八年级数学下册分式的概念教案新人教版
分式教案(2)
分式教案一、教学内容本节课的教学内容来自人教版初中数学八年级下册第22章《分式》。
本节课主要讲解分式的概念、分式的基本性质、分式的运算以及分式方程的解法。
二、教学目标1. 理解分式的概念,掌握分式的基本性质。
2. 学会分式的运算方法,提高运算能力。
3. 学会解分式方程,提高解决问题的能力。
三、教学难点与重点重点:分式的概念、分式的基本性质、分式的运算方法、分式方程的解法。
难点:分式方程的解法。
四、教具与学具准备教具:黑板、粉笔、多媒体教学设备。
学具:教材、练习本、铅笔、橡皮。
五、教学过程1. 实践情景引入:教师出示实际问题:“甲、乙两地相距100公里,甲地有一辆汽车以每小时40公里的速度向乙地行驶,同时乙地有一辆汽车以每小时60公里的速度向甲地行驶。
问两辆汽车相遇时,它们之间的距离是多少?”学生尝试解决实际问题,引出分式的概念。
2. 自主学习:学生自主阅读教材,理解分式的概念,并尝试解决教材中的例题。
3. 课堂讲解:教师讲解分式的概念,强调分式的分子、分母以及分式的值。
4. 课堂练习:教师出示练习题,学生独立完成,巩固分式的概念。
5. 分式的基本性质:教师讲解分式的基本性质,引导学生发现分式的基本性质。
6. 课堂练习:教师出示练习题,学生独立完成,巩固分式的基本性质。
7. 分式的运算:教师讲解分式的运算方法,引导学生发现分式的运算规律。
8. 课堂练习:教师出示练习题,学生独立完成,巩固分式的运算方法。
9. 分式方程的解法:教师讲解分式方程的解法,引导学生发现解分式方程的方法。
10. 课堂练习:教师出示练习题,学生独立完成,巩固解分式方程的方法。
六、板书设计板书设计如下:分式的概念:分子分母分式的值分式的基本性质:分式的分子、分母都乘(或除以)同一个不为零的数,分式的值不变。
分式的运算:加减法:通分后相加(减)乘除法:分子相乘(除),分母相乘(除)分式方程的解法:去分母求解七、作业设计1. 请解释分式的概念,并给出一个例子。
人教版八年级下册第一单元分式教案
第十六章分式单元分析
本章的主要内容包括:分式的概念,分式的基本性质,分式的约分与通分,分式的加、减、乘、除运算,整数指数幂的概念及运算性质,分式方程的概念及可化为一元一次方程的
分式方程的解法。
全章共包括三节:
16.1 分式
16.2 分式的运算
16.3 分式方程
其中,16.1 节引进分式的概念,讨论分式的基本性质及约分、通分等分式变形,是全章的理论基础部分。
16.2节讨论分式的四则运算法则,这是全章的一个重点内容,分式的四则混合运算也是本章教学中的一个难点,克服这一难点的关键是通过必要的练习掌握分式的各种运算法则及运算顺序。
在这一节中对指数概念的限制从正整数扩大到全体整数,这给运算带来便利。
16.3节讨论分式方程的概念,主要涉及可以化为一元一次方程的分式方程。
解方程中要应用分式的基本性质,并且出现了必须检验(验根)的环节,这是不同于解以前学习的方程的新问题。
根据实际问题列出分式方程,是本章教学中的另一个难点,克服它的关键是提高分析问题中数量关系的能力。
分式是不同于整式的另一类有理式,是代数式中重要的基本概念;相应地,分式方程是一类有理方程,解分式方程的过程比解整式方程更复杂些。
然而,分式或分式方程更适合作为某些类型的问题的数学模型,它们具有整式或整式方程不可替代的特殊作用。
借助对分数的认识学习分式的内容,是一种类比的认识方法,这在本章学习中经常使用。
解分式方程时,化归思想很有用,分式方程一般要先化为整式方程再求解,并且要注意检验是必不可少的步骤。
16.1分式
16.2分式的运算
16.3分式方程。
河南省洛阳市下峪镇初级中学八年级数学下册《分式的概念》教案 新人教版
主持人: 时间参加人员 地点 主备人 课题 分式的概念教学目标知识与技能:经历实际问题的解决过程,从中认识分式,并能概括分式2、过程与方法:使学生能正确地判断一个代数式是否是分式3.情感态度与价值观:。
能通过回忆分数的意义,类比地探索分式的意义及分式的值如某一特定情况的条件,渗透数学中的类比,分类等数学思想。
重、难点即考点分析 重点:探索分式的意义及分式的值为某一特定情况的条件。
难点:能通过回忆分数的意义,探索分式的意义及分式的值为某一特定情况的条件。
分析:分式的混合运算的关键是掌握异分母分式的通分以及因式分解的熟练程度 课时安排 1课时 教具使用彩色粉笔 教 学 环 节 安 排备 注 (一)复习与情境导入:填空(1)面积为2平方米的长方形一边长为3米,则它的另一边长为 米。
(2)面积为S 平方米的长方形一边长为a 米,则它的另一边长为 米。
(3)一箱苹果售价p 元,总重m 千克,箱重n 千克,则每千克苹果的住售价是 元。
(4)根据一组数据的规律填空:1,161,91,41…… (用n 表示) 观察你列出的式子,与以前学过的有什么不同?像这样的式子叫分式。
先根据题意列代数式,并观察出它们的共性:分母中含字母的式子。
(二)实践与探索例1、下列各式中,哪些是整式?哪些是分式?(1)x 1; (2)2x ; (3)y x xy +2; (4)33y x -. 例2、探究:练习 讨论探索当x 取什么数时,分式2||24x x -- (1)有意义 (2)值为零? 例3、已知分式bax a x +-2,当x=3时,分式值为0,当x=-3时,分式无意义,求a,b 的值。
可类比分数来解。
讨论探索(四)小结与作业 分式的概念和分式有意义的条件。
作业 布置 本章复习B 组题重难点及考点巩固性练习五,达标训练1.下列各式分别回答哪些是整式?哪些是分式?52+x,mn, 2a-3b,32-yy,)2)(1(92---xxx,53-2 :分式23yy+-,当y时,分式有意义;当y时,分式没有意义;当y时,分式的值为0。
分式的概念教案
分式的概念教案一、关键信息项1、教学目标理解分式的概念,能判断一个代数式是否为分式。
明确分式有意义、无意义及值为零的条件。
通过分式概念的学习,提高学生的分析、归纳和概括能力。
2、教学重难点重点:分式的概念及分式有意义、无意义和值为零的条件。
难点:理解分式值为零的条件。
3、教学方法讲授法讨论法练习法4、教学过程导入新课讲授课堂练习课堂小结作业布置5、教学资源多媒体课件教材练习册二、教学目标11 知识与技能目标让学生理解分式的概念,能够准确识别分式。
学生能够熟练掌握分式有意义、无意义以及值为零的条件,并能运用这些条件解决相关问题。
12 过程与方法目标通过对分式概念的学习和探究,培养学生观察、分析、归纳和概括的能力,提高学生的逻辑思维水平。
13 情感态度与价值观目标激发学生对数学的兴趣,增强学生学习数学的自信心,培养学生勇于探索、敢于创新的精神。
三、教学重难点111 教学重点明确分式的概念,以及分式有意义、无意义和值为零的条件。
这是学生正确理解和运用分式的基础,也是后续学习分式运算的关键。
112 教学难点理解分式值为零的条件。
因为分式值为零不仅要考虑分子为零,还要同时考虑分母不为零,这对学生的逻辑思维能力有较高的要求。
四、教学方法121 讲授法通过教师的讲解,让学生了解分式的概念、性质和相关条件,使学生对新知识有初步的认识。
122 讨论法组织学生进行小组讨论,让学生在交流中深化对分式概念的理解,共同探讨解决问题的方法,培养学生的合作精神和交流能力。
123 练习法通过课堂练习和课后作业,让学生巩固所学知识,提高学生运用分式概念解决实际问题的能力。
五、教学过程131 导入通过展示一些实际问题中的代数式,如路程问题中的速度公式 v =s/t,工作效率问题中的工作效率公式 w = m/n 等,引导学生观察这些代数式的特点,引出分式的概念。
132 新课讲授1321 分式的概念给出分式的定义:一般地,如果 A、B 表示两个整式,并且 B 中含有字母,那么式子 A/B 叫做分式。
八年级数学下册《认识分式》教案、教学设计
(2)实施总结性评价,通过阶段性的测试和作业,检验学生对分式知识的掌握程度。
(3)鼓励学生进行自我评价和同伴评价,提高他们的自我监控和反思能力。
四、教学内容与过程
(一)导入新课
1.教学策略:通过生活情境引入,激发学生的兴趣,为新课的学习做好铺垫。
3.教学重点:分式的定义、化简方法、运算规则。
(三)学生小组讨论
1.教学策略:组织学生进行小组讨论,培养学生的合作意识和解决问题的能力。
教师给出几个关于分式的实际问题,让学生分组讨论,共同探讨如何将问题转化为分式方程,并求解。
2.学生活动:学生在小组内积极讨论,共同分析问题,尝试解决问题。
3.教学难点:从实际问题中抽象出分式方程,并求解。
五、作业布置
为了巩固学生对分式知识的掌握,提高他们的实际应用能力,特布置以下作业:
1.基础作业:完成课本第15页练习题1、2、3,要求学生独立完成,加强对分式定义和化简规则的理解。
2.提高作业:完成课本第16页练习题4、5、6,培养学生解决实际问题的能力,特别是将实际问题转化为分式方程并求解的能力。
3.教学过渡:从分数的分配问题引出分式的概念,指出分式在解决实际问题中的重要性。
(二)讲授新知
1.教学策略:采用讲解与演示相结合的方法,让学生理解分式的定义和性质。
教师通过PPT展示分式的定义,解释分式的组成,强调分式与分数的区别与联系。接着,通过具体的例子,讲解分式的化简和运算规则。
2.学生活动:学生认真听讲,做好笔记,跟随教师思路理解分式的相关知识。
5.通过对分式的学习,提高学生的逻辑思维能力和数学运算能力。
(二)过程与方法
八年级数学下册 第十六章分式复习教案 人教新课标版
《分式》复习教案教学内容本节课主要内容是对本单元进行回顾.教学目标1.知识与技能会进行分式的基本运算(加、减、乘、除、乘方),熟练掌握分式方程的解法,能应用“建模”思想解决实际问题.2.过程与方法经历回顾分式概念、计算、应用的过程,提高观察、类比归纳、猜想等能力,.领会其算理.3.情感、态度与价值观培养学生的自主、合作、交流的意识,和严谨的学习态度,让学生体会知识的内在价值.重难点、关键1.重点:通过理解分式的基本性质,掌握分式的运算、应用.2.难点:分式的通分以及分式方程的“建模”.3.关键:把握分式的基本性质,领会算理.教学准备教师准备:投影仪,制作与本节课有关的投影片,图片等.学生准备:做一份本单元知识小结.学法解析1.认知起点:在学习了不等式基本性质、约分、通分、混合运算,•以及分式方程、应用内容后进行反思.2.知识线索:3.学习方式:采用知识体系梳理,•合作交流的学习方式达到巩固提高本单元知识的目的.教学过程一、回顾交流,巩固反馈【组织交流】教师活动:打开投影机,先将学生分成四人小组,交流各自准备的单元小结,然后开展小组汇报.学生活动:小组合作交流,交流内容是(1)单元知识结构图;(2)课本P41“回顾与思考”的5个问题;(3)自己的单元小结.活动形式:先小组合作交流,再小组汇报,师生互动.媒体使用:学生汇报中,可借用投影仪,辅助讲解.教师归纳:本章主要内容是分式的概念;分式的基本性质;分式混合运算和可化为一元一次方程的分式方程及其应用,这些内容在今后进一步学习方程、函数等知识时占有重要地位和作用.(投影显示本单元知识体系,见课本P41)1.分式的基本性质是分式恒等变形的依据,•正确理解和熟练掌握这一性质是学好分式的关键,因此学习中要注意以下三点:(1)基本性质中的字母表示整数,(,A A M A A M B B M B B M⨯÷==⨯÷,M ≠0) (2)要特别强调M ≠0,且是一个整式,由于字母的取值可以是任意的,所以M•就有等于零的可能性,因此,应用基本性质时,重点要考查M 的值是否为零.2.约分,约分的目的是化简,关键是找分子和分母的最高公因式,•即系数的最大公约数、相同因式的最低次幂.3.通分,通分关键是确定n 个分式的公分母,•通常取各分母所有因式的最高次幂的积作公分母,这样的公分母叫最简公分母.4.分式的乘除法本质就是(1)因式分解,(2)约分.5.分式的加减法本质就是(1)通分,(2)分解因式,(3)约分.6.解分式方程的本质就是将分式方程化成整式方程,但要注意验根.【设计意图】让学生掌握课堂的主动权,以自主、合作、交流的手法调动学生的主观能动性.二、寓思与练,讨论交流【显示投影片1】演练题1:当x 取什么数时,下列分式有意义?(1)22461;(2);(3)512x x x x m-++. 思路点拨:(1)令5x+1=0,相应求出x 的值,然后x 不取这个值时分式必有意义.(•x ≠-15);(2)由于无论x 取何值x 2+2的值均大于零,因此,x 取任何实数,此分式都有意义;(3)因为任何数的平方均为非负数,则m 2≥0,所以m ≠0即可.演练题2:当x 取什么数,下列分式的值为零?(1)23||2;(2)47(2)(5)x x x x x +-++-. 思路点拨:令分子等于零,由此求出x 的值,此时应考虑分母是否等于零,•若等于零,则分式无意义,应舍去.(1)x=-32;(2)x=2. 【活动方略】教师活动:操作投影仪,引导学生训练,并请学生上台板演.学生活动:独立完成演练题1,2,以练促思.三、随堂练习,巩固深化1.x 为何值时,2||5x x -的值为零;(x ±5) 2.x 为何值时,259x x +-没有意义;(x=9) 3.x 为何值时,6721a a -+的值等于1.(a=2) 4.课本P42复习题16第6题.四、X 例学习,提高认知例1 计算.2244222815(1);(2)()(66).583()[:(1),(2)]6x y a b xy x y x y ab xy x y ax xy x y b -÷-++答案思路点拨:按法则进行分式乘除法运算,应注意,如果运算结果不是最简分式,一定要约分,对于分式的乘除混合运算,按乘除的顺序依次进行;当分子、分母是多项式时,一般先分解因式,并在运算过程中约分,使运算简化.例2 计算.222222222(1);11112(2)()().4444224xy y x x y y x x y b a ab b a ab b a b a b a b -+--+-÷+-+++-+- 思路点拨:(1)•分式的加减运算就是把异分母的加减化成同分母的分式的加减,因此,在通分过程中找出最简公分母是关键.(2)对于分式的混合运算,•应注意运算顺序.【活动方略】教师活动:通过分析例1、例2的算理,增强学生的运算能力,提高运算的准确性. 学生活动:参与例1、例2的分析,同老师一道领会算理,掌握正确的学习方法.五、随堂练习,巩固深化1.计算. 22225(1)221(2)1111(3)1();()121x xx x x x a a a a a a a a +----+-+--÷-+--+ 2.先化简,再求值:()(2)(1)x y x y y y x y x x -÷+-÷+,其中x=115,.[]253y = 六、联系实际,实践应用【显示投影片2】例3 解分式方程:1-6351x x x+=-+ [x=2] 思路点拨:解分式方程基本思路是方程两边都乘以各分母的最简公分母,使方程化为整式方程,但解后必须验根.例4 某水泵厂在一定天数内生产4 000台水泵,工人为了支援祖国现代化建设,每天比原计划增加25%,可提前10天完成任务,问原计划每天生产多少台?(80台)思路点拨:工程问题常用的关系式是时间=总工作量日产量,设原计划每天生产x台,•列式4000400014x x x-+=10.【活动方略】教师活动:操作投影仪,启发引导学生弄清题意,正确解答.学生活动:利用例3、例4,复习分式方程解法,以及应用题“建模”方法,并归纳小结.七、继续演练,反复认识【显示投影片3】1.解方程:8177xx x----=8(无解)2.一列火车从车站开出,预计行程450千米,当它开出3小时后,因出现特殊情况多停一些,耽误30分钟,后来把速度提高了0.2倍,结果准时到达目的地,•求这列火车原来的速度.[提示:设火车原速为x千米/小时,列车450314531.22xx x-+=,x=75]3.课本P43“复习题16”第11,12题.八、布置作业,专题突破1.课本P42“复习题16”第1,2(3)(4)(6),3(2)(4)(6),4,5,8,9,10题.2.选用课时作业设计.九、课后反思课时作业设计【驻足“双基”】1.x______时,分式755x x +-有意义. 2.分式2134,,11m m m +-的最简公分母是________. 3.计算:(a+b )·2222a b a b a b---=______. 4.当x=______时,分式752x x-与的值相等. 5.当m=______时,方程233y m y y =---会产生增根. 6.若分式29(3)(4)a a a -+-的值为零,则a 的值是( ). A .±3 B .-3 C .3 D .以上结论都不对7.能使分式233x x x+---2值为零的x 的值是( ). A .x=4 B .x=-4 C .x=-4或x=4 D .以上结论都不对8.计算.(1)2(1)1132(2)(1)(1)(1)1166x x x x x x x x x x x +---÷-+-++-- 9.化简求值:133(2),(2)(1)24x x x x x x +÷-+=+-+其中. 10.解方程:1122x x x----=-3 【提升“学力”】 11.a 为何值时,关于x 的方程12325x a x a +-=-+的解等于零? 12.某个体商贩一次同时卖出两件上衣,每件都以135元出售,其中一件盈利25%,另一件亏本25%,讨论在这次买卖中,该商贩能否赚到钱?13.某某到某某铁路长300千米,为适应两省、市经济发展的要求,客车的行车速度每小时比原来增加了40千米,这样使得由某某至某某的时间缩短了1.5小时,•求列车原来的速度及现在的速度.请参照上面的应用题,编一道类似的应用题(不需要求解)这道应用题应满足:(1)不改变分式方程的形式; (2)改变实际背景和数据.答案:1.x ≠5 2.m (m+1)(m-1) 3.a+b 4.-5 5.-3 6.C 7.A8.(1)2211,(2)9.1610.2()11.13(3)5x x a x x --==--增根 (提示:先把a 看作已知数,•按照解分式方程的步骤求出x ,然后令x=0,得到关于a 的方程,求出a 值.(8-a )x=1-5a ,当a ≠8时,x=15151,0,150,885a a a a a a --=-=∴=--解唯一令则.) 12.赚不到 13.设列车原来的速度为x 千米/时,则30030040x x -+=1.5.。
八年级数学下册《分式》教案 人教新课标版
诊断:此题错误的原因是把分子、分母首项的符号当成了分子、分母的符号
正解:
2.运算顺序错误
例2.计算:
错解:原式=
诊断:
正解:
3.错用分式基本性质
例3.不改变分式的值,把分式 的分子、分母各项系数都化为整数.
错解:原式= .
诊断:
正解:
4.约分中的错误
例4.约分: .
错解:原式=
诊断:约分的根据是分式的基本性质,将分子、分母的公因式约去,若分子、分母是多项式,须先分解因式 ,再约去公因式.
考点7:分式方程的应用
例7.(长春市)A城市每立方米水的水费是B城市的1.25倍,同样交水费20元,在B城市比在A城市可多用2立方米水,那么 A、B两城市每立方米水的水费各是多少元?
解:设B城市每立方米水的水费为x元,则A城市为_________元,根据题意得方程
—————————————————————
5.某工人原计划在规定时间内恰好加工1500个零件,改进了工具和操作方法后,工作效率提高为原来的2倍,因此加工1500个
零分式方程
例5.(陕西省)解分式方程:
分析:解分式方程的关键是去分母转化为整式方程。
点评:解分式方程能考查大家的运 算能力、合情推理等综合能力,解分式方程要注意检验,否则容易产生增根而致误!
考点6:分式方程有增根
例6已知方程 有增根,则这个增根一定是()
A.2 B.3 C.4 D.5
分析:分式方程的增根应满 足两个条件:一是其值应使最简公分母为0,二是其值应是去 分母后所的整式方程的根。
湖北省武汉市为明实验学校八年级数学下册《分式》教案人教新课标版
学习目标:通过复习,假声对分时相关知识的理解,并掌握相关解题方法和技巧。
八年级数学(人教版)下学期教案--分式().
八年级数学(人教版)下学期教案--分式(2)2011-02-20教学目标(一)知识与技能目标使学生理解并掌握分式的基本性质,并能运用这些性质进行分式化简.(二)过程与方法目标通过分式的化简提高学生的运算能力.(三)情感与价值目标.渗透类比转化的数学思想方法.教学重点和难点1.重点:使学生理解并掌握分式的基本性质,这是学好本章的关键.2.难点:灵活运用分式的基本性质进行分式化简.教学方法分组讨论.教学过程(一)情境引入1.数学小笑话:从前有个不学无术的富家子弟,有一次,父母出远门去办事,把他交给厨师照看,厨师问他:"我每天三餐每顿给你做两个馒头,够吗?"他哭丧着脸说:"不够,不够!"厨师又问:"那我就一天给你吃六个,怎么样?"他马上欣喜地说:"够了!够了!"2.问:这个富家子弟为什么会犯这样的错误?3.分数约分的方法及依据是什么?(1)的依据是什么?呢?(2)你认为分式与相等吗?与呢?(二)新课1.类比分数的基本性质,由学生小结出分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即:=,=(其中M是不等于零的整式)2.加深对分式基本性质的理解:例1下列等式的右边是怎样从左边得到的?由学生口述分析,并反问:为什么c≠0?解:∵c≠0,学生口答,教师设疑:为什么题目未给x≠0的条件?(引导学生学会分析题目中的隐含条件.)化简:(1);(2)做一做练习(三)课堂小结1、通过本节课学习,你有什么收获?作业教材P.66习题3.2教学反思:。
初中分式的教案
初中分式的教案一、教学目标1. 让学生理解分式的概念,掌握分式的基本性质和运算方法。
2. 培养学生解决实际问题的能力,提高学生的数学思维水平。
二、教学内容1. 分式的概念及其表示方法2. 分式的基本性质3. 分式的运算方法4. 分式在实际问题中的应用三、教学重点与难点1. 重点:分式的概念、基本性质和运算方法。
2. 难点:分式的运算规律和实际问题中的应用。
四、教学过程1. 导入:通过复习整式的知识,引导学生思考整式在表示数量关系方面的局限性,从而引出分式的概念。
2. 新课讲解:a) 分式的概念:用分数的形式表示两个整式的商。
b) 分式的表示方法:分子、分母及分式的约分和通分。
c) 分式的基本性质:分式的分子、分母都乘(或除以)同一个不为0的整式,分式的值不变。
d) 分式的运算方法:分式的加减法、乘除法及混合运算。
3. 例题解析:通过例题讲解,让学生掌握分式的运算方法,培养学生的解题能力。
4. 课堂练习:设计一些练习题,让学生巩固所学知识,提高运算能力。
5. 实际问题应用:通过解决实际问题,让学生了解分式在生活中的应用,提高学生的实际问题解决能力。
6. 课堂小结:对本节课的主要内容进行总结,强调分式的概念、基本性质和运算方法。
五、课后作业1. 完成教材后的练习题。
2. 收集生活中的分式问题,下节课分享。
六、教学反思1. 课后及时了解学生的学习情况,针对性地进行辅导。
2. 在教学中,注重学生的参与,提高学生的动手操作能力和思维能力。
3. 注重分式知识与实际生活的联系,提高学生的应用能力。
七、教学评价1. 学生对分式的概念、基本性质和运算方法的掌握程度。
2. 学生解决实际问题的能力。
3. 学生对分式知识的兴趣和积极性。
初中数学分式下册教案
初中数学分式下册教案教学目标:1. 理解分式的概念,掌握分式的基本性质。
2. 学会分式的化简、运算和应用。
3. 培养学生的逻辑思维能力和解决问题的能力。
教学内容:1. 分式的概念和基本性质2. 分式的化简和运算3. 分式的应用教学过程:一、导入(5分钟)1. 复习分数的概念和性质。
2. 引入分式的概念,解释分式与分数的区别。
二、分式的基本性质(15分钟)1. 展示分式的基本性质,如分式的分子、分母和值的变化规律。
2. 让学生通过例题来理解和掌握分式的基本性质。
三、分式的化简(20分钟)1. 介绍分式的化简方法,如分子分母的公因式提取、分式的乘除法等。
2. 分组讨论和练习化简分式的题目,教师进行指导和解答。
四、分式的运算(15分钟)1. 介绍分式的运算规则,如加减法、乘除法等。
2. 让学生通过例题来理解和掌握分式的运算规则。
3. 进行一些分式运算的练习题,教师进行指导和解答。
五、分式的应用(15分钟)1. 介绍分式在实际问题中的应用,如比例、折扣、浓度等问题。
2. 让学生通过例题来理解和掌握分式的应用方法。
3. 进行一些分式应用的练习题,教师进行指导和解答。
六、总结与布置作业(5分钟)1. 对本节课的内容进行总结,强调分式的概念、基本性质和运算规则。
2. 布置一些分式的化简、运算和应用的练习题,让学生进行巩固练习。
教学评价:1. 通过课堂讲解、练习和应用题的解答,评价学生对分式的概念、基本性质和运算规则的理解和掌握程度。
2. 观察学生在分组讨论和练习中的表现,评价学生的合作和沟通能力。
3. 对学生的作业进行批改和评价,了解学生对分式应用的掌握情况。
以上是一篇初中数学分式下册的教案,根据学生的实际情况和教学环境,可以进行适当的调整和修改。
希望对您的教学有所帮助。
八年级数学下册《分式及分式的相关概念》教案、教学设计
-注意:学生在完成练习时,应仔细审题,确保理解每个问题的要求,并按照步骤进行解答。
2.提高题:选做课本第章节后的提高题11-15题,这些题目涉及分式的性质和运算规则,旨在提高学生的逻辑思维能力和解题技巧。
-强调数学学习的实际意义,提升学生的数学素养,使学生认识到学习数学的价值。
四、教学内容与过程
(一)导入新课
1.生活实例引入:以一个简单的分数分割问题为例,如将一块披萨平均分给若干朋友,引出分式的概念。通过这个例子,让学生感受到分式在生活中的应用,激发学生的学习兴趣。
-教师提问:“如何表示每个人分到的披萨?这个表示方法与我们之前学的分数有什么区别?”
3.培养学生面对困难时勇于挑战、善于克服的精神,增强学生的自信心。
4.通过小组合作,培养学生的团队协作意识,使学生学会互相尊重、互相帮助。
5.使学生认识到数学在现实生活中的重要作用,提高学生的数学素养,培养学生的应用意识。
二、学情分析
八年级学生已经具备了一定的数学基础,对于分数的概念和运算有了一定的了解。在此基础上,本章节分式及分式的相关概念的学习将更具挑战性。学生在之前的学习中,可能已经接触过分式的简化,但对于分式的定义、性质和运算规则可能还不够熟练。此外,学生在解决实际问题时,可能会对分式的应用感到困惑。因此,在教学过程中,需要关注以下几点:
4.设计丰富的练习题,让学生在练习中巩固所学知识,形成稳定的技能。
5.注重分层教学,针对不同学生的实际情况,给予个性化的指导,使每个学生都能在原有基础上得到提高。
(三)情感态度与价值观
1.培养学生对待数学学科的兴趣和热情,激发学生的学习积极性。
初中数学分式 教案
初中数学分式教案一、教学目标:1. 让学生理解分式的概念,掌握分式的基本性质和运算法则。
2. 培养学生运用分式解决实际问题的能力。
3. 提高学生的逻辑思维能力和团队合作能力。
二、教学内容:1. 分式的概念:分式是形如 a/b 的表达式,其中 a 和 b 是整式,b 不为零。
2. 分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为零的整式,分式的值不变。
3. 分式的运算法则:(1)分式的加减法:分母相同,分子相加(减);分母不同,通分后相加(减)。
(2)分式的乘除法:分子乘(除)以分子,分母乘(除)以分母。
4. 分式在实际问题中的应用。
三、教学重点与难点:1. 重点:分式的概念,基本性质和运算法则。
2. 难点:分式的运算法则的应用,分式在实际问题中的解决。
四、教学过程:1. 导入:通过展示实际问题,引导学生思考如何用数学方法解决这些问题。
2. 新课讲解:(1)介绍分式的概念,通过示例让学生理解分式的含义。
(2)讲解分式的基本性质,让学生通过实际操作验证这些性质。
(3)讲解分式的运算法则,引导学生通过例子理解和掌握这些法则。
3. 课堂练习:布置一些简单的分式题目,让学生独立完成,巩固所学知识。
4. 应用拓展:展示一些实际问题,引导学生运用分式解决这些问题。
5. 总结:对本节课的内容进行总结,强调重点和难点。
五、教学评价:1. 课堂表现:观察学生在课堂上的参与程度,理解程度和表现。
2. 作业完成情况:检查学生作业的完成质量,对学生的学习效果进行评估。
3. 实际问题解决能力:通过课后实践,观察学生运用分式解决实际问题的能力。
六、教学反思:在教学过程中,要注意引导学生理解和掌握分式的基本性质和运算法则,通过实际例子让学生学会如何运用分式解决实际问题。
同时,要关注学生的学习进度,及时解答学生的疑问,提高学生的学习效果。
新人教版八年级下册数学教案
新人教版八年级下册数学教案新人教版八年级下册数学教案1:分式的基本性质一.教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形.二.重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形.3.认知难点与突破方法教学难点是灵活应用分式的基本性质将分式变形. 突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形.三.例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3.例4地目的是进一步利用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,因此补充例5.四.课堂引入1.请同学们考虑:与相等吗? 与相等吗?为什么?2.说出与之间变形的过程,与之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质.五.例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.因此要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.,,,,。
八年级数学 (分式)教案 人教新课标版 教案
2.分式的乘除法一、教学目标:1、知识与技能目标:1、分式的乘除运算法则2、会进行简单的分式的乘除法运算2、过程与方法目标:1、类比分数的乘除运算法则,探索分式的乘除运算法则。
2、能解决一些与分式有关的简单的实际问题。
3、情感态度与价值观目标:1、通过师生讨论、交流,培养学生合作探究的意识和能力。
2、培养学生的创新意识和应用意识。
二、教学重点:分式乘除法的法则三、教学难点:分式乘除法的法则四、课时安排1课时五、教具学具准备小黑板一块六、教学方法类比方法七、教学过程活动一:黑板展示1442225599⎧⎪⎨⨯÷⨯÷⎪⎩、复习小学分数乘除法法则;2255、计算下列各题:,,,3377活动二:联想猜测:黑板背面展示:a d a db c b c?,a d a cb c b d−−→÷⨯←−−?阅读课本74p至例1——例2结束(除“做一做”外),仔细观察各步运算,通过小组讨论交流,并与分数的乘除法的法则类比,总结出分式的乘除法的法则。
(分式的乘除法的法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.)活动三:当堂训练1、根据题意,列出分式,完成“做一做”2、76p随堂练习,习题3.3知识技能第1题八、课堂小结:1.分式的乘除法的法则2.分式运算的结果通常要化成最简分式或整式.3. 学会类比的数学方法九、巩固练习课本P77习题3.3第2、4题3.分式的加减法 一、教学目标:1、知识与技能目标:1、同分母的分式的加减法的运算法则及其应用;2、简单的异分母的分式的加减法的运算;2、过程与方法目标:根据学生已有的经验,通过一些问题的提出。
诱发学生积极思考,或通过合作交流,引导学生自己解决问题,从而总结出规律。
3、情感态度与价值观目标:1、经历从现实情境中提出问题,提出“用数学”的意识。
2、结合已有的教学经验,解决新问题,获得成就感以及克服困难的方法和勇气。
初中人教版分式教案
教案:分式教学目标:1. 理解分式的概念,掌握分式的基本性质。
2. 能够进行分式的约分和通分。
3. 能够解决实际问题,运用分式进行简化运算。
教学重点:1. 分式的概念和基本性质。
2. 分式的约分和通分方法。
教学难点:1. 分式的约分和通分。
教学准备:1. 投影仪。
2. 自制投影胶片。
教学过程:一、导入(5分钟)1. 引入分数的概念,复习分数的基本性质。
2. 提问:分数可以表示两个量之间的关系,那么分式可以表示什么样的关系呢?二、新课(20分钟)1. 介绍分式的概念,解释分式的组成和意义。
2. 讲解分式的基本性质,通过示例进行说明。
3. 引导学生观察分式的基本性质,让学生自己总结出分式的约分和通分方法。
4. 分组讨论,让学生互相交流自己的理解和方法。
三、练习(15分钟)1. 出示练习题,让学生独立完成。
2. 选取部分学生的作业进行讲解和点评。
四、应用(10分钟)1. 出示实际问题,让学生运用分式进行简化运算。
2. 分组讨论,让学生互相交流解题过程和答案。
五、总结(5分钟)1. 回顾本节课所学内容,让学生总结分式的概念和基本性质。
2. 强调分式的约分和通分方法的重要性和应用价值。
教学延伸:1. 进一步学习分式的运算规则和性质。
2. 应用分式解决更复杂的实际问题。
教学反思:本节课通过引入分数的概念,引导学生学习分式的概念和基本性质。
通过示例和练习,让学生掌握分式的约分和通分方法。
在教学过程中,要注意引导学生主动观察和思考,培养学生的逻辑思维能力。
同时,结合实际问题,让学生体验分式在实际中的应用价值,提高学生的学习兴趣和积极性。
初中分式认识教案
初中分式认识教案1. 让学生理解分式的定义,掌握分式的基本性质,了解分式与整式的区别和联系。
2. 培养学生运用分式解决实际问题的能力,提高学生的数学素养。
3. 培养学生合作交流、积极思考的良好学习习惯。
二、教学内容1. 分式的定义:分式是两个整式的比,分母不能为零。
2. 分式的基本性质:分式的分子、分母同时乘以(或除以)同一个非零整式,分式的值不变。
3. 分式与整式的区别和联系:整式是分式的特殊形式,分式是整式的推广。
三、教学重点与难点1. 重点:分式的定义,分式的基本性质。
2. 难点:分式与整式的区别和联系。
四、教学方法1. 采用自主探究、合作交流的学习方式,让学生在实践中掌握分式的定义和性质。
2. 利用多媒体课件,直观展示分式的生成过程,提高学生的学习兴趣。
3. 结合生活实例,引导学生运用分式解决实际问题。
五、教学过程1. 导入:复习整式的知识,引导学生思考整式在实际生活中的应用。
2. 新课导入:介绍分式的定义,让学生理解分式是两个整式的比,分母不能为零。
3. 讲解分式的基本性质,让学生通过实例感受分式的性质。
4. 分析分式与整式的区别和联系,引导学生理解分式是整式的推广。
5. 练习巩固:布置一些分式的基本运算题目,让学生独立完成,检验学习效果。
6. 拓展应用:给出一些实际问题,引导学生运用分式解决。
7. 课堂小结:回顾本节课所学内容,让学生总结分式的定义、性质及应用。
8. 布置作业:布置一些有关分式的练习题,巩固所学知识。
六、教学反思1. 课后认真反思本节课的教学效果,了解学生的掌握情况。
2. 对教学方法进行调整,以提高学生的学习兴趣和效果。
3. 关注学生在实际问题中的运用能力,提高学生的数学素养。
4. 针对学生的差异,给予个别辅导,帮助学生克服学习困难。
通过以上教学设计,希望能帮助学生更好地理解分式,提高学生的数学素养。
在实际教学中,教师应根据学生的实际情况灵活调整教学方法,关注学生的个体差异,使每位学生都能在数学学习中取得良好的成绩。
分式的概念教案
分式的概念教案一、教学目标1、知识与技能目标理解分式的概念,明确分式和整式的区别。
能够判断一个式子是否为分式。
2、过程与方法目标通过对分式与整式的比较,培养学生的分析、归纳和概括能力。
经历分式概念的形成过程,体会从特殊到一般、从具体到抽象的数学思维方法。
3、情感态度与价值观目标激发学生对数学的兴趣,培养学生的合作交流意识和探索精神。
让学生体会数学知识来源于生活,又服务于生活。
二、教学重难点1、教学重点分式的概念。
分式有意义、无意义和值为零的条件。
2、教学难点理解分式的概念,特别是分母不能为零的条件。
三、教学方法讲授法、讨论法、练习法四、教学过程(一)导入新课1、回顾整式的概念:单项式和多项式统称为整式。
例如:3x,5,x² 2x + 1 等都是整式。
2、创设情境,引入新课问题 1:一个长方形的面积为 10 平方厘米,长为 7 厘米,宽是多少厘米?列式:10÷7 = 10/7(厘米)问题 2:小明用 a 元钱买了 b 个笔记本,每个笔记本多少钱?列式:a÷b = a/b(元)观察上面两个式子,它们与整式有什么不同?引出本节课的课题——分式。
(二)讲授新课1、分式的概念一般地,如果 A、B 表示两个整式,并且 B 中含有字母,那么式子A/B 叫做分式。
其中 A 叫做分子,B 叫做分母。
强调:分式的分母 B 必须含有字母,这是分式与整式的根本区别。
例如:5/x,(x + 1)/(x 1),(x²+ 2x + 1)/(x + 3) 等都是分式。
而 3x,5,x² 2x + 1 等都是整式。
2、分式有意义、无意义和值为零的条件(1)分式有意义的条件:分母不等于零。
即:当B ≠ 0 时,分式 A/B 有意义。
例如:对于分式 5/(x 1),当x 1 ≠ 0,即x ≠ 1 时,分式有意义。
(2)分式无意义的条件:分母等于零。
即:当 B = 0 时,分式 A/B 无意义。
八年级数学下册《分式》教案、教学设计
一、教学目标
(一)知识与技能
1.了解分式的定义,理解分式表示的几何意义。
2.学会分式的化简,掌握分式的基本性质,如约分、通分等。
3.能够进行分式的加减乘除运算,掌握运算规律,提高运算速度和准确性。
4.能够将实际问题转化为分式问题,运用分式解决实际问题。
(二)过程与方法
4.教师将根据作业完成情况进行评价,关注学生的知识掌握、能力提升和情感态度等方面。
2.自主探究,合作交流:
(1)引导学生自主探究分式的定义,通过实际例子让学生体会分式的几何意义。
(2)组织学生进行小组讨论,发现分式的基本性质和运算规律,提高学生的合作能力。
3.精讲精练,突破难点:
(1)针对分式的化简和运算规律,教师进行详细讲解,通过典型例题让学生掌握解题方法。
(2)设计不同难度的练习题,让学生在练习中巩固知识,逐步突破难点。
在教学过程中,教师应关注学生的参与度,调动学生的积极性,鼓励学生主动探究、合作交流。同时,注重分层教学,针对不同学生的需求设计教学内容,使每个学生都能在课堂上得到有效的提升。通过本节课的学习,使学生掌握分式知识,提高数学素养,为后续学习打下坚实基础。
五、作业布置
为了巩固学生对分式的理解和应用,以及检验学生对课堂所学知识的掌握程度,特布置以下作业:
3.在解决实际问题时,难以将问题转化为分式问题,缺乏运用分式解决实际问题的能力。
针对以上情况,教师应关注学生的认知发展水平,适时给予引导和启发,帮助学生搭建起分式知识的框架。在教学过程中,注重培养学生的抽象思维能力和问题解决能力,使学生在掌握分式知识的同时,提高数学素养。
三、教学重难点和教学设想
(一)教学重难点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南省洛阳市下峪镇初级中学八年级数学下册《分式的概念》教案 主持人: 时间
参加人员 地点 主备人 课题 分式的概念
教学
目标
知识与技能:经历实际问题的解决过程,从中认识分式,并能概括分式
2、过程与方法:使学生能正确地判断一个代数式是否是分式
3.情感态度与价值观:。
能通过回忆分数的意义,类比地探索分式的意义及分式的值如某一特定情况的条件,渗透数学中的类比,分类等数学思想。
重、难点
即考点
分析 重点:探索分式的意义及分式的值为某一特定情况的条件。
难点:能通过回忆分数的意义,探索分式的意义及分式的值为某一特定情况的条件。
分析:分式的混合运算的关键是掌握异分母分式的通分以及因式分解的熟练程度
课时安排 1课时 教具使用
彩色粉笔 教 学 环 节 安 排
备 注 (一)复习与情境导入:填空
(1)面积为2平方米的长方形一边长为3米,则它的另一边长为 米。
(2)面积为S 平方米的长方形一边长为a 米,则它的另一边长为 米。
(3)一箱苹果售价p 元,总重m 千克,箱重n 千克,则每千克苹果的住售
价是 元。
(4)根据一组数据的规律填空:1,16
1,91,41…… (用n 表示) 观察你列出的式子,与以前学过的有什么不同?像这样的式子叫分式。
先根据题意列代数式,并观察出它们的共性:分母中含字母的式子。
(二)实践与探索
例1、下列各式中,哪些是整式?哪些是分式?
(1)x 1; (2)2
x ; (3)y x xy +2; (4)33y x -.
例2、探究:
练习 讨论探索
当x 取什么数时,分式
2||24x x -- (1)有意义 (2)值为零? 例3、已知分式
b
ax a x +-2,当x=3时,分式值为0,当x=-3时,分式无意义,求a,b 的值。
可类比分数来解。
讨论探索
(四)小结与作业 分式的概念和分式有意义的条件。
作
业 布
置 本章复习B 组题
重难点及考点巩固性练习五,达标训练
1.下列各式分别回答哪些是整式?哪些是分式?
5
2
+
x
,
m
n
, 2a-3b,
3
2
-
y
y
,
)2
)(
1
(
9
2
-
-
-
x
x
x
,
5
3
-
2 :分式
2
3
y
y
+
-
,当y时,分式有意义;当y时,分式没有意义;当y时,分式的值为0。
3:讨论探索:当x取什么数时,分式
2
||2
4
x
x
-
-
(1)有意义(2)值为零?。