九年级数学期末考试必考知识点

合集下载

初三数学知识点全总结

初三数学知识点全总结

初三数学知识点全总结初三数学学问点全总结有理数、整式的加减、一元一次方程、图形的初步熟悉。

(1)有理数:是学校数学的基础内容,中考试题中分值约为3-6分,多以选择题,填空题,计算题的形式消失,难易度属于简洁。

【考察内容】复数以及混合运算(期中、期末必考计算)数轴、相反数、肯定值和倒数(选择、填空)。

(2)整式的加减:中考试题中分值约为4分,题型以选择和填空题为主,难易度属于易。

【考察内容】①整式的概念和简洁的运算,主要是同类项的概念和化简求值②完全平方公式,平方差公式的几何意义③利用提公因式法和公式法分解因式。

(3)一元一次方程:是初一学习重点内容,主要学习内容有(归纳、总结、延长)应用题思维、步骤、文字题,依据已知条件求未知。

中考分值约为1-3分,题型主要以选择和填空题为主,极少消失简答题,难易度为易。

【考察内容】①方程及方程解的概念②依据题意列一元一次方程③解一元一次方程。

题型:追击、相遇、时间速度路程的关系、打折销售、利润公式。

(4)几何:角和线段,为下册学三角形打基础相交线和平行线、实数、平面直角坐标系、二元一次方程组、不等式和不等式组和数据库的收集整理与描述。

(1)相交线和平行线:相交线和平行线是历年中考中常见的考点。

通常以填空,选择题形式消失。

分值为3-4分,难易度为易。

【考察内容】①平行线的性质(公理)②平行线的判别〔方法〕③构造平行线,利用平行线的性质解决问题。

(2)平面直角坐标系:中考试题中分值约为3-4分,题型以选择,填空为主,难易度属于易。

【考察内容】①考察平面直角坐标系内点的坐标特征②函数自变量的取值范围和球函数的值③考察结合图像对简洁实际问题中的函数关系进行分析。

(3)二元一次方程组:中考分值约为3-6分,题型主要以选择,解答为主,难易度为中。

【考察内容】①方程组的解法,解方程组②依据题意列二元一次方程组解经济问题。

(4)不等式和不等式组:中考试题中分值约为3-8分,选择,填空,解答题为主。

最新浙教版初中九年级《数学》上册全册期末总复习知识点考点整理复习汇总完整完美精品打印版

最新浙教版初中九年级《数学》上册全册期末总复习知识点考点整理复习汇总完整完美精品打印版

最新浙教版初中九年级《数学》上册全册期末总复习知识点考点整理复习汇总完整完美精品打印版最新浙教版初中九年级《数学》上册全册期末总复知识点考点重难点要点整理复汇总,是一份完整、完美、必备的复资料。

1.二次函数1.1 二次函数二次函数是形如y=ax²+bx+c (其中a,b,c是常数,a≠0)的函数。

a为二次项系数,b为一次项系数,c为常数项。

1.2 二次函数的图像二次函数y=ax²(a≠0)的图像是一条抛物线,关于y轴对称,顶点在坐标原点。

当a>0时,抛物线开口向上,顶点为最低点;当a0时)或向左(当m0时)或向下(当k<0时)平移|k|个单位得到,顶点为(m,k),对称轴为直线x=m。

1.3 二次函数的性质二次函数y=ax² (a≠0)的图像具有如下性质:1)对称轴为x=-b/2a;2)最值点为顶点,最大值为k (当a0时);3)图像开口方向由a的符号确定。

1.4 二次函数的应用运用二次函数求实际问题中的最大值或最小值,首先应当求出函数表达式和自变量的取值范围,然后通过配方变形,或利用公式求它的最大值或最小值。

注意:由此求得的最大值或最小值对应的自变量必须在自变量的取值范围内。

2.简单事件的概率2.1 事件的可能性根据事件是否发生的可能性,可以将事件分为三类:必然事件、不可能事件、不确定事件或随机事件。

2.2 简单事件的概率将事件发生可能性的大小称为事件发生的概率,一般用P 表示。

事件A发生的概率记为P(A)。

必然事件发生的概率为100%,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;随机事件的概率介于0与1之间,即0<P(随机事件)<1.如果事件发生的各种结果的可能性相同且互相排斥,结果总数为n,事件A包含其中的结果数为m(m≤n),那么事件A发生的概率为:P(A)=m/n。

使用公式P(A)=m/n来计算简单事件发生的概率,需要先确定所有结果的可能性相等,然后确定所有可能的结果总数n和事件A包含的结果数m。

初三数学知识点归纳大全

初三数学知识点归纳大全

初三数学知识点归纳大全一、代数1. 代数式的拆分与合并2. 代数式的加减乘除3. 一元一次方程的解法(整数解、分数解)4. 一元一次方程的应用问题(两式联立、三式联立等)5. 一元一次不等式的解法6. 一元一次不等式的应用问题7. 二元一次方程的解法8. 二元一次方程的应用问题9. 去括号与去分母10. 同底数幂的乘法与除法11. 平方根与立方根的计算12. 分式的加减乘除13. 分式的化简与扩展14. 一次函数的概念与性质15. 一次函数的函数图像16. 一次函数的应用17. 二次根式的性质与运算18. 二次根式的应用19. 二次函数的概念与性质20. 二次函数的函数图像21. 二次函数的顶点与轴22. 二次函数的性质与应用23. 不等式组的解法24. 不等式组的应用25. 逻辑与命题公式二、几何1. 图形的初步认识2. 各种图形的性质(正方形、长方形、平行四边形、梯形等)3. 直角三角形的性质4. 等腰三角形的性质5. 等边三角形的性质6. 直线与角的关系7. 三角形的角平分线与中线8. 三角形的垂直平分线9. 三角形的高与中线10. 三角形的内心、外心、垂心、重心11. 各种四边形的性质12. 圆的性质与计算13. 圆的应用问题14. 直线与圆的位置关系15. 平面直角坐标系16. 正多边形的性质17. 圆锥曲线的认识18. 圆锥曲线的性质与图形19. 圆锥曲线的简单应用问题三、概率统计1. 随机事件的概念和性质2. 随机事件的计算3. 随机事件的应用问题4. 频率与概率的关系5. 简单的概率计算6. 概率的应用问题7. 样本调查与统计图表8. 样本调查与统计表格9. 样本调查与统计图形10. 样本调查的简单分析四、数据与图表1. 平均数的计算与应用2. 中位数的计算与应用3. 众数的计算与应用4. 带有频数的计算5. 折线图的绘制与分析6. 饼图的绘制与分析7. 条形图的绘制与分析8. 数据的简单分析与应用以上是初三数学知识点的归纳大全,希望能帮助到你。

数学九年级必背知识点

数学九年级必背知识点

数学九年级必背知识点一、代数与函数1. 一次函数- 定义:形如y = kx + b的函数,其中k和b为常数,且k不为0。

- 性质:图像为一条直线,斜率为k。

- 常用公式:斜率公式:k = (y₂ - y₁) / (x₂ - x₁)。

2. 二次函数- 定义:形如y = ax²+ bx + c的函数,其中a、b和c为常数,且a不为0。

- 性质:图像为抛物线,开口方向由a的正负决定。

- 常用公式:顶点坐标公式:(h, k),其中h = -b / (2a),k = f(h) = -Δ / (4a),其中Δ表示判别式。

3. 平方根- 定义:对于非负实数x,其平方根是一个非负实数y,记作y = √x。

- 性质:平方根的平方是原来的数,即(√x)² = x,x ≥ 0。

4. 等比数列- 定义:数列中任意两个相邻项的比值相等的数列。

- 性质:公比q ≠ 0时,首项a₁与公比q确定一个等比数列。

- 常用公式:通项公式:aₙ = a₁ * q^(n-1)。

二、几何1. 平面几何基础知识- 垂直:两条线段、直线或线段与直线的夹角为90度。

- 平行:两条线段、直线或线段与直线的夹角为0度。

- 三角形内角和定理:三角形内角的和为180度。

- 相似三角形:对应角相等,对应边成比例的三角形。

2. 三角形- 三条边的关系:- 两边之和大于第三边。

- 两边之差小于第三边。

- 三角形分类:- 等边三角形:三条边相等。

- 等腰三角形:两条边相等。

- 直角三角形:存在一个角为直角(90度)。

3. 圆- 圆周率π:定义为圆的周长与直径的比值,约等于3.14。

- 弧长与扇形面积:- 弧长:圆周上的一段弧的长度。

- 扇形面积:以弧为弧边、半径为半径的部分所围成的区域的面积。

- 圆柱体的体积和表面积:- 体积:V = πr²h,其中r为底面半径,h为高度。

- 表面积:S = 2πr² + 2πrh,其中r为底面半径,h为高度。

初三数学知识点考点归纳总结

初三数学知识点考点归纳总结

初三数学知识点考点归纳总结一. 代数运算1.1 有理数有理数的四则运算,分数的加减乘除运算,化简分数、约分、分数转小数与百分数。

1.2 代数式代数式的基本概念、同类项合并、分配律、消元、整除关系、基本恒等式。

1.3 方程式一元一次方程式的解及其应用,一元二次方程式的解及其应用,二元一次方程式的解及其应用。

1.4 比例比例的概念、性质,比例的计算及应用,重复比例,反比例定理及其应用。

二. 几何与图形2.1 三角形角的概念、角度和弧度的转换,三角形的分类及性质,三角形的内角和定理,三角形的外角和定理。

2.2 直线与角平行直线和平行线特征及其性质,垂直直线和直角的特征及其性质,角的大小以及相邻角、对顶角等相关概念。

2.3 圆和圆的性质圆的基本性质,弧、弦、切线、割线等相关概念及其性质,圆内接四边形和正多边形。

2.4 空间几何与立体图形线面体的概念,正方体、长方体、棱柱、棱锥、圆柱、圆锥的性质和计算。

三. 概率与统计3.1 随机事件和概率事件的概念和性质,基本事件概率、加法规则,条件概率和乘法规则,概率分布和直方图的绘制。

3.2 常见概率问题求样本空间、容斥原理,贝叶斯定理,计算机模拟实验,概率统计中的应用问题。

四. 函数4.1 一些常见函数幂函数、指数函数、对数函数、三角函数、反三角函数的基本概念和性质。

4.2 函数的运算函数的加、减、乘、除的运算,函数的复合运算,导数的概念,导数的基本应用:切线问题和极值点问题。

以上是初三数学知识点考点的归纳总结。

需要注意的是,以上知识点只是初三数学所要学习的知识点的一个大致的方向,可能还存在某些细节问题需要重点学习。

同时,不管学习的什么知识点,都需要掌握好其基本概念和方法,这样才能在应用中灵活运用,解决问题,取得相应的成绩。

新人教版九年级数学上学期期末复习知识点填空(最佳、最优、最全、最有效)

新人教版九年级数学上学期期末复习知识点填空(最佳、最优、最全、最有效)

期末复习重点知识点:一、一元二次方程1.一元二次方程:在整式方程中,只含 个未知数,并且未知数的最高次数是 次的方程叫做一元二次方程.一元二次方程的一般形式是 .其中 叫做二次项, 叫做一次项, 叫做常数项; 叫做二次项的系数, 叫做一次项的系数.2. 一元二次方程的常用解法:(1)直接开平方法:形如)0(2≥=a a x 或)0()(2≥=-a a b x 的一元二次方程,就可用直接开平方的方法.(2)配方法:用配方法解一元二次方程()02≠=++a o c bx ax 的一般步骤是:①化二次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和一次项,右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化原方程为2()x m n+=的形式,⑤如果是非负数,即0n ≥,就可以用直接开平方求出方程的解.如果n <0,则原方程无解.(3)公式法:一元二次方程20(0)ax bx c a ++=≠的求根公式是 .公式法解方程的步骤 1.变形: 化已知方程为一般形式ax 2+bx +c =0; 2.确定系数:用a ,b ,c 写出各项系数; 3.计算: b 2-4ac 的值;4.判断:若b 2-4ac ≥0,则利用求根公式求出; 若b 2-4ac <0,则方程没有实数根. (4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为 ;②将方程的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解. 3. 一元二次方程根的判别式:关于x 的一元二次方程()002≠=++a c bx ax 的根的判别式为 .(1)ac b 42->0⇔一元二次方程()002≠=++a c bx ax 有两个 实数根,即=x .(2)ac b 42-=0⇔一元二次方程有 相等的实数根,即==21x x . (3)ac b 42-<0⇔一元二次方程()002≠=++a c bx ax 实数根.(4)ac b 42-≥0⇔一元二次方程()002≠=++a c bx ax 有 实数根.4. 一元二次方程根与系数的关系若关于x 的一元二次方程20(0)ax bx c a ++=≠有两根分别为1x ,2x ,那么=+21x x ,=⋅21x x .同时:若α、β为一元二次方程0132=++x x 的两个实数根,则有01α3α2=++ 和01β3β2=++5.列一元二次方程解应用题的一般步骤:审、找、设、列、解、答六步。

新冀教版九年级上册数学全册期末复习必背知识点归纳

新冀教版九年级上册数学全册期末复习必背知识点归纳

新冀教版九年级上册数学全册期末复习必背知识点归纳1. 有理数的四则运算- 加法:有理数相加时保留同号后合并绝对值,异号先转化为同号再合并绝对值。

- 减法:有理数相减转化为加法,注意减去一个数等于加上这个数的相反数。

- 乘法:有理数相乘符号同正负规律,绝对值相乘。

- 除法:有理数相除符号同正负规律,绝对值相除。

2. 代数式与多项式- 代数式:由数字、字母及运算符号组成的式子。

- 多项式:由多个代数项经过加法或减法运算得到的代数式。

3. 分式与整式- 分式:由分子和分母分别用代数式表示的符号。

- 整式:没有分式的代数式。

4. 图形的坐标表示- 直角坐标系:一个平面上以两条互相垂直的直线为基准线,确定平面上的点位置。

- 坐标:平面上的点在直角坐标系中的位置。

5. 一次函数- 函数:根据一些输入值通过某种规则得到输出值的关系。

- 一次函数:函数的自变量的最高次数为1的函数。

6. 二次根式- 平方根:数的平方根是指一个数的平方等于这个数。

- 二次根式:含有平方根的式子。

7. 平面图形与空间图形- 平面图形:在平面上画出的图形。

- 空间图形:在空间中用线段、射线、直线画的图形。

8. 数据的收集整理与概述- 数据收集:通过观察或实验,获得或记录相关事物数量或特征的过程。

- 数据整理:对收集到的数据进行筛选、处理和归纳,并用合适的图表形式展示。

- 数据概述:根据数据的统计特征和分布规律描述、分析和总结数据。

9. 事件与概率- 事件:对随机试验可能结果的划分。

- 概率:事件发生的可能性。

10. 统计抽样与统计推断- 统计抽样:从总体中抽取样本进行统计。

- 统计推断:通过对样本的统计数据作出关于总体的推断。

以上是《新冀教版九年级上册数学全册》期末复习必背知识点的详细归纳,希望能对你的复习有所帮助。

初三数学的必背知识点

初三数学的必背知识点

初三数学的必背知识点
在初三数学研究中,有一些重要的知识点需要牢记。

这些知识
点是构建数学基础的核心概念,对于进一步研究高中数学非常重要。

以下是初三数学的必背知识点:
1. 代数表达式
- 代数字母和常数:字母表示未知数,常数表示已知数;
- 一元一次方程:形如ax + b = 0的方程,解方程可以使用平衡法、倒数法等方法;
- 二元一次方程组:形如ax + by = c和dx + ey = f的方程组,
可使用消元法、代入法、加减法等方法求解。

2. 几何
- 图形的基本概念:点、线、面等;
- 基本图形的性质:如正方形、矩形、平行四边形等的性质;
- 三角形的性质:如直角三角形、等腰三角形等的性质;
- 圆的性质:如圆心角、弧长、面积等的计算方法。

3. 概率与统计
- 实验、随机事件与样本空间:实验是指进行一次观察或测量的过程,随机事件是实验结果的某种性质,样本空间是实验所有可能结果的集合;
- 概率:表示某个随机事件发生的可能性大小,计算概率可以使用频率法、几何法等方法;
- 统计:收集和整理数据,分析数据的规律和特征。

4. 数据与函数
- 数据的整理和分析:整理数据可以使用频数表、频率表等方法,分析数据可以使用平均数、中位数、众数等方法;
- 函数与函数关系:函数是两个集合之间的对应关系,函数的图像可以通过函数式子、函数关系等来表示,并可以使用图像判断函数性质等。

这些是初三数学的必背知识点。

掌握了这些知识点,能够更好
地理解和应用数学,为进一步学习提供坚实的基础。

在学习过程中,要注重理论与实践的结合,多做题、多思考,不断巩固和提高数学
能力。

九年级数学知识点全汇总

九年级数学知识点全汇总

九年级数学知识点全汇总
一、整数
1. 整数的概念和表示方法
2. 整数的加减法
3. 整数的乘法
4. 整数的除法
5. 整数的混合运算
二、分数
1. 分数的基本概念
2. 分数的加减法
3. 分数的乘法
4. 分数的除法
5. 分数的化简
6. 分数的比较
三、代数
1. 代数ic表达式的概念
2. 代数ic表达式的加减法
3. 代数ic表达式的乘法
4. 代数方程的概念和解法
四、方程与不等式
1. 一元一次方程
2. 一元一次不等式
3. 二元一次方程组
4. 一元二次方程
五、图形的性质
1. 直角三角形的性质
2. 等腰三角形的性质
3. 等边三角形的性质
4. 直线与平行线的性质
5. 四边形的性质
六、平面几何
1. 平面图形的转动和对称
2. 直角坐标系和平面坐标
3. 各种平面图形的面积计算
4. 圆的性质和计算
七、空间几何
1. 空间几何基本概念
2. 三视图与展开图
3. 球体的性质和计算
八、统计与概率
1. 统计的概念和方法
2. 概率的概念和计算
九、函数
1. 函数的概念和性质
2. 一次函数
3. 二次函数
4. 绝对值函数
以上是九年级数学知识点的全面汇总,希望同学们能够认真学习,掌握每一个知识点,提高数学水平。

祝大家学业有成!。

(完整版)初三数学知识点整理

(完整版)初三数学知识点整理

初三数学知识点整理一、《二次函数》1、二次函数的定义:形如y=ax2+bx+c (a≠0)形式叫二次函数。

2、解析式的形式:①一般式:y=ax2+bx+c (a≠0)②顶点式:y=a(x—h)2+k3、图像性质:【顶点的横坐标即图像的对称轴,纵坐标即函数的极值】4 、 a、b、c的作用①a决定:图像的开口方向,a>0,开口向上,a<0,开口向下。

② |a ︳决定:图像的开口大小,|a ︳越大,开口越小.②a、b共同决定:对称轴,当a、b同号时,对称轴在y轴的左侧。

当a、b异号时,对称轴在y轴的右侧。

③c决定:图像与Y轴交点的纵坐标.5、变换求解析式时,考虑两个方面:①a的值②顶点的变化6二次函数与一元二次方程对于二次函数y=ax2+bx+c(a≠0),当Y=0时,得一元二次方程ax2+bx+c=0当b2-4ac>0时,方程有两个不相等的实数根,抛物线与x轴有两个交点,交点横坐标为方程的实根.当b2-4ac=0时,方程有两个相等的实数根,抛物线与x轴有且只有一个交点,交点横坐标为方程的实根。

当b2-4ac<0时,方程没有实数根,抛物线与x轴没有交点。

7、对于二次函数y=ax2+bx+c(a≠0)①如何求与x轴的交点坐标:令y=0代入函数关系式,解得方程的根即为交点的横坐标。

②如何求与y轴的交点坐标:令x=0代入函数关系式。

交点坐标为(0,c)③如何求两个函数图像的交点坐标:将两个函数解析式组成方程组求解。

8、对于二次函数y=ax2+bx+c(a≠0)①当图像顶点在x2-4ac=0 对应解析式为y=a(x—h)2②当图像顶点在y对应解析式为y=ax2+c③当图像顶点在原点时,对应解析式为 y=ax2④当图像过原点时,对应解析式为 y=ax2+bx9、①方程ax2+bx+c=K的解为函数y=ax2+bx+c与直线Y=K的交点的横坐标。

②抛物线的对称轴方程为221xx,其中x1,x2为图像上两对称点的横坐标。

初三数学知识点归纳总结(通用5篇)

初三数学知识点归纳总结(通用5篇)

初三数学知识点归纳总结第1篇1、矩形的概念有一个角是直角的平行四边形叫做矩形。

2、矩形的性质(1)具有平行四边形的一切性质。

(2)矩形的四个角都是直角。

(3)矩形的对角线相等。

(4)矩形是轴对称图形。

3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形。

(2)定理1:有三个角是直角的四边形是矩形。

(3)定理2:对角线相等的平行四边形是矩形。

4、矩形的面积:S矩形=长×宽=ab初三数学重点知识点(四)1、正方形的概念有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

2、正方形的性质(1)具有平行四边形、矩形、菱形的一切性质;(2)正方形的四个角都是直角,四条边都相等;(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角;(4)正方形是轴对称图形,有4条对称轴;(5)正方形的一条对角线把正方形分成两个全等的.等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。

3、正方形的判定(1)判定一个四边形是正方形的主要依据是定义,途径有两种:先证它是矩形,再证有一组邻边相等。

先证它是菱形,再证有一个角是直角。

(2)判定一个四边形为正方形的一般顺序如下:先证明它是平行四边形;再证明它是菱形(或矩形);最后证明它是矩形(或菱形)。

初三数学知识点归纳总结第2篇第一轮数学复习主要知识点总结1第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。

主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。

第二:平面向量和三角函数。

重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。

初三数学必考知识点汇总

初三数学必考知识点汇总

初三数学必考知识点汇总一、一元二次方程。

1. 定义。

- 只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程。

一般形式为ax^2+bx + c=0(a≠0),其中ax^2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。

2. 解法。

- 直接开平方法:对于方程x^2=k(k≥0),解得x=±√(k)。

例如方程(x - 3)^2=4,则x - 3=±2,解得x = 1或x = 5。

- 配方法:将一元二次方程通过配方转化为(x + m)^2=n(n≥0)的形式再求解。

例如对于方程x^2+6x - 1 = 0,配方得(x + 3)^2=10,解得x=-3±√(10)。

- 公式法:对于一元二次方程ax^2+bx + c = 0(a≠0),其求根公式为x=frac{-b±√(b^2)-4ac}{2a}。

例如方程2x^2-3x - 1 = 0,其中a = 2,b=-3,c=-1,代入公式可得x=(3±√(9 + 8))/(4)=(3±√(17))/(4)。

- 因式分解法:将方程化为两个一次因式乘积等于0的形式,即(mx +n)(px+q)=0,则mx + n = 0或px + q = 0。

例如方程x^2-3x + 2 = 0,因式分解为(x - 1)(x - 2)=0,解得x = 1或x = 2。

3. 根的判别式。

- 对于一元二次方程ax^2+bx + c = 0(a≠0),其判别式Δ=b^2-4ac。

- 当Δ>0时,方程有两个不相等的实数根;当Δ = 0时,方程有两个相等的实数根;当Δ<0时,方程没有实数根。

例如方程x^2-2x + 1 = 0,Δ=(-2)^2-4×1×1 = 0,方程有两个相等的实数根x = 1。

4. 根与系数的关系(韦达定理)- 对于一元二次方程ax^2+bx + c = 0(a≠0),设其两根为x_1,x_2,则x_1+x_2=-(b)/(a),x_1x_2=(c)/(a)。

初三数学期末会考知识点

初三数学期末会考知识点

初三数学期末会考知识点初三数学期末会考是高中录取的重要考试之一,数学作为一门基础学科,占有很大的分量,考察的范围也相对较广。

本文将列出初三数学期末会考的重要知识点,以便同学们加强针对性的学习和复习。

一、函数初三数学集中考察了函数的意义、图像、性质及应用,其中以下几个知识点需重点掌握:1.函数的概念及符号表示。

掌握函数的定义、值域、自变量、因变量等基本概念,并能灵活地运用函数的符号表示。

2.函数图像的绘制。

对于初中来说,只需要掌握基本的一次函数、二次函数的图像,以及正比例函数、反比例函数的图像即可。

3.函数的性质。

重点掌握反函数、复合函数、奇偶函数、周期函数的性质,并能合理地应用到不同的题型当中。

4.应用题的解决方法。

函数的应用题多为实际问题,解决方法需要根据题意来确定,多采用列方程、作图、对称、求最值等方法。

二、图形的变换初中数学中图形的变换包括平移、旋转、翻转等。

这些变换是数学中的基本概念,同时也是高中几何的重要基础。

在初三数学期末会考中,以下几个知识点需要掌握:1.平移、旋转、翻转的概念和性质。

了解不同类型的图形变换,指导图形变换时也能更为准确。

2.矩阵变换。

掌握矩阵的表示方法和乘法法则,了解矩阵变换与图形的关系。

3.应用题的解题方法。

变换的应用题多为与图形的重合或位置相关的问题,需要灵活使用矩阵变换,作图等方法来求解。

三、统计与概率统计与概率是初中数学重要的板块,其中常见的知识点有:1.排列组合。

基础的排列组合问题理解和掌握。

2.概率。

理解事件与概率的关系,掌握基本概率的计算方法,如加法原理和乘法原理以及条件概率的计算方法。

3.统计。

理解数据的分类和表示方法,掌握例如均值、中位数、众数等统计量的计算方法。

4.应用题。

统计与概率的应用题多为现实生活中的问题,需要对问题进行量化和抽象,再使用基本的方法进行求解。

四、三角函数初三数学期末也常考察三角函数,需要掌握以下几个知识点:1.三角函数概念。

初三数学常考知识点

初三数学常考知识点

初三数学常考知识点一、实数与代数1.有理数:整数、分数、相反数、绝对值、有理数的乘方、平方根、算术平方根等。

2.实数:实数的定义、实数的分类、实数的性质、实数的运算等。

3.代数式:代数式的定义、代数式的分类、代数式的运算等。

4.一元一次方程:一元一次方程的定义、一元一次方程的解法、一元一次方程的应用等。

5.不等式:不等式的定义、不等式的性质、不等式的解法、不等式的应用等。

6.二元一次方程组:二元一次方程组的定义、二元一次方程组的解法、二元一次方程组的应用等。

7.点、线、面:点的定义、线的定义、面的定义、点、线、面的关系等。

8.平面几何基本概念:邻补角、对顶角、同位角、内错角、同旁内角、平行线、相交线、垂直、平行的性质等。

9.三角形:三角形的定义、三角形的分类、三角形的性质、三角形的判定、三角形的计算等。

10.四边形:四边形的定义、四边形的分类、四边形的性质、四边形的判定、四边形的计算等。

11.圆:圆的定义、圆的性质、圆的方程、圆的计算、扇形、弧、弦等。

12.空间几何:长方体、正方体、球、棱柱、棱锥等空间几何图形的性质、计算和应用。

13.一次函数:一次函数的定义、一次函数的图像、一次函数的性质、一次函数的应用等。

14.二次函数:二次函数的定义、二次函数的图像、二次函数的性质、二次函数的应用等。

15.反比例函数:反比例函数的定义、反比例函数的图像、反比例函数的性质、反比例函数的应用等。

16.函数图像:函数图像的性质、函数图像的变换、函数图像的分析等。

四、统计与概率1.统计:统计的基本概念、统计的运算、数据的收集与处理、图表的制作等。

2.概率:概率的基本概念、概率的计算、概率的应用等。

五、解决问题的方法1.方程思想:列方程、求解方程、检验解等。

2.函数思想:建立函数关系、求解函数问题等。

3.几何思想:利用几何性质、定理解决问题等。

4.数形结合思想:利用数形结合的方法解决问题等。

以上是初三数学常考的知识点,希望对你有所帮助。

初三数学的知识点总结

初三数学的知识点总结

初三数学的知识点总结一、代数与函数1. 代数基本概念- 变量、常数和系数- 代数表达式和算式- 等式和不等式- 代数的运算法则2. 一元一次方程与一元一次不等式- 解一元一次方程和一元一次不等式- 解决应用问题3. 一元二次方程与一元二次不等式- 解一元二次方程和一元二次不等式- 判断一元二次方程有无解- 利用因式分解和配方法解一元二次方程- 解决应用问题4. 函数基本概念- 自变量和函数值- 函数的表示法和性质- 函数的图像与函数的性质- 函数的增减性与最值- 复合函数二、空间与图形1. 空间形象和空间想象- 点、线、面和体的基本概念- 空间中的位置关系和方向关系2. 二维空间中的图形- 点、线段、射线、角的概念- 三角形和四边形的基本概念和性质- 判断图形的相似性和全等性- 直线和平面的方程- 直角坐标系与平面直角坐标系- 坐标变化与图形的平移、旋转、翻折3. 三维空间中的图形- 空间几何体的基本概念和性质- 认识线面关系和线面角- 判断立体图形的相似性和全等性- 空间坐标系与空间直角坐标系- 坐标变化与图形的平移、旋转、翻折- 空间图形的表达和表示三、数与式1. 实数- 有理数和无理数- 实数的运算性质和运算法则- 实数的大小比较和数直线2. 整式与分式- 整式的加减乘除运算- 分式的概念和基本性质- 分式的乘除运算- 分式方程的解法3. 特殊数的性质- 平方根与立方根- 质数与合数- 素因数分解- 公因数与最大公因数- 公倍数与最小公倍数- 分数的约分与通分四、统计与概率1. 统计的基本概念- 数据的分类和整理- 数据的图表表示- 数据的分析和描述- 常见统计量的计算2. 概率的基本概念- 基本事件和复合事件- 概率的概念和性质- 事件的关系和运算- 条件概率- 排列与组合问题的计算方法五、几何推理1. 分析推理和直观推理- 求证方法和证明思路- 分析推理的常见方法2. 三角形的性质- 三角形内外角的性质- 三角形的中线、延长线和高线- 三角形的相似性质- 三角形的垂直、平行关系以上就是初三数学的主要知识点的总结,希望对你有所帮助。

九年级数学定理、公式汇总(背记版)

九年级数学定理、公式汇总(背记版)

重点公式汇总(背记版):一元二次方程一般形式:ax ²+bx+c =0 (a ≠0) 求根公式:a ac b b x 242-±-=(Δ=b 2-4a c ≥0) 判别法则:当Δ>0时,方程总有两个不相等的实数根当Δ= 0时,方程总有两个相等的实数根当Δ<0时,方程没有实数根韦达定理:若方程有两个实数根x 1和x 2,则x 1+x 2=a b -, x 1x 2=ac (需Δ≥0)增长(降低)率公式b x 1a n =±)(二次函数:一般形式y=ax 2+bx+c (a ≠0) 对称轴:a b x 2-=顶点坐标是)4-4,2-2a b ac a b ( 顶点式y=a(x -h)2+k(a ≠0) 对称轴:x=h ,顶点坐标(h,k )交点式y=a(x -x 1)(x -x 2)(a ≠0) 对称轴:221x x x += 函数平移规律:左加右减对称轴变,上加下减最值变。

抛物线与x 轴的位置关系:对于抛物线y=ax 2+bx+cΔ<0时,它与x 没有交点.Δ=0时,它与x 轴只有一个交点(与x 轴相切).Δ>0时,它与x 轴有两个交点(x 1,0)和(x 2,0),其中x 1和x 2是方程ax 2+bx+c=0的两个根.两点之间的距离公式:22-12222)()-(),,(),,(111y y x x AB y x B y x A +=则有: 中点坐标公式:(221x x +,2y y 21+)圆①垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

(“知二推三”) 推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

②在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。

③圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。

推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

初三数学知识点汇总

初三数学知识点汇总

初三数学知识点汇总
初三数学知识点汇总如下:
1. 整数与有理数:整数的加减乘除,有理数的加减乘除以及应用问题
2. 分数:分数的加减乘除,约分和分数的应用
3. 百分数:百分数的转换与运算,百分数在实际生活中的应用
4. 比例与比例关系:比例的定义,比例的性质,比例的四种倍数关系,比例在实际生活中的应用
5. 相似与全等:图形的相似与全等的判断条件,相似与全等图形的性
质与性质的应用
6. 勾股定理与三角形的面积:勾股定理的应用,三角形面积的计算
7. 空间几何体:长方体、正方体、棱柱、棱锥、棱台等空间几何体的
表面积和体积的计算
8. 平面直角坐标系:平面直角坐标系的性质与应用,点的坐标的计算
与应用
9. 线性方程与一元一次方程:解一元一次方程,应用解决问题
10. 图形的性质:多边形的性质,角的性质,三角形的性质以及应用
11. 统计与概率:频数表、频率表、统计图表的制作与分析,概率的
计算与应用。

以上是初三数学的一些重要知识点汇总,希望对你有帮助。

初三数学重要知识点

初三数学重要知识点

初三数学重要知识点一览初三数学重要知识点一、反比例函数1、形如y=k/x(k≠0)或y=kx^—1的函数叫做反比例函数,k叫做反比例系数。

它的图像是双曲线。

^—1表示负一次。

2、在函数y=k/x(k≠0),当k>0时,表达式中的想x、y符号相同,点(x,y)在第一、三象限,所以函数y=k/x(k≠0)的图像位于第一、三象限;当k<0时,表达式中的想x、y符号相反,点(x,y)在第二、四象限,所以函数y=k/x(k≠0)的图像位于第二、四象限。

3、在y=k/x(k≠0)中,当k>0时,在第一象限内,y随着x的增大而减小;若y 的值随着x的值的增大而增大,则k的取值范围是k<0。

4、设P(a,b)是反比例函数y=k/x(k≠0)上任意一点,则ab的值等于k。

经过反比例函数上的任意一点P,分别向x轴、y轴作垂线段,则所成的矩形面积为k;过P点向x轴或y轴作垂线段,连接OP,则所成的三角形面积为k/2。

二、二次函数1、形如y=ax^2+bx+c(a≠0,a、b、c为常数)。

的函数叫做二次函数,它的图像是一条抛物线。

2、二次函数y=ax^2+bx+c(a≠0)的顶点坐标为(—b/2a,4ac—b^2/4a),对称轴是直线x=—b/2a。

3、对于二次函数y=ax^2+bx+c(a≠0),当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口。

图像与y轴的交点的坐标是(0,c)。

4、一元一次方程ax^2+bx+c=0(a≠0)的解,可以看成函数y=ax^2+bx+c(a≠0)的图像与x轴交点的横坐标。

当b^2—4ac>0时,函数图像与x轴有两个交点。

当b^2—4ac=0时,函数图像与x轴有一个交点。

当b^2—4ac<0时,函数图像与x轴没有交点。

5、当a>0,且x=—b/2a时,函数y=ax^2+bx+c(a≠0)取得最小值,这个值等于4ac—b^2/4a;当a<0,且x=—b/2a时,函数y=ax^2+bx+c(a≠0)取得值,这个值等于4ac—b^2/4a。

九年级数学常考知识点

九年级数学常考知识点

九年级数学常考知识点九年级数学常考知识点第一章实数一、重要概念1.数的分类及概念数系表:说明:“分类”的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。

(表为:x≥0)性质:若干个非负数的和为0,则每个非负数均为0。

3.倒数:①定义及表示法②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01时,1/a<1;D.积为1。

4.相反数:①定义及表示法②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1。

5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n(n为自然数)7.绝对值:①定义(两种):代数定义:几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。

②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。

二、实数的运算1.运算法则(加、减、乘、除、乘方、开方)2.运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律)3.运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷×5);C.(有括号时)由“小”到“中”到“大”。

三、应用举例(略)附:典型例题1.已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│=b-a.2.已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。

第二章代数式重点代数式的有关概念及性质,代数式的运算☆内容提要☆一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独的一个数或字母也是代数式。

整式和分式统称为有理式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学期末考试必考知识点数学是一门需要理解和掌握的学科,而期末考试往往是对学生在整个学期学习成果的一个全面检验。

对于九年级的学生来说,数学期末考试的必考知识点尤为重要。

本文将深入探讨九年级数学期末考试必考的几个知识点,帮助同学们更好地备考。

首先,代数是九年级数学中的基础内容。

代数的核心思想是使用字母和符号来表示数字和未知数,通过运算和方程的解法来解决问题。

在代数中,学生需要掌握各种运算法则,从简单的加减乘除到复杂的多项式的运算。

此外,方程也是重要的考点之一。

要求学生能够正确列出方程并解得正确的解。

常见的方程类型包括一次方程、二次方程和倍数方程,掌握它们的解法是必要的。

另外,九年级数学还需要学生掌握的一个重要知识点是几何。

几何是研究空间形状、大小和性质的学科。

九年级的几何内容主要涉及到平面几何和空间几何。

平面几何包括点、线、面、角等基本概念,以及各种图形的性质和计算。

空间几何则涉及到立体图形的性质和计算,如长方体、正方体、圆柱体和圆锥体等。

九年级的几何知识相对较多,需要同学们掌握各种形状的性质和计算方法,在解题时能够灵活运用几何知识。

此外,函数也是九年级数学中的重要内容。

函数是一种映射关系,描述了自变量和因变量之间的关系。

在函数的学习中,学生
需要掌握函数的概念、性质和图像,能够正确求解函数的零点、
极值和最值等。

此外,学生还需要了解函数的表示方法,包括函
数关系式、函数图像、函数表格等。

函数的学习是数学思维的重
要训练之一,通过解题,学生可以培养逻辑思维和分析问题的能力。

最后,统计与概率也是九年级数学的考点之一。

统计是研究数
据收集、整理、描述和分析的学科。

九年级的统计内容主要包括
数据的收集和整理,以及统计指标的计算和应用。

另外,学生还
需要掌握概率的基本概念和计算方法,能够运用概率知识解决实
际问题。

综上所述,九年级数学期末考试的必考知识点包括代数、几何、函数以及统计与概率等内容。

在备考过程中,同学们需要充分理
解这些知识点的概念和性质,熟练掌握相关的计算方法和解题技巧。

通过大量的练习和思考,提高自己的数学思维能力和解题能力,从而取得好成绩。

希望同学们能够在期末考试中取得优异的
成绩,为自己的数学学习打下坚实的基础。

相关文档
最新文档