统计学知识点(完整)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统计学知识点(完整)

第一章 概论

1. 总体(Population )统计学知识点(完整)象的全体(集合);样本(Sample ):从总体中随机抽取的部分具有代表性的研究对象。

2. 参数(Parameter ):反映总体特征的统计指标,如总体均数、标准差等,用希腊字母表示,是固定的常数;统计量(Statistic ):反映样本特征的统计指标,如样本均数、标准差等,采用拉丁字字母表示,是在参数附近波动的随机变量。

3. 统计资料分类:定量(计量)资料、定性(计数)资料、等级资料。

第二章 计量资料统计描述

1. 集中趋势:均数(算术、几何)、中位数、众数

2. 离散趋势:极差、四分位间距(QR =P 75-P 25)、标准差(或方差)、变异系数(CV )

3. 正态分布特征:①X 轴上方关于X =μ对称的钟形曲线;②X =μ时,f(X)取得最大值;③有两个参数,位置参数μ和形态参数σ;④曲线下面积为1,区间μ±σ的面积为68.27%,区间μ±

1.96σ的面积为95.00%,区间μ±

2.58σ的面积为99.00%。

4. 医学参考值范围的制定方法:正态近似法:/2X u S α±;百分位数法:P 2.5-P 97.5。

第三章 总体均数估计和假设检验

1. 抽样误差(Sampling Error ):由个体变异产生、随机抽样造成的样本统计量与总体参数的差异。抽样误差不可避免,产生的根本原因是生物个体的变异性。

2. 均数的标准误(Standard error of Mean, SEM ):样本均数的标准差,计算公式:

/X σσ=,说明抽样误差的大小。

3. 降低抽样误差的途径有:①通过增加样本含量n ;②通过设计减少S 。

4. t 分布特征:

①单峰分布,以0为中心,左右对称;

②形态取决于自由度ν,ν越小,t 值越分散,t 分布的峰部越矮而尾部翘得越高;

③当ν逼近∞,X S 逼近X σ, t 分布逼近u 分布,故标准正态分布是t 分布的特例。

5. 置信区间(Confidence Interval , CI ):按预先给定的概率(1-α)确定的包含总体参数的一个范围,计算公式:/2,X X t S αν±或/2,X X u S αν±。95%CI 含义:从固定样本含量的已

知总体中进行重复抽样试验,根据每个样本可得到一个置信区间,则平均有95%的置信区间包含了总体参数。

6. 假设检验的基本原理:小概率反证法的思想。

①反证法:从问题的对立面(H 0)出发间接判断要解决的问题(H 1)是否成立。

②小概率事件:在H 0成立的条件下计算检验统计量,根据概率分布确定检验水准α下P

值大小,判断是否为小概率事件(通常P≤α视为小概率事件,α通常取0.05),是则拒绝H0,接受H1;否则尚不能拒绝H0。

7. 假设检验一般步骤:①建立假设(反证法,H0和H1),确定检验水准(α);②计算统计量:u, t,F;③确定概率值P,做出推断结论。

8. t检验需满足的条件:比较的两个样本相互独立、均服从正态分布。

9. P的含义:是指从H0规定的总体随机抽样,抽得等于及大于(或/和等于及小于)现有样本获得的检验统计量(如t、u等)值的概率。

10. Ⅰ型错误(Type Ⅰerror):拒绝了实际上成立的H0,这类“弃真”的错误称为Ⅰ型错误,Ⅰ型错误的大小为检验水准α。Ⅱ型错误(Type Ⅱerror):接受了实际上不成立的H0,这类“存伪”的错误称为Ⅱ型错误,Ⅱ型错误的大小用β表示,1-β表示检验效能。α越小,β越大,增大样本量可以同时降低α和β。

11. 置信区间和假设检验的区别和联系:①可以通过判断置信区间是否包含零假设,判断单样本均数是否来自已知的总体;②置信区间不但能回答差别有无统计学意义,还可提示差别有无实际意义。③假设检验可提供置信区间不能提供的信息,如P值和检验效能等。

第四章方差分析

1. 方差分析的基本思想:根据研究目的和设计类型,把所有测量值的总变异按照处理因素和水平等分解成两部分(组内变异和组间变异)或更多部分,同时把对自由度相应进行分解,再进行比较,评价由处理因素引起的变异是否具有统计学意义。

2. 方差分析的应用条件:各样本是相互独立的随机样本,均来自正态分布的总体,各样本的总体方差相等(具有方差齐性)。

3. 方差分析表:

变异来源SS νMS F P

组间变异 a g-1 a/(g-1) MS组间/MS组内

组内变异 b N-g b/(N-g)

总变异a+b N-1

4. g=2时,随机区组设计的方差分析与配对设计资料t检验等价,t=。

5. 多个样本均数间的多重比较:①LSD-t检验,即最小显著差异t检验,适用于一对或几对在专业上有特殊意义的样本均数间的比较;②Dunnett-t检验:适用于g-1个实验组与一个对照组均数差别的多重比较;③SNK-q检验:适用于多个样本均数两两之间的全面比较。

第五章计数资料的统计描述

1. 相对数的类型:强度相对数(率,如死亡率、发病率等);结构相对数(构成比);相对比(如性别比等)

2. 应用相对数的注意事项:①结构相对数不能代替强度相对数;②计算相对数应有足够的数量;③正确计算合计率;④注意资料的可比性;⑤对比不同时期资料应注意客观条件是否相同;⑥样本率(或构成比)的抽样误差。

3. 标准化率(Standardization rate):采用标准化法进行计算,消除数据内部构成的差异,使标化后的合计率具有可比性,这种经过标化后的合计率称为标准化率。

4. 标准化率的注意事项:①只适用于内部构成不同,影响总率的可比性的问题;②选择的标准不同,计算得到的标准化率也不同,多个标准化率比较时,应选同一标准;③标准化率已经

相关文档
最新文档