项和为65,所以101104565S a d =+=,因为1a 、3a 、7a 成等比数列,所以2317a a a =,即()()211126a d a a d +=+, 联立()()1211110456526a d a d a a d +=⎧⎪⎨+=+⎪⎩,解得12a =,1d =, 故1n a n =+.(2)因为1n a n =+,2n a n n b a =+,所以121n n b n +=++,则231222231n n T n +=++++++++()()22412213241222n n n n n n +-+++=+=-+-, 故223242n n n n T ++=-+. 【点睛】方法点睛:本题考查等差数列通项公式的求法以及分组求和法求和,常见的数列的求和方法有:等差等比公式法、错位相减法、裂项相消法、分组求和法以及倒序相加法. 26.(1)()*n a n n N=∈;(2)()1122n n T n +=-⋅-. 【分析】(1)若选①可得n a n ⎧⎫⎨⎬⎩⎭为常数数列,即可求出n a ;若选②利用1n n n a S S -=-可得()11n n n a na --=,即可得n a n ⎧⎫⎨⎬⎩⎭为常数数列,即可求出n a ;若选③利用1n n n a S S -=-可得 11n n a a --=,即可得到数列{}n a 是以1为首项,1为公差的等差数列,从而得解; (2)利用错位相减法求和;【详解】选条件①时,(1)()11n n na n a +=+时,整理得11111n n a a a n n +===+,所以n a n =. (2)由(1)得:2n n b n =-⋅,设2n n c n =⋅,其前n 项和为n C ,所以1212222n n C n =⨯+⨯++⋅ ①,231212222n n C n +=⨯+⨯++⋅ ②, ①-②得:()()12112212222221n n n n n C n n ++⨯--=+++-⋅=-⋅-,故()1122n n C n +=-⋅+,所以()1122n n T n +=-⋅-. 选条件②时,(1)由于()12n n n a S +=,所以()21n n S n a =+①,当2n ≥时,112n n S na --=②, ①-②得:()121n n n a n a na -=+-,()11n n n a na --=,整理得1111n n n a a a n n -===-,所以n a n =. (2)由(1)得:2n n b n =-⋅, 设2n n c n =⋅,其前n 项和为n C ,所以1212222n n C n =⨯+⨯++⋅ ①,231212222n n C n +=⨯+⨯++⋅ ②,①-②得:()()12112212222221n n n n n C n n ++⨯--=+++-⋅=-⋅-,故()1122n n C n +=-⋅+,所以()1122n n T n +=-⋅-. 选条件③时, 由于22n n n a a S +=, ①21112n n n a a S ---+= ②①-②时,2211n n n n a a a a ---=+,整理得11n n a a --=(常数),所以数列{}n a 是以1为首项,1为公差的等差数列.所以n a n =.(2)由(1)得:2n n b n =-⋅,设2n n c n =⋅,其前n 项和为n C ,所以1212222n n C n =⨯+⨯++⋅①,231212222n n C n +=⨯+⨯++⋅②, ①-②得:()()12112212222221n n n n n C n n ++⨯--=+++-⋅=-⋅-,故()1122n n C n +=-⋅+,所以()1122n n T n +=-⋅-. 【点睛】 数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和.(2)错位相减:用于等差数列与等比数列的积数列的求和.(3)分组求和:用于若干个等差或等比数列的和或差数列的求和.。
(完整版)数列单元测试题(含答案)
![(完整版)数列单元测试题(含答案)](https://img.taocdn.com/s3/m/980286ddcf84b9d528ea7ab5.png)
《数列》一、选择题(每小题3分,共33分)1、数列⋯--,924,715,58,1的一个通项公式是 ( )A .12)1(3++-=n nn a nnB .12)3()1(++-=n n n a nnC .121)1()1(2--+-=n n a n nD .12)2()1(++-=n n n a nn 2、已知数列{a n }的通项公式)(43*2N n n n a n ∈--=,则a 4等于( ). A 1 B 2 C 3 D 0 3、在等比数列}{n a 中,,8,1641=-=a a 则=7a ( )A 4-B 4±C 2-D 2± 4、已知等差数列}{n a 的公差为2,若1a ,3a ,4a 成等比数列,则2a 等于( ) A 4- B 6- C 8- D 10-5、等比数列{a n }的前3项的和等于首项的3倍,则该等比数列的公比为( )A .-2B .1C .-2或1D .2或-16、等差数列}a {n 中,已知前15项的和90S 15=,则8a 等于( ).A .245B .12C .445 D .67、已知等比数列{a n } 的前n 项和为S n ,若S 4=1,S 8=4,则a 13+a 14+a 15+a 16=( ).A .7B .16C .27D .648、一个三角形的三个内角A 、B 、C 成等差数列,那么()tan A C +的值是( )A B .C .D .不确定 9、若一个凸多边形的内角度数成等差数列,最小角为100°,最大角为140°,这个凸多边形的边数为( )A .6B .8C .10D .1210、在等比数列{a n }中4S =1,8S =3,则20191817a a a a +++的值是 ( )A .14B .16C .18D .2011、计算机的成本不断降低,若每隔3年计算机价格降低31,现在价格为8100元的计算机,9年后的价格可降为( ) A .2400元B .900元C .300元D .3600元二、填空题(每小题4分,共20分)12、已知等比数列{n a }中,1a =2,4a =54,则该等比数列的通项公式n a = 13、 等比数列的公比为2, 且前4项之和等于30, 那么前8项之和等于 14、数列11111,2,3,,,2482n n ++++……的前n 项和是 . 15、 黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案: 则第n 个图案中有白色地面砖_________________块.16、在数列{}n a 中,11a =,且对于任意自然数n ,都有1n n a a n +=+,则100a = 三、解答题17、(本小题满分8分)等差数列{}n a 中,已知33,4,31521==+=n a a a a ,试求n 的值18、(本小题满分8分)在等比数列{}n a 中,5162a =,公比3q =,前n 项和242n S =,求首项1a 和项数n .19、(本小题满分10分)已知:等差数列{n a }中,4a =14,前10项和18510=S . (1)求n a ;(2)将{n a }中的第2项,第4项,…,第n 2项按原来的顺序排成一个新数列,求此数列的前n 项和n G .20、(本小题满分10分)某城市2001年底人口为500万,人均住房面积为6 m 2,如果该城市每年人口平均增长率为1%,则从2002年起,每年平均需新增住房面积为多少万m 2,才能使2020年底该城市人均住房面积至少为24m 2?(可参考的数据1.0118=1.20,1.0119=1.21,1.0120=1.22).21、(本小题满分11分)已知等差数列{a n }的首项a 1=1,公差d >0,且第二项,第五项,第十四项分别是等比数列{b n }的第二项,第三项,第四项. (1)求数列{a n }与{b n }的通项公式; (2)设数列{c n }对任意自然数n ,均有1332211+=+⋯⋯+++n nn a b c b c b c b c , 求c 1+c 2+c 3+……+c 2006值.题号 1 2 3 4 5 6 7 8 9 10 11 答案 DDABCDCBABA12、3.2n-1 13、510 14、n (n+1)+1-2n 15、4n+2 16、4951 17、d=32,n=50 18、解:由已知,得51113162,(13)242,13n a a -⎧⋅=⎪⎨-=⎪-⎩①②由①得181162a =,解得 12a =.将12a =代入②得()21324213n =--,即 3243n =,解得 n =5.∴ 数列{}n a 的首项12a =,项数n =5. 19、解析:(1)、由41014185a S =⎧⎨=⎩ ∴ 11314,1101099185,2a d a d +=⎧⎪⎨+⋅⋅⋅=⎪⎩ 153a d =⎧⎨=⎩ 23+=∴n a n (2)、设新数列为{n b },由已知,223+⋅=n n bn n G n n n 2)12(62)2222(3321+-=+++++=∴ *)(,62231N n n n ∈-+⋅=+20.解 设从2002年起,每年平均需新增住房面积为x 万m 2,则由题设可得下列不等式19500619500(10.01)24x ⨯+≥⨯+⨯解得605x ≥.答:设从2002年起,每年平均需新增住房面积为605万m 2.21、解:(1)由题意得(a 1+d )(a 1+13d )=(a 1+4d )2(d >0) 解得d =2,∴a n =2n -1,b n =3n -1.(2)当n =1时,c 1=3 当n ≥2时,,1n n nna abc -=+ 132-⋅=n n c ,⎩⎨⎧≥⋅==-)2(32)1(31n n c n n22005200612200632323233c c c ∴++⋯+=+⨯+⨯+⋯+⨯=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数列》单元练习试题一、选择题1.已知数列}{n a 的通项公式432--=n n a n (∈n N *),则4a 等于( )(A )1 (B )2 (C)3 (D )02.一个等差数列的第5项等于10,前3项的和等于3,那么( )(A)它的首项是2-,公差是3 (B )它的首项是2,公差是3-(C )它的首项是3-,公差是2 (D )它的首项是3,公差是2-3.设等比数列}{n a 的公比2=q ,前n 项和为n S ,则=24a S ( ) (A )2 (B )4 (C )215 (D )217 4.设数列{}n a 是等差数列,且62-=a ,68=a ,n S 是数列{}n a 的前n 项和,则( )(A )54S S < (B )54S S = (C )56S S < (D )56S S =5.已知数列}{n a 满足01=a ,1331+-=+n n n a a a (∈n N *),则=20a ( )(A)0 (B )3- (C )3 (D )23 6.等差数列{}n a 的前m 项和为30,前m 2项和为100,则它的前m 3项和为( )(A )130 (B)170 (C )210 (D )2607.已知1a ,2a ,…,8a 为各项都大于零的等比数列,公比1≠q ,则( )(A )5481a a a a +>+ (B )5481a a a a +<+(C )5481a a a a +=+ (D)81a a +和54a a +的大小关系不能由已知条件确定8.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )(A )13项 (B )12项 (C )11项 (D )10项9.设}{n a 是由正数组成的等比数列,公比2=q ,且30303212=⋅⋅⋅⋅a a a a ,那么30963a a a a ⋅⋅⋅⋅ 等于( )(A )210 (B )220 (C )216 (D )21510.古希腊人常用小石子在沙滩上摆成各种形状来研究数,比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…这样的数为正方形数.下列数中既是三角形数又是正方形数的是( )(A )289 (B )1024 (C )1225 (D )1378二、填空题11.已知等差数列}{n a 的公差0≠d ,且1a ,3a ,9a 成等比数列,则1042931a a a a a a ++++的值是 . 12.等比数列}{n a 的公比0>q .已知12=a ,n n n a a a 612=+++,则}{n a 的前4项和=4S .13.在通常情况下,从地面到10km 高空,高度每增加1km ,气温就下降某一固定值.如果1km高度的气温是8.5℃,5km 高度的气温是-17。
5℃,那么3km 高度的气温是 ℃.14.设21=a ,121+=+n n a a ,21n n n a b a +=-,∈n N *,则数列}{n b 的通项公式=n b . 15.设等差数列}{n a 的前n 项和为n S ,则4S ,48S S -,812S S -,1216S S -成等差数列.类比以上结论有:设等比数列}{n b 的前n 项积为n T ,则4T , , ,1216T T 成等比数列. 三、解答题16.已知}{n a 是一个等差数列,且12=a ,55-=a .(Ⅰ)求}{n a 的通项n a ;(Ⅱ)求}{n a 的前n 项和n S 的最大值.17.等比数列}{n a 的前n 项和为n S ,已知1S ,3S ,2S 成等差数列.(Ⅰ)求}{n a 的公比q ;(Ⅱ)若331=-a a ,求n S .18.甲、乙两物体分别从相距70m 的两处同时相向运动.甲第1分钟走2m ,以后每分钟比前1分钟多走1m,乙每分钟走5m .(Ⅰ)甲、乙开始运动后几分钟相遇?(Ⅱ)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1m ,乙继续每分钟走5m ,那么开始运动几分钟后第二次相遇?19.设数列}{n a 满足333313221n a a a a n n =++++- ,∈n N *. (Ⅰ)求数列}{n a 的通项;(Ⅱ)设nn a n b =,求数列}{n b 的前n 项和n S .20.设数列}{n a 的前n 项和为n S ,已知11=a ,241+=+n n a S .(Ⅰ)设n n n a a b 21-=+,证明数列}{n b 是等比数列;(Ⅱ)求数列}{n a 的通项公式.21.已知数列{}n a 中,12a =,23a =,其前n 项和n S 满足1121n n n S S S +-+=+(2n ≥,*n ∈N ).(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设n a n n n b 2)1(41⋅-+=-λ(λ为非零整数,*n ∈N ),试确定λ的值,使得对任意*n ∈N ,都有n n b b >+1成立.《数列》单元测试题 参考答案一、选择题1.D 2.A 3.C 4.B 5.B6.C 7.A 8.A 9.B 10.C二、填空题11.1613 12.215 13.-4.5 14.12+n 15.48T T ,812T T 三、解答题 16.(Ⅰ)设}{n a 的公差为d ,则⎩⎨⎧-=+=+.54,111d a d a 解得⎩⎨⎧-==.2,31d a ∴52)2()1(3+-=-⨯-+=n n a n .(Ⅱ)4)2(4)2(2)1(322+--=+-=-⨯-+=n n n n n n S n . ∴当2=n 时,n S 取得最大值4.17.(Ⅰ)依题意,有3212S S S =+,∴)(2)(2111111q a q a a q a a a ++=++,由于01≠a ,故022=+q q ,又0≠q ,从而21-=q . (Ⅱ)由已知,得3)21(211=--a a ,故41=a , 从而])21(1[38)21(1])21(1[4n n n S --=----⨯=. 18.(Ⅰ)设n 分钟后第1次相遇,依题意,有7052)1(2=+-+n n n n , 整理,得0140132=-+n n ,解得7=n ,20-=n (舍去).第1次相遇是在开始运动后7分钟.(Ⅱ)设n 分钟后第2次相遇,依题意,有70352)1(2⨯=+-+n n n n , 整理,得0420132=-+n n ,解得15=n ,28-=n (舍去).第2次相遇是在开始运动后15分钟.19.(Ⅰ)∵333313221n a a a a n n =++++- , ① ∴当2≥n 时,31333123221-=++++--n a a a a n n . ② 由①-②,得3131=-n n a ,n n a 31=. 在①中,令1=n ,得311=a . ∴n n a 31=,∈n N *. (Ⅱ)∵nn a n b =,∴n n n b 3⋅=, ∴n n n S 33332332⋅++⨯+⨯+= , ③∴14323333233+⋅++⨯+⨯+=n n n S . ④由④-③,得)3333(32321n n n n S ++++-⋅=+ , 即31)31(3321---⋅=+n n n n S , ∴4343)12(1+-=+n n n S . 20.(Ⅰ)由11=a ,241+=+n n a S ,有24121+=+a a a ,∴52312=+=a a ,∴32121=-=a a b . ∵241+=+n n a S , ①∴241+=-n n a S (2≥n ), ②由①-②,得1144-+-=n n n a a a ,∴)2(2211-+-=-n n n n a a a a ,∵n n n a a b 21-=+,∴12-=n n b b ,∴数列}{n b 是首项为3,公比为2的等比数列.(Ⅱ)由(Ⅰ),得11232-+⋅=-=n n n n a a b ,∴432211=-++n n n n a a , ∴数列}2{n n a 是首项为21,公差为43的等差数列, ∴414343)1(212-=⨯-+=n n a n n , ∴22)13(-⋅-=n n n a .21.(Ⅰ)由已知,得()()111n n n n S S S S +----=(2n ≥,*n ∈N ), 即11n n a a +-=(2n ≥,*n ∈N ),且211a a -=,∴数列{}n a 是以12a =为首项,1为公差的等差数列, ∴1n a n =+.(Ⅱ)∵1n a n =+,∴114(1)2n n n n b λ-+=+-⋅,要使n n b b >+1恒成立,∴()()112114412120n n n n n n n n b b λλ-++++-=-+-⋅--⋅>恒成立, ∴()11343120n n n λ-+⋅-⋅->恒成立, ∴()1112n n λ---<恒成立.(ⅰ)当n 为奇数时,即12n λ-<恒成立, 当且仅当1n =时,12n -有最小值为1,∴1λ<.(ⅱ)当n 为偶数时,即12n λ->-恒成立, 当且仅当2n =时,12n --有最大值2-,∴2λ>-. ∴21λ-<<,又λ为非零整数,则1λ=-.综上所述,存在1λ=-,使得对任意*n ∈N ,都有1n n b b +>.。