九年级下学期期末考试数学试卷(附答案)
2022-2023学年人教版九年级数学第一学期期末测试卷含答案
第1页,共4页 第2页,共4页………○…………○…………内…………○…………装…………○…………订…………○…………线…………○………………○…………○…………外…………○…………装…………○…………订…………○…………线…………○………考点考场考号姓 名座位号2022-2023学年第一学期期末质量监测试卷九年级 数学学科(考试时间:120分钟 考试分值:150分)一、选择题(每题5分,共45分)1.(5分)下列新冠疫情防控标识图案中,中心对称图形是( )A.B.C.D.2.(5分)下列为一元二次方程的是( )A.02=+-c bx axB.0232=-+x x C.01322=+-x x D.0222=+y x3.(5分)已知关于x 的一元二次方程x m x 442=-有两个不相等的实数根,则m 的取值范围是( )A.1->mB.2<mC.0≥mD.0<m4.(5分)方程0)3)(2(=+-x x 的解是( )A.2=xB.3-=xC.3,221==x xD.3,221-==x x 5.(5分)如图,AB 是☉O 的弦,点C 在圆上,已知∠AOB=100°,则∠C=( )A.40°B.50°C.60°D.80°6.(5分)抛物线2)4(32++=x y 的顶点坐标是( ) A.(2,4) B.(2,-4) C.(4,2) D.(-4,-2)7.(5分)目前我国已建立了比较完善的经济困难学生资助体系.某校前年发放给每个经济困难学生389元,今年发放了438元.设每年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是( )A.438)13892=+x (B.389)14382=+x (C.438)21389=+x (D.389)21438=+x (8.(5分)对于二次函数2)1(2+-=x y 的图像,下列说法正确的是( ) A.开口向下B.对称轴是直线1-=xC.顶点坐标是(1,2)D.当1>x 时,y 随x 的增大而减小9.(5分)当0>ab 时,2ax y =与b ax y +=的图象大致是( )A. B. C. D.二、 填空题 (每题 5 分 ,共30分 )10.(5分)点A(-2,3)关于原点对称的点的坐标是________.11.(5分)已知关于x 的方程0322=++k x x 的一个根是-1,则k=________. 12.(5分)如图,四边形ABCD 为☉O 的内接四边形,已知∠BOD=100°,则∠BCD 的度数为____.13.(5分)一个不透明袋子中装有10个球,其中有5个红球,3个白球,2个黑球,这些球除颜色外无其它差别,从袋子中随机取出个球,则它是白球的概率是________.14.(5分)若562)1(--+=m m x m y 是二次函数,则m=________.第3页,共14页第4页,共14页装订线内不许答题15.(5分)如图,抛物线与x 轴交于点A(-1,0),顶点坐标(1,n),与y 轴的交点在(0,3),(0,4)之间(包含端点),则下列结论正确的有________.(填编号)①03<b a +;②134-≤≤-a ;③对于任意实数m ,bm am b a +≥+2恒成立;④关于x 的方程12+=++n c bx ax 有两个相等的实数根.三、 解答题 (本题共计 8 小题 ,共计75分 )16. (8分) 解方程:(1)033(=-+-x x x ); (2)0142=--x x . 17. (7分) 关于x 的方程0232=+-m x x 的一个根为-1,求方程的另一个根及m 的值.18. (8分) 如图所示,每个小正方形的边长为1个单位长度,作出△ABC 关于原点对称的图形△A 1B 1C 1,并写出A 1,B 1,C 1的坐标.19. (10分) 如图,某小区规划在一个长为40米、宽为26米的矩形场地ABCD 上修建三条同样宽度的马路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草.若使每一块草坪的面积都是144m 2,求马路的宽.第5页,共4页 第6页,共4页………○…………○…………内…………○…………装…………○…………订…………○…………线…………○………………○…………○…………外…………○…………装…………○…………订…………○…………线…………○………考点考场考号姓 名座位号20.(10分) 为了解长垣市民对全市创建全国文明城市工作的满意程度,某中学数学兴趣小组在某个小区内进行了调查统计.将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中的信息,解决下列问题: (1)此次调查中接受调查的人数为________人; (2)请你补全条形统计图;(3)扇形统计图中“满意”部分的圆心角为________度;(4)该兴趣小组准备从调查结果为“不满意”的4位市民中随机选择2位进行回访,已知这4位市民中有2位男性,2位女性.请用画树状图的方法求出选择回访的市民为“一男一女”的概率.21.(10分) 如图,在△ABC 中,点O 是AB 边上一点,OB=OC,∠B=30°,过点A 的 ☉O 切BC 于点D ,CO 平分∠ACB .(1)求证:AC 是☉O 的切线; (2)若BC=12,求☉O 的半径长;(3)在(2)的条件下,求阴影部分的面积.22. (10分) 某商人如果将进货价为8元的商品按每件10元出售,每天可销售100件.现采用提高售出价,减少进货量的办法增加利润,已知这种商品每涨价0.1元,其销售量就要减少1件,问涨价多少元时,才能使每天所赚的利润达到360元?23.(12分) 如图,在平面直角坐标系中,抛物线422++=ax ax y 与x 轴交于点 A(-4,0),B(2,0),与y 轴交于点C .经过点B 的直线b kx y +=与y 轴交于点D(0,2),与抛物线交于点E .(1)求抛物线的解析式及点C 的坐标;(2)若点P 为抛物线的对称轴上的动点,当△AEP 的周长最小时,求点P 的坐标; (3)若点M 是直线BE 上的动点,过M 作MN ∥y 轴交抛物线于点N ,判断是否存在点M ,使以点M 、N ,C ,D 为顶点的四边形是平行四边形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.第7页,共14页 第8页,共14页装订线内不许答题2022-2023学年第一学期期末质量监测试卷答案九年级 数学学科一、选择题(每题5分,共45分)1.A2.C3.A4.D5.B6.D7.A8.C9.D二、 填空题 (每题 5 分 ,共30分 )10.(2,-3) 11.2± 12.130° 13.10314. 7 15.①②③三、 解答题 (本题共计 8 小题 ,共计75分 )16.解:(1)0)3()3(=-+-x x x分解因式得:0)1)(3=+-x x (————————2分 可得03=-x 或01=+x解得:1,321-==x x ————————4分 (2)5142=--x x移项得:642=-x x ————————1分配方法得:10442=+-x x 即10)22=-x (————————2分 开方得:102±=-x解得:10210221-=+=x x , ————————4分 17.解:把 代入方程,得,解得,————————3分设方程的另一个根为,则,————————5分所以,即方程的另一个根为.————————7分18.解:关于原点的对称图形如图,————————5分根据图形可知:,,.————————8分19.解:设马路的宽为米 ————————1分依题意可列方程————————4分整理得 ————————6分 解得,(舍去) ————————9分答:马路的宽为2米.————————10分第9页,共4页第10页,共4页………○…………○…………内…………○…………装…………○…………订…………○…………线…………○………………○…………○…………外…………○…………装…………○…………订…………○…………线…………○………考点考场考号姓 名座位号20.(1)∵非常满意的有18人,占,∴此次调查中接受调查的人数:(人).故答案为:50 ————————2分 (2)此次调查中结果为满意的人数为:(人)补全条形统计图如下:————————4分(3)144 ————————6分 (4)画树状图:∵共有12种等可能的结果,选择回访市民为“一男一女”的有8种情况,∴选择回访的市民为“一男一女”的概率为:. ————————10分21.(1)证明:∵∴又∵ 平分∴ ∴∴∴是的切线. ————————3分(2)解:如图,连接,设交于点,设半径为r .∵ 切于点, ∴.又∵,, ∴AC=6,,由勾股定理得AB=36∴ 在直角三角形OCD 中,由勾股定理得 r 2+62=(36-r)2解得 r=32 ————————6分 (3)解:∵, ∴————————10分第11页,共14页 第12页,共14页装订线内不许答题22.解:设涨价元时,才能使每天所赚的利润达到元. ————————1分————————4分 ,, ————————7分 解得. ————————9分答:涨价元时,才能使每天所赚的利润达到元. ————————10分23.解:(1),点的坐标为————————4分(2)如图,由,可得对称轴为.∵ 的边是定长,∴ 当的值最小时,的周长最小.点关于的对称点为点,∴ 当点是与直线的交点时,的 值最小. ∵ 直线经过点∴ ’解得∴ 直线:令,得,∴ 当的周长最小时,点的坐标为————————8分(3)存在.点的坐标为或————————12分第13页,共4页 第14页,共4页…………○…………○…………内…………○…………装…………○…………订…………○…………线…………○………点场号名座位号。
2017-2018学年九年级数学期末试卷及答案
2017-2018学年第二学期初三年级质量检测数学(2018年2月)本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,第I 卷为1-12题,共36分,第Ⅱ卷为13-23题,共64分。
全卷共计100分。
考试时间为90分钟。
第I 卷(本卷共计36分)一、单项选择题(本部分共12小题,每小题3分,共36分)1.方程3x 2-8x-10=0的二次项系数和一次项系数分别为( )A.3和8B.3和10C.3和-10D.3和-82.如图所示的工件,其俯视图是( )3.若点A(a,b)在双曲线y=x 3上,则代数式ab-4的值为 A.-12 B.-7 C.-1 D.14.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.15和0.45,则口袋中白色球的个数可能是( )A.28B.24C.16D.65.如图,四边形ABCD 是平行四边形,下列说法不正确的是( )第5题 第6题 第7题A.当AC=BD 时,四边形ABCD 是矩形B.当AB=BC 时,四边形ABCD 是菱形C.当AC ⊥BD 时,四边形ABCD 是菱形D.当∠DAB=90°时,四边形ABCD 是正方形6.如图,△ABC 是△ABC 以点O 为位似中心经过位似变换得到的,若△A ′B ′C ′的面积与△ABC 的面积比是4:9,则0B ′:OB 为( )A.2:3B.3:2C.4:5D.4:97.如图,在平行四边形ABCD 中,EF ∥AB,DE:EA=2:3,EF=4,则CD 的长为( )A.6B.8C.10D.128.某小区2014年屋顶绿化面积为2000平方米,计划2016年屋顶绿化面积要达到2880平方米,若设屋顶绿化面积的年平均增长率为x,则依题意所列方程正确的是( )A.2000(1+x)2=2880B.200(1-x)2=2880C.2000(1+2x)=2880D.2000x 2=28809.二次函数y=x 2-3x+2的图像不经过( )A.第一象限B.第二象限C.第三象限D.第四象限10.如图,从点A 看一山坡上的电线杆PQ,观测点P 的仰角是45°,向前走6m 到达B 点,测得顶端点P 和杆底端点Q 的仰角分别是60°和30°,则该电线杆PQ 的高度( )A.326+B.36+C.310-D.38+11.如图,抛物线的顶点为P(-2,2),与y 轴交于点A(0,3).若平移该抛物线使其顶点P 沿直线移动到点P ′(2,-2),点A 的对应点为A ′,则抛物线上PA 段扫过的区域(阴影部分)的面积为( )第11题 第12题A.10B.12C.24D.1612.如图,正方形ABCD 中,O 为BD 中点,以BC 为边向正方方形内作等边△BCE,连接并延长AE 交CD 于F,连接BD 分别交CE 、AF 于G 、H,下列结论:①∠CEH=45°;②GF ∥DE ;③2OH+DH=BD ;④BG=2DG ;⑤213+=BGC BEC S S △△:。
人教版九年级下册数学期末试卷(含答案)
人教版九年级下册数学期末试卷(含答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.4的算术平方根为( )A .2±B .2C .2±D .22.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( )A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤-3.若点1(3,)A y -,2(2,)B y -,3(1,)C y 都在反比例函数12y x =-的图象上,则1y ,2y ,3y 的大小关系是( )A .213y y y <<B .312y y y <<C .123y y y <<D .321y y y <<4.已知一个多边形的内角和等于900º,则这个多边形是( )A .五边形B .六边形C .七边形D .八边形 5.如果分式||11x x -+的值为0,那么x 的值为( ) A .-1B .1C .-1或1D .1或0 6.对于二次函数,下列说法正确的是( )A .当x>0,y 随x 的增大而增大B .当x=2时,y 有最大值-3C .图像的顶点坐标为(-2,-7)D .图像与x 轴有两个交点7.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .8.如图,在平面直角坐标系中,矩形ABCD 的顶点A 点,D 点分别在x 轴、y 轴上,对角线BD ∥x 轴,反比例函数(0,0)k y k x x=>>的图象经过矩形对角线的交点E ,若点A(2,0),D(0,4),则k 的值为( )A .16B .20C .32D .409.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )A .16B .17C .18D .1910.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)123.2.因式分解:a 3-a =_____________.3.已知x=2是关于x 的一元二次方程kx 2+(k 2﹣2)x+2k+4=0的一个根,则k 的值为__________.4.已知二次函数22y x x m =-++的部分图象如图所示,则关于x 的一元二次方程220x x m -++=的根为________.5.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x 个球队参赛,根据题意,可列方程为_______.6.如图抛物线y=x 2+2x ﹣3与x 轴交于A ,B 两点,与y 轴交于点C ,点P 是抛物线对称轴上任意一点,若点D 、E 、F 分别是BC 、BP 、PC 的中点,连接DE ,DF ,则DE+DF 的最小值为__________.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--2.已知A -B =7a 2-7ab ,且B =-4a 2+6ab +7.(1)求A 等于多少?(2)若|a +1|+(b -2)2=0,求A 的值.3.已知:如图,平行四边形ABCD ,对角线AC 与BD 相交于点E ,点G 为AD 的中点,连接CG ,CG 的延长线交BA 的延长线于点F ,连接FD .(1)求证:AB=AF ;(2)若AG=AB ,∠BCD=120°,判断四边形ACDF 的形状,并证明你的结论.4.如图,在正方形ABCD 中,点E 是BC 的中点,连接DE ,过点A 作AG ED ⊥交DE 于点F ,交CD 于点G .(1)证明:ADG DCE ∆∆≌;(2)连接BF ,证明:AB FB =.5.某校为了解初中学生每天在校体育活动的时间(单位:h ),随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的初中学生人数为___________,图①中m的值为_____________;(2)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(3)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.6.去年在我县创建“国家文明县城”行动中,某社区计划将面积为23600m的一块空地进行绿化,经投标由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的1.8倍,如果两队各自独立完成面积为2450m区域的绿化时,甲队比乙队少用4天.甲队每天绿化费用是1.05万元,乙队每天绿化费用为0.5万元.(1)求甲、乙两工程队每天各能完成多少面积(单位:2m)的绿化;(2)由于场地原因,两个工程队不能同时进场绿化施工,现在先由甲工程队绿化若干天,剩下的绿化工程由乙工程队完成,要求总工期不超过48天,问应如何安排甲、乙两个工程队的绿化天数才能使总绿化费用最少,最少费用是多少万元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、C5、B6、B7、D8、B9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1.2、a(a-1)(a + 1)3、﹣34、1-或35、12x(x﹣1)=216、2三、解答题(本大题共6小题,共72分)1、2x=2、(1)3a2-ab+7;(2)12.3、(1)略;(2)结论:四边形ACDF是矩形.理由略.4、(1)略;(2)略.5、(1)40,25;(2)平均数是1.5,众数为1.5,中位数为1.5;(3)每天在校体育活动时间大于1h的学生人数约为720.6、(1)甲、乙两工程队每天各完成绿化的面积分别是90m2、50m2;(2)甲队先做30天,乙队再做18天,总绿化费用最少,最少费用是40.5万元.。
人教版2023-2024学年九年级下学期调研考试数学考试试卷含答案
九年级数学(第1页共6页)人教版2023-2024学年九年级下学期调研考试数 学 试 卷温馨提示:1.答题前,考生务必将自己所在县(市、区)、学校、姓名、考号填写在试卷上指定的位置,并将条形码粘贴在答题卡上的指定位置.2.选择题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题的答案必须写在答题卡的指定位置,在本卷上答题无效.3.本试卷满分120分,考试时间120分钟.一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的,不涂、错涂或涂的代号超过一个,一律得0分)1.下列所给的方程中,是一元二次方程的是A .x 2=xB .2x +1=0C .(x -1)x =x 2D .x +1x=22.下列事件中,是必然事件的是A .一个不透明的袋子中只装有2个黑球,搅匀后从中随机摸出一个球,结果是红球B .抛掷一枚质地均匀且6个面上分别标上数字1~6的骰子,朝上一面的数字小于7C .从车间刚生产的产品中任意抽取一个是次品D .打开电视,正在播放广告3.如图,扇形纸扇完全打开后,外侧两竹条AB ,AC 的夹角为150°,弧BC 长为50πcm ,则半径AB 的长为A .50cm B .60cm C .120cmD .30cm4.如图是国旗中的一颗五角星图案,绕着它的中心旋转,要使旋转后的五角星能与自身重合,则旋转角的度数至少为A .30°B .45°C .60°D .72°5.已知电压U 、电流I 、电阻R 三者之间的关系式为:U =IR (或者U I R=),实际生活中,由于给定已知量不同,因此会有不同的可能图象,图象不可能是A .B .C .D .九年级数学(第2页共6页)6.学生甲与学生乙玩一种转盘游戏.如图是两个完全相同的转盘,每个转盘被分成面积相等的四个区域,分别用数字1,2,3,4表示.固定指针,同时转动两个转盘,任其自由停止,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜;若指针指向扇形的分界线,则都重转一次.在该游戏中乙获胜的概率是A .41B .21C .43D .657.如图,AB 是⊙O 的弦,OC ⊥AB 交⊙O 于点C ,点D 是⊙O 上一点,∠ADC =25°,则∠BOC的度数为A .30°B .40°C .50°D .60°8.如图,函数y =-x 与函数6y x=-的图象相交于A ,B 两点,过A ,B 两点分别作y 轴的垂线,垂足分别为点C ,D ,连接AD ,BC .则四边形ACBD 的面积为A .12B .8C .6D .49.己知⊙O 的半径是一元二次方程x 2-3x -4=0的一个根,圆心O 到直线l 的距离d =6,则直线l 与⊙O 的位置关系是A .相切B .相离C .相交D .相切或相交10.如图是二次函数y =ax 2+bx +c (a <0)图象的一部分,对称轴为x =12,且经过点(2,0).下列说法:①abc <0;②4a +2b +c <0;③-2b +c =0;④若(-52,y 1),(52,y 2)是抛物线上的两点,则y 1<y 2;⑤14b >m (am +b )(其中m ≠12).其中说法正确的是A .③④⑤B .①②④C .①④⑤D.①③④⑤二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分.请将结果直接填写在答题卡相应位置上)11.已知一元二次方程(x -2)(x +3)=0,将其化成二次项系数为正数的一般形式后,它的常数项是☆.九年级数学(第3页共6页)12.五张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、直角三角形、平行四边形图案.现把它们正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为☆.13.Rt △ABC 中,∠C =90°,AC =3,BC =4,把Rt △ABC 沿AB 所在的直线旋转一周,则所得几何体的全面积为☆.14.抛物线y =-12x 2+3x -52的顶点坐标是☆.15.在等腰直角三角形AB C 中,∠C =90°,BC =2cm .如果以AC 的中点O 为旋转中心,将△OCB 旋转180°,使点B 落在点B 1处,那么点B 1和B 的距离是☆cm .16.如图,矩形OABC 的顶点A 、C 分别在x 轴、y 轴的正半轴上,点D 为对角线OB 的中点,反比例函数ky x=在第一象限内的图象经过点D ,且与AB ,BC 分别交于E ,F 两点,若四边形BEDF 的面积为9,则k 的值为☆.三、用心做一做,显显自己的能力!(本大题共8小题,满分72分.解答写在答题卡上)17.(本题满分6分=3分+3分)用适当的方法解下列方程:(1)x 2-2x =0(2)2x 2-3x -1=018.(本题满分7分=3分+4分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC 的三个顶点坐标分别为A (1,4),B (1,1),C (3,1).(1)画出△ABC 绕点O 逆时针旋转90°后的△A 1B 1C 1(保留画图痕迹);(2)求线段BC 扫过的面积(结果保留π).九年级数学(第4页共6页)19.(本题满分9分=3分+6分)在一个不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中红球有2个,蓝球有1个,黄球有1个.(1)第一次摸出一个球(不放回),第二次再摸一个小球,请用画树状图或列表法求两次摸到都是红球的概率;(2)若规定摸到红球得5分,摸到黄球得3分,摸到蓝球得1分,小聪共摸6次小球(每次摸1个球,摸后放回)得22分,问小聪有哪几种摸法?20.(本题满分9分=5分+4分)已知直线y =-x +m +1与双曲线y =mx在第一象限交于点A ,B ,连接OA ,过点A 作AC ⊥x 轴于点C ,若S △AOC =3.(1)求两个函数解析式;(2)求直线y =-x +m +1在双曲线y =xm上方时x的取值范围.九年级数学(第5页共6页)21.(本题满分9分=4分+5分)在等腰Rt △ABC 中,∠ACB =90°,点D 为AB 的中点,E 为BC 边上一点,将线段ED 绕点E 按逆时针方向旋转90°得到EF ,连接DF ,AF .(1)如图1,若点E 与点C 重合,AF 与DC 相交于点O ,求证:BD =2DO .(2)如图2,若点G 为AF 的中点,连接DG .过点D 、F 作DN ⊥BC 于点N ,FM ⊥BC 于点M ,连结BF .若AC =BC =16,CE =2,求DG的长.22.(本题满分9分=4分+5分)已知x 1,x 2是关于x 的一元二次方程x 2+3x +k -3=0的两个实数根.(1)求k 的取值范围;(2)若x 12+2x 1+x 2+k =4,试求k 的值.23.(本题满分10分=4分+3分+3分)如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D ,CE ⊥AD 交AD 的延长线于点E .(1)求证:∠BDC =∠A ;(2)若∠DCE =30°,DE =2.求:①AB 的长;②的长.九年级数学(第6页共6页)24.(本题满分13分=3分+5分+5分)如图1,抛物线y =ax 2+bx +c (a ≠0)与直线y =x +1相交于A (-1,0),C (4,5)两点,与x 轴交于点B (5,0).(1)则抛物线的解析式为☆;(2)如图2,点P 是抛物线上的一个动点(不与点A 、点C 重合),过点P 作直线PD ⊥x 轴于点D ,交直线AC 于点E ,连接BC ,BE ,设点P 的横坐标为m .①当PE =2ED 时,求P 点坐标;②当点P 在抛物线上运动的过程中,存在点P 使得以点B ,E ,C 为顶点的等腰三角形,请求出此时m的值.九年级数学参考答案(第1页共4页)人教版2023-2024学年九年级下学期调研考试数学参考答案一、精心选一选,相信自己的判断!题号12345678910答案ABBDACCABD二、细心填一填,试试自己的身手!11.-612.3513.845p 14.(3,2)15.16.6三、用心做一做,显显自己的能力!17.解:(1)∵x 2-2x =0,∴x (x-2)=0,…………………………………1分x =0,x -2=0,∴x 1=0或x 2=2; (3)分(2)2x 2-3x -1=0,,…………………4分x 1,x 2…………………………………6分18.解:(1)△ABC 绕点O 逆时针旋转90°后的△A 1B 1C1如图所示;(无画图痕迹扣1分) (3)分(2)由旋转可得△OB 1C 1≌△OBC……4分∵OC 2=10,OB 2=2,∴OC,OB ……5分∴BC 扫过的面积=11OCC OBB S S -扇形扇形290360p - …………………………………6分=522p p -=2π.…………………………………7分九年级数学参考答案(第2页共4页)19.解:(1)画树状图如下:………………………2分P (两次都摸到红球)=21126=.…………………………………3分(2)设小聪摸到红球有x 次,摸到黄球有y 次,则摸到蓝球有(6-x -y )次,由题意得:5x +3y +(6-x -y )=22,即2x +y =8,∴y =8-2x ,……………4分∵x ,y ,(6-x -y )均为自然数,6-x -y =6-x -8+2x =x -2≥0,8-2x ≥0,∴2≤x ≤4…………………………………5分当x =2时,y =4,6-x -y =0;…………………………………6分当x =3时,y =2,6-x -y =1;…………………………………7分当x =4时,y =0,6-x -y =2.…………………………………8分小聪共有三种摸法:即摸到红球有2次,黄球有4次,蓝球有0次;红球有3次,黄球有2次,蓝球有1次;红球有4次,黄球有0次,蓝球有2次.……………9分20.解:(1)∵S △AOC =3,设A (a ,b ),∴21ab =3,ab =6,…………………………………1分∴m =ab =6,…………………………………2分m +1=7,…………………………………3分∴y =-x +7,y =6x.即两个函数解析式分别为y =-x +7,y =6x.…………………………………5分(2)联立y =-x +7,y =6x得x 2-7x +6=0.解得:x 1=1,x 2=6.………7分∴A 的坐标是(1,6),B 的坐标是(6,1),直线y =-x +m +1在双曲线y =xm上方时x 的取值范围是1<x <6.……………9分21.解:(1)证明:由旋转的性质得:CD =CF ,∠DCF =90°,∵△ABC 是等腰直角三角形,AD =BD ,∴∠ADO =90°,CD =BD =AD ,∴∠DCF =∠ADC ,在△ADO 和△FCO 中,∵AOD FOC ADO FCO AD FCìÐ=ÐïïÐ=Ðíï=ïî,∴△ADO ≌△FCO (AAS ),…………………………………3分∴DO =CO ,∴BD =CD =2DO .[注:证四边形ADFC 是平行四边形也正确]………………………4分九年级数学参考答案(第3页共4页)(2)∵DN ⊥BC ,FM ⊥BC ,∴∠DNE =∠EMF =90°,又∵∠NDE =∠MEF =90°-∠FEM ,ED =EF ,∴△DNE ≌△EMF (AAS ),∴DN =EM =12AC =12×16=8,∴NE =MF ,…………………………………6分又∵CE =2,∴BM =BC -ME -EC =16-8-2=6,…………………………………7分∵∠ABC =45°,∴BN =DN =8,∴NE =14-8=6,∴MF =MB =6,∴BF…………………………………8分∵点D 、G 分别是AB 、AF 的中点,∴DG =12BF…………………………………9分22.解:(1)∵一元二次方程x 2+3x +k -3=0有两个实数根,∴△=32-4(k -3)≥0,…………………………………1分∴9-4k +12≥0,-4k ≥-21,…………………………………3分∴k ≤214…………………………………4分(2)∵x 1,x 2是一元二次方程x 2+3x +k -3=0的两个实数根,∴x 12+3x 1+k -3=0,x 12+2x 1=3-k -x 1,…………………………………5分∵x 1+x 2=-3,x 1x 2=k -3,…………………………………6分且x 12+2x 1+x 2+k =4,∴3-k -x 1+x 2+k =4,x 2-x 1=1,………………………7分(x 2-x 1)2=1,(x 2+x 1)2-4x 1x 2=1,(-3)2-4(k -3)=1,∴9-4k +12=1,∴k =5.…………………………………9分23.解:(1)证明:连接OD ,∵CD 是⊙O 切线,∴∠ODC =90°,即∠ODB +∠BDC =90°,……………1分∵AB 为⊙O 的直径,∴∠ADB =90°,即∠ODB +∠ADO =90°,∴∠BDC =∠ADO ,……2分∵OA =OD ,∴∠ADO =∠A ,……………3分∴∠BDC =∠A .……………4分(2)①∵CE ⊥AE ,∴∠E =∠ADB =90°,∴DB ∥EC ,∴∠DCE =∠BDC ,……………5分∵∠BDC =∠A ,∴∠A =∠DCE ,在Rt △CDE 中,∠DCE =30°,DE =2,∴CD =2DE =4∴∠A =∠DCE =30°,∴AD =CD =4.…………………………………6分设AB =2R ,则BD =R ,∴(2R )2-R 2=42,R=AB =2R.……………7分②由①得∠BOD =2∠A =60°,R…………………………………8分则的长为=9.…………………………………10分九年级数学参考答案(第4页共4页)24.解:(1)抛物线的解析式为:y=-x2+4x+5;…………………………………3分(2)①∵点P的横坐标为m,∴点P的纵坐标为-m2+4m+5,则点E的纵坐标为m+1,………………………4分即P(m,-m2+4m+5),E(m,m+1),由题意,分以下两种情况:(ⅰ)当点P在点E的上方,即-1<m<4时,则PE=-m2+4m+5-(m+1)=-m2+3m+4,ED=m+1,∴-m2+3m+4=2(m+1),解得m=2或m=-1(不符题意,舍去),…………………………………5分则-m2+4m+5=-22+4×2+5=9,此时点P的坐标为P(2,9);……………6分(ⅱ)当点P在点E的下方,即m<-1或m>4时,则PE=m+1-(-m2+4m+5)=m2-3m-4,ED=|m+1|,∴m2-3m-4=2|m+1|,解得m=6或m=-1(不符题意,舍去),…………………………………7分则-m2+4m+5=-62+4×6+5=-7,此时点P的坐标为P(6,-7),∴当PE=2ED时,点P的坐标为P(2,9)或P(6,-7);…………………………………8分②∵B(5,0),C(4,5),E(m,m+1),如图,过C点作CH⊥x轴于点H,过C点作CG⊥PE于点G,∴BC2=26,BE2=(m-5)2+(m+1)2,CE2=2(m-4)2,…9分由等腰三角形的定义,分以下三种情况:(ⅰ)若BC=CE时,△BEC为等腰三角形,则BC2=CE2,即2(m-4)2=26,解得m=4或m=4;………………10分(ⅱ)当BC=BE时,△BEC为等腰三角形,则BC2=BE2,即(m-5)2+(m+1)2=26,解得m=0或m=4(此时点P与点C重合,不符题意,舍去);………………11分(ⅲ)当BE=CE时,△BEC为等腰三角形,则BE2=CE2,即(m-5)2+(m+1)2=2(m-4)2,解得m=34;…………………………………12分综上,m的值为4或4或0或34.…………………………………13分注意:1.按照评分标准分步评分,不得随意变更给分点;2.第17题至第24题的其它解法,只要思路清晰,解法正确,都应按步骤给予相应分数.。
浙教版数学九年级下学期期末复习试卷(含解析)
九年级(下)期末数学复习试卷一.选择题(共14小题)1.如图,有A,B,C三个地点,且AB⊥BC,从A地测得B地的方位角是北偏东43°,那么从C地测B地的方位角是()A.南偏东47°B.南偏西43°C.北偏东43°D.北偏西47°2.如图,OA是北偏东30°方向的一条射线,若∠BOA=90°,则OB的方位角是()A.北偏西30°B.北偏西60°C.北偏东30°D.北偏东60°3.如图,表示A点的位置,正确的是()A.距O点3km的地方B.在O点的东北方向上C.在O点东偏北40°的方向D.在O点北偏东50°方向,距O点3km的地方4.关于x的不等式组有解,则a的值不可能是()A.0B.1C.D.﹣15.下列实数中,不是x+4≥2的解的是()A.﹣3B.﹣2C.0D.3.56.下列x的值中,是不等式x>2的解的是()A.﹣2B.0C.2D.37.已知不等式组的整数解有三个,则a的取值范围是()A.1<a≤2B.2≤a<3C.1<a<2D.1≤a<28.已知关于x的不等式组有解,则a的取值不可能是()A.0B.1C.2D.39.如图,等腰△ABC的底边BC长为4,腰长为6,EF垂直平分AB,点P为直线EF上一动点,则BP+CP的最小值()A.10B.6C.4D.210.已知A(2,4),B(﹣1,﹣3),C(﹣3,﹣2),那么△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.以上都不是11.如图,△ABC的顶点都是正方形网格中的格点,则cos∠ACB等于()A.B.C.D.12.如图,在Rt△ABC中,AC=4,AB=5,∠C=90°,BD平分∠ABC交AC于点D,则BD的长是()A.B.C.D.13.如图,下列4个三角形中,均有AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是()A.①③B.①②④C.①③④D.①②③④14.下列命题中,是假命题的是()A.两点之间,线段最短B.同旁内角互补C.等角的补角相等D.垂线段最短二.填空题(共5小题)15.如图,在平面直角坐标系中,点A,B,C三点的坐标分别是A(﹣2,0),B(0,4),C(0,﹣1),过点C作CD∥AB,交第一象限的角平分线于点D,连接AD交y轴于点E.则点E的坐标为.16.已知点A在第二象限,点B的坐标为(3,2),AB∥x轴,并且AB=4,则A的坐标为.17.已知点A(4,y),B(x,﹣3),若AB∥x轴,且线段AB的长为5,x=,y=.18.平面直角坐标系中,点A(﹣3,2),B(4,5),C(x,y),若AC∥x轴,当线段BC取最小值时,点C的坐标为.19.如图,已知点P是射线ON上一动点(即P可在射线ON上运动),∠O=30°,当∠A=时,△AOP为等腰三角形.三.解答题(共9小题)20.如图直线L与x轴、y轴分别交于点B、A两点,且A、B两点的坐标分别为A(0,3),B (﹣4,0).(1)请求出直线L的函数解析式;(2)点P在坐标轴上,且△ABP的面积为12,求点P的坐标;(3)点C为直线AB上一个动点,是否存在使点C到x轴的距离为1.5,若存在,请直接写出该点的坐标.21.如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,点A(8,0),B(10,6).(1)求直线AC的表达式;(2)点M从点O出发以每秒1个单位长度的速度沿x轴向右运动,点N从点A出发以每秒3个单位长度的速度沿x轴向左运动,两点同时出发.过点M,N作x轴的垂线分别交直线OC,AC于点P,Q,猜想四边形PMNQ的形状(点M,N重合时除外),并证明你的猜想;(3)在(2)的条件下,当点M运动秒时,四边形PMNQ是正方形(直接写出结论).22.如图,是一种斜挎包,其挎带由双层部分、单层部分和调节扣构成.小敏用后发现,通过调节扣加长或缩短单层部分的长度,可以使挎带的长度(单层部分与双层部分长度的和,其中调节扣所占的长度忽略不计)加长或缩短.设单层部分的长度为xcm,双层部分的长度为ycm,经测量,得到如下数据:单层部分的长度x(cm)…46810…双层部分的长度y(cm)…73727170…(1)求出y关于x的函数解析式,并求当x=150时y的值;(2)根据小敏的身高和习惯,挎带的长度为120cm时,背起来正合适,请求出此时单层部分的长度;(3)设挎带的长度为lcm,求l的取值范围.23.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,轿车比货车晚出发1.5小时,如图,线段OA表示货车离甲地的距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地的距离y(千米)与时间x(时)之间的函数关系,请根据图象解答下列问题:(1)轿车到达乙地时,求货车与甲地的距离;(2)求线段CD对应的函数表达式;(3)在轿车行进过程,轿车行驶多少时间,两车相距15千米.24.为了加强公民的节水意识,某地规定用水收费标准如下:每户每月用水量不超过6m3时,水费按每立方米1.1元收费,超过6m3时,超过部分每立方米按1.6元收费,设每户每月用水量为xm3,应缴水费为y元.(1)写出y与x之间的函数表达式;(2)如果有两户家庭某月份需缴纳水费为5.5元和9.8元时,求这两户家庭这个月的用水量分别是多少?25.小王、小李二人骑车在平直的公路上分别从甲、乙两地相向而行,两人同时出发,匀速行驶.设行驶的时间为x(时),两人之间的距离为y(千米),小王到达乙地后立刻原路原速返回甲地,小李到达甲地后停止行驶.图中的折线表示从两人出发至小王回到甲地过程中y与x之间的函数关系.(1)根据图中信息,求甲乙两地之间的距离;(2)已知两人相遇时小王比小李多骑了4千米,若小王从甲地到达乙地所需时间为t时,求t的值;(3)直接写出点D的坐标,并解读点D坐标的实际意义.26.甲、乙两车先后从“深圳书城”出发,沿相同的路线到距书城240km的某市.因路况原因,甲车行驶的路程y(km)与甲车行驶的时间x(h)的函数关系图象为折线O﹣A﹣B,乙车行驶的路程y(km)与甲车行驶的时间x(h)的函数关系图象为线段CD.(1)求线段AB所在直线的函数表达式;(2)①乙车比甲车晚出发小时;②乙车出发多少小时后追上甲车?(3)乙车出发多少小时后甲、乙两车相距10千米?27.某工厂购进一条生产线.已知该生产线的三个操作平台分别排列在同一直线上,顺次是甲、乙、丙,其中甲乙平台之间的距离为40米,乙丙平台之间的距离为60米,操作甲、乙、丙平台分别需要20人、70人、60人.由于时间仓促无法做到完全自动化,需要在三个平台之间建立一个原材料供给站让工人自取,有如下两个方案:方案一:让甲、丙平台所有工人到供给站的距离之和等于乙平台所有工人到供给站的距离之和;方案二:让所有工人到供给站的距离总和最小.(1)若供给站建在乙、丙之间,按照方案一建站,供给站距离甲平台多少米?(2)若按照方案二建站,供给站距离甲平台多少米?(3)若按照方案一建站,甲平台的工人数增加a人(a≤22),那么随着a的增大,供给站将距离甲平台将越来越远,还是越来越近?请说明理由.28.如图,△ABC是等边三角形,AB=6.动点P从点A出发,以每秒2个单位的速度沿AB向终点B匀速运动;同时,动点Q从点C出发,以相同的速度沿CA向终点A匀速运动,连结CP,以CP为边向其左侧作等边三角形CDP,连结AD、DQ、BQ.设点P的运动时间为t (s).(1)求证:△ACP≌△CBQ.(2)求证:△ACD≌△ABQ.(3)求△ADQ的周长(用含t的代数式表示).(4)当CP的长最短时,连结PQ,直接写出此时t的值和四边形ADQP的周长.2020 -2021学年浙江省嘉兴市海盐县九年级(下)期末数学复习试卷参考答案与试题解析一.选择题(共14小题)1.如图,有A,B,C三个地点,且AB⊥BC,从A地测得B地的方位角是北偏东43°,那么从C地测B地的方位角是()A.南偏东47°B.南偏西43°C.北偏东43°D.北偏西47°【解答】解:∵AF∥DE,∴∠ABE=∠F AB=43°,∵AB⊥BC,∴∠ABC=90°,∴∠CBD=47°,∵BD∥CG,∴∠BCG=47°,∴从C地测B地的方位角是南偏东47°.故选:A.2.如图,OA是北偏东30°方向的一条射线,若∠BOA=90°,则OB的方位角是()A.北偏西30°B.北偏西60°C.北偏东30°D.北偏东60°【解答】解:由方向角的意义可知,∠AON=30°,∵∠AOB=90°,∴∠NOB=∠AOB﹣∠AON=90°﹣30°=60°,∴OB的方向角为北偏西60°,故选:B.3.如图,表示A点的位置,正确的是()A.距O点3km的地方B.在O点的东北方向上C.在O点东偏北40°的方向D.在O点北偏东50°方向,距O点3km的地方【解答】解:根据方位角的概念,射线OA表示的方向是北偏东50°方向.又∵AO=3km,∴点A在O点北偏东50°方向,距O点3km的地方,故选:D.4.关于x的不等式组有解,则a的值不可能是()A.0B.1C.D.﹣1【解答】解:∵不等式组有解,∴a>﹣1,∵0>﹣1,1>﹣1,﹣>﹣1,﹣1=﹣1,a的值不可能是﹣1.故选:D.5.下列实数中,不是x+4≥2的解的是()A.﹣3B.﹣2C.0D.3.5【解答】解:∵x+4≥2,∴x≥﹣2.∴﹣2、0、3.5是不等式的解,﹣3不是不等式的解.故选:A.6.下列x的值中,是不等式x>2的解的是()A.﹣2B.0C.2D.3【解答】解:∵不等式x>2的解集是所有大于2的数,∴3是不等式的解.故选:D.7.已知不等式组的整数解有三个,则a的取值范围是()A.1<a≤2B.2≤a<3C.1<a<2D.1≤a<2【解答】解:∵不等式组的整数解有三个,∴1≤a<2,故选:D.8.已知关于x的不等式组有解,则a的取值不可能是()A.0B.1C.2D.3【解答】解:∵关于x的不等式组有解,∴a<3,∴a的取值可能是0、1或2,不可能是3.故选:D.9.如图,等腰△ABC的底边BC长为4,腰长为6,EF垂直平分AB,点P为直线EF上一动点,则BP+CP的最小值()A.10B.6C.4D.2【解答】解:∵EF垂直平分AB,∴A、B关于EF对称,设AC交EF于点D,∴当P和D重合时,BP+CP的值最小,最小值等于AC的长,∴BP+CP的最小值=6.故选:B.10.已知A(2,4),B(﹣1,﹣3),C(﹣3,﹣2),那么△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.以上都不是【解答】解:∵AB2=(2+1)2+(4+3)2=58,BC2=(﹣1+3)2+(﹣3+2)2=5,AC2=(2+3)2+(4+2)2=61,而58+5>61,∴AB2+BC2>AC2,∴△ABC的形状不是等腰三角形、也不是直角三角形.故选:D.11.如图,△ABC的顶点都是正方形网格中的格点,则cos∠ACB等于()A.B.C.D.【解答】解:如图,作CD⊥AB于点D,作AE⊥BC于点E,由已知可得,AC==,AB=5,BC==5,CD=3,∵S△ABC=AB•CD=BC•AE,∴AE===3,∴CE===1,∴cos∠ACB===,方法2:由已知可得,AC==,∵AB=BC=5,∴∠C=∠A,∴cos∠ACB=cos∠A==,故选:B.12.如图,在Rt△ABC中,AC=4,AB=5,∠C=90°,BD平分∠ABC交AC于点D,则BD的长是()A.B.C.D.【解答】解:在Rt△ABC中,AC=4,AB=5,∠C=90°,∴BC==3,过D作DE⊥AB于E,∵BD平分∠ABC,∠C=90°,∴CD=DE,在Rt△BCD与Rt△BED中,,∴Rt△BCD≌Rt△BED(HL),∴BE=BC=3,∴AE=2,∵AD2=DE2+AE2,∴DE2+22=(4﹣DE)2,∴DE=,∴BD===.故选:D.13.如图,下列4个三角形中,均有AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是()A.①③B.①②④C.①③④D.①②③④【解答】解:由题意知,要求“被一条直线分成两个小等腰三角形”,①中分成的两个等腰三角形的角的度数分别为:36°,36°,108°和36°,72°72°,能;②不能;③显然原等腰直角三角形的斜边上的高把它还分为了两个小等腰直角三角形,能;④中的为36°,72,72°和36°,36°,108°,能.故选:C.14.下列命题中,是假命题的是()A.两点之间,线段最短B.同旁内角互补C.等角的补角相等D.垂线段最短【解答】解:A、两点之间,线段最短,是真命题;B、两直线平行,同旁内角互补,原命题是假命题;C、等角的补角相等,是真命题;D、垂线段最短,是真命题;故选:B.二.填空题(共5小题)15.如图,在平面直角坐标系中,点A,B,C三点的坐标分别是A(﹣2,0),B(0,4),C(0,﹣1),过点C作CD∥AB,交第一象限的角平分线于点D,连接AD交y轴于点E.则点E的坐标为(0,).【解答】解:设直线AB的解析式为y=kx+b,∵A(﹣2,0),B(0,4),∴,解得:,∴直线AB的解析式为y=2x+4,∵OD为第一象限的角平分线,∴直线OD的解析式为y=x,∵CD∥AB,C(0,﹣1),∴直线CD的解析式为y=2x﹣1,由题意,,解得:,∴D(1,1),设直线AD的解析式为y=k′x+b′,∵A(﹣2,0),D(1,1),∴,解得:,∴直线AD的解析式为y=x+,当x﹣0时,y=,∴点E的坐标为(0,),故答案为:(0,).16.已知点A在第二象限,点B的坐标为(3,2),AB∥x轴,并且AB=4,则A的坐标为(﹣1,2).【解答】解:∵AB∥x轴,∴A、B两点纵坐标都为2,又∵AB=4,∴当A点在B点左边时,A(﹣1,2),当A点在B点右边时,A(7,2);∵点A在第二象限,∴A(﹣1,2),故答案为:(﹣1,2).17.已知点A(4,y),B(x,﹣3),若AB∥x轴,且线段AB的长为5,x=9或﹣1,y=﹣3.【解答】解:若AB∥x轴,则A,B的纵坐标相同,因而y=﹣3;线段AB的长为5,即|x﹣4|=5,解得x=9或﹣1.故答案填:9或﹣1,﹣3.18.平面直角坐标系中,点A(﹣3,2),B(4,5),C(x,y),若AC∥x轴,当线段BC取最小值时,点C的坐标为(4,2).【解答】解:如图,当BC⊥AC,垂足为C时,BC的长最小,∵AC∥x轴,点A(﹣3,2),∴C点的纵坐标为2,∵BC⊥AC,即BC∥y轴,而B(4,5),∴C点的横坐标为4,∴C(4,2).故答案为(4,2).19.如图,已知点P是射线ON上一动点(即P可在射线ON上运动),∠O=30°,当∠A=75°,120°,30°时,△AOP为等腰三角形.【解答】解:分三种情况:①OA=OP时,则∠A=∠OP A=(180°﹣∠O)=(180°﹣30°)=75°;②AO=AP时,则∠APO=∠O=30°,∴∠A=180°﹣∠O﹣∠APO=120°;③PO=P A时,则∠A=∠O=30°;综上所述,当∠A为75°或120°或30°时,△AOP为等腰三角形,故答案为:75°或120°或30°.三.解答题(共9小题)20.如图直线L与x轴、y轴分别交于点B、A两点,且A、B两点的坐标分别为A(0,3),B (﹣4,0).(1)请求出直线L的函数解析式;(2)点P在坐标轴上,且△ABP的面积为12,求点P的坐标;(3)点C为直线AB上一个动点,是否存在使点C到x轴的距离为1.5,若存在,请直接写出该点的坐标.【解答】解:(1)设y=kx+b(k≠0),则,解得,∴y=0.75x+3;(2)当点P在x轴上时,设点P(x,0),则△ABP的面积=×BP×OA=×|m+4|×3=12,解得m=4或﹣12;故点P的坐标为(4,0)或(﹣12,0);当点P在y轴上时,同理可得,点P的坐标为(0,9)或(0,﹣3),故点P的坐标为(4,0)或(﹣12,0)或(0,9)或(0,﹣3);(3)假设存在点C(x,±1.5)到x轴的距离为1.5,则点C(x,±1.5)满足方程y=0.75x+3,①当C(x,1.5)时,1.5=0.75x+3,解得x=﹣2,∴点C(﹣2,1.5)存在;②当C(x,﹣1.5)时,﹣1.5=0.75x+3,解得x=﹣6,所以C(﹣6,﹣1.5)存在.∴存在点C(x,±1.5)到x轴的距离为1.5,其坐标是(﹣2,1.5)或(﹣6,﹣1.5).21.如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,点A(8,0),B(10,6).(1)求直线AC的表达式;(2)点M从点O出发以每秒1个单位长度的速度沿x轴向右运动,点N从点A出发以每秒3个单位长度的速度沿x轴向左运动,两点同时出发.过点M,N作x轴的垂线分别交直线OC,AC于点P,Q,猜想四边形PMNQ的形状(点M,N重合时除外),并证明你的猜想;(3)在(2)的条件下,当点M运动或8秒时,四边形PMNQ是正方形(直接写出结论).【解答】解:(1)由点A、B的坐标知,OA=8=BC,故点C(2,6),设直线AC的表达式为:y=kx+b,则,解得,故直线CA的表达式为:y=﹣x+8;(2)设点M(x,0),则P(x,3x),则点N(8﹣3x,0),则点Q(8﹣3x,3x),则PQ=|8﹣3x﹣x|=|8﹣4x|,而MN=|8﹣3x﹣x|=|8﹣4x|=PQ,而PQ∥MN,故四边形PMNQ为平行四边形,∵∠PMN=90°,∴四边形PMNQ是矩形.(3)四边形PMNQ是正方形,则MN=QN,即8﹣4x=|3x|,解得:x=或8,故答案为或8.22.如图,是一种斜挎包,其挎带由双层部分、单层部分和调节扣构成.小敏用后发现,通过调节扣加长或缩短单层部分的长度,可以使挎带的长度(单层部分与双层部分长度的和,其中调节扣所占的长度忽略不计)加长或缩短.设单层部分的长度为xcm,双层部分的长度为ycm,经测量,得到如下数据:单层部分的长度x(cm)…46810…双层部分的长度y(cm)…73727170…(1)求出y关于x的函数解析式,并求当x=150时y的值;(2)根据小敏的身高和习惯,挎带的长度为120cm时,背起来正合适,请求出此时单层部分的长度;(3)设挎带的长度为lcm,求l的取值范围.【解答】解:(1)观察表格可知,y是x的一次函数,设y=kx+b,则有,解得,∴y=﹣x+75,当x=150时,y=0,答:y关于x的函数解析式为y=﹣x+75,当x=150时y的值为0;(2)由题意,解得,所以单层部分的长度为90cm;(3)由题意得l=x+y=x﹣x+75=x+75,因为0≤x≤150,所以75≤x+75≤150,即75≤l≤150.23.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,轿车比货车晚出发1.5小时,如图,线段OA表示货车离甲地的距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地的距离y(千米)与时间x(时)之间的函数关系,请根据图象解答下列问题:(1)轿车到达乙地时,求货车与甲地的距离;(2)求线段CD对应的函数表达式;(3)在轿车行进过程,轿车行驶多少时间,两车相距15千米.【解答】解:(1)由图象可得,货车的速度为300÷5=60(千米/小时),则轿车到达乙地时,货车与甲地的距离是60×4.5=270(千米),即轿车到达乙地时,货车与甲地的距离是270千米;(2)设线段CD对应的函数表达式是y=kx+b,∵点C(2.5,80),点D(4.5,300),∴,解得,即线段CD对应的函数表达式是y=110x﹣195(2.5≤x≤4.5);(3)当x=2.5时,两车之间的距离为:60×2.5﹣80=70,∵70>15,∴在轿车行进过程,两车相距15千米时间是在2.5~4.5之间,由图象可得,线段OA对应的函数解析式为y=60x,则|60x﹣(110x﹣195)|=15,解得x1=3.6,x2=4.2,∵轿车比货车晚出发1.5小时,3.6﹣1.5=2.1(小时),4.2﹣1.5=2.7(小时),∴在轿车行进过程,轿车行驶2.1小时或2.7小时,两车相距15千米,答:在轿车行进过程,轿车行驶2.1小时或2.7小时,两车相距15千米.24.为了加强公民的节水意识,某地规定用水收费标准如下:每户每月用水量不超过6m3时,水费按每立方米1.1元收费,超过6m3时,超过部分每立方米按1.6元收费,设每户每月用水量为xm3,应缴水费为y元.(1)写出y与x之间的函数表达式;(2)如果有两户家庭某月份需缴纳水费为5.5元和9.8元时,求这两户家庭这个月的用水量分别是多少?【解答】解:(1)由题意可得,当0≤x≤6时,y=1.1x,当x>6时,y=1.1×6+(x﹣6)×1.6=1.6x﹣3,即y与x之间的函数表达式是y=;(2)∵5.5<1.1×6,∴缴纳水费为5.5元的用户用水量不超过6m3,将y=5.5代入y=1.1x,解得x=5;∵9.8>1.1×6,∴缴纳水费为9.8元的用户用水量超过6m3,将y=9.8代入y=1.6x﹣3,解得x=8;答:这两户家庭这个月的用水量分别是5m3,8m3.25.小王、小李二人骑车在平直的公路上分别从甲、乙两地相向而行,两人同时出发,匀速行驶.设行驶的时间为x(时),两人之间的距离为y(千米),小王到达乙地后立刻原路原速返回甲地,小李到达甲地后停止行驶.图中的折线表示从两人出发至小王回到甲地过程中y与x之间的函数关系.(1)根据图中信息,求甲乙两地之间的距离;(2)已知两人相遇时小王比小李多骑了4千米,若小王从甲地到达乙地所需时间为t时,求t的值;(3)直接写出点D的坐标,并解读点D坐标的实际意义.【解答】解:(1)由图象可得,小王和小李两人的速度之和为:10÷(1﹣0.75)=40(千米/小时),则甲乙两地的距离为:40×1=40(千米),即甲乙两地之间的距离为40千米;(2)由题意可得,小李的速度为:(40﹣4)÷2=18(千米/小时),则小王的速度为40﹣18=22(千米/小时),则t=40÷22=,即t的值为;(3)点D的横坐标为:40÷18=,纵坐标为:40﹣22×(﹣)=,∴点D的坐标为(,),则点D坐标的实际意义是当小李行驶的时间为小时时,此时小李到达甲地,小李和小王之间的距离为千米.26.甲、乙两车先后从“深圳书城”出发,沿相同的路线到距书城240km的某市.因路况原因,甲车行驶的路程y(km)与甲车行驶的时间x(h)的函数关系图象为折线O﹣A﹣B,乙车行驶的路程y(km)与甲车行驶的时间x(h)的函数关系图象为线段CD.(1)求线段AB所在直线的函数表达式;(2)①乙车比甲车晚出发1小时;②乙车出发多少小时后追上甲车?(3)乙车出发多少小时后甲、乙两车相距10千米?【解答】解:(1)设直线AB的函数表达式为:y=k1x+b1,将A(2,100),B(6,240)代入得解得∴线段AB所在直线的函数表达式为y=35x+30;(2)①乙车行驶的时间为240÷[(240﹣80)÷(4﹣2)]=3(小时),4﹣3=1(小时),∴乙车比甲车晚出发1小时,故答案为:1;②设直线CD的函数表达式为:y=k2x+b2,将(2,80),D(4,240)代入得解得,∴直线CD的函数表达式为y=80x﹣80;联立解得.∵(h),∴乙车出发h后追上甲车;(3)乙车追上甲车之前,35x+30﹣(80x﹣80)=10,,∴,乙车追上甲车之后,即(80x﹣80)﹣(35x+30)=10.解得.∴(h),当乙到达终点之后,即35x+30=240﹣10,解得,﹣1=(h);∴乙车出发或h或h后,甲、乙两车相距10km.27.某工厂购进一条生产线.已知该生产线的三个操作平台分别排列在同一直线上,顺次是甲、乙、丙,其中甲乙平台之间的距离为40米,乙丙平台之间的距离为60米,操作甲、乙、丙平台分别需要20人、70人、60人.由于时间仓促无法做到完全自动化,需要在三个平台之间建立一个原材料供给站让工人自取,有如下两个方案:方案一:让甲、丙平台所有工人到供给站的距离之和等于乙平台所有工人到供给站的距离之和;方案二:让所有工人到供给站的距离总和最小.(1)若供给站建在乙、丙之间,按照方案一建站,供给站距离甲平台多少米?(2)若按照方案二建站,供给站距离甲平台多少米?(3)若按照方案一建站,甲平台的工人数增加a人(a≤22),那么随着a的增大,供给站将距离甲平台将越来越远,还是越来越近?请说明理由.【解答】解:设供给站距离甲平台x米,(1)当40<x≤100时,20x+60(100﹣x)=70(x﹣40),解得x=80.答:按方案一建站,供给站应建在距离甲平台80米处;(2)设所有工人的距离之和为y米,①当供给站建在甲乙平台之间,即0≤x≤40时y=20x+70(40﹣x)+60(100﹣x)=﹣110x+8800,∴当x=40时,y取得最小值4400;②当供给站建在乙丙平台之间,即40<x≤100时y=20x+70(x﹣40)+60(100﹣x)=30x+3200,∵y随x增大而增大,并且当x=40时,y=4400,∴本阶段y的值均大于4400;答:按方案二建站,供给站应建在距离甲平台40米处;(3)供给站将离甲平台越来越远,理由如下:①当0≤x≤40时,(20+a)x+60(100﹣x)=70(40﹣x),解得:(不在三个平台之间,不合题意,舍去),②当40<x≤100时,(20+a)x+60(100﹣x)=70(x﹣40),解得,∴x随着a的增大而增大,答:随着a的增大供给站将离甲平台越来越远.28.如图,△ABC是等边三角形,AB=6.动点P从点A出发,以每秒2个单位的速度沿AB向终点B匀速运动;同时,动点Q从点C出发,以相同的速度沿CA向终点A匀速运动,连结CP,以CP为边向其左侧作等边三角形CDP,连结AD、DQ、BQ.设点P的运动时间为t (s).(1)求证:△ACP≌△CBQ.(2)求证:△ACD≌△ABQ.(3)求△ADQ的周长(用含t的代数式表示).(4)当CP的长最短时,连结PQ,直接写出此时t的值和四边形ADQP的周长.【解答】(1)证明:当运动时间为t(s)时,∵AP=2×t=2t,CQ=2×t=2t,∴AP=CQ,又∵△ABC是等边三角形,∴AC=CB,∠CAP=∠BCQ=60°,在△ACP与△CBQ中,,∴△ACP≌△CBQ(SAS);(2)证明:∵△DCP和△ABC都是等边三角形,∴DC=CP,CA=CB,∠DCP=∠ACB,∴∠DCA=∠BCP,∴△DCA≌△PCB(SAS),∴BP=AD,∠CAD=∠CBP=60°,∵AQ=BP,∴AQ=AD,∴△ADQ是等边三角形,同理可得:△ACD≌△ABQ(SAS);(3)解:由(2)知,△ADQ是等边三角形,∴C△ADQ=3AQ=3(6﹣2t)=18﹣6t;(4)解:如图,当CP最短时,CP⊥AB,此时CP=3,AP=3,∴t=,此时△APQ是等边三角形,∴AP=PQ=AQ,∵△ADQ是等边三角形,∴C四边形ADQP=AD+DQ+PQ+P A=3×4=12,∴当CP的长最短时,t的值是,C四边形ADQP=12.。
河南省信阳市息县2024届九年级下学期中考三模数学试卷(含答案)
2024年信阳市息县中考第三次模拟考试数学注意事项:1.本试卷共6页,三个大题,满分120分,考试时间120分钟。
2.本试卷上不要答题,请按答题卡上注意事项的要求,直接把答案填写在答题卡上。
答在试卷上的答案无效。
一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的。
1.的倒数是()A.B.C.2 D.2.2024年1月,国家统计局公布了2023年全年出生人口数约为9020000,其中数字9020000用科学记数法表示为()A.B.C.D.3.下列图形中,是中心对称图形的是()A.B.C.D.4.下列计算正确的是()A.B.C.D.5.物理实验中,小明研究一个小木块在斜坡上滑下时的运动状态,如图,斜被为,,,小木块在斜坡上,且,,则的度数为()A.B.C.D.6.对于实数a,b定义运算“⊗”为,例如,则关于x的方程的根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定7.如图所示,某同学自制了一个测角仪:等腰直角三角板的底边和量角器直径平行.若重锤线与的夹角为,那么被测物体表面的倾斜角的度数为()A.B.C.D.8.《义务教育课程标准(2022年版)》首次把学生学会炒菜纳入劳动教育课程,并做出明确规定.小亮调查了全班同学一周学会炒的菜品数量,结果如图所示,则全班同学一周学会炒的菜品数量的平均数是()A.2B.2.6C.3D.3.19.一个不透明的口袋里有1个红色小球,1个黄色小球,1个蓝色小球,这3个球除颜色外都相同,从口袋中随机摸出一个小球,记下颜色后放回口袋,摇匀后再从中随机摸出一个小球,则两次都摸到黄色小球的概率是()A.B.C.D.10.如图,抛物线与x轴交于点A,B,对称轴为直线,若点A的坐标为,则下列结论:①点B的坐标为;②;③;④点在抛物线上,当时,则,其中正确的个数为()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共15分)11.使有意义的x的取值范围是.12.不等式组的解集是.13.请你写出一个图像经过点的函数解析式:.14.如图,矩形中,,,点、分别是、上的动点,,则的最小值是.15.如图,在矩形中,,点E是的中点,将沿折叠后得到,延长交射线于点F,若,则的长为.三、解答题(本大题共8个小题,共75 分)16.(10分)(1)计算:.(2)解方程:17.(9分)为了解甲、乙两所学校八年级学生综合素质整体情况,对两校八年级学生进行了综合素质测评,并对成绩作出如下统计分析.【收集整理数据】分别从两所学校各随机抽取了a名学生的综合素质测试成绩(百分制,成绩都是整数且不低于分).将抽取的两所学校的成绩分别进行整理,分成A,B,C,D,E,F六组,用x表示成绩,A 组:,B组:,C组:,D组:,E组:,F组:,其中乙校E组成绩如下:,,,,,,,,,,,,,,.【描述数据】根据统计数据,绘制出了如下统计图.【分析数据】两所学校样本数据的平均数、中位数、众数、方差如下表:学校平均数中位数众数方差甲校乙校b79根据以上信息,解答下列问题:(1),;(2)补全条形统计图;(3)甲校共有人参加测试,若测试成绩不低于80分的为优秀,估计甲校测试成绩优秀的约有人;(4)从平均数、中位数、众数、方差中,任选一个统计量,解释其在本题中的意义.18.(9分)如图,在中,.(1)实践与操作:按照下列要求完成尺规作图,并标出相应的字母.(保留作图痕迹,不写作法)①作的垂直平分线交于点,交于点;②在线段的延长线上截取线段,使,连接,,.(2)猜想与证明:试猜想四边形的形状,并进行证明.19.(9分)如图,已知正比例函数的图象与反比例函数的图象相交于点和点B.(1)求反比例函数的解析式;(2)请结合函数图象,直接写出不等式的解集;(3)如图,以为边作菱形,使点C在x轴正半轴上,点D在第一象限,双曲线交于点E,连接,求的面积.20.(9分)在郑州之林公园内有一座如意雕塑(图1),它挺拔矗立在前端,展现出了郑东新区的美好蓝图与如意和谐的愿望.综合实践小组想按如图2 所示的方案测量如意雕塑的高度EF:①在如意雕塑前的空地上确定测量点A,当测量器高度为时,测得如意雕塑最高点E的仰角;②保持测量器位置不变,调整测量器高度为时,测得点E的仰角,已知点A,B,C,D,E,F,G在同一竖直平面内,请根据该小组的测量数据计算如意雕塑的高度.(结果精确到1m .参考数据:21.(9分)2024 年郑州市中招体育考试抽号流程为:第一次抽号确定素质类项目(从1 分钟跳绳、50米跑、掷实心球、立定跳远四项素质类项目中抽考1 项);第二次抽号确定运动健康技能类统考项目(从篮球运球投篮、足球运球射门、排球垫球三项运动健康技能类中抽考1项).某班为了备战中考体育,统一采购了一批跳绳和足球,已知跳绳与足球的总数量为50个(每种都购买),下面是经过调查,甲、乙两个商店的跳绳和足球售价信息及优惠方案:商店足球单价跳绳单价优惠方式甲所购商品按原价打八折乙足球原价,跳绳五折(1)在调查过程中,由于粗心,将足球与跳绳的单价遗失了,只知道甲、乙两个商店的足球和跳绳的单价相同,如果按原价买根跳绳与个足球需要花元,花同样的钱还能按原价买根跳绳与个足球,求跳绳与足球的单价;(2)已知跳绳的数量不超过足球数量的一半,若跳绳与足球只能在同一家店购买,则在哪家店购买,该班所需总费用最低?求出这个最低总费用.22.(9分)一次足球训练中,小明从球门正前方的A处射门,球射向球门的路线呈抛物线.当球飞行的水平距离为时,球达到最高点,此时球离地面.已知球门高为2.44m,现以O为原点建立如图所示直角坐标系.(1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素).(2)对本次训练进行分析,若射门路线的形状、最大高度均保持不变,则当时他应该带球向正后方移动多少米射门,才能让足球经过点O正上方2.25m处?23.(10分)(1)【发现】如图1,正方形的边长为4,点E为中点.连接.将绕点A顺时针旋转至连接交于点G.爱思考的小明做了这样的辅助线,过点E作,交于点H……请沿着小明的思路思考下去,则(2)【应用】如图2,菱形的边长为3,且,连接,点E为上一点,连接.将绕点A顺时针旋转至,连接交于点G,若,求的值;(3)【拓展】如图3,在四边形中,,且.点E为上一点,连接.将绕点A顺时针旋转至,连接交于点C,,请直接写出的长.2024年息县中考第三次模拟考试数学参考答案一、选择题(每小题3分,共30分)1.D2.C3.C4.B5.B6.A7.B8.B9.B10.B二、填空题(每小题3分,共15分)11.12.13.,,(答案不唯一).14.1015.2或三、解答题(本大题共8个小题,共75 分)16.(10分)解:(1).(5分)(2)原方程可化为.方程两边同乘,得.解得.检验:当时,.∴原方程的解是(5分)17.(9分)(1),(2分)(2)(2分)(3)解:(人)(3分)故答案为:;(4)解:平均数表示两个学校抽取的人成绩的平均成绩;(2分)众数表示两个学校抽取的人中得分在某个分数的人数最多;中位数表示两个学校抽取的人中,将成绩从小到大排列后,位于中间位置的成绩;方差表示两个学校抽取的人的成绩稳定性.18.(9分)(1)解:按照要求,如图所示,即为所求作的图形.(5分).(2)猜想:四边形为菱形.证明:为的垂直平分线,,,∴四边形为平行四边形,又,∴四边形为菱形.(4分)19.(9分)(1)解:把点代入正比例函数可得:,∴点,把点代入反比例函数,可得:,∴反比例函数的解析式为;(3分)(2)解:∵点A与点B是关于原点对称的,∴点,∴根据图象可得,不等式的解集为:或;(2分)(3)解:如图所示,过点A作轴,垂足为G,∵,∴在中,,∵四边形是菱形,∴,,∴.(4分)20.(9分)延长交于,延长交于,则米,米,,∴米,设米,在中,,∴,在中,,∴,∵,∴,∴(米),∴(米),答:如意雕塑的高度约为米.21.(9分)(1)解:设跳绳的单价为元根,足球的单价为元个,依题意,得:,解得:.(3分)答:跳绳的单价为元根,足球的单价为元个.(2)设购买跳绳条,则购买足球()个,∵跳绳的数量不超过足球数量的一半,∴∴设总费用为元,依题意,得:.(2分),∵∴随的增大而减小,∴当时,最小,为(元),,∵∴随的增大而减小,∴当时,最小,为(元)∵,(4分)∴在甲家店购买,该班所需总费用最低,这个最低总费用为元.22.(9分)(1)(5分)解:由题意得:抛物线的顶点坐标为,设抛物线解析式为,把点代入,得,解得,∴抛物线的函数表达式为,当时,,∴球不能射进球门;(2)(4分)设小明带球向正后方移动米,则移动后的抛物线为,把点代入得,解得(舍去),,∴当时他应该带球向正后方移动1米射门.23.(10分)(1)(3分)过点E作,交于点H,∵正方形的边长为4,∴四边形是矩形,四边形是矩形,∴,∵点E为中点,∴,∵将绕点A顺时针旋转至∴∵,∴,∴,∴,∴,∴;(2)(4分)过点E 作,作,∵菱形的边长为3,且,∴是等边三角形,,∵∴,,,∴,∴,∵,∴,∴是等边三角形,∴,∵将绕点A顺时针旋转至,∴,,即是等边三角形,∴,∵,∴,∴,∴,∴;(3)(4分)过点E作,作,交延长线于点R,交于点Q,∵,∴∴,,∵,∴,∵,∴,设,则,∵将绕点A顺时针旋转至,∴,∵,∴,即,过点B作,过点A作,则,∴,∴,∴,解得:(负值舍去),经检验:是方程的解,∴。
2024年辽宁省大连市部分学校九年级下学期中考联考数学试题(含答案)
2024年辽宁省中考适应性测试(一)数学试卷(本试卷共23小题满分120分考试时长120分钟)考生注意:所有试题必须在答题卡指定区域内作答,在本试卷上作答无效参考公式:抛物线顶点坐标为第一部分选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.风云二号是我国自行研制的第一代地球静止气象卫星,它在地球赤道上空距地面约35800公里的轨道上运行.将35800用科学记数法表示应为( )A. B. C. D.2.下列几何体中,俯视图是三角形的是( )A.B . C. D.3.在标准大气压下,液态氧、液态氮、酒精、水四中液体的沸点如下表:液体液态氧液态氮酒精水沸点78100其中沸点最低的液体为( )A.液态氧 B.液态氮C.酒精D.水4.我国古代典籍《周易》用“卦”描述万物的变化.如图为部分“卦”的符号,其中是中心对称图形的是( )A. B. C.D.5.下列运算正确的是()A. B.C.D.6.下列命题是真命题的是( )A.相等的角是对顶角 B.若,则D.同旁内角互补,两直线平行()20y ax bx c a =++≠24,24b ac b aa ⎛⎫-- ⎪⎝⎭50.35810⨯335.810⨯53.5810⨯43.5810⨯/℃183-196-()235y y =222(2)4xy x y -=2222x x x ⋅=623x x x ÷=||||a b =a b =2=-7.在平面直角坐标系中,线段是由线段经过平移得到的,点的对应点为,点B 的坐标为,则点的坐标为( )A. B. C. D.8.为了丰富校园生活,培养学生特长,学校开展了特色课程.小明与小华从感兴趣的“花样跳绳”,“天文地理”,“艺术插花”,“象棋博弈”4门课程中随机选择一门学习.小明与小华恰好选中同一门课程的概率为( )A.B.C.D.9.如图,直线,直线依次交,,于点A ,B ,C ,直线依次交,,于点D ,E ,F ,若,,则的长为( )A.8B.6C.4D.310.已知等腰三角形的周长是8,底边长y 是腰长x 的函数,则下列图象中,能正确反映y 与x 之间函数关系的图象是( )A. B. C. D.第二部分非选择题(共90分)二、填空题(本题共5小题,每小题3分,共15分)11.因式分解:_____________.12.如图,菱形中,交于O ,于E ,连接,若,则的度数为_____________.A B ''AB (2,1)A -(3,4)A '(1,3)B --B '(4,3)-(4,3)-(4,0)(6,6)--116141312123////l l l AC 1l 2l 3l DF 1l 2l 3l 35AB AC =6DE =EF 29y -=ABCD AC BD CE AB ⊥OE 110DAB ∠=︒OEC ∠︒13.如果关于x 的方程有两个相等的实数根,则___________.14.如图1,“矩”在古代指两条边成直角的曲尺,它的两边长分别为a ,b .中国古老的天文和数学著作《周髀算经》中简明扼要地阐述了“矩”的功能,如“偃矩以望高”的意思就是把“矩”仰立放可测物体的高度.如图2,从“矩”的一端A 望向树顶端的点C ,使视线通过“矩”的另一端E ,测得,.若“矩”的边,边,则树高为______.图1图215.如图,拋物线交x 轴正半轴于点A ,交y 轴于点B ,线段轴交拋物线于点C ,,则的面积是__________.三、解答题(本题共8小题,共75分,解答应写出文字说明、演算步骤或推理过程)16.(10分)(1)(5分)计算:(2)(5分)解方程:.17.(8分)某学校为打造书香校园,计划购进甲、乙两种课外书.购买1本甲种书和2本乙种书共需125元;购买2本甲种书和5本乙种书共需300元.(1)求甲、乙两种书的单价;(2)学校决定购买甲、乙两种书共50本,且两种书的总费用不超过2000元,那么该校最多可以购买多少本乙种书?18.(8分)为了解甲、乙两校九年级学生英语人机对话的学习情况,每个学校随机抽取20个学生进行测试,测试后对学生的成绩进行了整理和分析.信息一:220x x m ++=m =AFE 1.5m AB = 6.2m BD =30cm EF a ==60cm AF b ==CD m 233(0)y ax ax a =-+<BD y ⊥25DC BD =ACD △()()23433-⨯+-+2820x x -+=绘制成了如下两幅统计图.(数据分组为:A 组:,B 组:,C 组:,D 组:)甲校成绩的频数分布直方图乙校成绩的扇形统计图信息二:甲校学生的测试成绩在C 组的是:80,82.5,82.5,85,85.5,89,89.5,82.5,85.信息三:甲、乙两校成绩的平均数,中位数,众数如表:平均数中位数众数甲校83.2a 82.5乙校80.68180根据以上信息,回答下列问题:(1)扇形统计图中C 组所在的圆心角度数为_______,乙校学生的测试成绩位于D 组的人数为_______人,表格中_________,在此次测试中,甲校小明和乙校小华的成绩均为82分,则两位同学谁在各自学校测试成绩中的排名更靠前?并说明理由;(2)假设甲校学生共有400人参加此次测试,估计甲校成绩超过86分的人数.19.(8分)星海广场是亚洲最大的城市广场,某店专门销售某种品牌的星海广场纪念品,成本为30元/件,每天销售y 件与销售单价x 元(x 为整数)之间的一次函数关系如图所示,其中.(1)求y 与x 之间的函数表达式;(2)当销售单价为多少元时,每天获取的利润最大,最大利润是多少?20.(8分)脱贫攻坚工作让老百姓过上了幸福的生活.如图1是政府给贫困户新建的房屋,如图2是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高所在的直线,为了测量房屋的高度,在地面上C 点测得6070x ≤<7080x ≤<8090x ≤<90100x ≤≤︒a =3060x <≤AB屋顶A 的仰角为,此时地面上C 点、屋檐上E 点、屋顶上A 点三点恰好共线,继续向房屋方向走到达点D 时,又测得屋檐E 点的仰角为,房屋的顶层横梁,,交于点G (点C ,D ,B 在同一水平线上).图1图2(1)求屋顶到横梁的距离(结果精确到);(2)求房屋的高(结果精确到).(参考数据,,)21.(8分)如图1,为的直径,C 为外一点.图1图2(1)尺规作图:作直线与相切,切点D 在弧上(保留作图痕迹,不写作法);(2)如图2,为的直径,直线与相切于点D,连接、、,若,,的长.22.(12分)如图,在中,,点D 在边上(不与点C 重合),将绕点D 旋转,得到,其中点C 的对应点为点E ,点A 的对应点为点F .图1图2图3(1)如图1,点D 与点B 重合,将绕点D 逆时针方向旋转,当点E 落在边上时,与的交点为G ,求证:;30︒8m 63.5︒12m EF =//EF CB AB EF AG 0.1m AB 1m sin 63.50.89︒≈cos 63.50.45︒≈tan 63.5 2.00︒≈ 1.73≈AB O e O e CD O e AmB AB O e CD O e AD BD AC 45C ∠=︒4sin 5ADC ∠=AC =BD ABC △AB AC =BC ADC △FDE △ADC △AC EF AB AG EG =(2)如图2,点D 是边上任一点(不与点A 、B 重合),将绕点D 逆时针方向旋转,当点E 落在边上时,连接,求证:;(3)若,D 为中点.①将绕点D 逆时针方向旋转,点E 落在边上,连接并延长与的延长线交于点P ,求的长;②将绕点D 顺时针方向旋转,当经过点C 时,连接并延长与的延长线交于点Q ,请直接写出的长.23.(13分)定义,在平面直角坐标系中,对于任意两点,,若点满足,,那么称点T 是点A ,B 的“伴A 融合点”,例如:,,当点满足,时,则点是点A ,B 的“伴A 融合点”.(1)已知点,,点T 是点A ,B 的“伴A 融合点”,则点T 的坐标为___________;(2)已知点,,,请说明其中一个点是另两个点的伴哪个点的“融合点”?(3)已知点是直线上在第一象限内的一动点,是抛物线上一动点,点是点Q ,P 的“伴Q 融合点”,试求出T 中y 关于x 的函数表达式(表达式中含a ),并判断所有点中是否存在最高点?若存在,求出最高点的坐标;若不存在,说明理由;(4),为(3)中y 关于x 的函数表达式所对应的图像上两点,若点M ,N 之间的图象(包括点M ,N )的最高点与最低点纵坐标的差为,求a 的值.AB ADC △AC BF //BF AC AB =2BC =BC ADC △AC AF CB PF ADC △EF AF BC QF (,)A a b (,)B m n (,)T x y a mx a+=b ny b +=(1,2)A -(3,4)B (,)T x y 1321x -+==--2432y +==(2,3)T -(2,4)A -(2,8)B -(2,6)C -(1,2)D --(1,2)E -(,)Q a b y x =(,)P m n 22y x =-(,)T x y (,)T x y ()11,M y -()21,N a y -26a2024年辽宁省中考适应性测试数学(一)答案及评分标准一、选择题:1.D ;2.B ;3.B ;4.A ;5.B ;6.D ;7.C ;8.B ;9.C ;10.D.二、填空题:11.;12.35;13.1;14. 4.6;15. 3.15.解析:在中,当时,,.轴交抛物线于点C ,,令,,.,,,,,.三、解答题:16.解:(1)原式4分;5分(2),,,,6分8分,.10分17.解:(1)设甲种书的单价是x 元,乙种书的单价是y 元,根据题意得,,2分解得,,3分答:甲种书的单价是25元,乙种书的单价是50元;4分(2)设该校购买m 本乙种书,则购买本甲种书,根据题意得,,6分解得,,7分答:该校最多可以购买30本乙种书.8分18.解:(1)144,4,,3分小明的成绩为82分,在甲校中位数85.25分以下,而小华的成绩82分,在乙校中位数81分以上,因此小华的成绩排名在前.5分()()33y y +-233y ax ax =-+0x =3y =(0,3)B ∴BD y ⊥ 3C B y y ∴==2333ax ax -+=10x ∴=23x =(3,3)C ∴3BC ∴=25DC BD = 2(3)5DC DC ∴=+2DC ∴=12332ACDS ∴=⨯⨯=△1293=-++-+=1a = 8b =-2c =224(8)412560b ac ∴-=--⨯⨯=>4x ∴==14x ∴=+24x =-212525300x y x y +=⎧⎨+=⎩2550x y =⎧⎨=⎩(50)m -()2550502000m m -+≤30m ≤85.25a =(2)(人),7分答:估计甲校400学生中成绩超过86分的大约有180人.8分19.解:(1)设y 与x 的函数表达式为,直线经过点,,,2分解得:.3分y 与x 之间的函数表达式为;4分(2)设每天利润为w 元,则,,6分,抛物线开口向下,,当时,7分.8分答:当销售单价为50元时,每天获取的利润最大,最大利润是4000元.20.解:(1)房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高所在的直线,,,,,在中,,,,,2分.3分答:屋顶到横梁的距离约为3.5米;(2)如图,过E 作于H ,设米,在中,,,,,4分2740018020+⨯=y kx b =+ y kx b =+(40,300)(55,150)4030055150k b k b +=⎧∴⎨+=⎩10700k b =-⎧⎨=⎩∴10700y x =-+(30)(30)(10700)w x y x x =-⋅=--+221010002100010(50)4000x x x -+-=--+100-< ∴3060x <≤ ∴50x =4000w =最大 AB //EF BC AG EF ∴⊥11126m 22EG FG EF ===⨯=30AEG ACB ∠=∠=︒Rt AGE △90AGE ∠=︒30AEG ∠=︒6EG =tan AG AEG EG ∠=tan 6tan 306AG EG AEG ∴=∠==︒⨯2 1.73 3.46 3.5m ≈⨯=≈AG EH CB ⊥EH x =Rt EDH △90EHD ∠=︒63.5EDH ∠=︒tan EH EDH DH ∠=tan tan 63.52EH x xDH EDH ∴==≈︒∠在中,,,,,5分,,解得:(米),7分四边形为矩形,(米),(米).8分答:房屋的高约为10米.21.解:(1)如图1,直线即为所求作;2分说明:连接,分别以点C ,点O 为圆心,大于为半径作弧,两弧分别交于点M ,N ,作直线交于点E ,以E 为圆心,长为半径作弧,交弧与点D ,作直线.图1图2(2)如图2,过点A 作于点E ,则,连接,为的切线,是的半径,,,3分为的直径,,4分,即,,,,5分,,,6分,,,,,,,7分在中,根据勾股定理,.8分22.解:(1)证明:,,,.1分旋转得到,,,.,,,Rt ECH △90EHC ∠=︒30ECH ∠=︒tan EH ECH CH ∠=tan tan 30EH xCH ECH ∴===∠︒8CH DH CD -== 82x-=1.730.58x x -= 6.5x ≈ EHBG 6.5EH BG ∴==3.46 6.59.9610AB AG BG ∴=+=+=≈AB CD CO 12CO MN CO EO AmB CD AE CD ⊥90AEC AED ∠=∠=︒OD CD O e OD O e CD OD ∴⊥90ODC ∴∠=︒AB O e 90ADB ∴∠=︒ADO ODB ADO ADC ∴∠+∠=∠+∠ODB ADC ∠=∠OD OB = ODB B ∴∠=∠B ADC ∴∠=∠45C ∠=︒ sin sin 45AE C AC ∴==︒=AC =4AE ∴=4sin 5ADC ∠=45AE AD ∴=5AD ∴=B ADC ∠=∠ 90ADB ∠=︒4sin 5AD B AB ∴==254AB ∴=Rt ABD △154BD ===AB AC = ABC C ∴∠=∠180A ABC C ∠+∠+∠=︒2180A C ∴∠+∠=︒ABC △FBE △C BEF ∴∠=∠BC BE =BEC C ∴∠=∠BEC BEF C ∴∠=∠=∠180BEC BEF AEF ∠+∠+∠=︒ 2180AEF C ∴∠+∠=︒,;2分(2)同理(1)得,.,旋转得到,,.3分,即..4分,,.,;5分(3)①,,D 为中点,,,,在中,根据勾股定理得.6分如图1,连接,.旋转得到,,.,,..,,,.7分,,,根据勾股定理得8分旋转得到,,,又,,,.,,即.9分由(2)得,,四边形为矩形,,,,,10分A AEF ∴∠=∠AG EG ∴=GAE GEA ∠=∠AG EG =AB AC = ADC △FDE △AC FE ∴=AB FE ∴=AB AG FE EG ∴-=-BG FG =GFB GBF ∴∠=∠2180AGE GAE ∠+∠=︒ 2180BGF GBF ∠+∠=︒AGE BGF ∠=∠GAE GBF ∴∠=∠//BF AC ∴AB AC ==2BC =BC AD BC ∴⊥90ADC ∴∠=︒112BD CD BC ===Rt ADC △2AD ===BE BF ADC △FDE △DC DE ∴=DA DF =BD DE ∴=C DEC ∴∠=∠DBE DEB ∠=∠180DBE DEB DEC C ∠+∠+∠+∠=︒ 22180DEB DEC ∴∠+∠=︒90DEB DEC ∴∠+∠=︒90BEC ∴∠=︒BE AC ∴⊥1122ABC S BC AD AC BE =⋅=⋅ △22∴⨯=BE ∴=AE ===ADC △FDE △90FDE ADC ∴∠=∠=︒ADF EDC ∴∠=∠DF DA = 1802ADFDAF DFA ︒-∠∴∠=∠=1802EDCC ︒-∠∠= C DAF ∴∠=∠90C DAC ∠+∠=︒ 90DAF DAC ∴∠+∠=︒90PAC ∠=︒//BF AC 90AFB ∴∠=︒∴AFBE BF AE ∴==AF BE ==//BF AC PFB PAC ∴△∽△PF BFPA AC∴==PF ∴=图1图212分解析:绕点D 顺时针旋转得到,,,,,,.又,..,,,即,又,,,即.,.,,,.即.四边形为矩形,同理①:.,.,,,.ADC △FDE △DE DC ∴=DEC DCE ∠=∠DA DF=DAF DFA ∴∠=∠ACD DEC ∠=∠DEC DCE ACD ∴∠=∠=∠90ADC FDE∠=∠=︒ ADF CDE ∴∠=∠AFD DCE ACD ∴∠=∠=∠DAC DFE ∠=∠ 90ACD DAC ∠+∠=︒ 90AFD DFE ∴∠+∠=︒90AFE ∠=︒BAD DAC ∠=∠ DAF DFA ∠=∠90BAD DAF ∴∠+∠=︒90BAF ∠=︒BD ED = DBE DEB ∴∠=∠1802BDE BED ︒-∠∴∠=1802EDC DEC -∠︒∠=180BDE EDC ∠+∠=︒18018022BDE EDC BED DEC ︒-∠-∠︒∴∠+∠=+360()3601809022BDE EDC -︒︒︒∠+∠-===︒90BEF ∠=︒∴ABEF 1122ABC S BC A AD B BE ⨯=⨯=△4∴=BE ∴=EC ===EF AB ==FC ∴=-=AF BE ==//FC AB QFC QAB ∴△∽△..23.解:(1),,;1分(2),,,,3分又,点D 是点C ,E 的“伴E 融合点”;4分(3)是直线上在第一象限内的一动点,,,,点是抛物线上一动点,,.点是点Q ,P 的“伴Q 融合点”,,,5分,,,6分,,,抛物线开口向下,有最大值1.的最高点的坐标为;7分(4),,.抛物线的开口向下,对称轴为直线,最高点为.①当时,,即时,点M 、N 在抛物线对称轴左侧,y 随x 的增大而增大,,点M 、N 之间的图象的最高点为N ,最低点为M .,FC FQ AB AQ ∴==FQ ∴=2(2)02x +-==4814y -+==--(0,1)T ∴-(1,2)E - (2,6)C -1211-+=-- 2(6)22+-=-(1,2)D -- ∴(,)Q a b y x =b a ∴=0a >(,)Q a a ∴(,)P m n 22y x =-22n m ∴=-()2,2P m m ∴- (,)T x y a m x a +∴=22a m y a -=ax a m ∴=+m ax a ∴=-2222()11m ax a y a a-=-=-22222(4111)ax ax x a a =-=+-+--()()222212221112y a x x a a x x a ∴=--+-=--+-+-222(1)2122(1)1a x a a a x =--++-=--+0a > 20a ∴-<∴(,)T x y ∴(1,1)22(1)1y a x =--+ 0a >20a -<1x =(1,1)11a -≤2a ≤02a <≤11a ->- ∴2222(11)12(11)16a a a a ⎡⎤∴---+----+=⎣⎦,,,,(舍),,;9分②若,即时,若,则,.当时,最高点为,最低点为..,.都不符合题意,舍去;11分③若,则最高点为,最低点为.,.,..13分综上,a 的值为1.222(2)1816a a a a --++-=222(2)86a a a a --+=0a > 22(2)86a a ∴--+=10a ∴=21a =1a ∴=11a ->2a >12y y =111(1)a --=--4a ∴=24a <≤(1,1)()11,M y -2212(11)16a a ⎡⎤∴----+=⎣⎦10a =243a =4a >(1,1)()21,N a y -2212(11)16a a a ⎡⎤∴----+=⎣⎦2740a a -+=1a =2a =a ∴=。
九年级数学秋学期期中考试试卷附答案
九年级数学秋学期期中考试试卷(总分:150分;时间:120分钟)一、精心选一选,相信自己的判断!(下列各题的四个选项中,有且只有一个是正确的.每小题3分,共24分)1.若等腰三角形的一个底角为50°,则顶角为 ( ) A .50° B.100° C.80° D.65°2.若一组数据1,2,3,x 的极差是6,则x 的值为 ( )A.7B .8C .9D .7或-33.在y =x 的取值范围是 ( )A. x≥1B. x>1C. x>0D. x≠14.是同类二次根式的是 ( )A.B.C.D. 5.已知四边形ABCD 是平行四边形,下列结论中不正确的是 ( )A 当AB=BC 时,它是菱形B 当AC ⊥BD 时,它是菱形 C 当∠ABC=900时,它是矩形 D 当AC=BD 时,它是正方形6.下列运算中,错误的是 ( ) A .632=⨯B .2221=C .252322=+D .32)32(2-=-7. 顺次连结等腰梯形ABCD 各边中点,所得的四边形一定是 ( )A .等腰梯形B .矩形C .菱形D .平行四边形 点E 8.如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,在正方形ABCD 内,在对角线AC 上有一点P ,使P D P E +的和最小,则这个最小值为( ) A.B.C . 3D.第8题图二、细心填一填,试试自己的身手!(本大题共有10小题,每小题3分,共30分.) 9 a = 。
10.在综合实践课上,五名同学做手工的数量(单位:件)分别是:5,7,3,6,4;则这组数据的标准差为 _____________11. 方程x 2 =x 的根是 。
12.矩形的两条对角线的一个夹角是60°,两条对角线的和是8cm ,那么矩形的较短边长是ADE PBCcm 。
13.10在两个连续整数a 和b 之间,则以a 、b 为边长的直角三角形斜边长为 。
【2022年上海市初中一模数学卷】2022年上海市静安区初中毕业生学业模拟考试试卷九年级数学及答案
静安区2021学年第一学期期末教学质量调研九年级数学试卷 2022.1(完成时间:100分钟 满分:150分 )考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤; 3. 答题时可用函数型计算器.一、选择题:(本大题共6题,每题4分,满分24分) 1.下列实数中,有理数是(A )3; (B )π; (C )4; (D )39. 2.计算22x x ÷的结果是 (A )x 2; (B )x21; (C )2x ; (D )x 2.3.已知点D 、E 分别在△ABC 的边AB 、AC 的反向延长线上,且ED ∥BC ,如果AD :DB=1∶4,ED = 2,那么边BC 的长是(A )8; (B )10; (C )6; (D )4.4.将抛物线x x y 22−=向左平移1个单位,再向上平移1个单位后,所得抛物线的顶点坐标是(A ))1,1(−; (B ))1,1(−; (C ))0,1(; (D ))0,0(. 5.如果锐角A 的度数是°25,那么下列结论中正确的是 (A )21sin 0<<A ; (B )23cos 0<<A ; (C )1tan 33<<A ; (D )3cot 1<<A . 6.下列说法错误的是(A )任意一个直角三角形都可以被分割成两个等腰三角形; (B )任意一个等腰三角形都可以被分割成两个等腰三角形; (C )任意一个直角三角形都可以被分割成两个直角三角形; (D )任意一个等腰三角形都可以被分割成两个直角三角形. 二、填空题:(本大题共12题,每题4分,满分48分)7.5−的绝对值是 .8.如果x −3在实数范围内有意义,那么实数x 的取值范围是 . 9.已知32b a =,那么ab ab +−的值是 . 10.已知线段AB =2cm ,点P 是AB 的黄金分割点,且AP >PB ,那么AP 的长度 是 cm .(结果保留根号) 11.如果某抛物线开口方向与抛物线221x y =的开口方向相同,那么该抛物线有最 点.(填“高”或“低”) 12.已知反比例函数xy 1=的图像上的三点),2(1y −、),1(2y −、),1(3y ,判断y 1,y 2,y 3的大小关系: .(用“<”连接)13.如果抛物线42++=mx x y 的顶点在x 轴上,那么常数m 的值是 . 14.如果在A 点处观察B 点的仰角为α,那么在B 点处观察A 点的俯角为 . (用含α的式子表示)15.如图,在△ABC 中,AB =AC =6,BC =4,点D 在边AC 上,BD =BC ,那么AD 的长是 . 16.在△ABC 中,DE ∥BC ,DE 交边AB 、AC 分别于点D 、E ,如果△ADE 与四边形BCED的面积相等,那么AD ︰DB 的值为 .17.如图,在△ABC 中,中线AD 、BE 相交于点G ,如果,AD a BE b ==,那么 BC = .(用含向量a 、b的式子表示) 18.如图,正方形ABCD 中,将边BC 绕着点C 旋转,当点B 落在边AD 的垂直平分线上的点E 处时,∠AEC 的度数为 .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:°+−°−°⋅°°45cos 2)130(sin 30cot 60sin 45tan 22.20.(本题满分10分)(第17题图)A B C D E G (第18题图)A BC D (第15题图) AB C D(第22题图)EDOF GHI 如图,在Rt △ABC 中,∠ACB =90°,CD 、CH 分别是AB 边上的中线和高,14=BC ,43cos =∠ACD ,求AB 、CH 的长.21.(本题满分10分, 其中第(1)小题4分,第(2)小题4分,第(3)小题2分) 我们将平面直角坐标系xOy 中的图形D 和点P 给出如下定义:如果将图形D 绕点P 顺时针旋转90°得到图形D ’,那么图形D ’称为图形D 关于点P 的“垂直图形” . 已知点A 的坐标为(2−,1),点B 的坐标为(0,1), △ABO 关于原点O 的“垂直图形”记为△A ’B ’O ,点 A 、B 的对应点分别为点A ’ 、B ’, (1)请写出:点A ’的坐标为 ;点B ’的坐标为 ; (2)请求出经过点A 、B 、 B ’ 的二次函数解析式;(3)请直接写出经过点A 、B 、A ’ 的抛物线的表达式为 . 22.(本题满分10分)据说,在距今2500多年前,古希腊数学家就已经较准确地测出了埃及金字塔的高度,操作过程大致如下:如图所示,设AB 是大金字塔的高.在某一时刻,阳光照射下的金字塔在地面上投下了一个清晰的阴影,塔顶A 的影子落在地面上的点C 处.金字塔底部可看作方正形FGHI ,测得正方形边长FG 长为160米,点B 在正方形的中心,BC 与金字塔底部一边垂直于点K .与此同时,直立地面上的一根标杆DO 留下的影子是OE .射向地面的太阳光线可看作平行线(AC ∥DE ).此时测得标杆DO 长为1.2米,影子OE 长为2.7米,KC 长为250米.求金字塔的高度AB 及斜坡AK 的坡度(结果均保留四个有效数字).CDB(第20题图)H23.(本题满分12分,其中第(1)小题6分,第(2)小题4分)如图,边长为1的正方形ABCD 中,对角线AC 、BD 相交于点O ,点Q 、R 分别在边AD 、DC 上,BR 交线段OC 于点P ,QP ⊥BP ,QP 交BD 于点E . (1)求证:△APQ ∽△DBR ; (2)当∠QED 等于60°时,求DRAQ的值.24.(本题满分12分,其中每小题4分)如图,在平面直角坐标系xOy 中,已知抛物线bx x y +=2经过点A (2, 0)和点B (-1,m ),顶点为点D .(1)求直线AB 的表达式; (2)求ABD ∠tan 的值;(3)设线段BD 与 x 轴交于点P ,如果点C 在x与△ABP 相似,求点C 的坐标.25.(本题满分14分,其中第(1)小题5分,第(2)小题5分,第(3)小题4分)如图1,四边形ABCD 中,∠BAD 的平分线AE 交边BC 于点E ,已知AB =9,AE =6,AD AB AE ⋅=2,且DC //AE .(1)求证:DC AE DE ⋅=2;(2)如果BE =9,求四边形ABCD 的面积;(3)如图2,延长AD 、BC 交于点F ,设x BE =,y EF =,求y 关于x 的函数解析式,并写出定义域.DE DCBAFECBA (第23题图)BCR (第24题图)参考答案一、选择题: 1.C ; 2.B ; 3.C ; 4.D ; 5.A ; 6.B .二、填空题: 7.5;8.3≤x ; 9.51; 10.15−; 11.低; 12.312y y y <<; 13.4,4−; 14.α; 15.310; 16.12+; 17. a b 3234+; 18.45°或135°.三、解答题: 19.解:原式=22)22(2)121(3231×+−−× ……………………………………(5分) =21221231×+− ……………………………………(3分)=67. ……………………………………(2分) 20.解:在Rt △ABC 中,∠ACB =90°,∵CD 是AB 边上的中线,∴DC=DA ,∴∠A=∠ACD .………………………………(2分) ∵43cos =∠ACD ,∴43cos ==BC AC A , ……………………………………(1分)设AC =3k , AB =4k ,则BC=14722==−k AC AB ……………………………(1分)∴2=k ,∴244==k AB .……………………………………(2分) 在Rt △ABC 中,∠ACB =90°,CH 是AB 边上的高,即CH ⊥AB ∵△ABC 面积一定,∴CH AB BC AC ⋅=⋅2121……………………………………(2分)∵233==k AC ,∴CH ×=×241423,∴1443=CH …………………(2分)所以,AB 的长为24 ,CH 的长为1443.21.解:(1)A ’(1,2)、B ’(1,0); ……………………………………(4分) (2)设抛物线解析式为)0(2≠++=a c bx ax y ,∵经过A (-2,1)、B (0,1)、B ’(1,0);∴代入可得:=++=+−=0101241b a b a c , 解得:=−=−=13231c b a ,…………………………(1+2分) ∴经过点A 、B 、 B ’ 的二次函数解析式为132312+−−=x x y ;…………(1分)(3)经过点A 、B 、A ’ 的抛物线的表达式为132312++=x x y .…………(2分)22.解:∵AC//DE ,AB 、DO 均垂直于地面. ∴∠C=∠E ,∠ABC=∠O =90°.∴Rt △BAC ∽Rt △ODE ,∴OE BC DO AB =.……………………………………(4分)由题意可知:BC =BK +KC =80+250=330(米),DO =1.2米,OE =2.7米………(1分) 代入可得7.23302.1=AB , 解得AB ≈146.7(米).……………………………………(2分)联结AK ,Rt △ABK 中,5453.0:1807.146≈==BK AB i AK .……………………………(3分)答:金字塔的高度AB 约为146.7米,斜坡AK 的坡度约为5453.0:1.23.(1)证明:∵正方形ABCD 中,对角线AC 、BD 相交于点O , ∴∠DAB=∠ADC =90°,AC ⊥DB , ∴°°=×=∠=∠459021BDC DAC .…………………………(2分)又∵QP ⊥BP ,∴∠EPO+∠OPB =90°,∵Rt △BOP 中,∠OBP+∠OPB =90°,…………………………(2分) ∴∠OBP =∠EPO , 即∠APQ =∠DBR ,…………………………(1分) ∴△APQ ∽△DBR …………………………(1分)(2)解:∵正方形ABCD 的边长为1,∴222=+==AD AB BD AC .…………(1分) ∵∠QED =60°,∴∠BEP =∠QED =60°,∵Rt △BPE 中,∠BPE =90°,∴∠EBP+∠BEP =90°,∴∠PBE = 30°.………………(1分) 又∵Rt △BOP 中,2221==BD BO ,33tan ==∠OB OP OBP ,∴66=OP .…………………………(1分) 又∵2221==AC AO ,∴AP=6622+.…………………………(1分)∵△APQ ∽Rt △DBR ,∴63326622+=+==BD AP DR AQ .…………………………(2分)24.解:(1)抛物线bx x y +=2经过点A (2, 0)和点B (-1,m ),将点A (2, 0)代入bx x y +=2得:2−=b .…………………………(1分)又∵x x y 22−=过点B (-1,m ),代入得:3=m ,∴B (-1,3),…………(1分) 设直线AB 的表达式为)0(≠+=k c kx y ;将A (2, 0)、B (-1,3)代入得.=+−=+302c k c k ,解得:=−=21c k ∴直线AB 的表达式为2+−=x y ;…………………………(2分)(2)∵x x y 22−=顶点为点D ,∴D (1,-1),…………………………(1分) ∴5220)13()11(22==++−−=BD ,2)10()12(22=++−=AD ,23183)21(22==+−−=BA ,∴222BA AD BD +=,…………………………(2分)∴△ABD 是直角三角形,即∠BAD =90°,∴31232tan ===∠AB AD ABD ;…………(1分)(3)设线段BD 的表达式为)0(,≠+=e f ex y ,过B (-1,3),D (1,-1),−=+=+−13f e f e ,解得: =−=12f e ,∴线段BD 的表达式为12+−=x y ; ∴线段BD 与 x 轴交点P 的坐标为)0,21(.…………(1分) 由题意可知△ABP 是钝角三角形,∠BP A 是钝角 ∵点C 在x 轴上,且△ABC 与△ABP 相似,①当点C 在点A 右侧时,∠BAC=∠BP A +∠PBA >∠BP A ,不合题意,舍去; ②当点C 在点A 左侧,且与点P 重合时,点C )0,21(;……………………(1分) ③当点C 在点A 左侧,且与点P 不重合时,由△ABC 与△ABP 相似,∠BAP=∠CAB可得∠APB = ∠ABC, ∠PBA=∠ACB, 过点B 作BH ⊥x 轴,垂足为H , ∵31tan =∠ABD ,∴31tan ==∠CH BH ACB∵B (-1,3),∴BH =3,∴CH =9,∴CH =9,∴C (-10,0).…………(2分) 综上所述,点C 的坐标为)0,21(1C 、)0,10(2−C .25.(1)证明:∵四边形ABCD 中,AE 平分∠BAD ,∴∠BAE =∠EAD,∵AD AB AE ⋅=2,∴AE AD AB AE =,∴△ABE ∽△AED , …………………………(2分)∴∠AED =∠B ,又∵∠AEC =∠B +∠BAE , 即∠AED +∠DEC=∠B +∠BAE , ∴∠DEC=∠BAE ,∴∠DEC=∠EAD .…………………………(1分)∵DC //AE ,∴∠CDE=∠DEA ,∴△AED ∽△E DC …………………………(1分)∴DE AE DC DE =,∴DC AE DE ⋅=2; …………………………(1分) (2)解:∵AB =9,AE =6,AD AB AE ⋅=2,∴AD =4.∵BE =AB =9,∴∠BEA=∠BAE . ∵∠BAE =∠EAD , ∴∠BEA=∠EAD ,∴AD //BC , ∵DC //AE ,∴四边形AECD 是平行四边形.…………………(2分) ∴EC =AD =4,BC =9+4=13.过点B 作BG ⊥AE ,过点A 作AH ⊥BE ,垂足分别为G 、H .∵Rt △BAG 中,321==AE AG ,∴26392222=−=−=AG AB BG .………………(1分)∵△BAE 面积一定,∴AH BE BG AE ⋅=⋅2121, ∴24=AH .…………………………(1分)∴梯形ABCD 的面积=23424)134(21=×+;…………………………(1分) (先算出三角形ABE 面积后,用面积比等于相似比的平方,得到另两个三角形的面积,从而求出四边形面积)(3)解:∵△ABE ∽△AED ∽△E DC ,x BE =,y EF = ,AB =9,AE =6,AD =4,∴3296===AB AE BE DE ,∴DE =x BE 3232=,∴AE DE AD EC =,∴32==AE AD DE EC ,x x EC 943232=×=…………………(1分)∵DC AE DE ⋅=2,∴2272x DC =.…………………………(1分)又∵DC //AE ,∴AE DC EF CF =,∴8162729422x xy x y ==−. 所以28136xxy −=,定义域: 93<<x .…………………………(2分)。
九年级下学期期中考试数学试卷(含答案解析)
九年级下学期期中考试数学试卷(含答案解析)一.选择题(共10小题,每题5分)1.已知实数α,β满足2α2+5α﹣2=0,2β2﹣5β﹣2=0,且αβ≠1,且的值为()A.B.C.D.2.如图,在四边形ABCD中,∠ABC=75°,∠BAD=150°,BC=6,对角线AC⊥AD,P是线段AC上的动点,Q是射线DA上的动点,当四边形BPDQ为平行四边形时,则平行四边形BPDQ的面积是()A.9﹣3B.6C.9D.63.如图,正方形ABCD的顶点B在原点,点D的坐标为(4,4),将AB绕点A逆时针旋转60°,使点B 落在点B′处,DE⊥BB′于点E,则点E的坐标为()A.B.C.D.4.如图,四边形OABC是平行四边形,对角线OB在y轴上,位于第一象限的点A和第二象限的点C分别在双曲线y=和y=的一支上,分别过点A,C作x轴的垂线垂足分别为M和N,则有以下的结论:①ON=OM;②△OMA≌△ONC;③阴影部分面积是(k1+k2);④四边形OABC是菱形,则图中曲线关于y轴对称,其中正确的结论是()A.①②④B.②③C.①③④D.①④5.如图,四边形ABCD是菱形,AB=5,BE⊥AD垂足为E,交AC于点F,且DE=2,S△ADF=,点G 从点A出发,以每秒2个单位的速度沿折线A﹣D﹣C运动,到达点C终止,设点G的运动时间为t秒,△FDG的面积为S,则S的最大值为()A.6.25B.3.75C.5.25D.6.如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B重合),∠DAM=45°,点F在射线AM上,且AF=BE,CF与AD相交于点G.连接EC、EF、EG.下列结论:①∠ECF=45°;②△AEG的周长为(1+)a;③BE2+DG2=EG2;④当G是线段AD的中点时,BE=a.正确的个数是()A.1个B.2个C.3个D.4个7.如图,四边形ABCD中,AB与CD不平行,M,N分别是AD、BC的中点,AB=6,CD=3,则MN的长可能是()A.3.6B.4.5C.1.4D.5.48.反比例函数和(k为大于1的定值)在第一象限的图象如图所示,点P在上.过点P作P A⊥y轴于点A,与交于点C;过点P作PB⊥x轴于点B,与交于点D,连接OP、OC、OD、AB和CD.四边形PCOD的面积记为S1,△OCD的面积记为S2.下列结论不正确的是()A.S1为定值B.C.S2不为定值D.AB∥CD9.代数式+的最小值是()A.B.C.D.10.约定:若函数图象上至少存在不同的两点关于原点对称,则把该函数称为“黄金函数”,其图象上关于原点对称的两点叫做一对“黄金点”.若点A(1,m),B(n,﹣4)是关于x的“黄金函数”y=ax2+bx+c (a≠0)上的一对“黄金点”,且该函数的对称轴始终位于直线x=2的右侧,有结论①a+c=0;②b=4;③a+b+c<0;④﹣1<a<0.则下列结论正确的是()A.①②③B.①③④C.①②④D.②③④二.填空题(共8小题,每题6分)11.对于三个实数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{1,2,9}==1.请结合上述材料,解决下列问题:(1)M{32,(﹣3)2,﹣32}=;(2)若M{5x,x2,﹣3}=min{x2,﹣3},则x=.12.如图,矩形OABC的顶点A和C分别在x轴和y轴上,反比例函数y=(k≠0)的图象过点B,D为AB中点,连接CD,过点O作OE⊥CD于点E,连接AE,若AE=3,CD=,则k=.13.将二次函数y=x2﹣2x﹣3的图象在x轴下方的部分沿x轴翻折到x轴上方,所得新函数的图象与直线y =x+b的图象恰有2个公共点时,则b的取值范围为.14.如图,正方形ABCD的边长为2,E,F分别是BC,CD的中点,连接AE,G为AE上的一点,且∠FGE=45°,则GF的长为.15.如图,三个边长均为的正方形重叠在一起,O1,O2分别是两个正方形的中心,则阴影(重叠)部分的面积为.16.如图,菱形ABCD中,∠ABC=60°,AB=2,E、F分别是边BC和对角线BD上的动点,且BE=DF,则AE+AF的最小值为.17.若实数a,b,c满足12a2+7b2+5c2≤12a|b|﹣4b|c|﹣16c﹣16,则a+b+c=.18.如图,A,B两点在双曲线y1=(x>0)上,C,D两点在双曲线y2=(m>1,x>0)上,若AC ∥BD∥x轴,且BD=2AC,则△OAB的面积为.三.解答题(共4小题)19.(12分)小明在解方程﹣=2时采用了下面的方法:由(﹣)(+)=()2﹣()2=(24﹣x)﹣(8﹣x)=16,又有﹣=2,可得+=8,将这两式相加可得,将=5两边平方可解得x=﹣1,经检验x=﹣1是原方程的解.请你学习小明的方法,解下面的方程:(1)方程的解是;(2)解方程+=4x.20.(12分)如图,在平面直角坐标系xOy中,一次函数y=k1x+b的图象与反比例函数y=的图象交于点A(2,4)和点B(m,﹣2).(1)(2分)求一次函数与反比例函数的表达式;(2)直线AB与x轴交于点D,与y轴交于点C.①(4分)过点C作CE∥x轴交反比例函数y=的图象于点E,连接AE,试判断△ACE的形状,并说明理由;②(6分)设M是x轴上一点,当∠DCO=2∠CMO时,直接写出点M的坐标.21.(12分)正方形ABCD中,E、F是AD上的两个点,AE=DF,连CF交BD于点M,连AM交BE于点N,连接DN.如果正方形的边长为2.(1)求证:BE⊥AM;(2)求DN的最小值.22.(16分)如图1,在平面直角坐标系中,抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的图象与x轴交于点A(1,0)、B两点,与y轴交于点C(0,4),且抛物线的对称轴为直线x=﹣.(1)(3分)求抛物线的解析式;(2)(5分)在直线BC上方的抛物线上有一动点M,过点M作MN⊥x轴,垂足为点N,交直线BC于点D;是否存在点M,使得MD+DC取得最大值,若存在请求出它的最大值及点M的坐标;若不存在,请说明理由;(3)(8分)如图2,若点P是抛物线上另一动点,且满足∠PBC+∠ACO=45°,请直接写出点P的坐标.参考答案一.选择题(共10小题)1.A .2.B .3.D .4.D .5.A .6.B .7.A .8.C .9.B .10.C . 二.填空题(共8小题) 11.(1)3.(2)﹣2或﹣3.12.12. 13.﹣3<b <1或b >134. 14.3√2. 15.4. 16.2√2. 17.−52. 18.34.三.解答题(共4小题)19.解:(1)(√x 2+42+√x 2+10)(√x 2+42−√x 2+10) =(√x 2+42)2−(√x 2+10)2 =(x 2+42)﹣(x 2+10) =32∵√x 2+42+√x 2+10=16, ∴√x 2+42−√x 2+10=32÷16=2,∴{√x 2+42=9√x 2+10=7∵(√x 2+42)2=x 2+42=92=81, ∴x =±√39,经检验x =±√39都是原方程的解,∴方程√x 2+42+√x 2+10=16的解是:x =±√39; 故答案为:x =±√39.(2)(√4x 2+6x −5+√4x 2−2x −5)(√4x 2+6x −5−√4x 2−2x −5) =(√4x 2+6x −5)2−(√4x 2−2x −5)2=(4x 2+6x ﹣5)﹣(4x 2﹣2x ﹣5) =8x∵√4x 2+6x −5+√4x 2−2x −5=4x , ∴√4x 2+6x −5−√4x 2−2x −5=8x ÷4x =2,∴{√4x 2+6x −5=2x +1√4x 2−2x −5=2x −1, ∵(√4x 2+6x −5)2=(2x +1)2, ∴4x 2+6x ﹣5=4x 2+4x +1, ∴2x =6, 解得x =3,经检验x =3是原方程的解,∴方程√4x 2+6x −5+√4x 2−2x −5=4x 的解是:x =3.20.解:(1)∵点A (2,4)和点B (m ,﹣2)都在反比例函数y =k2x 的图象上,∴2×4=﹣2m =8=k 2, ∴m =﹣4, ∴B (﹣4,﹣2),将点A (2,4)、B (﹣4,﹣2)代入y =k 1x +b 得, {2k 1+b =4−4k 1+b =−2, ∴{k 1=1b =2, ∴y =x +2,∴反比例函数解析式为y =8x,一次函数解析式为y =x +2; (2)①在y =x +2中,当x =0时,y =2, ∴C (0,2), ∵CE ∥x 轴, ∴C 点的纵坐标为2, ∴8x =2,∴x =4, ∴E (4,2), 作AH ⊥CE 于H , ∴CH =AH =HE =2,∴∠HCA=∠HAC=∠HAE=∠HEA=45°,∴CA=EA,∠CAE=90°,∴△ACE是等腰直角三角形,②当点M在D点左侧时,由①知,△COD是等腰直角三角形,∵∠DCO=2∠CMO,∴∠DMC=∠DCM,∴DM=CD,∵OD=OC=2,∴CD=MD=2√2,∴M(﹣2﹣2√2,0),根据对称性可知,当点M在点D右侧时,M(2+2√2,0),综上:M(﹣2﹣2√2,0)或(2+2√2,0).21.(1)证:∵四边形ABCD为正方形,∴AB=DC,∠BAE=∠CDF=90°,又AE=DF,∴△ABE≌△DCF,∴∠ABE=∠DCF,∵BD是正方形ABCD的对角线,∴∠CDM=∠ADM,∴△ADM≌△CDM∴∠DCM=∠DAM,∴∠ABE=∠DAM,∴∠ABE+∠BAM=∠DAM+BAM=90°,∴∠ANB=90°,则BE ⊥AM ;(2)解:取AB 中点P ,连PN 、PD , 由(1)知:△ABN 、△APD 均为直角三角形, ∴PN =12AB =1,PD =√AD 2+AP 2=√5, ∴DN ≥PD ﹣PN =√5−1, 则DN 的最小值为√5−1.22.解:(1)∵抛物线的对称轴为直线x =−32, ∴−b 2a =−32, ∴b =3a , ∴y =ax 2+3ax +c ,将A (1,0)、C (0,4)代入y =ax 2+3ax +c , ∴{a +3a +c =0c =4, ∴{a =−1c =4, ∴y =﹣x 2﹣3x +4;(2)存在点M ,使得MD +√22DC 取得最大值,理由如下; 令y =0,则﹣x 2﹣3x +4=0, ∴x =﹣4或x =1, ∴B (﹣4,0), ∵OB =OC =4, ∴∠CBO =45°,设直线BC 的解析式为y =kx +b , ∴{b =4−4k +b =0, ∴{k =1b =4, ∴y =x +4,设M (m ,﹣m 2﹣3m +4),则D (m ,m +4), ∵MN ⊥x 轴, ∴MD =﹣m 2﹣4m ,如图1,过点D 作DG ⊥y 轴交于点G , ∵∠DCG =45°, ∴CD 2=2DG 2,∴DG =√22CD ,∵DG =﹣m ,∴MD +√22DC =﹣m 2﹣5m =﹣(m +52)2+254, ∴当m =−52时,MD +√22DC 有最大值254,此时M (−52,214);(3)如图2,当P 点在BC 上方时, 作A 点关于y 轴的对称点E , ∵A (1,0), ∴E (﹣1,0), ∴∠ACO =∠ECO ,∵∠BCO =45°,∠PBC +∠ACO =45°, ∴∠BCE =∠PBC , ∴EC ∥PB ,设直线EC 的解析式为y =k 'x +b ', ∴{b′=4−k′+b′=0,∴{k′=4b′=4, ∴y =4x +4,∴PB 的直线解析式为y =4x +16, 联立{y =4x +16y =−x 2−3x +4,∴{x =−3y =4或{x =−4y =0(舍), ∴P (﹣3,4);如图3,当P 点在BC 下方时, 作A 点关于y 轴的对称点E , ∵A (1,0), ∴E (﹣1,0), ∴∠ACO =∠ECO ,∵∠BCO =45°,∠PBC +∠ACO =45°, ∴∠BCE =∠PBC ,设BP 与CE 的交点为Q ,设Q (t ,4t +4), ∴BQ =CQ ,第 11 页 共 11 页 ∴t 2+16t 2=(t +4)2+(4t +4)2, ∴t =−45,∴Q (−45,45), 设直线BQ 的解析式为y =k 1x +b 1, ∴{−4k 1+b 1=0−45k 1+b 1=45, ∴{k 1=14b 1=1, ∴y =14x +1,联立{y =−x 2−3x +4y =14x +1, ∴{x =−4y =0(舍)或{x =34y =1916, ∴P (34,1916);综上所述:P 点坐标为(﹣3,4)或(34,1916).。
2023年人教版九年级数学(下册)期末试卷含答案
2023年人教版九年级数学(下册)期末试卷含答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.多项式2mx m -与多项式221x x -+的公因式是( )A .1x -B .1x +C .21x -D .()21x -3.如果a b -=22()2a b a b a a b+-⋅-的值为( )A B .C .D .4.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 5.关于x 的不等式组314(1){x x x m->-<的解集为x <3,那么m 的取值范围为( )A .m=3B .m >3C .m <3D .m ≥36.在实数范围内定义运算“☆”:1a b a b =+-☆,例如:232314=+-=☆.如果21x =☆,则x 的值是( ).A .1-B .1C .0D .27.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB=AC ,现添加以下的哪个条件仍不能判定△ABE ≌△ACD ( )A .∠B=∠CB .AD=AEC .BD=CED .BE=CD8.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,下列结论:①abc >0;②2a+b >0;③b 2﹣4ac >0;④a ﹣b+c >0,其中正确的个数是( )A .1B .2C .3D .49.扬帆中学有一块长30m ,宽20m 的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm ,则可列方程为( )A .()()3302020304x x --=⨯⨯ B .()()130********x x --=⨯⨯ C .130********x x +⨯=⨯⨯ D .()()33022020304x x --=⨯⨯ 10.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm二、填空题(本大题共6小题,每小题3分,共18分)1.364 的平方根为__________.2.分解因式:2x 2﹣8=_______.3.若函数y=mx 2+2x+1的图象与x 轴只有一个公共点,则常数m 的值是_____.4.如图,在直角△ABC 中,∠C=90°,AC=6,BC=8,P 、Q 分别为边BC 、AB 上的两个动点,若要使△APQ 是等腰三角形且△BPQ 是直角三角形,则AQ =________.5.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若AB=8,CD=6,则BE=______.6.如图,在菱形ABCD 中,对角线,AC BD 交于点O ,过点A 作AH BC ⊥于点H ,已知BO=4,S 菱形ABCD =24,则AH =__________.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--2.关于x 的一元二次方程x 2+3x+m-1=0的两个实数根分别为x 1,x 2.(1)求m 的取值范围.(2)若2(x 1+x 2)+ x 1x 2+10=0.求m 的值.3.如图,一次函数1y k x b =+的图象与反比例函数2k y x=的图象相交于A 、B 两点,其中点A 的坐标为()1,4-,点B 的坐标为()4,n .(1)根据图象,直接写出满足21k k x b x+>的x 的取值范围; (2)求这两个函数的表达式; (3)点P 在线段AB 上,且:1:2AOP BOP S S ∆∆=,求点P 的坐标.4.如图,BD 是菱形ABCD 的对角线,75CBD ∠=︒,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求DBF ∠的度数.5.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85 100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.平均数(分)中位数(分)众数(分)初中部85 85 85高中部85 80 1006.学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、A4、D5、D6、C7、D8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±22、2(x+2)(x ﹣2)3、0或14、154或3075、6、245三、解答题(本大题共6小题,共72分)1、x=32、(1)m ≤134. (2)m=-3.3、(1)1x <-或04x <<;(2)4y x =-,3y x =-+;(3)27,33P ⎛⎫ ⎪⎝⎭ 4、(1)答案略;(2)45°.5、(1)(2)初中部成绩好些(3)初中代表队选手成绩较为稳定6、(1)A ,B 两型桌椅的单价分别为600元,800元;(2)y=﹣200x+162000(120≤x≤130);(3)购买A型桌椅130套,购买B型桌椅70套,总费用最少,最少费用为136000元.。
山东省济宁市部分中学2024届九年级下学期中考数学一模试卷(含答案)
数学试题(考试时间:120分钟试卷满分:100分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,选出符合题目要求的一项。
1.的绝对值是( )A. B. C. D.2.下列运算正确的是( )A. B.C. D.3.下列图形选自历届在中国举办的世界园艺博览会会徽,其中是轴对称图形的是( )A. B. C. D.4.据统计,年我国出生人口为万人,死亡人口为万人出生人口少于死亡人口,影响我国人口总量比年减少万人数据“万”用科学记数法表示为( )A. B. C. D.5.如图,是的直径,弦交于点,,,则的度数为( )A. B. C. D.6.如图是正方体的展开图,把展开图折叠成正方体后,与“学”字一面相对面上的字是( )A. 核B. 心C. 素D. 养7.关于的一元二次方程有两个不相等的实数根,则实数的最小整数值为( )A. B. C. D.8.如图,在中,,,分别以点,为圆心,长为半径在右侧画弧,两弧交于点,与,的延长线分别交于点,,则阴影部分的面积和为( )A. B. C. D.9.如图是深圳地铁站入口的双翼闸机如图,它的双翼展开时,双翼边缘的端点与之间的距离为,双翼的边缘,且与闸机侧立面夹角当双翼收起时,可以通过闸机的物体的最大宽度为( )A. B. C. D.10.生物学中,描述、解释和预测种群数量的变化,常常需要建立数学模型在营养和生存空间没有限制的情况下,某种细胞可通过分裂来繁殖后代,我们就用数学模型来表示即:,,,,,,请你推算的个位数字是( )A. B. C. D.第Ⅱ卷二、填空题:本题共5小题,每小题3分,共15分。
2022~2023学年九年级数学上学期期末考试卷-人教版(含答案)
2022~2023学年九年级数学上学期期末考试卷-人教版(含答案)本试卷共8页.总分120分,考试时间120分钟. 注意事项:1.仔细审题,工整作答,保持卷面整洁. 2.考生完成试卷后,务必从头到尾认真检查一遍.一、选择题.(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.点(,3)a -关于原点的对称点是(2,3),则a 的值为( ) A .2-B .2C .3-D .32.抛物线223y x x =-+-与y 轴的交点坐标为( ) A .(0,3)B .(0,3)-C .(3,0)D .(3,0)-3.图1是某几何体的三视图,该几何体是( )A .长方体B .正方体C .球D .圆柱4.在Rt ABC △中,90C ∠=︒,5AB =,3BC =,则sin A 的值为( ) A .35B .45C .34D .435.如图2,在ABC △中,DE BC ∥,且23AD AB =.若6DE =,则BC 的长为( )A .8B .9C .12D .156.在如图3所示的44⨯正方形方格中,选取一个白色的小正方形涂灰,使图中阴影部分成为一个中心对称图形,这样的涂法有( )A .0种B .1种C .2种D .3种7.小明解方程2280x x --=的过程如图4所示,开始出现错误..的是( )A .第一步B .第二步C .第三步D .第四步8.不透明布袋中有3个白球,若干个黄球,这些球除颜色外无其他差别.从袋子中随机取出1个球,如果取到白球的概率最大,那么布袋中的黄球可能..有( ) A .2个B .3个C .4个D .4个以上9.已知点11(,)A x y ,22(,)B x y 在反比例函数2k y x+=的图象上,且当120x x <<时,12y y <,则k 的取值范围是( ) A .2k >-B .2k ≥-C .2k <-D .2k ≤-10.已知在矩形ABCD 中,3AB =,6BC =,若以AD 为直径作圆,则与这个圆相切的矩形ABCD 的边共有( ) A .0条B .1条C .2条D .3条11.从地面竖直向上抛出一小球,小球的高度h (米)与运动时间t (秒)之间的解析式是2530(06)h t t t =-+≤≤,则小球到达最高高度时,运动的时间是( )A .1秒B .2秒C .3秒D .4秒12.下列说法正确的是( ) A .阳光下林荫道上的树影是中心投影B .相似图形一定是位似图形C .关于x 的方程220x kx --=有实数根D .三点确定一个圆属于必然事件13.如图5,矩形ABCD 在平面直角坐标系中,点A ,D 分别在反比例函数k y x =和3y x=-的图象上,点B ,C 在x 轴上,若4ABCD S =矩形,则k 的值为( )A .12B .7C .12-D .7-14.如图6,四边形ABCD 内接于O ,135ABC =∠︒,4AC =,则O 的半径为( )A .4B .22C .23D .4215.如图7,在ABC △中,8AB AC ==,6BC =,点P 从点B 出发以每秒1个单位长度的速度向点A 运动,同时点Q 从点C 出发以每秒2个单位长度的速度向点B 运动.当以B ,P ,Q 为顶点的三角形与ABC △相似时,运动时间为( )A .2411秒 B .95秒 C .2411秒或95秒 D .以上均不对16.已知抛物线2()1y x a a =--+-(a 为常数),则下列判断正确的是( ) ①当12x -<<时,y 随x 的增大而增大,则a 的取值范围为2a ≥; ②无论a 为何值,该抛物线的顶点始终在一条直线上 A .两个都对B .两个都错C .只有①对D .只有②对二、填空题.(本大题有3个小题,每小题有2个空,每空2分,共12分.把答案写在题中横线上) 17.如图8,已知AB 是O 的直径,AB CD ⊥于点E ,120COD =∠︒.(1)BAD ∠的度数为_____________.(2)若23CD =AB 的长为_____________. 18.已知一个矩形的周长为56cm .(1)当该矩形的面积为2180cm 时,求矩形的长.设矩形的长为cm x ,则根据题意可列方程为__________________________;(2)该矩形的面积_____________.(填“能”或“不能”)为2200cm .19.如图9,已知在ABC △中,5AB AC ==,8BC =,点P 在边BC 上(点P 与点B ,C 不重合),APF B ∠=∠,射线PF 与边AC 交于点F ,过点A 作BC 的平行线,交射线PF 于点Q .(1)若2BP =,则CF 的长为_____________;(2)当AFQ △是等腰三角形时,BP 的长为_____________.三、解答题.(本大题共7个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(每小题4分,共计8分) 按要求完成下列各小题.(1)解方程:2(23)5(23)x x -=-;(2)计算:22sin 30cos 30︒+︒.21.(本小题满分9分)如图10,为测量一座山峰CD 的高度,将此山的某侧山坡划分为AB 和BC 两段,每一段山坡近似是“直”的,测得坡长800AB =米,200BC =米,坡面AB 的坡度为1:3坡面BC 的坡度为1:1.过点B 作BE CD ⊥于点E .(1)求点B 到AD 的高度;(2)求山峰的高度CD .2 1.41≈3 1.73≈)22.(本小题满分9分)小明和小亮相约乘坐地铁到“市图书馆”站集合,此站有A ,B ,C ,D 四个出站口,选择每个出站口出站的机会是相同的.(1)小明到“市图书馆”站下车恰好从D 口出站的概率是____________;(2)请用列表法或画树状图法求小明和小亮到“市图书馆”站下车都从D 口出站的概率.23.(本小题满分9分)如图11,已知点(,2)A a ,(1,)B b -是直线26y x =-与反比例函数my x=图象的交点,且该直线与y 轴交于点C .(1)求该反比例函数的解析式;(2)连接OA ,OB ,求AOB △的面积; (3)根据图象,直接..写出不等式26mx x-≥的解集.如图12,已知BE ,CF 分别是ABC △的边AC ,AB 上的高. (1)求证:AE ABAF AC=; (2)连接EF .若1cos 2A =,试判断AEF S △与ABC S △之间的数量关系,并说明理由.25.(本小题满分10分)如图13-1,已知60ABC ∠=︒,点O 在射线BC 上,且4OB =.以点O 为圆心,(0)r r >为半径作O ,交直线BC 于点D ,E . (1)当O 与ABC ∠只有两个交点时,r 的取值范围是__________________;(2)当22r =BA 绕点B 按顺时针方向旋转(0180)αα︒<<︒. ①当α为多少时,射线BA 与O 相切;②如图13-2,射线BA 与O 交于M ,N 两点,若MN OB =,求阴影部分的面积.一小球M从斜坡OA上的点O处抛出,球的抛出路线是抛物线的一部分,建立如图14所示的平面直角坐标系,斜坡可以用一次函数12y x刻画.若小球到达最高点的坐标为(4,8).(1)求抛物线的函数解析式(不写自变量x的取值范围);(2)小球在斜坡上的落点A的垂直高度为___________米;(3)若要在斜坡OA上的点B处竖直立一个高4米的广告牌,点B的横坐标为2,请判断小球M能否飞过这个广告牌?通过计算说明理由;(4)求小球M在飞行的过程中离斜坡OA的最大高度.参考答案评分说明:1.本答案仅供参考,若考生答案与本答案不一致,只要正确,同样得分. 2.若答案不正确,但解题过程正确,可酌情给分. 一、(1-10题每题3分,11-16题每题2分,共计42分) 题号 1 2 3 4 5678910111213141516答案ABDABBDACDCCDBCA二、(每小题有2个空,每空2分,共计12分) 17.(1)30︒;(2)418.(1)1568202x x -⎛⎫⎪⎝=⎭(或(28)180x x -=);(2)不能 19.(1)125;(2)5或25819.(2)【精思博考:①当AF FQ =时,易证四边形ABPQ 是平行四边形,APQ ABC ∽△△,5PQ AB ∴==,AQ BP =,AQ PQ AC BC =,258BP ∴=; ②当AQ AF =时,易证BAP CPF ∽△△,AB BPCP CF∴=,5AB BP ∴==; ③当AQ QF =时,QAF QFA ∠=∠.QFA PFC ∠=∠,QAF C ∠=∠,PFC C ∴∠=∠.C B APQ ∠=∠=∠,APQ PFC ∴∠=∠,AP AC ∴∥,与已知矛盾,舍去】三、20.解:(1)方程的解为132x =,24x =;(4分)(2)原式1=.(4分)21.解:(1)过点B 作BF AD ⊥于点F . 设BF x =米.坡面AB 的坡度为1:3,30A ∴∠=︒,14002BF AB ∴==(米),即点B 到AD 的高度BF 为400米;(5分) (2)易得四边形BFDE 为矩形,ED BF ∴=.坡面BC 的坡度为1∶1,222BE CE BC ∴===(米),1002400541CD CE ED ∴=+=≈(米),即山峰的高度CD 为541米.(4分) 22.解:(1)14;(3分) (2)树状图如图,共有16种等可能的结果,小明和小亮到“市图书馆”站下车都从D 口出站的结果有1种,∴小明和小亮到“市图书馆”站下车都从D 口出站的概率为116.(6分)23.解:(1)点(,2)A a 在直线26y x =-上,226a ∴=-,解得4a =.点(4,2)A 在反比例函数m y x =的图象上,24m ∴=,解得8m =,即反比例函数的解析式为8y x=;(4分) (2)直线26y x =-与y 轴交于点C ,当0x =时,6y =-,∴点C 的坐标为(0,6)-,6OC ∴=.1161641522AOB OBC AOC S S S =+=⨯⨯+⨯⨯=△△△;(3分) (3)不等式26mx x-≥的解集为10x -≤<或4x ≥.(2分) 24.解:(1)证明:BE ,CF 分别是ABC △的边AC ,AB 上的高,90AEB AFC ∴∠=∠=︒.又BAE CAF ∠=∠,ABE ACF ∴∽△△,AE ABAF AC∴=;(4分) (2)AEF S △与ABC S △之间的数量关系为14AEF ABC S S =△△; 理由:由(1)得AE AB AF AC =,AE AFAB AC∴=.又EAF BAC ∠=∠,AEF ABC ∴∽△△. 1cos 2AF A AC ==,21124AEF ABC S S ∆∆⎛⎫∴== ⎪⎝⎭,AEF S ∴△与ABC S △之间的数量关系为14AEF ABC S S =△△.(5分) 25.解:(1)023r <<4r >;(2分) (2)①如图1,当射线BA 在射线BC 的上方与O 相切时,设切点为P ,连接OP .4OB =,22OP =2sin 2OP B OB ∴==,45B ∴∠=︒,604515α∴=︒-︒=︒. 如图2,当射线BA 在射线BC 的下方与O 相切时,设切点为P ,连接OP .同理可得6045105α=︒+︒=︒. 综上所述,当α为15︒或105︒时,射线BA 与O 相切;(4分)②如图3,连接OM ,ON ,过点O 作OQ MN ⊥于点Q ,122MQ NQ MN ∴===. 22OM =2sin 2MQ MOQ OM ∴∠==,45MOQ ∴∠=︒,290MON MOQ ∴∠=∠=︒, 2290(22)1(22)243602S ππ∴=-⨯=-阴影.(4分)26.解:(1)小球到达最高点的坐标为(4,8),∴设抛物线的解析式为2(4)8y a x =-+,把(0,0)代入2(4)8y a x =-+,解得12a =-,∴抛物线的解析式为21(4)82y x =--+(或2142y x x =-+);(3分) (2)72;(2分) (3)能;理由:当2x =时,112y x ==,21(4)862y x =--+=.614->, ∴小球M 能飞过这个广告牌;(3分)(4)小球M 在飞行的过程中离斜坡OA 的高度22111749(4)822228h x x x ⎛⎫=--+-=--+ ⎪⎝⎭,∴小球M 在飞行的过程中离斜坡OA 的最大高度为498.(4分)。
初中九年级下学期入学数学试卷(附答案,解析)
2015-2016学年九年级(下)入学数学试卷一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案.其中只有一个是正确的,请将答卷上对应的方框涂黑.1.在,﹣1,0,2这四个数中,属于负数的是()A.B.﹣1 C.0 D.22.计算2a3•(﹣a5)的结果是()A.2a8B.﹣2a8C.2a15D.﹣2a153.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.函数中,自变量x的取值范围是()A.x>3 B.x≥3 C.x<3 D.x≤35.下列调查中,调查方式选择正确的是()A.为了了解某品牌手机的屏幕是否耐摔,选择全面调查B.为了了解玉兔号月球车的零部件质量,选择抽样调查C.为了了解南开步行街平均每天的人流量,选择抽样调查D.为了了解中秋节期间重庆市场上的月饼质量,选择全面调查6.如图,AB∥CD,AF与CD交于点E,BE⊥AF,∠B=60°,则∠DEF的度数是()A.10°B.20°C.30°D.40°7.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映出的统计量是()A.众数和平均数 B.平均数和中位数C.众数和方差D.众数和中位数8.在寻找马航MH370航班过程中,某搜寻飞机在空中A处发现海面上一块疑似漂浮目标B,此时从飞机上看目标B的俯角为α,已知飞行高度AC=1500米,,则飞机距疑似目标B的水平距离BC为()A.米B.米C.米D.米9.如图,AB是⊙O的直径,点C、点D在⊙O上,连结AC、BC、AD、CD,若∠BAC=50°,则∠ADC 的度数等于()A.30°B.35°C.40°D.45°10.张老师带育才艺术团去北京参加文艺汇演,他们乘坐校车从南开大校门口出发到机场赶飞机.车开了一段时间后,张老师发现有一包演出服落在了校门口门卫处,于是马上打出租车返回去取,拿到服装后,他立即乘同一辆出租车追赶校车(下车取服装的时间忽略不计),结果,张老师在机场附近追上校车.设张老师与校车之间的距离为S,校车出发的时间为t,则下面能反映S与t的函数关系的大致图象是()A.B.C.D.11.观察下面一组数:﹣1,2,﹣3,4,﹣5,6,﹣7,….,将这组数排成如图的形式,按照如图规律排下去,则第11行中从左边数第10个数是()A.﹣110 B.110 C.﹣111 D.11112.如图,在平面直角坐标系中,正方形ABCD的顶点O在坐标原点,点B的坐标为(1,4),点A在第二象限,反比例函数y=的图象经过点A,则k的值是()A.﹣2 B.﹣4 C.﹣D.二、填空题(本大题6个小题,每小题3分,共24分),请将答案直接填在题后的横线上.13.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法可表示为.14.计算:2×(﹣π)0﹣12016+的值为.15.若△ABC∽△DEF,且周长比为2:3,则相似比为.16.如图,扇形OAB的圆心角为90°、半径为2cm,半圆O1和半圆O2的直径分别为OA和OB,则图中阴影部分的面积为cm2.17.从﹣3,﹣2,﹣1,1,2,3六个数中任选一个数记为k,则使得关于x的分式方程=k﹣2有解,且关于x的一次函数y=(k+)x+2不经过第四象限的概率为.18.如图,直角三角形ABC中,∠ACB=90°,BC=3,AC=6,E为BC延长线上一点,且EC=,过点E作EF⊥AB交AB于F,将△ABC沿AB翻折,得到△ABD,将△ABD绕点B旋转,在旋转过程中,记旋转中△ABD为△A′B′D′.设直线A′D′与射线EF交于点M,与射线EB交于点N,当△EMN是以∠MEN 为底角的等腰三角形时,EN=.三、解答题:(本大题2个小题,共14分)解答时每小题必须给出必要的演算过程或推理步骤. 19.(1)解方程:(2)解方程组:.20.如图,已知点E、C在线段BF上,BE=CF,AB∥DE,AB=DE.求证:AC∥DF.四、解答题:(本大题4个小题,每小题0分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.(2014•万州区校级模拟)先化简,再求值:,其中a是不等式组的整数解.22.(2016春•重庆校级月考)创造节期间,重庆育才中学向学生征集校服自主设计作品.初三年级信息技术张老师从全年级32个班中随机抽取了A、B、C、D共四个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)张老师所调查的4个班征集到作品共件,其中B班征集到作品件,请把图2补充完整.(2)如果全年级参赛作品中有4件获全校一等奖,其中有2名作者是男生,2名作者是女生.现在要在获一等奖的四个人中抽两人去参加全校自主校服设计的走秀活动,求恰好抽中一男一女的概率(要求用树状图或列表法写出分析过程).23.(2016春•重庆校级月考)某公司研发一款新型的测角仪,这种测角仪能更精确的测量角度,减少误差.(1)如图,小明为了得到教学楼BC上旗杆AB的高度,用新型测角仪在与BC相距12m的F处,由E点观测到旗杆顶部A的仰角为52°、底部B的仰角为45°,请你帮小明求出旗杆AB的高度.(结果精确到0.1m.参考数据:∠AGB=90°≈1.41,sin52°≈0.79,tan52°≈1.28)(2)目前公司有100台机器,平均每台能生产400套,由于该仪器大受欢迎,工厂计划增加产量;但是由于机器故障,每台平均生产套数将减少1.25a%(20<a<30),要使生产总量增加10%,则机器台数需增加2.4a%,求a的值.24.(2016春•重庆校级月考)若整数a能被整数b整除,则一定存在整数n,使得,即a=bn.例如若整数a能被整数3整除,则一定存在整数n,使得,即a=3n.(1)若一个多位自然数的末三位数字所表示的数与末三位数以前的数字所表示的数之差(大数减小数)能被13整除,那么原多位自然数一定能被13整除.例如:将数字306371分解为306和371,因为371﹣306=65,65是13的倍数,所以306371能被13整除.请你证明任意一个四位数都满足上述规律.(2)如果一个自然数各数位上的数字从最高位到个位仅有两个数交替排列组成,那么我们把这样的自然数叫做“摆动数”,例如:自然数12121212从最高位到个位是由1和2交替出现组成,所以12121212是“摆动数”,再如:656,9898,37373,171717,…,都是“摆动数”,请你证明任意一个6位摆动数都能被13整除.五、解答题(本大题2个小题,每小题l2分,共24分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答卷中对应的位置上.25.(2015•重庆校级二模)如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E 在AB上,F是线段BD的中点,连接CE、FE.(1)若AD=3,BE=4,求EF的长;(2)求证:CE=EF;(3)将图1中的△AED绕点A顺时针旋转,使AED的一边AE恰好与△ACB的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(2)中的结论是否仍然成立,并说明理由.26.(2014•山西)综合与探究:如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,A、C两点的坐标分别为(4,0),(﹣2,3),抛物线W经过O、A、C三点,D是抛物线W的顶点.(1)求抛物线W的解析式及顶点D的坐标;(2)将抛物线W和▱OABC一起先向右平移4个单位后,再向下平移m(0<m<3)个单位,得到抛物线W′和▱O′A′B′C′,在向下平移的过程中,设▱O′A′B′C′与▱OABC的重叠部分的面积为S,试探究:当m为何值时S有最大值,并求出S的最大值;(3)在(2)的条件下,当S取最大值时,设此时抛物线W′的顶点为F,若点M是x轴上的动点,点N 是抛物线W′上的动点,试判断是否存在这样的点M和点N,使得以D、F、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.2015-2016学年九年级(下)入学数学试卷参考答案与试题解析一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案.其中只有一个是正确的,请将答卷上对应的方框涂黑.1.在,﹣1,0,2这四个数中,属于负数的是()A.B.﹣1 C.0 D.2【分析】根据负数是小于0的数,可得答案.【解答】解:A、不是负数,故A错误;B、﹣1是负数,故B正确;C、0不是负数,故C错误;D、是正数,故D错误;故选:B2.计算2a3•(﹣a5)的结果是()A.2a8B.﹣2a8C.2a15D.﹣2a15【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【解答】解:2a3•(﹣a5)=﹣2a8.故选:B.3.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.故选:C.4.函数中,自变量x的取值范围是()A.x>3 B.x≥3 C.x<3 D.x≤3【分析】根据二次根式的性质的意义,被开方数大于等于0,列不等式求解.【解答】解:依题意,得3﹣x≥0,解得x≤3,故选D.5.下列调查中,调查方式选择正确的是()A.为了了解某品牌手机的屏幕是否耐摔,选择全面调查B.为了了解玉兔号月球车的零部件质量,选择抽样调查C.为了了解南开步行街平均每天的人流量,选择抽样调查D.为了了解中秋节期间重庆市场上的月饼质量,选择全面调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、为了了解某品牌手机的屏幕是否耐摔,宜选择抽样调查,故A错误;B、为了了解玉兔号月球车的零部件质量,精确度要求高,故已选择全面调查,故B错误;C、为了了解南开步行街平均每天的人流量,选择抽样调查,故C正确;D、为了了解中秋节期间重庆市场上的月饼质量,宜选择抽样调查,故D错误;故选:C.6.如图,AB∥CD,AF与CD交于点E,BE⊥AF,∠B=60°,则∠DEF的度数是()A.10°B.20°C.30°D.40°【分析】根据两直线平行,内错角相等可得∠1=∠B,根据垂直的定义可得∠AEB=90°,然后根据平角等于180°列式计算即可得解.【解答】解:∵AB∥CD,∴∠1=∠B=60°,∵BE⊥AF,∴∠AEB=90°,∴∠DEF=180°﹣∠1﹣∠AEB=180°﹣60°﹣90°=30°.故选C.7.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映出的统计量是()A.众数和平均数 B.平均数和中位数C.众数和方差D.众数和中位数【分析】根据中位数和众数的定义回答即可.【解答】解:在一组数据中出现次数最多的数是这组数据的众数,排在中间位置的数是中位数,故选:D.8.在寻找马航MH370航班过程中,某搜寻飞机在空中A处发现海面上一块疑似漂浮目标B,此时从飞机上看目标B的俯角为α,已知飞行高度AC=1500米,,则飞机距疑似目标B的水平距离BC为()A.米B.米C.米D.米【分析】利用所给角的正切函数求得线段BC的长即可.【解答】解:由题意得:AC=1500米,tan∠B=,∴在Rt△ACB中,BC===2500米,故选D.9.如图,AB是⊙O的直径,点C、点D在⊙O上,连结AC、BC、AD、CD,若∠BAC=50°,则∠ADC 的度数等于()A.30°B.35°C.40°D.45°【分析】先由直径所对的圆周角为90°,可得:∠ACB=90°,然后由∠BAC=50°,根据三角形内角和定理可得:∠B=40°,然后根据同弧所对的圆周角相等,即可求出∠ADC的度数.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=50°,∴∠B=40°,∴∠ADC=∠B=40°.故选C.10.张老师带育才艺术团去北京参加文艺汇演,他们乘坐校车从南开大校门口出发到机场赶飞机.车开了一段时间后,张老师发现有一包演出服落在了校门口门卫处,于是马上打出租车返回去取,拿到服装后,他立即乘同一辆出租车追赶校车(下车取服装的时间忽略不计),结果,张老师在机场附近追上校车.设张老师与校车之间的距离为S,校车出发的时间为t,则下面能反映S与t的函数关系的大致图象是()A.B.C.D.【分析】根据老师在校车上时S为零,打出租车返回路程变化快,乘车追赶时路程变化慢,可得答案.【解答】解:老师乘校车时路程为零,打车返回学校时两车行驶方向相反路程变化快,乘车追赶路程变化慢,故B符合题意.故选:B.11.观察下面一组数:﹣1,2,﹣3,4,﹣5,6,﹣7,….,将这组数排成如图的形式,按照如图规律排下去,则第11行中从左边数第10个数是()A.﹣110 B.110 C.﹣111 D.111【分析】首先观察已知数列中,绝对值为奇数的符号为“﹣”,绝对值为偶数的符号为“+”,其次观察数列排列中,每一行的第一个数的绝对值,与所在行数的关系:第n行的第一个数的绝对值为:(n﹣1)2+1,由此即可进行判断.【解答】解:观察数列排列中,第n行的第一个数的绝对值为:(n﹣1)2+1,所以第11行的第一个数的绝对值为:(11﹣1)2+1=101,第11行中从左边数第10个数的绝对值是:101+(10﹣1)=110,观察已知数列中,绝对值为奇数的符号为“﹣”,绝对值为偶数的符号为“+”,所以:第11行中从左边数第10个数是:110.故选B.12.如图,在平面直角坐标系中,正方形ABCD的顶点O在坐标原点,点B的坐标为(1,4),点A在第二象限,反比例函数y=的图象经过点A,则k的值是()A.﹣2 B.﹣4 C.﹣D.【分析】作AD⊥x轴于D,CE⊥x轴于E,先通过证得△AOD≌△OCE得出AD=OE,OD=CE,设A(x,),则C(,﹣x),根据正方形的性质求得对角线解得F的坐标,根据直线OB的解析式设出直线AC 的解析式为:y=﹣x+b,代入交点坐标求得解析式,然后把A,C的坐标代入即可求得k的值.【解答】解:作AD⊥x轴于D,CE⊥x轴于E,∵∠AOC=90°,∴∠AOD+∠COE=90°,∵∠AOD+∠OAD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴AD=OE,OD=CE,设A(x,),则C(,﹣x),∵点B的坐标为(1,4),∴OB==,直线OB为:y=4x,∵AC和OB互相垂直平分,∴它们的交点F的坐标为(,2),设直线AC的解析式为:y=﹣x+b,代入(,2)得,2=﹣×+b,解得b=,直线AC的解析式为:y=﹣x+,把A(x,),C(,﹣x)代入得,解得k=﹣.故选C.二、填空题(本大题6个小题,每小题3分,共24分),请将答案直接填在题后的横线上.13.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法可表示为 6.75×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于67500有5位,所以可以确定n=5﹣1=4.【解答】解:67 500=6.75×104.故答案为:6.75×104.14.计算:2×(﹣π)0﹣12016+的值为2.【分析】原式利用零指数幂法则,乘方的意义,以及算术平方根定义计算即可得到结果.【解答】解:原式=2﹣1+3=4﹣2=2,故答案为:215.若△ABC∽△DEF,且周长比为2:3,则相似比为2:3.【分析】由△ABC∽△DEF,且周长比为2:3,根据相似三角形的周长比等于相似比,即可求得答案.【解答】解:∵△ABC∽△DEF,且周长比为2:3,∴相似比为:2:3.故答案为:2:3.16.如图,扇形OAB的圆心角为90°、半径为2cm,半圆O1和半圆O2的直径分别为OA和OB,则图中阴影部分的面积为1cm2.【分析】连接AB,OD,根据两半圆的直径相等可知∠AOD=∠BOD=45°,故可得出阴影部分的面积=S△AOD,故可得出结论.【解答】解:连接AB,OD,∵两半圆的直径相等,∴∠AOD=∠BOD=45°,∴S阴影=S△AOD=×2×1=1.故答案为:1.17.从﹣3,﹣2,﹣1,1,2,3六个数中任选一个数记为k,则使得关于x的分式方程=k﹣2有解,且关于x的一次函数y=(k+)x+2不经过第四象限的概率为.【分析】首先利用分式方程的知识求得当k=﹣3,﹣2,﹣1,3,使得关于x的分式方程=k﹣2有解,再利用一次函数的性质,求得当k=﹣1,1,2,3时,关于x的一次函数y=(k+)x+2不经过第四象限,再利用概率公式即可求得答案.【解答】解:∵方程两边同乘以(x+1),∴k﹣1=(k﹣2)(x+1),∴当k=2或k=1时,关于x的分式方程=k﹣2无解,∴当k=﹣3,﹣2,﹣1,3,使得关于x的分式方程=k﹣2有解;∵关于x的一次函数y=(k+)x+2不经过第四象限,∴k+>0,∴k>﹣,∴当k=﹣1,1,2,3时,关于x的一次函数y=(k+)x+2不经过第四象限,∴得关于x的分式方程=k﹣2有解,且关于x的一次函数y=(k+)x+2不经过第四象限的有﹣1,3;∴使得关于x的分式方程=k﹣2有解,且关于x的一次函数y=(k+)x+2不经过第四象限的概率为:=.故答案为:.18.如图,直角三角形ABC中,∠ACB=90°,BC=3,AC=6,E为BC延长线上一点,且EC=,过点E作EF⊥AB交AB于F,将△ABC沿AB翻折,得到△ABD,将△ABD绕点B旋转,在旋转过程中,记旋转中△ABD为△A′B′D′.设直线A′D′与射线EF交于点M,与射线EB交于点N,当△EMN是以∠MEN为底角的等腰三角形时,EN=13或+3.【分析】情形1:如图1中,当∠BEF=∠NME时,易证BN=NA′,设BN=NA′=x,在RT△BND′利用勾股定理即可解决问题.情形2:如图2中,当∠MEN=∠MNE时,证明BN=BA′即可解决问题.【解答】解:如图1中,当∠BEF=∠NME时,∵∠BEF+∠ABC=90°,∠A+∠ABC=90°,∴∠BEF=∠A=∠BA′D′=∠NME,∴BA′∥EM,∴∠NBA′=∠BEF=∠BA′N,∴NB=NA′,设BN=NA′=x,在RT△BND′中,∵BD′2+ND′2=BN2,∴32+(6﹣x)2=x2,x=,∴EN=EB+BN=EC+BC+BN=+3+=13,如图2中,当∠MEN=∠MNE时,∵∠MEN=∠BAC=∠BA′N=∠A′NE,∴BA′=BN=AB===3,∴EN=EC+BC+BN=+3=3=+3.故答案为13或+3.三、解答题:(本大题2个小题,共14分)解答时每小题必须给出必要的演算过程或推理步骤. 19.(1)解方程:(2)解方程组:.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)方程组利用代入消元法求出解即可.【解答】解:(1)去分母得:x2+2x﹣x2+4=1,解得:x=﹣1.5,经检验x=﹣1.5是分式方程的解;(2),把①代入②得:3x+2x﹣4=1,解得:x=1,把x=1代入①得:y=﹣2,则方程组的解为.20.如图,已知点E、C在线段BF上,BE=CF,AB∥DE,AB=DE.求证:AC∥DF.【分析】首先由BE=CF可以得到BC=EF,然后利用边边边证明△ABC≌△DEF,最后利用全等三角形的性质和平行线的判定即可解决问题.【解答】证明:∵BE=CF,∴BE+EC=CF+EC即BC=EF,∵AB∥DE,∴∠B=∠DEF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS)∴∠ACB=∠F,∴AC∥DF.四、解答题:(本大题4个小题,每小题0分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.(2014•万州区校级模拟)先化简,再求值:,其中a是不等式组的整数解.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,计算即可得到结果,求出不等式组解集确定出a的值,代入计算即可求出值.【解答】解:原式=+•﹣3=+﹣3==﹣,由不等式组得到<a<3,∵a为整数,∴a=1或2,又∵a≠1,∴a=2,当a=2时,原式=﹣2.22.(2016春•重庆校级月考)创造节期间,重庆育才中学向学生征集校服自主设计作品.初三年级信息技术张老师从全年级32个班中随机抽取了A、B、C、D共四个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)张老师所调查的4个班征集到作品共12件,其中B班征集到作品3件,请把图2补充完整.(2)如果全年级参赛作品中有4件获全校一等奖,其中有2名作者是男生,2名作者是女生.现在要在获一等奖的四个人中抽两人去参加全校自主校服设计的走秀活动,求恰好抽中一男一女的概率(要求用树状图或列表法写出分析过程).【分析】(1)用C的度数除以360度求出所占的百分比,由C的件数除以所占的百分比即可得到调查的总件数;进而求出B的件数;(2)画树状图得出所有等可能的情况数,找出一男一女的情况数,即可求出所求的概率.【解答】解:(1)张老师所调查的4个班征集到作品有:=12(件),其中B班征集到作品数为:12﹣2﹣5﹣2=3(件),补全图形如下:(2)画树状图如下:所有等可能的情况有12种,其中一男一女有8种,则P==;故答案为:(1)12,3.23.(2016春•重庆校级月考)某公司研发一款新型的测角仪,这种测角仪能更精确的测量角度,减少误差.(1)如图,小明为了得到教学楼BC上旗杆AB的高度,用新型测角仪在与BC相距12m的F处,由E点观测到旗杆顶部A的仰角为52°、底部B的仰角为45°,请你帮小明求出旗杆AB的高度.(结果精确到0.1m.参考数据:∠AGB=90°≈1.41,sin52°≈0.79,tan52°≈1.28)(2)目前公司有100台机器,平均每台能生产400套,由于该仪器大受欢迎,工厂计划增加产量;但是由于机器故障,每台平均生产套数将减少1.25a%(20<a<30),要使生产总量增加10%,则机器台数需增加2.4a%,求a的值.【分析】(1)过E点作EH⊥BC于H点,在RT△BEH中利用三角函数求得BH的长,然后在直角△EAH 中,利用三角函数求得AH的长,根据AB=AH﹣BH即可求解;(2)根据机器的总生产量等于机器数与每台生产的产品数即可列方程求解.【解答】解:(1)过E点作EH⊥BC于H点,由题:∠AEH=52°,∠BEH=45°,EH=12m,在RT△BEH中,∵∠BEH=45°∴BH=EH=12m在Rt△EAH中,AH=EH•tan52°=15.36m∴AB=AH﹣BH≈3.4m(2)由题意得:40000(1+10%)=400(1﹣1.25a%)•100(1+2.4a%),解得:a1=25,a2=.∵20<a<30,∴a=25.答:a的值为25.24.(2016春•重庆校级月考)若整数a能被整数b整除,则一定存在整数n,使得,即a=bn.例如若整数a能被整数3整除,则一定存在整数n,使得,即a=3n.(1)若一个多位自然数的末三位数字所表示的数与末三位数以前的数字所表示的数之差(大数减小数)能被13整除,那么原多位自然数一定能被13整除.例如:将数字306371分解为306和371,因为371﹣306=65,65是13的倍数,所以306371能被13整除.请你证明任意一个四位数都满足上述规律.(2)如果一个自然数各数位上的数字从最高位到个位仅有两个数交替排列组成,那么我们把这样的自然数叫做“摆动数”,例如:自然数12121212从最高位到个位是由1和2交替出现组成,所以12121212是“摆动数”,再如:656,9898,37373,171717,…,都是“摆动数”,请你证明任意一个6位摆动数都能被13整除.【分析】(1)设一个四位数的末三位数为B,末三位数以前的数为A,根据题意可得A=13n+B,即这个四位数是1000(13n+B)+B=13(1000n+77B),可得;(2)设任意一个6位摆动数的十位数字为a、个位数字为b,表示出末三位数为100b+10a+b,末三位数以前的数为100a+10b+a,将二者相减分解出因数13可得.【解答】解:(1)设一个四位数的末三位数为B,末三位数以前的数为A,则这个四位数为:1000A+B,由题意:A﹣B=13n(n为整数),∴A=13n+B,从而1000A+B=1000(13n+B)+B=13000n+1001B=13(1000n+77B),∴这个四位数能被13整除∴任意一个四位数都满足上述规律;(2)设任意一个6位摆动数的十位数字为a,个位数字为b,所以这个6位摆动数的末三位数为:100b+10a+b,末三位数以前的数为:100a+10b+a,∵100a+10b+a﹣(100b+10a+b)=91a﹣91b=13(7a﹣7b)∴这个6位摆动数的末三位数以前的数与末三位数之差能被13整除,∴任意一个6位摆动数能被13整除.五、解答题(本大题2个小题,每小题l2分,共24分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答卷中对应的位置上.25.(2015•重庆校级二模)如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E 在AB上,F是线段BD的中点,连接CE、FE.(1)若AD=3,BE=4,求EF的长;(2)求证:CE=EF;(3)将图1中的△AED绕点A顺时针旋转,使AED的一边AE恰好与△ACB的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(2)中的结论是否仍然成立,并说明理由.【分析】(1)由AE=DE,∠AED=90°,AD=3,可求得AE=DE=3,在Rt△BDE中,由DE=3,BE=4,可知BD=5,又F是线段BD的中点,所以EF=BD=2.5;(2)连接CF,直角△DEB中,EF是斜边BD上的中线,因此EF=DF=BF,∠FEB=∠FBE,同理可得出CF=DF=BF,∠FCB=∠FBC,因此CF=EF,由于∠DFE=∠FEB+∠FBE=2∠FBE,同理∠DFC=2∠FBC,因此∠EFC=∠EFD+∠DFC=2(∠EBF+∠CBF)=90°,因此△EFC是等腰直角三角形,CF=EF;(3)思路同(1).连接CF,延长EF交CB于点G,先证△EFC是等腰三角形,要证明EF=FG,需要证明△DEF和△FGB全等.由全等三角形可得出ED=BG=AD,又由AC=BC,因此CE=CG,∠CEF=45°,在等腰△CFE中,∠CEF=45°,那么这个三角形就是个等腰直角三角形,因此得出结论.【解答】解:(1)∵∠AED=90°,AE=DE,AD=3,∴AE=DE=3,在Rt△BDE中,∵DE=3,BE=4,∴BD=5,又∵F是线段BD的中点,∴EF=BD=2.5;(2)如图1,连接CF,线段CE与FE之间的数量关系是CE=FE;解法1:∵∠AED=∠ACB=90°∴B、C、D、E四点共圆且BD是该圆的直径,∵点F是BD的中点,∴点F是圆心,∴EF=CF=FD=FB,∴∠FCB=∠FBC,∠ECF=∠CEF,由圆周角定理得:∠DCE=∠DBE,∴∠FCB+∠DCE=∠FBC+∠DBE=45°∴∠ECF=45°=∠CEF,∴△CEF是等腰直角三角形,∴CE=EF.解法2:∵∠BED=∠AED=∠ACB=90°,∵点F是BD的中点,∴CF=EF=FB=FD,∵∠DFE=∠ABD+∠BEF,∠ABD=∠BEF,∴∠DFE=2∠ABD,同理∠CFD=2∠CBD,∴∠DFE+∠CFD=2(∠ABD+∠CBD)=90°,即∠CFE=90°,∴CE=EF.(2)(1)中的结论仍然成立.解法1:如图2﹣1,连接CF,延长EF交CB于点G,∵∠ACB=∠AED=90°,∴DE∥BC,∴∠EDF=∠GBF,在△EDF和△GBF中,,∴△EDF≌△GBF,∴EF=GF,BG=DE=AE,∵AC=BC,∴CE=CG,∴∠EFC=90°,CF=EF,∴△CEF为等腰直角三角形,∴∠CEF=45°,∴CE=FE;解法2:如图2﹣2,连结CF、AF,∵∠BAD=∠BAC+∠DAE=45°+45°=90°,又∵点F是BD的中点,∴FA=FB=FD,在△ACF和△BCF中,,∴△ACF≌△BCF,∴∠ACF=∠BCF=∠ACB=45°,∵FA=FB,CA=CB,∴CF所在的直线垂直平分线段AB,同理,EF所在的直线垂直平分线段AD,又∵DA⊥BA,∴EF⊥CF,∴△CEF为等腰直角三角形,∴CE=EF.26.(2014•山西)综合与探究:如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,A、C两点的坐标分别为(4,0),(﹣2,3),抛物线W经过O、A、C三点,D是抛物线W的顶点.(1)求抛物线W的解析式及顶点D的坐标;(2)将抛物线W和▱OABC一起先向右平移4个单位后,再向下平移m(0<m<3)个单位,得到抛物线W′和▱O′A′B′C′,在向下平移的过程中,设▱O′A′B′C′与▱OABC的重叠部分的面积为S,试探究:当m为何值时S有最大值,并求出S的最大值;(3)在(2)的条件下,当S取最大值时,设此时抛物线W′的顶点为F,若点M是x轴上的动点,点N 是抛物线W′上的动点,试判断是否存在这样的点M和点N,使得以D、F、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法求出抛物线的解析式,进而求出顶点D的坐标;(2)由平移性质,可知重叠部分为一平行四边形.如答图2,作辅助线,利用相似比例式求出平行四边形的边长和高,从而求得其面积的表达式;然后利用二次函数的性质求出最值;(3)本问涉及两个动点,解题关键是利用平行四边形的判定与性质,区分点N在x轴上方、下方两种情况,分类讨论,避免漏解.设M(t,0),利用全等三角形求出点N的坐标,代入抛物线W′的解析式求出t的值,从而求得点M的坐标.【解答】方法一:解:(1)设抛物线W的解析式为W=ax2+bx+c,∵抛物线W经过O(0,0)、A(4,0)、C(﹣2,3)三点,∴,解得:∴抛物线W的解析式为W=x2﹣x.∵W=x2﹣x=(x﹣2)2﹣1,∴顶点D的坐标为(2,﹣1).(2)由▱OABC得,CB∥OA,CB=OA=4.又∵C点坐标为(﹣2,3),∴B点的坐标为(2,3).如答图2,过点B作BE⊥x轴于点E,由平移可知,点C′在BE上,且BC′=m.。
吉林省松原市前郭县2022-2023学年第一学期九年级数学期末试卷(含答案)
前郭县 2022—2023 学年度第一学期期末考试九年级数学试卷二、填空题(每小题 3 分,共 24 分)b x 2 0a 0题 号 得 分一 二 三 四 五 六 总 分2022 a b 的一个解是 x=-1,那么代数式ax 27.关于 x 的一元二次方程 的值是.y ax 2b xc 一、单项选择题(每小题 2 分,共 12 分) 8.若方程 ax 2 b x c 0(a >0)的两个根是﹣3 和 1,则对于二次函数 ,1.下列方程中是关于 x 的一元二次方程的是( ) 当 y >0 时,x 的取值范围是 9.已知关于 x 的一元二次方程 .1 C . x 1 x 2x2B . ax 2b xc 01D .3x 2 2xy 5y 2ax 22x 1 0 A . 有两个不相等的实数根,则 a 的取值范围x2 2.如图,△AOB 绕点 O 逆时针旋转 75°得到△COD ,若∠AOB =30°,∠BOC 的度数是( A .30°B .35°C .45°D .75°)是 .10.如图,将半径为 10cm 的圆形纸片沿一条弦 AB 折叠,折叠后弧 AB 的中点 C 与圆心 O 重 叠,则弦 AB 的长度为cm .11.如图,在 ABC 中, CAB 70 ,在同一平面内,将 ABC 绕点 A 逆时针旋转到△AB C的位置,使C C ∥ AB ,作 B D ∥ A C 交 BC 于点 D ,则 AB D.3.如图, O 中,弦 AB 、 C D 相交于 P , A 40 , AP D 75 ,则∠B= A .15B .35C . 40D . 75( )4.一个不透明的袋子中装有除颜色外其余均相同的 3 个白球, x 个黑球,随机的从袋子中 第 10 题图第 11 题图第 12 题图第 13 题图kx 3 x和 y摸出一个球,记录下颜色后,放回袋子中并摇匀,大量重复试验后,发现摸出白球的频率 12.如图,两个反比例函数 y 在第一象限内的图象依次是 C 和 C ,设点 P 在1 2 稳定在 0.3 附近,则 x 的值为 ()C 上,PC⊥x 轴于点 C ,交 C 于点 A ,PD⊥y 轴于点D ,交 C 于点 B ,若四边形 PAOB 的面积 12 2 A .2B .3C .7D .13为 5,则 k=.k 25.反比例函数 y A . k 2的图象在每一个象限内 y 随 x 的增大而减小,那么 k 值范围是( ) 13.如图,圆锥体的高 h 2 2c m ,底面圆半径 r =1cm ,则该圆锥体的侧面展开图的圆心 xB . k 2C . k 2k 2 D .角的度数是.ax14.烟花厂为建党 100 周年特别设计制作了一种新型礼炮,这种礼炮的升空高度 h (m )与 6.二次函数 ax b x c y 2的图象如图所示,则一次函数 y bx c 和反比例函数 y2 飞行时间 t (s )的关系式是 h t 2 8t .若这种礼炮在升空到最高点时引爆,则从点 3在同一平面直角坐标系中的图象可能是 ()火升空到引爆需要的时间为s.九年级数学试卷 第 1 页 (共 8 页) 九年级数学试卷 第 2 页(共 8 页)三、解答题(每题 5 分,共 20 分) 四、解答题(每小题 7 分,共 28 分) x 2 2x 4 0215.解方程: 19.如图, AB 为O 的直径,点 C 为O 上一点, BD CE 于点 D , BC 平分AB D .(1)求证:直线CE 是O 的切线;(2)若 ABC 30,O 的半径为 2,求图中阴影部分的面积.16.如图,图中的小方格都是边长为 1 的正方形,△ABC 的顶点坐标分别为 A (﹣3,0), B (﹣1,﹣2),C (﹣2,2).(1)请在图中画出△ABC 关于原点 O 的中心对称图形; (2)请直接写出以 A 、B 、C 为顶点的平行四边形的 第四个顶点 D 的坐标.20.请根据图片内容,回答下列问题:17.如图,O 的弦 AB 、C D 相交于点 E ,且 AB C D .求证: BE DE .(1)每轮传染中,平均一个人传染了几个人?(2)按照这样的速度传染,第三轮将新增多少名感染者(假设每轮传染人数相同)?y m 2x 2 2mx m 318.已知抛物线与x 轴有两个交点. (1)求 m 的取值范围;(2)当 m 取满足条件的最大整数时,求抛物线与 x 轴两个交点的坐标.21. 一个不透明的口袋中装有四个完全相同的小球,上面分别标有数字 1,2,3,4. (1)从口袋中随机摸出一个小球,求摸出小球上的数字是奇数的概率(直接写出结果);九年级数学试卷 第 3 页 (共 8 页) 九年级数学试卷 第 4 页(共 8 页)(2)先从口袋中随机摸出一个小球,将小球上的数字记为 x ,在剩下的三个小球中再随机 摸出一个小球,将小球上的数字记为 y .请用列表或画树状图法,求由 x ,y 确定的点(x,y ) yx 4的图象上的概率.(2)如图 2,将另一长,宽,高分别为 60cm ,20cm ,10cm ,且与原长方体相同重量的 长方体放置于该水平玻璃桌面上.若玻璃桌面能承受的最大压强为 2000Pa ,问:这种摆 放方式是否安全?请判断并说明理由.在函数m x22.如图,已知一次函数 y =ax+b 与反比例函数 y(x <0)的图象交于 A (﹣2,4),B (﹣4,2)两点,且与 x 轴和 y 轴分别交于点 C 、点 D . 24.【问题原型】小伟遇到这样一个问题:如图①,在等边三角形 ABC 内部有一点 P ,PA =2,PB =3 ,PC =1,求∠BPC 的度数.小伟是这样思考的:将线段 BP 绕点 B 逆时针旋m x (1)根据图象直接写出不等式 <ax+b 的解集;(2)求反比例函数与一次函数的解析式;转 60°得到线段 BP ',连结 AP '、PP ',得到两个特殊的三角形,从而将问题解决.请你 计算图①中∠BPC 的度数.(3)点 P 在 y 轴上,且 S △AOP= S △AOB,请求出点 P 的坐标.【类比迁移】如图②,在正方形 ABCD 内有一点 P ,且 PA = 10 ,PB =2,PC = 2 .∠BPC 的度数.五、解答题(每小题 8 分,共 16 分)23.如图 1,将一长方体放置于一水平玻璃桌面上,按不同的方式摆放,记录桌面所受压 强与受力面积的关系如下表所示:桌面所受压强 P (Pa ) 400 受力面积 S (m )0.5500 0.4800 a1000 0.21250 0.162 (1)根据表中数据,求出压强 P (Pa )关于受力面积 S (m )的函数表达式及 a 的值.2九年级数学试卷 第 5 页 (共 8 页) 九年级数学试卷 第 6 页(共 8 页)六、解答题(每小题10分,共20分)26.如图,抛物线y ax2ax12a经过点C(0,4),与x轴交于A,B两点,连接AC、BC,M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.(1)直接写出a的值以及A,B的坐标:a=,A(),B((2)过点P作PN⊥BC,垂足为点N,设M点的坐标为M(m,0),试求PQ+25.如图,在△ABC中,C 90,AC BC,AB 8.点P从点A出发,以每秒2个单位长度的速度沿边AB向点B运动.过点P作PD⊥AB交折线AC—CB于点D,以PD为边在PD右侧做正方形PDEF.设正方形PDEF与△ABC重叠部分图形的面积为S,点P的运动时间为t秒(0<t<4).,,);PN的最大值;(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.(1)当点D在边AC上时,正方形PDEF的边长为(2)当点E落在边BC上时,求t的值.(用含t的代数式表示).(3)当点D在边AC上时,求S与t之间的函数关系式.九年级数学试卷第7页(共8页)九年级数学试卷第8页(共8页)16.解:17.解:18.解:前郭县 2022—2023 学年度第一学期期末考试九年级数学学科答题卡学校:班级: 姓名:一、选择题 1.4.5.6.2.3. 二、填空题 7.11.12.13.14.8.9. 10. 三、解答题 15.解:19.解:20.解:23.解:21.解:24.解:22..解:25.解:26.解:前郭县 2022—2023 学年度第一学期期末考试九年级数学试卷参考答案及评分标准一、单项选择题(每小题 2 分,共 12 分) 1.C2.C3.B4.C5.A二、填空题:(每小题 3 分,共 24 分) 6.C7. 20208.x <﹣3 或 x >1 14. 69.a >-1 且 a≠0 10.10 3 11.30° 12.813.120三、解答题(每题 5 分,共 20 分) 15.解:(x ﹣2) ﹣2x+4=0, (x ﹣2) ﹣2(x ﹣2)=0, 2 2 (x ﹣2)(x ﹣2﹣2)=0, x ﹣2=0 或 x ﹣2﹣2=0,解得:x =2,x =4...........................................................5 分12 16.解:(1)如图,△DEF 即为所求;...........................................2 分 (2)如图,满足条件的点 D 的坐标为(0,0)或(﹣4,4)或(﹣2,﹣4).........5 分17.证明:AB CD ,AB CD , .........................................2 分 AB AC CD AC , A D BC ...............................................3 分B D BE DE ,............................................4 分..............................................5 分18.(1)解:∵抛物线 y=(m ﹣2)x ∴y=0 时,(m ﹣2)x +2mx+m+3=0,则△=(2m ) ﹣4×(m ﹣2)×(m+3)>0,且 m ﹣2≠0,..........................2 分 2+2mx+m+3 与 x 轴有两个交点,2 2 解得 m <6 且 m≠2...........................................................3 分 即 m 的取值范围是:m <6 且 m≠2.(2)解:∵m <6 且 m≠2,∴m 满足条件的最大整数是 m=5........................4 分4 ∴y=3x +10x+8.当 y=0 时,3x 22 +10x+8=0.解得 x =− 2, x =− ..................5 分1 2 34即抛物线与 x 轴有两个交点的坐标是:(﹣2,0),( − ,0).3 四、解答题(每小题 7 分,共 28 分) 19.(1)证明:连接 OC ,如图,∵OB OC , ∴ OB C OCB , ∵ BC 平分AB D , ∴OBC DCB , ∴OCB DCB ,B D ∥OC ∴ ,..............................................2 分 ∵ BD CE 于点 D , ∴O C D E , ∴直线CEO是的切线;....................................3 分(2)过点 O 作OF CB 于 F ,如图,∵ AB C 30 , O B 2 , ∴OF1, BF 3 ,∴ BC 2BF 2 3 ,1 12∴ S △OB C B C O F 2 31 3 ,..........................5 分2∵BOF 9030 60,∴ BOC 2 BOF 120 , 120 360 4 3 ∴ S 2 2 ,.................................6 分扇形OBC43∴ S 阴影 S 扇形OB C S OBC3 ............................7 分20.解:(1)设每轮传染中,平均一个人传染 x 个人,根据题意,可得(1+x ) 2=121,.................................3 分解得 x =10,x =﹣12(舍去),.................................5 分 21答:每轮传染中,平均一个人传染 10 个人;(2)根据题意,121×10=1210(名),......................................7 分 答:按照这样的速度传染,第三轮将新增 1210 名感染者.1 221.(1)解:P (奇数)= ...................................................2 分(2)解:列表得:...........................................................4 分共有 12 种等可能的结果,其中点在函数 y=-x+4 的图象上的有 2 种(1,3),(3,1) 1 6∴P (点在函数 y=-x+4 的图象上)= .........................................7 分x 1 2 3 4y 1 (1,2) (1,3) (1,4)(2,3) (2,4)2 3 4(2,1)(3,1) (3,2)(3,4)(4,1) (4,2) (4,3)22.解:(1)当 y = 的图象在 y =ax+b 图象的下方时, <ax+b 成立,∴﹣4<x <﹣2..................................................2 分(2)将 A (﹣2,4)代入 y = 得:﹣8=m ,∴反比例函数为:y =﹣ ........................................3 分将 A (﹣2,4),B (﹣4,2)代入 y =ax+b 得: ,解得: ,∴一次函数的表达式为:y =x+6............................................4 分(3)在 y =x+6 中,当 y =0 时,x =﹣6,∴C (﹣6,0).∴S △ABO =S △AOC ﹣S △BOC= = OC×(y ﹣y )A B×6×2=6,............................................5 分∴S △AOP = ×6=3,∵P 在 y 轴上,∴ OP×|x A|=3, ∴OP =3..............................................................6 分 ∴P (0,3)或(0.﹣3).................................................7 分五、解答题:(每小题 8 分,共 16 分)23.解:(1)由表格可知,压强 P 与受力面积 S 的乘积不变,故压强 P 是受力面积 S 的反比 例函数,设 P = ,将(400,0.5)代入得:0.5=∴P = ,解得 k =200, ,...........................................................2 分当 P =800 时,800=∴a =0.25,...........................................................4 分 答:P = ,a =0.25;(2)这种摆放方式不安全,理由如下:由图可知 S =0.1×0.2=0.02(m ),......................................6 分 , 2 ∴将长方体放置于该水平玻璃桌面上,P =∵10000>2000,=10000(Pa ),..............7 分∴这种摆放方式不安全.................................................8 分24.解:【问题原型]】将线段 BP 绕点 B 逆时针旋转 60°得到线段 BP ',连结 A P '、P P ', ∴△BPC≌△BP 'A ,....................................................1 分 ∴BP=B P ,A P =PC=1,∠PB P =60°,∠A P B =∠BPC ,P ∴△B P 是等边三角形,...............................................2 分 ∴∠B P P=∠PB P =60°,P P =BP= ,3 ∵ AP 2 PP 2 1 34 AP ,2 PP ∴△A P 是直角三角形,∠A P=90°,..................................3 分 ∴∠A P B=∠AP P +∠B P P =150°,∴∠BPC=150°,........................................................4 分【类比迁移】如图,将△BPC 绕点 B 逆时针旋转 90°,得到△BEA ,.............5 分 ∴△BPC≌△BEA ,∴BE=BP=2,AE=PC= 2 ,∠PBE=90°,∠AEB=∠BPC ,∴△BEP 是等腰直角三角形,2 ∴∠BEP=∠EPB=45°,PE =2 ∵ AE PE 2 8 10 AP ,..............6 分2 2 2 ,∴△AEP 是直角三角形,∠AEP=90°,...........7 分∴∠AEB=∠AEP+∠BEP=135°,第 24 题图 ∴∠BPC=135°;.............................8 分六、解答题:(每小题 10 分,共 20 分)25.解:(1)2t . .........................................................2 分(2)2t 2t 2t 8.4 t . ....................................................4 分 34 (3)当 0<t ≤ 时, 3S 2t 2t 4t 2. .....................................7 分 4 3 1 当 <t ≤2 时, S 2t 2t 2t (8 4t) 2 14t 2 48t 32. ..........10 分2 26.解:(1)将 C (0,4)代入 y =ax 2 ﹣ax ﹣12a 得 4=﹣12a ,∴a =﹣ .......................................................1 分∴y =﹣ x + x+4,2令 y =0 得 0=﹣ ∴A (﹣3,0),B (4,0),...............................................3 分(2)∵y =﹣ x+4,x 2 + x+4,解得 x =4,x =﹣3, 1 22 x + ∴令 x =0 得 y =4,∴C (0,4),OC =4,而 B (4,0)有 OB =4,∴OB =OC ,△BOC 为等腰直角三角形,....................................4 分∴∠CBO =45°,∵PM⊥x 轴,∴∠BQM =45°=∠PQC ,∵PN⊥BC ,∴△PQN 是等腰直角三角形,∴PQ =∴PQ+∴PQ+ PN , PN =2PQ , PN 取最大值即是 PQ 取最大值,.................................5 分由 C (0,4),B (4,0)可得 BC 解析式为 y =﹣x+4,∵M (m ,0),∴P (m ,﹣ ∴PQ =(﹣ m 2 + m+4),Q (m ,﹣m+4),m+4)﹣(﹣m+4)=﹣ m 2 + 2 m + m =﹣ (m ﹣2)+ , 2∴m =2 时,PQ 最大值为 ∴PQ+ PN 的最大值为 ............................................6 分(3)∵A (﹣3,0),C (0,4),Q (m ,﹣m+4),∴AC ==5,AQ = ,...........................................7 分以 A ,C ,Q 为顶点的三角形是等腰三角形,分三种情况:,= ,CQ = = ①AC =AQ 时, =5,解得 m =0(此时 Q 与 C 重合,舍去)或 m =1,∴Q (1,3),...............................................................8 分②AC =CQ 时,∴Q ( ③AQ =CQ 时,去),.....................................................................10 分 =5,解得 m = ),.....................................................9 分,解得 m =12.5(此时 M 不在线段 OB 上,舍 或 m =﹣ (此时 M 不在线段 OB 上,舍去), , = 综上所述,以 A ,C ,Q 为顶点的三角形是等腰三角形,Q (1,3)或 Q ( , ).。
2022-2023学年人教版九年级数学第一学期期末测试题含答案
第1页,共4页 第2页,共4页………○…………○…………内…………○…………装…………○…………订…………○…………线…………○………………○…………○…………外…………○…………装…………○…………订…………○…………线…………○………考点考场考号姓 名座位号2022-2023学年第一学期期末质量监测试卷九年级 数学学科(考试时间:120分钟 考试分值:150分)一、选择题。
(每题5分,共45分)1.在下列图形中,是中心对称图形的是( )A.B.C.D.2.下列事件属于必然事件的是( )A.打开电视,正在播放新闻B.我们班的同学将会有人成为航天员C.实数0<a ,则02<aD.新疆的冬天不下雪3.若关于x 的一元二次方程01)12=++-x x k (有两个实数根,则k 的取值范围是( ) A.45≤k B.45>kC.45<k 且1≠kD.45≤k 且1≠k4.用配方法解方程0982=++x x ,变形后的结果正确的是 A.9)4(2-=+x B.7)4(2-=+x C.25)4(2=+xD.7)4(2=+x5.二次函数3)1(2+-=x y 的图象的顶点坐标是 A.)3,1(-B.)3,1(C.)3,1(--D.)3,1(-6.如图,在圆O 中,所对的圆周角50=∠ACB ,若P 为上一点,55=∠AOP ,则=∠POB ( ) A.30B.45 C.55D.60第6题图 第7题图7.小红要过生日了,为了筹备生日聚会,准备自己动手用纸板制作圆锥形生日礼帽.如图,圆锥帽底面半径为cm 9,母线长为cm 36,请你帮助他们计算制作一个这样的生日礼帽需要纸板的面积为( ) A.2648cm ΠB.2432cm ΠC.2324cm ΠD.2216cm Π8.下列各图是在同一直角坐标系内,二次函数c x c a ax y +++=)(2与一次函数c ax y +=的大致图象,有且只有一个是正确的,正确的是( )A.B. C. D.9.宾馆有50间房供游客居住,当毎间房每天定价为180元时,宾馆会住满;当毎间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的毎间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价定为x 元.则有( )A.10890)1050)(20180=--+xx ( B.10890)1018050)(20=---x x (C.180902050)108050(=⨯---x xD.108902050)1050)(180=⨯--+xx (二、 填空题。
2022-2023学年度九年级数学第一学期期末质量检测试卷(含答案)
2022-2023学年度第一学期期末质量检测九年级数学试卷(考试时间:120分钟;满分:120分)友情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!本次考试只交答题纸,请同学们务必将学校、班级、姓名写在答题纸的卷面上,务必在答题纸规定的位置上写答案,在其它位置写答案不得分!一、单选题(本题满分24分,共有8道小题,每小题3分) 请将1—8各小题所选答案涂在答题纸规定的位置.1.两个形状相同、大小相等的小木块放置于桌面上,则其左视图是( ) .A .B .C .D .2.如图,在Rt △ABC 中,∠C =90°,BC =3,AB =2,则下列结论正确的是( )A .23sin =B B .21tan =BC .23cos =A D .3tan =A 3.小丽和小强在阳光下行走,小丽身高1.6米,她的影长2.0米,小丽比小强矮10cm,此刻小强的影长是( )米.A .817 B .178 C .815 D .158 4.在一个不透明的袋子中有除颜色外均相同的6个白球和若干黑球,通过多次摸球试验后,发现摸到白球的频率约为30%,估计袋中黑球有( )个.A .8B .9C .14D .15ACB第2题图 第1题图5.方程22x -5x +m = 0没有实数根,则m 的取值范围是( )A.m >825 B.m <825 C.m ≤825 D.m ≥825 6.如图,□ABCD 中,O 是对角线AC 、BD 的交点,△ABO 是等边三角形,若AC =8cm ,则□ABCD 的面积是( )cm 2 . A .16 B .43C .83D .1637.某校科技小组进行野外考察,利用铺垫木板的方式通过了一片烂泥湿地.当人和木板对湿地的压力一定时,人和木板对地面的压强P (Pa )是木板面积S (m 2)的反比例函数,其图象如图,点A 在反比例函数图象上,坐标是(8,30),当压强P (Pa )是4800Pa 时,木板面积为( )m 2A . 0.5B .2C .0.05D . 20第7题图8.如图,在□ABCD 中,AB =6,BC =9,∠ABC ,∠BCD 的角平分线分别交AD 于E 和F ,BE 与CF 交于点O ,则△EFO 与△BCO 面积之比是( )A .1:3B . 1:9C .2:3D . 9:1 二、填空题(本题满分24分,共有8道小题,每小题3分) 请将 9—16各小题的答案填写在答题纸规定的位置.9.计算:tan45°+3sin60°=__________.10.由于手机市场的迅速成长,某品牌的手机为了赢得消费者,在一年之内连续两次降价,从5980元降到4698元,如果每次降低的百分率相同,求每次降低的百分率是 多少?设这个降低百分率为x ,则根据题意,可列方程: . 11.如图,△ABC 中,D 、E 分别是AB 、AC 上的点,且DE //BC , 若AD = 6,DB = 8,AE =4,则AC = .12.在平面直角坐标系中,已知点A (﹣4,﹣4),B (﹣6,2),以原点O 为位似中心,ADE 第11题图B C A (8,30)AODCB第6题图AODCB第8题图F E位似比为2:1,将△ABO 缩小,则点B 的对应点B ′的坐标是 .13.如图所示,某小区想借助互相垂直的两面墙(墙体足够长),在墙角区域40m 长的篱笆围成一个面积为384m 2矩形花园.设宽AB =x m ,且AB <BC ,则x = m . 14.如图,在水平的地面BD 上有两根与地面垂直且长度相等的电线杆AB ,CD ,以点B 为坐标原点,直线BD 为x 轴建立平面直角坐标系.已知电线杆之间的电线可近似地看成抛物线62.38.02+-=x x y 则电线最低点离地面的距离是 米.15.已知二次函数c bx ax y ++=2的图象如图所示,它与x 轴的两个交点的坐标分别为 (﹣1,0)(2,0).下列结论:①0<abc ;②042>-ac b ;③当021<<x x 时,21y y <;④当﹣1<x <2时,y <0.正确的有 .(填正确结论的序号).16.如图,在菱形ABCD 中,对角线AC =8cm ,BD =4cm , AC ,BD 相交于点O ,过点A 作AE ⊥CD 交CD 的延长线于点E ,过点O 作OF ⊥AE 交AE 于点F ,下列结论: ①tan ∠FOA =21; ②GO FG =; ③558=FO cm ;④S 梯形ABCE =5104cm 2. 正确的有 . (填正确结论的序号).F D OCGBAE第15题图 -1Oxy2第14题图ABxy(米) DC第13题图ABDOC第16题图三、作图题(本题满分4分)(保留作图痕迹,不写做法) 17.已知:线段m .求作:正方形ABCD,使正方形ABCD 边长AB=m .四、解答题(本题满分68分)18.解方程:(本小题满分8分,每小题4分)(1)872=-x x (用配方法). (2)282-22+=+x x x (用适当方法).19.(本小题满分6分)在一个不透明的盒子里,装有四个分别标有数字3、-3、6、-6的小球,小球的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x ,放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y .(1)用列表法或树状图法表示出(x ,y )所有可能出现的结果; (2)求小明、小华各取一次小球所确定的数字和为0的概率.m如图,在矩形ABOC 中,AB =4,AC =6,点D 是边AB 的中点,反比例函数xky =1(x <0)的图象经过点D ,交AC 边于点E ,直线DE 的关系式为2y =m x +n (m ≠0).(1)求反比例函数的关系式和直线DE 的关系式;(2)在第二象限内,根据图象直接写出当x 时,21y y >.21.(本题满分8分)为全面实施乡村振兴战略,促进农业全面升级、农村全面进步、农民全面发展.如图,四边形ABCD 是某蔬菜大棚的侧面示意图,已知墙BC 与地面垂直,且长度为5米,现测得∠ABC =112°,∠D =67°,AB =4米,,求此蔬菜大棚的宽CD 的长度.(精确到0.1米)(参考数据:sin22°≈83,cos22°≈1615,tan22°≈53,sin67°≈1312, cos67°≈135,tan67°≈512)CB D ABDBOxy CDA E如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,DE ⊥AC ,BF ⊥AC ,垂足分别为E 、F .延长BF 至G ,使FG =BF ,连结DG .(1)求证:GF =DE .(2)当OF :BF =1 :2时,判断四边形DEFG 是什么特殊四边形?并说明理由.23.(本小题满分10分)“互联网+”时代,网上购物备受消费者青睐.越来越多的人可以足不出户就能进行网上购物,网上支付,中国电子商务的发展走在了世界的前列.某网店专售一种书包,其成本为每个40元,已知销售过程中,当售价为每个50元时,每月可销售500个.据市场调查发现,销售单价每涨2元,每月就少售20个.物价部门规定:销售单价不低于成本单价,且这种商品的利润率不得高于60%.设每个书包售x 元,每月销售量y 个.(1)求出y 与x 的函数关系式;(2)设该网店每月获得的利润为W 元,当销售单价为多少元时,每月获得的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定每月从利润中捐出100元资助贫困学生.为了保证捐款后每月获得的利润不低于6650元,且让消费者得到最大的实惠,如何确定该商品的销售单价?D A CBGOEF(1)阅读下面的材料:如果函数y =f (x )满足:对于自变量x 的取值范围内的任意1x ,2x , (1)若1x <2x ,都有f (1x )<f (2x ),则称f (x )是增函数; (2)若1x <2x ,都有f (1x )>f (2x ),则称f (x )是减函数. 例题:证明函数f (x )=x5(x >0)是减函数. 证明:设0<1x <2x , f (1x )﹣f (2x )=2155x x -=211255x x x x -=21125x x x x )(-. ∵0<1x <2x ,∴2x ﹣1x >0,1x 2x >0. ∴21125x x x x )(->0.即f (1x )﹣f (2x )>0.∴f (1x )>f (2x ). ∴函数f (x )=x5(x >0)是减函数. (2)根据以上材料,解答下面的问题: 已知:函数f (x )=x x 31212++(x <0), ①计算:f (﹣1)= ,f (﹣2)= ; ②猜想:函数f (x )=x x 31212++(x <0)是 函数(填“增”或“减”); ③验证:请仿照例题证明你对②的猜想.如图,矩形ABCD 中,AB =4cm ,AD =5cm ,E 是AD 上一点,DE =3cm ,连接BE 、CE .点P 从点C 出发,沿CE 方向向点E 匀速运动,运动速度2 cm/s ,同时点Q 从点B 出发,沿BC 方向匀速运动,运动速度均为1cm/s ,连接PQ . 设点P 、Q 的运动时间为t (s )(0<t <2.5).(1)当t 为何值时,△PQC 是等腰三角形?(2)设五边形ABQPE 的面积为y (cm 2),求y 与t 之间的函数关系式. (3)是否存在某一时刻t ,使得S五边形ABQPE:S矩形ABCD=23:50?若存在,求出t的值,并求出此时PQ 的长;若不存在,请说明理由.APD CBEQA DCBE备用图参考答案及评分标准一、选择题(本题满分24分,共有8道小题,每小题3分)二、填空题(本题满分24分,共有8道小题,每小题3分 ) 9.25 10.5980(1-x )2=4698 11.328 12.(-3,1),(3,-1) 13.16 14. 2.8 15.①①① 16.①①① 三、作图题(本题满分4分)17.作图正确3分,结论1分 四、解答题(本题满分68分)18.(本题满分8分,每小题4分 )本题只给出最后结果,阅卷时注意分步得分. (1)1,821-==x x …………4分 (2) 313,13321-=+=x x ……………4分19.(本题满分6分)20. (本小题满分8分)解:(1)∵点D 是边AB 的中点,AB =4,∴B D =2,∵四边形ABOC 是矩形,AC =6, ∴D (-6,2), ∵反比例函数xky =1(x <0)的图象经过点D , ∴k =-12,∴反比例函数的关系式为xy 121-=(x <0),…….4分 当y =4时,x =-3, ∴E (-3,4),把D (-6,2)和E (-3,4)代入y 2=mx +n (m ≠0)得,⎩⎨⎧=+-=+-4326n m n m∴⎪⎩⎪⎨⎧==632n m 解得∴直线DE 的解析式为6322+=x y …….6分 (2)03-6<<-<x x 或或(03-69<<-<<-x x 或)(两个答案都可以)……8分BOxyCD AE21. (本小题满分8分)解:如图,过点A 作AE ⊥BC 于点E ,过点B 作BF ⊥AE 于点F ,…….1分 根据题意可知:AB =4,,CB=5,∠ABF =22°,分米。
2014—2015学年度第一学期期末学业质量评估九年级数学试题(含答案)
九年级数学试题注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷2页,为选择题,共36分.第Ⅱ卷2页,为非选择题,共84分.全卷满分120分,考试时间120分钟.2.答卷前,务必将答题卡上面的项目填涂清楚.所有答案都必须涂、写在答题卡相应的位置,答在本试卷上一律无效.第Ⅰ卷一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,多选、不选、错选均记零分.)1. 下列说法中正确的是()A. 平分弦的直径垂直于弦,并且平分弦所对的两条弧;B. 圆是轴对称图形,每一条直径都是它的对称轴;C. 弦的垂直平分线过圆心;D. 相等的圆心角所对的弧也相等.2. 如图,A、B、P是⊙O上的三点,∠APB=40°,则弧AB的度数为()A.50°B.80°C.280°D.80°或280°3. 如图,在直径为AB的半圆O上有一动点P从O点出发,以相同的速度沿O-A-B-O的路线运动,线段OP的长度d与运动时间t之间的函数关系用图象描述大致是()4. 下列命题中的假命题是()A. 正方形的半径等于正方形的边心距的2倍;B. 三角形任意两边的垂直平分线的交点是三角形的外心;C. 用反证法证明命题“三角形中至少有一个内角不小于60°”时,第一步应该“假设每一个内角都小于60°”;D. 过三点能且只能作一个圆.5. 如图,⊙O的半径是4,点P是弦AB延长线上的一点,连接OP,若OP=6,∠APO=30°,则弦AB的长为()A .27B .7C .5D .526. 如图所示,在△ABC 中D 为AC 边上一点,若∠DBC =∠A ,BC =3,AC =6,则CD 的长为( ) A .1 B .2 C .23 D .25 7. 下列方程中:①x 2-2x -1=0, ②2x 2-7x +2=0, ③x 2-x +1=0 两根互为倒数有( ) A. 0个 B. 1个 C. 2个 D. 3个 8. 一次函数y 1=3x +3与y 2=-2x +8在同一直角坐标系内的交点坐标 为(1,6).则当y 1>y 2时,x 的取值范围是( )A. x ≥1B. x =1C. x <1D. x >1 9. 在△ABC 中,若()21cosA 1tanB 02-+-=,则∠C 的度数是( ) A. 45° B. 60° C. 75° D. 105°10. 如图,热气球的探测器显示,从热气球A 看一栋高楼顶部B 的仰角为30°,看这栋高楼底部C 的俯角为60°,热气球A 与高楼的水平距离为120m ,这栋高楼BC 的高度为( ) A .1603m B .803 m C .()12031- m D .()12031+m11. 已知反比例函数y =xk的图像经过点P (-1,2),则这个函数图像位于( ) A .第二、三象限 B .第一、三象限 C .第三、四象限 D .第二、四象限 12. 已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列4个结论:①abc <0;②b >a +c ;③2a -b =0;④b 2-4ac <0.其中正确的结论个数是( ) A.1个 B.2个 C.3个 D.4个第Ⅱ卷二、填空题(本题共6小题,要求将每小题的最后结果填写在横线上. 每小题3分,满分18分) 13. 已知一元二次方程ax 2+bx +c =0的两根为x 1=2,x 2=-3,则二次三项式ax 2+bx +c 可分解因式为 .14. ⊙O 的半径为10cm ,AB ,CD 是⊙O 的两条弦,且AB ∥CD ,AB =16cm ,CD =12cm .则AB 与CD 之间的距离是 cm .15. 如图所示,△ABC 中,E 、F 、D 分别是边AB 、AC 、BC 上的点,且满足12AE AF EB FC ==,则△EFD 与△ABC 的面积比为 .16. 如图,M 是Rt △ABC 的斜边BC 上异于B 、C 的一定点,过M 点作直线MN 截△ABC交AC 于点N ,使截得的△CMN 与△ABC 相似. 已知AB =6,AC =8,CM =4,则CN = .17. 一个足球从地面上被踢出,它距地面高度y (米)可以用二次函数x x y 6.199.42+-=刻画,其中x (秒)表示足球被踢出后经过的时间. 则足球被踢出后到离开地面达到最高点所用的时间是 秒. 18. 在△ABC 中,AB =AC =5,tanB =34.若⊙O 的半径为10,且⊙O 经过点B 、C ,那么线段OA 的长等于 .三、解答题(本题共6小题,解答应写出文字说明、证明过程或推演步骤. 共66分) 19. (本题满分10分)市某楼盘准备以每平方米6 000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4 860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?如图,晚上小明站在路灯P的底下观察自己的影子时发现,当他站在F点的位置时,在地面上的影子为BF,小明向前走2米到D点时,在地面上的影子为AD,若AB=4米,∠PBF=60°,∠PAB=30°,通过计算,求出小明的身高.(结果保留根号).21. (本题满分11分)如图,四边形ABCD内接于⊙O,BC是直径,∠BAD=120°,AB=AD.(1)求证:四边形ABCD是等腰梯形;(2)已知AC=6,求阴影部分的面积.如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B .(1)求证:△ADF ∽△DEC ;(2)若AB =8,AD =63,AF =43,求sinB 的值.23. (本题满分12分)已知关于x 的一元二次方程()2kx 4k 1x 3k 30-+++=. (1)试说明:无论k 取何值,方程总有两个实数根;(2)若△ABC 的两边AB 、AC 的长是方程的两个实数根,第三边BC 的长为5. 当△ABC 是等腰三角形时,求k 的值.AB是⊙O的直径,AD与⊙O相交,点C是⊙O上一点,经过点C的直线交AD于点E.⑴如图1 ,若AC平分∠BAD,CE⊥AD于点E,求证:CE是⊙O的切线;⑵如图2,若CE是⊙O的切线,CE⊥AD于点E,AC是∠BAD的平分线吗?说明理由;⑶如图3,若CE是⊙O的切线,AC平分∠BAD,AB=8,AC=6,求AE的长度.试题答案及评分标准一、选择题(每小题选对得3分,满分36分. 多选、不选、错选均记零分.)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CBBDACBDCADB二、填空题(每小题3分,满分18分)13. a (x -2)(x +3) 14. 214或 15. 2:9 16. 1655或17.2 18. 3或5 三、解答题(本题共6小题,解答应写出文字说明、证明过程或推演步骤.共66分) 19. (本题满分10分)解:解:(1)设平均每次下调的百分率为x , 则6000(1-x )2=4860, 解得:x 1=0.1=10%, x 2=1.9(舍).故平均每周下调的百分率为10%.……………………6分 (2)方案1优惠:4860×100×(1-0.98)=9720(元); 方案2可优惠:80×100=8000(元). 故方案1优惠.…………………………10分20. (本题满分10分)解:设小明的身高为x 米,则CD =EF =x 米. 在Rt △ACD 中,∠ADC =90°,tan ∠CAD =ADCD,即tan 30°=x /AD ,AD =3x --2分 在Rt △BEF 中,∠BFE =90°,tan ∠EBF =EF /BF ,即tan 60°=x /BF ,BF =x 33---4分 由题意得DF =2,∴BD =DF -BF =2-x 33,∵AB =AD +BD =4,∴3x +2-x 33=4 --8分即x =3.答:小明的身高为3米.------------------------------------------------------------------------10分 21. (本题满分11分)⑴证明:∵∠BAD =120°,AB =AD ∴∠ABD =∠ADB =30° ∴弧AB 和弧AD 的度数都等于60°又 ∵BC 是直径 ∴弧CD 的度数也是60° ------------------ --------------2分 ∴AB =CD 且∠CAD =∠ACB =30° ∴BC ∥AD∴四边形ABCD 是等腰梯形. --------------------------------------------------5分⑵∵BC 是直径 ∴∠BAC =90°∵∠ACB =30°,AC =6∴0cos 30AC BC ===R =∵弧AB 和弧AD 的度数都等于60° ∴∠BOD =120° ---------------------------6分 连接OA 交BD 于点E ,则OA ⊥BD 在Rt △BOE中:0sin30OE OB =⋅=0cos 330BE OB =⋅=,BD =2BE =6----------------------------------------------------8分∴(21201-63602BOD BODS S S⨯⨯=-=⨯阴影扇形ππ ----------------------------------------------------11分 22. (本题满分11分)⑴证明:∵∠AFE =∠B ,∠AFE 与∠AFD 互补,∠B 与∠C 互补∴∠AFD =∠C --------------------------------------------------2分 ∵AD ∥BC ∴∠ADF =∠DEC -------------------------------------------4分 ∴△ADF ∽△DEC ----------------------------------------------------5分 ⑵解:∵△ADF ∽△DEC ∴AD AFDE CD== 解得:DE =12 ----------------------------------------------------7分 ∵AE ⊥BC , AD ∥BC ∴AE ⊥AD∴6AE ==----9分在Rt △ABE 中,63sin 84AE B AB === -------------------------------------------------11分 23. (本题满分12分)解:⑴△=()()243341k k k -++ =2216181212k k k k ++--=2441k k -+ =()221k -≥0 --------------------------------------------------4分∴无论k 取何值,方程总有两个实数根. -------------------------------------------------5分 ⑵若AB =AC 则方程()2kx 4k 1x 3k 30-+++=有两个相等的实数根此时△=0,即:()221k -=0 解得:12k =当12k =时,AB =AC =3,此时AB 、AC 、BC 满足三边关系. -------------------------8分 若BC =5为△ABC 的一腰,则方程()2kx 4k 1x 3k 30-+++=有一根是5,将5x =代入方程()2kx 4k 1x 3k 30-+++=解得:14k = 当14k =时,解得方程两根为5和3,此时AB 、AC 、BC 满足三边关系. ----------11分 综上:当△ABC 是等腰三角形时,k 的值为1124或. -----------------------------12分24. (本题满分12分) ⑴证明:连接OC∵OA =OC ∴∠OAC =∠OCA ∵AC 平分∠BAD ∴∠OCA =∠CAD ∴OC ∥AD∵CE ⊥AD ∴CE ⊥OC -----------------------------------------------3分 又OC 是半径 ∴CE 是⊙O 的切线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级下学期期末考试数学试卷(附答案)一、选择题(本大题共8小题,每小题3分,共24分.)1.﹣2021的倒数是()A.2021 B.﹣2021 C.D.﹣2.函数y=2+中自变量x的取值范围是()A.x≥2 B.x≥C.x≤D.x≠3.下列计算正确的是()A.2x+3y=5xy B.(x+1)(x﹣2)=x2﹣x﹣2C.a2•a3=a6D.(a﹣2)2=a2﹣44.在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,它是红球的概率是()A.B.C.D.5.下列说法正确的是()A.为了解三名学生的视力情况,采用抽样调查B.任意画一个三角形,其内角和是360°是必然事件C.甲、乙两名射击运动员10次射击成绩(单位:环)的平均数分别为、,方差分别为s甲2、s乙2,若=,s甲2=0.4,s乙2=2,则甲的成绩比乙的稳定D.一个抽奖活动中,中奖概率为,表示抽奖20次就有1次中奖6.已知2+是关于x的一元二次方程x2﹣4x+m=0的一个实数根,则实数m的值是()A.0 B.1 C.﹣3 D.﹣17.如图,在⊙O中,OA⊥BC,∠AOB=50°,则∠ADC的大小为()A.20°B.25°C.50°D.100°8.如图,二次函数y=ax2+bx+c(a≠0)图象的对称轴为直线x=﹣1,下列结论:①abc<0;②3a<﹣c;③若m为任意实数,则有a﹣bm≤am2+b;④若图象经过点(﹣3,﹣2),方程ax2+bx+c+2=0的两根为x1,x2(|x1|<|x2|),则2x1﹣x2=5.其中正确的结论的个数是()A.4个B.3个C.2个D.1个二、填空题(本大题共8小题,每小题3分,本大题共24分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置上)9.抛物线y=﹣3x2+6x+2的对称轴是.10.分解因式:a2b﹣4b3=.11.2020年我国武汉暴发新冠肺炎疫情,全国人民发扬“一方有难,八方支援”的精神,积极参与到武汉防疫抗疫保卫战中.据统计,参与到武汉防疫抗疫中的全国医护人员约为42000人,将42000这个数用科学记数法表示为.12.已知圆锥的底面半径为1cm,高为cm,则它的侧面展开图的面积为=cm2.13.如图,C,D是线段AB的两个黄金分割点,AB=1,则线段CD=.14.已知关于x的一元二次方程(m﹣1)x2﹣x+1=0有实数根,则m的取值范围是.15.在△ABC中,若∠A、∠B满足|cos A﹣|+(sin B﹣)2=0,则∠C=.16.如图,点A、B、C均在坐标轴上,AO=BO=CO=1,过A、O、C作⊙D,E是⊙D上任意一点,连结CE,BE,则CE2+BE2的最大值是.三、解答题(本大题共11小题,共102分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)计算:(1)2sin30°+3cos60°﹣4tan45°;(2)+tan260°.18.(8分)解方程:(1)4x2﹣25=0;(2)x2﹣2x﹣4=0.19.(8分)如图,在Rt△ABC中,∠C=90°,D是AC边上一点,DE⊥AB于点E.(1)求证:△ABC∽△ADE;(2)如果AC=8,BC=6,DE=3,求AD的长.20.(8分)如图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A转出红色,转盘B转出蓝色,或者转盘A转出蓝色,转盘B转出红色,则红色和蓝色在一起配成紫色,这种情况下小明获得音乐会门票;若两个转盘转出同种颜色则小芳获得音乐会门票.(1)利用列表或树状图的方法表示所有等可能出现的结果;(2)此规则公平吗?试说明理由.21.(8分)为宣传普及新冠肺炎防控知识,引导学生做好防控,某校举行了主题为“防控新冠,从我做起“的线上知识竞赛活动,测试内容为20道判断题,每道题5分,满分100分.为了解八、九年级学生此次竞赛成绩的情况,分别随机在八、九年级各抽取了20名参赛学生的成绩,已知抽取得到的八年级的数据如下(单位:分):80,95,75,75,90,75,80,65,80,85,75,65,70,65,85,70,95,80,75,80.为了便于分析数据,统计员对八年级数据进行了整理,得到下表:成绩等级分数(单位:分)学生数D等60<x≤70 5C等70<x≤80 aB等80<x≤90 bA等90<x≤100 2八、九年级成绩的平均数、中位数、优秀率如下:(分数80分以上、不含80分为优秀)年级平均数中位数优秀率八年级78分c分m%九年级76分82.5分50%(1)根据题目信息填空:a=,c=,m=;(2)八年级王宇和九年级程义的分数都为80分,请判断王宇、程义在各自年级的排名哪位更靠前?请简述你的理由.22.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC与△A'B'C'以点O为位似中心,且它们的顶点都为网格线的交点.(1)在图中画出点O(要保留画图痕迹),并直接写出:△ABC与△A'B'C'的位似比是.(2)请在此网格中,以点C为位似中心,再画一个△A1B1C,使它与△ABC的位似比等于2:1.23.(10分)如图,在△ABC中,BC=4,∠B=45°,∠A=30°,求AB.24.(10分)如图,在喷水池的中心A处竖直安装一个水管AB.水管的顶端安有一个喷水管、使喷出的抛物线形水柱在与池中心A的水平距离为1m处达到最高点C.高度为3m.水柱落地点D离池中心A处3m.建立适当的平面直角坐标系,解答下列问题.(1)求水柱所在抛物线的函数解析式:(2)求水管AB的长;25.(10分)如图,已知AB是⊙O的直径,BC⊥AB,连接OC,弦AD∥OC,直线CD交BA的延长线于点E.(1)求证:CD是⊙O的切线;(2)若DE=BC,⊙O的半径为2,求线段EA的长.26.(12分)如图是证明勾股定理时用到的一个图形,a、b、c是Rt△ABC和Rt△BED的边长,显然AE=c,我们把关于x的一元二次方程ax2+cx+b=0称为“弦系一元二次方程”.请解决下列问题:(1)判断方程=0是否为“弦系一元二次方程”?(填“是”或“否”),并说明理由;(2)求证:关于x的“弦系一元二次方程”ax2+cx+b=0必有实数根;(3)若x=﹣1是“弦系一元二次方程”ax2+cx+b=0的一个根,且四边形ACDE的周长是6,求△ABC的面积.27.(12分)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(4,0),与y轴交于点C,连接BC,点P是线段BC上的动点(与点B,C不重合),连接AP并延长AP交抛物线于点Q,连接CQ,BQ,设点Q的横坐标为m.(1)求抛物线的解析式和点C的坐标;(2)当△BCQ的面积等于2时,求m的值;(3)在点P运动过程中,是否存在最大值?若存在,求出最大值;若不存在,请说明理由.参考答案一、选择题1.【解答】解:﹣2021的倒数是.故选:D.2.【解答】解:由题意得,3x﹣1≥0;解得,x≥.故选:B.3.【解答】解:A.2x与3y不是同类项,所以不能合并,故本选项不合题意;B.(x+1)(x﹣2)=x2﹣x﹣2,故本选项符合题意;C.a2•a3=a5,故本选项不合题意;D.(a﹣2)2=a2﹣4a+4,故本选项不合题意.故选:B.4.【解答】解:根据题意可得:袋子中有3个白球,4个红球,共7个;从袋子中随机摸出一个球,它是红球的概率.故选:D.5.【解答】解:了解三名学生的视力情况,由于总体数量较少,且容易操作,因此宜采取普查,因此选项A不符合题意;任意画一个三角形,其内角和是360°是不可能事件,因此选项B不符合题意;根据平均数和方差的意义可得选项C符合题意;一个抽奖活动中,中奖概率为,表示中奖的可能性为,不代表抽奖20次就有1次中奖,因此选项D不符合题意;故选:C.6.【解答】解:根据题意,得(2+)2﹣4×(2+)+m=0;解得m=1;解法二:对方程变形得:x(x﹣4)+m=0,再代入x=2+,得到:(+2)(﹣2)+m=0;即m﹣1=0,m=1故选:B.7.【解答】解:如图,连接OC;∵OA⊥BC;∴=;∴∠AOC=∠AOB=50°;∴∠ADC=∠AOC=25°;故选:B.8.【解答】解:由图象可知:a<0,c>0,;∴b=2a<0;∴abc>0,故①abc<0错误;当x=1时,y=a+b+c=a+2a+c=3a+c<0;∴3a<﹣c,故②3a<﹣c正确;∵x=﹣1时,y有最大值;∴a﹣b+c≥am2+bm+c(m为任意实数);即a﹣b≥am2+bm,即a﹣bm≥am2+b,故③错误;∵二次函数y=ax2+bx+c(a≠0)图象经过点(﹣3,﹣2),方程ax2+bx+c+2=0的两根为x1,x2(|x1|<|x2|);∴二次函数y=ax2+bx+c与直线y=﹣2的一个交点为(﹣3,﹣2);∵抛物线的对称轴为直线x=﹣1;∴二次函数y=ax2+bx+c与直线y=﹣2的另一个交点为(1,﹣2);即x1=1,x2=﹣3;∴2x1﹣x2=2﹣(﹣3)=5,故④正确.所以正确的是②④;故选:C.二、填空题9.【解答】解:∵抛物线y=﹣3x2+6x+2=﹣3(x﹣1)2+5;∴该抛物线的对称轴是直线x=1;故答案为:直线x=1.10.【分析】先提取公因式b,再根据平方差公式进行二次分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:a2b﹣4b3=b(a2﹣4b2)=b(a+2b)(a﹣2b).故答案为b(a+2b)(a﹣2b).11.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:42000=4.2×104.故答案为:4.2×104.12.【分析】先利用勾股定理求出圆锥的母线l的长,再利用圆锥的侧面积公式:S侧=πrl计算即可.【解答】解:根据题意可知,圆锥的底面半径r=1cm,高h=cm;∴圆锥的母线l==2(cm);∴S侧=πrl=π×1×2=2π(cm2).故答案为:2π.13.【解答】解:∵线段AB=1,点C是AB黄金分割点;∴较小线段AD=BC=1×;则CD=AB﹣AD﹣BC=1﹣2×=﹣2.故答案是:﹣2.14.【解答】解:∵一元二次方程有实数根;∴Δ=≥0且≠0;解得:m≤5且m≠4;故答案为:m≤5且m≠4.15.【解答】解:∵|cos A﹣|+(sin B﹣)2=0;∴cos A﹣=0,sin B﹣=0;∴cos A=,sin B=;∴∠A=60°,∠B=45°;则∠C=180°﹣∠A﹣∠B=180°﹣60°﹣45°=75°;故答案为:75°.16.【分析】连接AC,OD,DE,设E(x,y),利用90°的圆周角所对的弦是直径可得,AC是⊙D的直径,再利用平面直角坐标系中的两点间距离公式求出CE2+BE2=2(x2+y2)+2,OE2=x2+y2,可得当OE为⊙D 的直径时,OE最大,CE2+BE2的值最大,然后进行计算即可解答.【解答】解:连接AC,OD,DE;设E(x,y);∵∠AOC=90°;∴AC是⊙D的直径;∵AO=BO=CO=1;∴A(0,1),C(1,0),B(﹣1,0);∴AC=;CE2=(x﹣1)2+y2;BE2=(x+1)2+y2;∴CE2+BE2=(x﹣1)2+y2+(x+1)2+y2=2(x2+y2)+2;∵OE2=x2+y2;∴当OE为⊙D的直径时,OE最大,CE2+BE2的值最大;∴OE2=AC2=()2=2;∴CE2+BE2的最大值=2×2+2=6;故答案为:6.三、解答题17.(8分)计算:(1)2sin30°+3cos60°﹣4tan45°;(2)+tan260°.【分析】(1)直接利用特殊角的三角函数值分别代入,进而计算得出答案;(2)直接利用特殊角的三角函数值分别代入,进而计算得出答案.【解答】解:(1)原式=2×+3×﹣4×1=1+﹣4=﹣;(2)原式=+()2=+3.18.(8分)解方程:(1)4x2﹣25=0;(2)x2﹣2x﹣4=0.【分析】(1)方程变形后,利用平方根定义开方即可求出解;(2)方程移项后,利用完全平方公式配方,开方即可求出解.【解答】解:(1)方程变形得:x2=;开方得:x=±;解得:x1=,x2=﹣;(2)方程移项得:x2﹣2x=4;配方得:x2﹣2x+1=5,即(x﹣1)2=5;开方得:x﹣1=±;解得:x1=1+,x2=1﹣.19.(8分)如图,在Rt△ABC中,∠C=90°,D是AC边上一点,DE⊥AB于点E.(1)求证:△ABC∽△ADE;(2)如果AC=8,BC=6,DE=3,求AD的长.【分析】(1)由余角的性质可得∠DEA=∠C=90°,可得结论;(2)由勾股定理可求AB的长,由相似三角形的性质可得,即可求解.【解答】(1)证明:∵DE⊥AB;∴∠DEA=∠C=90°;由∵∠A=∠A;∴△ABC∽△ADE;(2)∵AC=8,BC=6;∴AB===10;∵△ABC∽△ADE;∴;∴;∴AD=5.20.(8分)如图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A转出红色,转盘B转出蓝色,或者转盘A转出蓝色,转盘B转出红色,则红色和蓝色在一起配成紫色,这种情况下小明获得音乐会门票;若两个转盘转出同种颜色则小芳获得音乐会门票.(1)利用列表或树状图的方法表示所有等可能出现的结果;(2)此规则公平吗?试说明理由.【分析】(1)根据题意列表,即可得出所有可能出现的情况;(2)共有6种等可能的结果,其中配成紫色的结果有2种,两个转盘转出同种颜色的结果有2种,再求出小明获得音乐会门票的概率和小芳获得音乐会门票的概率,即可得出结论.【解答】解:(1)根据题意列表如下:黄蓝红第二个转盘第一个转盘红(红,黄)(红,蓝)(红,红)蓝(蓝,黄)(蓝,蓝)(蓝,红)共有6种等可能的结果;(2)此规则公平,理由如下:由(1)可知,共有6种等可能的结果,其中配成紫色的结果有2种,两个转盘转出同种颜色的结果有2种;∴小明获得音乐会门票的概率为=,小芳获得音乐会门票的概率为=;∴小明获得音乐会门票的概率=小芳获得音乐会门票的概率;∴此规则公平.21.【分析】(1)利用唱票的方法得到a、b的值,再利用中位数的定义求c,然后用5除以20得到m的值;(2)利用中位数的意义进行判断.【解答】解:(1)由题意,得a=10,b=3,c=77.5;m%==25%,即m=25;故答案为:10,77.5,25;(2)王宇在八年级的排名更靠前.理由如下:八年级的中位数为77.5分,而王宇的分数为80分,所以王宇的排名更靠前;而九年级的中位数为82.5分,程义的分数都为80分,所以他在九年级为中下游.22.【分析】(1)直接利用位似图形的性质得出位似中心的位置;(2)直接利用位似比得出对应点位置进而得出答案.【解答】解:(1)如图所示:点O即为所求,△ABC与△A'B'C'的位似比是:1;2;故答案为:1:2;(2)如图所示:△A1B1C即为所求.23.【分析】过点C作CD⊥AB,垂足为D,先在Rt△CDB中,利用锐角三角函数求出CD,BD,再在Rt△ACD中,求出AD,然后进行计算即可解答.【解答】解:过点C作CD⊥AB,垂足为D;在Rt△CDB中,∠B=45°,BC=4;∴CD=BC sin45°=4×=4;BD=BC cos45°=4×=4;在Rt△ACD中,∠A=30°;∴tan30°==;∴AD==4;∴AB=AD+BD=4+4;∴AB的值为4+4.24.【分析】(1)以池中心为原点,竖直安装的水管为y轴,与水管垂直的为x轴建立直角坐标系,设抛物线的解析式为y=a(x﹣1)2+3,将(3,0)代入求得a值;(2)由题意可得,x=0时得到的y值即为水管的长.【解答】解:(1)以池中心为原点,竖直安装的水管为y轴,与水管垂直的为x轴建立直角坐标系.由于在距池中心的水平距离为1m时达到最高,高度为3m;则设抛物线的解析式为:y=a(x﹣1)2+3;代入(3,0)求得:a=﹣.将a值代入得到抛物线的解析式为:y=﹣(x﹣1)2+3(0≤x≤3);(2)令x=0,则y==2.25.故水管AB的长为2.25m.25.(10分)如图,已知AB是⊙O的直径,BC⊥AB,连接OC,弦AD∥OC,直线CD交BA的延长线于点E.(1)求证:CD是⊙O的切线;(2)若DE=BC,⊙O的半径为2,求线段EA的长.【分析】(1)连接OD,利用SAS得到三角形COD与三角形COB全等,利用全等三角形的对应角相等得到∠ODC为直角,即可得证;(2)根据全等三角形的性质和平行线分线段成比例定理即可得到结论.【解答】(1)证明:如图,连接OD.∵AD∥OC;∴∠DAO=∠COB,∠ADO=∠COD;又∵OA=OD;∴∠DAO=∠ADO;∴∠COD=∠COB;在△COD和△COB中;;∴△COD≌△COB(SAS);∴∠CDO=∠CBO=90°;∵OD是⊙O的半径;∴CD是⊙O的切线;(2)解:∵△COD≌△COB;∴CD=CB;∵DE=BC;∴ED=CD.∵AD∥OC;∴=;∵⊙O的半径为2;∴=;∴AE=3.26.(12分)如图是证明勾股定理时用到的一个图形,a、b、c是Rt△ABC和Rt△BED的边长,显然AE=c,我们把关于x的一元二次方程ax2+cx+b=0称为“弦系一元二次方程”.请解决下列问题:(1)判断方程=0是否为“弦系一元二次方程”?是(填“是”或“否”),并说明理由;(2)求证:关于x的“弦系一元二次方程”ax2+cx+b=0必有实数根;(3)若x=﹣1是“弦系一元二次方程”ax2+cx+b=0的一个根,且四边形ACDE的周长是6,求△ABC的面积.【分析】(1)根据“弦系一元二次方程”的定义判断即可.(2)证明Δ≥0.(3)想办法求出ab的值可得结论.【解答】(1)解:∵a=,b=,c=;∴a2+b2=c2;∴a,b,c能构成直角三角形;∴方程=0是否为是弦系一元二次方程”.故答案为:是.(2)证明:根据题意,得Δ=(c)2﹣4ab=2c2﹣4ab;∵a2+b2=c2;∴Δ=2c2﹣4ab=2(a2+b2)﹣4ab=2(a﹣b)2≥0;∴弦系一元二次方程必有实数根;(3)解:当x=﹣1时,有a﹣x+b=0,即a+b=c;∵2a+2b+c=6;∴3c=6;∴c=2;∴a2+b2=4,a+b=2;∵(a+b)2=a2+b2+2ab;∴ab=2;∴S△ABC=ab=1.27.(12分)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(4,0),与y轴交于点C,连接BC,点P是线段BC上的动点(与点B,C不重合),连接AP并延长AP交抛物线于点Q,连接CQ,BQ,设点Q的横坐标为m.(1)求抛物线的解析式和点C的坐标;(2)当△BCQ的面积等于2时,求m的值;(3)在点P运动过程中,是否存在最大值?若存在,求出最大值;若不存在,请说明理由.【分析】(1)将点A和点B的坐标代入抛物线表达式,求解即可;(2)连接OQ,得到点Q的坐标,利用S=S△OCQ+S△OBQ﹣S△OBC得出△BCQ的面积,再令S=2,即可解出m 的值;(3)证明△APC∽△QPH,根据相似三角形的判定与性质,可得,根据三角形的面积,可得QH =,根据二次函数的性质,可得答案.【解答】解:(1)∵抛物线A(﹣1,0),B(4,0),可得:;解得:;∴抛物线的解析式为:;令x=0,则y=2;∴点C的坐标为(0,2);(2)连接OQ;∵点Q的横坐标为m;∴Q(m,);∴S=S△OCQ+S△OBQ﹣S△OBC=﹣=﹣m2+4m;令S=2;解得:m=或;(3)如图,过点Q作QH⊥BC于H,连接AC;∵AC=,BC=,AB=5; 满足AC2+BC2=AB2;∴∠ACB=90°,又∠QHC=90°,∠APC=∠QPH;∴△APC∽△QPH;∴;∵S△BCQ=BC•QH=QH;∴QH=;∴=; ∴当m=2时,存在最大值.。