关于高等数学复习资料归纳大全
(完整版)高等数学完全归纳笔记(全)

一、函数与极限 (2)1、集合的概念 (2)2、常量与变量 (3)2、函数 (4)3、函数的简单性态 (4)4、反函数 (5)5、复合函数 (6)6、初等函数 (6)7、双曲函数及反双曲函数 (7)8、数列的极限 (9)9、函数的极限 (10)10、函数极限的运算规则 (12)一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。
如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。
⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
(完整版)高数知识点总结

高数重点知识总结1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(x a y =),三角函数(y=sinx),常数函数(y=c)2、分段函数不是初等函数。
3、无穷小:高阶+低阶=低阶 例如:1lim lim020==+→→x xxx x x x 4、两个重要极限:()e x ex xxxx xx x =⎪⎭⎫⎝⎛+=+=∞→→→11lim 1lim )2(1sin lim )1(10 经验公式:当∞→→→)(,0)(,0x g x f x x ,[])()(lim )(0)(1lim x g x f x g x x x x ex f →=+→例如:()33lim 10031lim -⎪⎭⎫ ⎝⎛-→==-→e ex x x xx x5、可导必定连续,连续未必可导。
例如:||x y =连续但不可导。
6、导数的定义:()0000')()(lim)(')()(limx f x x x f x f x f xx f x x f x x x =--=∆-∆+→→∆7、复合函数求导:[][])(')(')(x g x g f dxx g df •= 例如:xx x x x x x y x x y ++=++=+=24122211', 8、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx例如:yxdx dy ydy xdx y xy yy x y x -=⇒+-=⇒=+=+22,),2('0'22,),1(122左右两边同时微分法左右两边同时求导解:法 9、由参数方程所确定的函数求导:若⎩⎨⎧==)()(t h x t g y ,则)(')('//t h t g dt dx dt dy dx dy ==,其二阶导数:()[])(')('/)('/)/(/22t h dt t h t g d dt dx dt dx dy d dx dx dy d dx y d === 10、微分的近似计算:)(')()(000x f x x f x x f •∆=-∆+ 例如:计算 ︒31sin11、函数间断点的类型:(1)第一类:可去间断点和跳跃间断点;例如:xxy sin =(x=0是函数可去间断点),)sgn(x y =(x=0是函数的跳跃间断点)(2)第二类:振荡间断点和无穷间断点;例如:⎪⎭⎫ ⎝⎛=x x f 1sin )((x=0是函数的振荡间断点),xy 1=(x=0是函数的无穷间断点) 12、渐近线:水平渐近线:c x f y x ==∞→)(lim铅直渐近线:.)(lim 是铅直渐近线,则若,a x x f ax =∞=→斜渐近线:[]ax x f b xx f a b ax y x x -==+=∞→∞→)(lim ,)(lim,即求设斜渐近线为例如:求函数11223-+++=x x x x y 的渐近线13、驻点:令函数y=f(x),若f'(x0)=0,称x0是驻点。
高等数学基础复习资料

高等数学基础复习资料一、引言高等数学作为大学数学的重要组成部分,是理工科学生必修的一门课程。
作为一门基础性的学科,高等数学为学生奠定了后续学习的数学基础,并为他们建立了抽象思维和逻辑推理能力奠定了基础。
本文将为大家提供一份高等数学基础复习资料,帮助学生系统回顾相关知识点,提高自己的数学水平。
二、数列与极限1. 数列的概念及表示方法- 数列的定义与本质特征- 数列的表示方法:通项公式、递推公式2. 数列的极限- 数列极限的定义与判定方法- 数列收敛与发散的判断- 数列极限的性质与运算规则3. 无穷级数- 级数的概念与收敛性判断- 常见级数的收敛性判断方法- 级数收敛的性质与运算规则三、函数与极限1. 函数的概念与性质- 函数的定义与分类- 函数的图像与性质2. 函数的极限- 函数极限的定义与性质- 常见函数极限的计算方法- 无穷小量与无穷大量的定义与性质3. 一元函数的连续性与导数- 函数连续性的定义与判断- 函数导数的定义与计算方法- 函数导数的性质与应用四、微分学1. 一元函数的微分学- 函数微分的定义与计算方法- 微分的几何意义与应用- 高阶微分与泰勒公式2. 函数的极值与最值- 函数极值的判定与求解- 条件极值与拉格朗日乘数法3. 函数的凸性与曲线的形状- 函数凸性的定义与判定方法- 曲线的拐点与渐进线五、积分学1. 定积分与不定积分- 定积分的定义与性质- 定积分计算的方法与技巧- 不定积分的定义与计算方法2. 反常积分- 反常积分的概念与判定- 常见反常积分的计算方法3. 微积分基本定理与应用- 微积分基本定理的表述与应用- 曲线下面积的计算- 参数方程与极坐标下的积分六、常微分方程1. 常微分方程的基本概念- 常微分方程的定义与分类- 一阶常微分方程的常见形式2. 一阶常微分方程的解法- 可分离变量方程的求解- 线性方程的求解- 齐次与非齐次方程的解法3. 高阶常微分方程- 二阶常微分方程解的一般性质- 常系数二阶齐次线性微分方程的解法- 特征方程求解与常系数二阶非齐次线性微分方程的解法七、向量代数与空间解析几何1. 向量的概念与性质- 向量的基本运算与性质- 向量的数量积与向量积2. 空间直线与平面- 点、直线与平面的位置关系- 空间直线的方程与相交关系- 空间平面的方程与位置关系3. 空间几何体的体积与曲面积分- 空间几何体的体积计算- 曲面积分的概念与计算方法八、多元函数微分学1. 多元函数的偏导数- 偏导数的定义与计算方法- 偏导数的几何意义与性质2. 多元函数的方向导数与梯度- 方向导数的定义与计算方法- 梯度的定义与性质3. 多元函数的极值与最值- 多元函数的极值点与极值- 约束条件下的极值求解九、多元函数积分学1. 二重积分与三重积分- 二重积分的定义与计算方法- 三重积分的定义与计算方法2. 极坐标与球坐标下的积分计算- 极坐标下的二重积分与三重积分- 球坐标下的三重积分3. 变量替换与重积分- 变量替换的基本思想与方法- 重积分的计算方法与应用十、常微分方程与偏微分方程初步1. 常微分方程初值问题的求解- 常微分方程初值问题的基本概念- 高阶线性常微分方程初值问题的求解2. 偏微分方程的基本概念与分类- 偏微分方程的基本定义与分类- 一阶偏微分方程的求解方法初探3. 偏微分方程边值问题与特解- 偏微分方程边值问题的基本概念- 常见偏微分方程的特解求解方法结语通过对高等数学基础内容的系统复习,我们可以巩固数理基础,提高数学水平,为后续的学习和研究打下坚实的基础。
高数知识点复习资料

x 1
tan x s)
2 x 1 2 x 1 2 x1 2 2 lim 1 2 x 1 2 x 1
x3 x 3 x 2 9 【求解示例】解:因为 x 3 ,从而可得 x 3 ,所以原 x 3 x 3 1 1 式 lim 2 lim lim x 3 x 9 x 3 x 3 x 3 x 3 x 3 6
【题型示例】求值 lim (其中 x 3 为函数 f x
1 第二个重要极限: lim1 e x x
(一般地, lim f x lim f x 0 )
g x
x
1.由 xn a 化简得 n g , 2.即对 0 , N g ,当 n N 时,始终 有不等式 xn a 成立, ∴ limxn a
e 2 x1 2 x 1 e1 e
第五节 函数的连续性 ○函数连续的定义
x x0 x x0
2 x2 lim
lim f x lim f x f x0
○间断点的分类
跳越间断点(不等) 第一类间断点(左右极 限存在) 可去间断点(相等) 第二类间断点 ) 无穷间断点(极限为 (特别地,可去间断点能在分式中约去相应公因式)
x2 a2 1
(或:过 y f x 图像上点 a, f a 处的切线与法线 方程) 【求解示例】 1. y f x , y |x a f a 2.切线方程: y f a f a x a 法线方程: y f a
大学高等数学最全复习内容汇总

例(P128) 3 ; (P130) 5、6
3、弹性函数 在点 x0 处的弹性为
Ey Ex x x0
f ( x0 )
x0 f ( x0 )
函数y=f(x)在点x0处的弹性反映了当自变量变化1%时, 函数y变化的百分数为 Ey %.
Ex x x0
例(P79) 3,2(思考题)
5、导数的计算 (1)(u v) u v;
(2)(u
(4)设
v) uv
y f (u),
uv;
u
(3) u
( x),v
uv uv v2
,(v
0).
y'x y'u u'x 或
例 ( P43) 2 (4) (5)
dy dy du dx du dx
6、高阶导数 y ( y), y ( y)
x1 x
y x x ( ln x 1 ) 2x x
9、微分 (1)点微分
dy x x0 y x x0 x或 df ( x0 ) f '( x0 )x
(2)函数微分 dy ydx或 df ( x) f ( x)dx
( P51) 例2 ( P54) 1、2
10、微分的应用
(1) y x x0 dy x x0 f ( x0 ) x.
0
(3) lim f ( x) A (或), 则 lim f ( x) lim f ( x) A(或).
xa g( x)
xa g( x) xa g( x)
0 型
型
0 1 , 或 0 0 1.
0
转换求商的极限.
1 1 通分 0 0 .
00
00
00、1、0 型
00 1
3、积分上限函数及其导数
高等数学复习资料大全

高等数学复习第一讲函数、连续与极限一、理论要求1.函数概念与性质函数的基本性质(单调、有界、奇偶、周期)几类常见函数(复合、分段、反、隐、初等函数)2.极限极限存在性与左右极限之间的关系夹逼定理和单调有界定理会用等价无穷小和罗必达法则求极限3.连续函数连续(左、右连续)与间断理解并会应用闭区间上连续函数的性质(最值、有界、介值)二、题型与解法A.极限的求法(1)用定义求(2)代入法(对连续函数,可用因式分解或有理化消除零因子)(3)变量替换法(4)两个重要极限法(5)用夹逼定理和单调有界定理求(6)等价无穷小量替换法(7)洛必达法则与Taylor级数法(8)其他(微积分性质,数列与级数的性质)1.612arctan lim )21ln(arctan lim3030-=-=+->->-x x x x x x x x (等价小量与洛必达)2.已知2030)(6lim 0)(6sin limxx f x x xf x x x +=+>->-,求 解:20303')(6cos 6lim )(6sin limx xy x f x x x xf x x x ++=+>->- 72)0(''06)0(''32166'''''36cos 216lim6'''26sin 36lim 00=∴=+-=++-=++-=>->-y y xy y x x xy y x x x362722''lim 2'lim )(6lim0020====+>->->-y x y x x f x x x (洛必达)3.121)12(lim ->-+x xx x x (重要极限) 4.已知a 、b 为正常数,xx x x b a 30)2(lim +>-求 解:令]2ln )[ln(3ln ,)2(3-+=+=x x x x x b a xt b a t 2/300)()ln(23)ln ln (3limln lim ab t ab b b a a b a t xx x x x x =∴=++=>->-(变量替换) 5.)1ln(12)(cos lim x x x +>- 解:令)ln(cos )1ln(1ln ,)(cos 2)1ln(12x x t x t x +==+ 2/100212tan limln lim ->->-=∴-=-=e t x x t x x (变量替换)6.设)('x f 连续,0)0(',0)0(≠=f f ,求1)()(lim22=⎰⎰>-xx x dtt f xdtt f(洛必达与微积分性质)7.已知⎩⎨⎧=≠=-0,0,)ln(cos )(2x a x x x x f 在x=0连续,求a解:令2/1/)ln(cos lim 2-==>-x x a x (连续性的概念)三、补充习题(作业) 1.3cos 11lim-=---->-xx x e x x (洛必达)2.)1sin 1(lim 0xx ctgx x ->- (洛必达或Taylor ) 3.11lim 22=--->-⎰x xt x edte x (洛必达与微积分性质)第二讲 导数、微分及其应用一、理论要求 1.导数与微分导数与微分的概念、几何意义、物理意义会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导) 会求平面曲线的切线与法线方程2.微分中值定理 理解Roll 、Lagrange 、Cauchy 、Taylor 定理 会用定理证明相关问题3.应用会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图 会计算曲率(半径)二、题型与解法A.导数微分的计算 基本公式、四则、复合、高阶、隐函数、参数方程求导1.⎩⎨⎧=+-==52arctan )(2te ty y t x x y y 由决定,求dx dy2.x y x y x x y y sin )ln()(32+=+=由决定,求1|0==x dxdy解:两边微分得x=0时y x y y ==cos ',将x=0代入等式得y=1 3.y x x y y xy+==2)(由决定,则dx dy x )12(ln |0-==B.曲线切法线问题4.求对数螺线)2/,2/πθρρπθe e (),在(==处切线的直角坐标方程。
大学高数知识点总结

大学高数知识点总结大学高数知识点总结一、代数:1、函数及其图象:定义域、值域、增函数、减函数、奇函数、偶函数、有界函数、无界函数、相交函数、无穷小量的概念、函数的极限及其性质。
2、不等式:一元不等式与多元不等式的性质、解不等式的方法以及在几何中的应用。
3、导数:函数的导数的定义、性质、计算、利用导数解析函数的最值问题;高阶导数的概念以及利用它确定函数图象的单调性。
4、曲线的积分:曲线的面积、积分的定义、计算方法、利用积分求曲线面积、平面曲线的积分、特殊函数的积分。
5、复数:复数的概念、运算规则、虚部抽象概念、复数函数、复数解析函数及其图象、利用几何性质解决复数问题。
6、三角函数:三角函数的概念、函数表达式、图象、关系式、函数的性质、函数的变换、求解三角函数的方法、应用。
7、统计:概率的概念、抽样理论、统计分布、误差分析、检验理论。
二、初等数论:1、素数及其分解:素数的概念、素数的分解法、素数的基本性质、素数的充要条件。
2、同余理论:同余方程的概念、同余方程的解法、同余方程的性质、模的概念及其性质。
3、欧几里德算法:求最大公约数、求最小公倍数、求逆元、斯特林公式、欧几里得定理及其应用。
4、置换:置换的概念、置换的性质、置换的构成、置换的表示法、置换的应用。
5、图论:图的概念、图的构成、图的性质、图的表示法、图的生成算法、图的应用。
三、几何:1、几何形体:正n边形、正多边形、空间几何体、椭圆、圆锥、圆柱、圆台等几何形体的性质及其应用。
2、切线、切面:曲线的切线、曲面的切面、曲线的法线方向、曲面的法线方向、曲线的曲率、曲面的曲率及其定义。
3、投影:正射投影、透视投影、锥体投影等投影的概念及其应用。
4、立体视角:立体视角的概念、立体视角的定义及其应用。
四、空间几何:1、几何性质:投影的性质、平面的性质、空间的性质、直线的性质、平行线的性质、平面的性质、直线的性质、平行线的性质、面的性质、曲线的性质、曲面的性质、四边形的性质等。
(完整版)高等数学复习资料大全

《高等数学复习》教程第一讲函数、连续与极限一、理论要求1.函数概念与性质函数的基本性质(单调、有界、奇偶、周期)几类常见函数(复合、分段、反、隐、初等函数)2.极限极限存在性与左右极限之间的关系夹逼定理和单调有界定理会用等价无穷小和罗必达法则求极限3.连续函数连续(左、右连续)与间断理解并会应用闭区间上连续函数的性质(最值、有界、介值)二、题型与解法A.极限的求法(1)用定义求(2)代入法(对连续函数,可用因式分解或有理化消除零因子)(3)变量替换法(4)两个重要极限法(5)用夹逼定理和单调有界定理求(6)等价无穷小量替换法(7)洛必达法则与Taylor级数法(8)其他(微积分性质,数列与级数的性质)1.612arctan lim )21ln(arctan lim3030-=-=+->->-xx x x x x x x (等价小量与洛必达) 2.已知2030)(6lim 0)(6sin limxx f x x xf x x x +=+>->-,求 解:20303')(6cos 6lim )(6sin limx xy x f x x x xf x x x ++=+>->- 72)0(''06)0(''32166'''''36cos 216lim6'''26sin 36lim 00=∴=+-=++-=++-=>->-y y xy y x x xy y x x x362722''lim 2'lim )(6lim0020====+>->->-y x y x x f x x x (洛必达)3.121)12(lim ->-+x xx x x (重要极限) 4.已知a 、b 为正常数,xx x x b a 30)2(lim +>-求 解:令]2ln )[ln(3ln ,)2(3-+=+=x x x x x b a xt b a t 2/300)()ln(23)ln ln (3limln lim ab t ab b b a a b a t xx x x x x =∴=++=>->-(变量替换) 5.)1ln(12)(cos lim x x x +>- 解:令)ln(cos )1ln(1ln ,)(cos 2)1ln(12x x t x t x +==+ 2/100212tan limln lim ->->-=∴-=-=e t x x t x x (变量替换)6.设)('x f 连续,0)0(',0)0(≠=f f ,求1)()(lim22=⎰⎰>-xx x dtt f xdtt f(洛必达与微积分性质)7.已知⎩⎨⎧=≠=-0,0,)ln(cos )(2x a x x x x f 在x=0连续,求a解:令2/1/)ln(cos lim 2-==>-x x a x (连续性的概念)三、补充习题(作业) 1.3cos 11lim-=---->-xx x e x x (洛必达)2.)1sin 1(lim 0xx ctgx x ->- (洛必达或Taylor ) 3.11lim 22=--->-⎰x xt x edte x (洛必达与微积分性质)第二讲 导数、微分及其应用一、理论要求 1.导数与微分导数与微分的概念、几何意义、物理意义会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导) 会求平面曲线的切线与法线方程2.微分中值定理 理解Roll 、Lagrange 、Cauchy 、Taylor 定理 会用定理证明相关问题3.应用会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图 会计算曲率(半径)二、题型与解法A.导数微分的计算 基本公式、四则、复合、高阶、隐函数、参数方程求导1.⎩⎨⎧=+-==52arctan )(2te ty y t x x y y 由决定,求dx dy2.x y x y x x y y sin )ln()(32+=+=由决定,求1|0==x dxdy解:两边微分得x=0时y x y y ==cos ',将x=0代入等式得y=1 3.y x x y y xy+==2)(由决定,则dx dy x )12(ln |0-==B.曲线切法线问题4.求对数螺线)2/,2/πθρρπθe e (),在(==处切线的直角坐标方程。
公共课《高等数学》复习资料

公共课《高等数学》复习资料1一、选择题1、下列曲线中经过原点的为A 1y x =+B 2y x x =- C cos y x = D 221x y +=2、函数()f x =1(2)(3)x x x +-- 的所有间断点为A x =-1B x =2C x =3D x =2, x =33、函数sin xy x=的微分dy A 2cos sin x x x x - B 2sin cos x x x x - C 2cos sin x x x x -dx D 2sin cos x x x x -dx4、已知cos x 是()f x 的一个原函数,则不定积分()f x dx ⎰=A sin x C +B cos xC + C sin x C -+D cos x C +5、设函数(,)f x y =()h x ()g y 在点(,00x y )的某领域内有定义,且存在一阶偏导数,则y f (,00x y )=A (,)(,)lim 00000x f x t y f x y t →+-B (,)(,)lim 00000x f x t y t f x y t →++-C ()()lim ()0000x g y t g y h x t →+-D ()()lim 000x g y t g y t→+- 二、填空题1、点P (3,2,0)到平面3270x y -++=的距离为 。
2、已知函数(,)f x y =x y x y -+,则(,)11f y x= 。
3、微分方程''3xy y e --=的特解*y = 。
4、齐次方程组123123123000x x x x x x x x x λλλ++=⎧⎪++=⎨⎪++=⎩只有零解,则λ应满足 。
5、ln()limln 1n n n→∞+= 。
三、计算题 1、求曲线211y x =+在点(1,12)处的切线方程。
2、求极限21lim 2xx x x →∞++。
高等数学复习资料大全

高等数学复习资料大全高等数学复习资料大全一、函数的极限1、函数极限的定义:当函数f(x)在x趋近于某一值时,函数值无限接近于某一确定的数值A,则称A为函数f(x)在x趋近于这一值时的极限。
2、函数极限的性质:(1)唯一性:若极限存在,则唯一。
(2)局部有界性:在极限附近的函数值有界。
(3)局部保号性:在极限附近,函数值的符号保持不变。
(4)归结原则:若在某一区间内,f(x)恒等于A,则A为f(x)在该区间内的极限。
3、极限的四则运算:设、存在,则、也存在,且、、、。
4、复合函数的极限:设、存在,且g(x)在u=a处连续,则、存在,且、。
5、无穷小与无穷大:(1)无穷小:若当x趋近于某一值时,函数f(x)的极限为0,则称f(x)为当x趋近于这一值时的无穷小。
(2)无穷大:若当x趋近于某一值时,函数f(x)的绝对值无限增大,则称f(x)为当x趋近于这一值时的无穷大。
6、两个重要极限:(1)sin x / x = 1 (x趋近于0);(2)(1+k)^ x / kx = e^k (k为常数且k趋近于0)。
二、导数与微分1、导数的定义:设y=f(x),若增量 / 趋于0时,之间的比值也趋于0,则称f(x)在处可导,称此比值为f(x)在处的导数。
2、导数的几何意义:函数在某一点处的导数就是曲线在该点处的切线的斜率。
3、微分的定义:设y=f(x),若函数的增量可以表示为,其中A不依赖于,则称在处可微分,为f(x)在处的微分。
4、导数与微分的关系:若函数在某一点处可导,则在该点处必可微分;反之,若函数在某一点处可微分,则在该点处不一定可导。
5、导数的计算方法:(1)四则运算导数公式;(2)复合函数的导数;(3)隐函数求导法;(4)对数求导法;(5)高阶导数。
三、不定积分1、不定积分的定义:设f(x)是一个函数,是一个常数,则对f(x)进行积分所得的结果称为f(x)的不定积分,记为或。
2、不定积分的性质:(1)线性性质:和都存在,且;(2)恒等性质:都存在,且。
(完整版)高数知识点总结

高数重点知识总结1、基本初等函数: 反函数 (y=arctanx),对数函数 (y=lnx) ,幂函数 (y=x) ,指数函数 ( y a x ),三角函数 (y=sinx) ,常数函数 (y=c) 2、分段函数不是初等函数。
3、无量小:高阶 +低阶 =低阶比方: limx 2x lim x 1xxx 0x(1)limsin x11 x4、两个重要极限: 1(2) lim 1 x xe lim 1ex 0xx 0x xx 0 , f ( x) 0, g( x)f ( x)g ( x) lim f ( x) g (x)经验公式:当 x, lim 1ex x 0xx 01lim3xxe 3比方: lim 1 3x xe x 0x 05、可导必然连续,连续未必可导。
比方: y | x |连续但不可以导。
6、导数的定义: limf (xx) f ( x)f '( x)lim f (x)f (x 0 )f ' x 0x 0xxx 0xx 07、复合函数求导: df g( x)f ' g( x) ? g'( x)dx112 x2 x 1比方: yxx , y'2 xx4 x 2x x8、隐函数求导: (1)直接求导法; (2)方程两边同时微分,再求出dy/dxx 2 y 2 1比方: 解:法 (1), 左右两边同时求导 , 2x 2 yy' 0 y'xy法( 2), 左右两边同时微分 ,2xdx 2 ydy dy xdx y9、由参数方程所确定的函数求导: 若yg(t) ,则 dy dy / dtg '(t),其二阶导数:xh(t)dxdx / dth'(t)d 2 y d dy / dxd (dy / dx)d g' (t ) / h'(t )dt dtdx 2dxdx / dth' (t )10、微分的近似计算: f ( x 0 x) f ( x 0 )x ? f '( x 0 ) 比方:计算 sin 3111、函数中止点的种类: (1) 第一类:可去中止点和跳跃中止点;比方:y sin x ( x=0x 是函数可去中止点) , y sgn(x) (x=0 是函数的跳跃中止点)(2) 第二类:振荡中止点和无量中止点;比方:f ( x) sin1 (x=0 是函数的振荡中止点) , y 1(x=0 是函xx数的无量中止点) 12、渐近线:水平渐近线: ylim f (x)cx铅直渐近线: 若,lim f ( x),则 x a 是铅直渐近线 .x a斜渐近线: 设斜渐近线为 yax b, 即求 a limf ( x), b lim f ( x)axxxx比方:求函数 yx3x 2x 1的渐近线x 2113、驻点:令函数 y=f(x) ,若 f'(x0)=0 ,称 x0 是驻点。
(完整word版)高等数学复习资料大全(word文档良心出品)

《高等数学复习》教程第一讲 函数、连续与极限一、理论要求 1.函数概念与性质 函数的基本性质(单调、有界、奇偶、周期) 几类常见函数(复合、分段、反、隐、初等函数) 2.极限极限存在性与左右极限之间的关系 夹逼定理和单调有界定理会用等价无穷小和罗必达法则求极限 3.连续函数连续(左、右连续)与间断理解并会应用闭区间上连续函数的性质(最值、有界、介值)二、题型与解法A.极限的求法 (1)用定义求(2)代入法(对连续函数,可用因式分解或有理化消除零因子) (3)变量替换法 (4)两个重要极限法(5)用夹逼定理和单调有界定理求 (6)等价无穷小量替换法(7)洛必达法则与Taylor 级数法(8)其他(微积分性质,数列与级数的性质) 1.612arctan lim )21ln(arctan lim3030-=-=+->->-xx x x x x x x (等价小量与洛必达) 2.已知2030)(6lim0)(6sin limx x f x x xf x x x +=+>->-,求 解:20303')(6cos 6lim )(6sin limx xy x f x x x xf x x x ++=+>->- 72)0(''06)0(''32166'''''36cos 216lim6'''26sin 36lim 00=∴=+-=++-=++-=>->-y y xy y x x xy y x x x362722''lim 2'lim )(6lim0020====+>->->-y x y x x f x x x (洛必达) 3.121)12(lim ->-+x xx x x (重要极限)4.已知a 、b 为正常数,xx x x b a 30)2(lim +>-求 解:令]2ln )[ln(3ln ,)2(3-+=+=x x x x x b a xt b a t 2/300)()ln(23)ln ln (3limln lim ab t ab b b a a b a t xx x x x x =∴=++=>->-(变量替换) 5.)1ln(12)(cos lim x x x +>-解:令)ln(cos )1ln(1ln ,)(cos 2)1ln(12x x t x t x +==+ 2/100212tan limln lim ->->-=∴-=-=e t x x t x x (变量替换)6.设)('x f 连续,0)0(',0)0(≠=f f ,求1)()(lim22=⎰⎰>-xx x dtt f xdtt f(洛必达与微积分性质)7.已知⎩⎨⎧=≠=-0,0,)ln(cos )(2x a x x x x f 在x=0连续,求a解:令2/1/)ln(cos lim 2-==>-x x a x (连续性的概念)三、补充习题(作业) 1.3cos 11lim-=---->-xx x e x x (洛必达)2.)1sin 1(lim 0xx ctgx x ->- (洛必达或Taylor ) 3.11lim 22=--->-⎰x xt x edte x (洛必达与微积分性质)第二讲 导数、微分及其应用一、理论要求1.导数与微分 导数与微分的概念、几何意义、物理意义会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导) 会求平面曲线的切线与法线方程2.微分中值定理 理解Roll 、Lagrange 、Cauchy 、Taylor 定理 会用定理证明相关问题3.应用 会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图 会计算曲率(半径)二、题型与解法A.导数微分的计算 基本公式、四则、复合、高阶、隐函数、参数方程求导 1.⎩⎨⎧=+-==52arctan )(2te ty y t x x y y 由决定,求dx dy2.x y x y x x y y sin )ln()(32+=+=由决定,求1|0==x dxdy解:两边微分得x=0时y x y y ==cos ',将x=0代入等式得y=1 3.y x x y y xy+==2)(由决定,则dx dy x )12(ln |0-==B.曲线切法线问题 4.求对数螺线)2/,2/πθρρπθe e (),在(==处切线的直角坐标方程。
高数复习重点梳理

高数复习重点梳理
第一章:导数与微分
在高数复习中,导数与微分是非常重要的概念,它们是微积分的基础。
导数表
示函数在某一点上的变化率,微分则表示函数在该点附近的近似线性变化。
在学习导数与微分时,需要掌握的重点包括:
1.导数的定义与性质
2.基本导数的求法
3.高阶导数
4.微分的定义与性质
5.隐函数与参数方程的导数与微分
6.微分中值定理
第二章:不定积分与定积分
不定积分与定积分是微积分的另一个重要内容,它们是对函数积分的不同形式。
在学习不定积分与定积分时,需要注意以下内容:
1.不定积分的基本性质
2.基本的不定积分表
3.定积分的定义与性质
4.定积分的应用:计算面积、求解定积分方程等
5.变限积分与定积分的运算法则
6.定积分的几何应用
第三章:微分方程
微分方程是数学中一个重要的研究对象,它描述了函数的导数与自身之间的关系。
在学习微分方程时,需要了解以下内容:
1.微分方程的分类与基本概念
2.一阶微分方程的求解方法
3.高阶微分方程的求解方法
4.微分方程的初值问题
5.线性微分方程
6.微分方程的物理应用
第四章:级数
级数是数学分析中的一个重要概念,它描述了无穷序列之和的性质。
在学习级数时,需要牢记以下要点:
1.级数收敛与发散的判别法
2.正项级数收敛的性质
3.常用级数的收敛性质
4.级数的运算:加法、乘法、除法
5.幂级数及其收敛半径
6.泰勒级数与麦克劳林级数的应用
以上是高等数学复习中的重点内容梳理,希望对你的复习有所帮助。
祝你取得优异的成绩!。
高数总结知识点

高数总结知识点一、函数与极限函数的概念、性质及其图像。
函数的极限定义、性质及其运算。
无穷小与无穷大的概念及关系。
极限存在准则(夹逼准则、单调有界准则等)。
二、导数与微分导数的定义、性质及几何意义。
导数的计算(包括基本初等函数的导数、复合函数求导法则、隐函数求导、参数方程求导等)。
高阶导数的概念及计算。
微分的定义、性质及运算。
三、微分中值定理与导数的应用微分中值定理(罗尔定理、拉格朗日中值定理、泰勒定理等)。
洛必达法则及其应用。
函数的单调性、极值、最值及凹凸性的判定。
曲线的渐近线、拐点及图形的描绘。
四、不定积分与定积分不定积分的概念、性质及基本积分公式。
不定积分的计算(包括凑微分法、换元积分法、分部积分法等)。
定积分的概念、性质及计算。
定积分的应用(如面积、体积、弧长、功、平均值等的计算)。
五、向量代数与空间解析几何向量的概念、性质及运算。
空间直角坐标系及点的坐标表示。
向量的坐标表示及运算。
平面与直线的方程及其位置关系。
六、多元函数微分学多元函数的概念、性质及极限与连续。
偏导数的定义、计算及几何意义。
全微分的概念及计算。
多元函数的极值与最值问题。
七、多元函数积分学二重积分的概念、性质及计算。
三重积分的概念及计算。
曲线积分与曲面积分的概念及计算。
八、无穷级数常数项级数的概念、性质及收敛判别法。
函数项级数的概念及一致收敛性。
幂级数的概念、性质及运算。
傅里叶级数及其应用。
九、微分方程微分方程的概念及分类。
一阶微分方程的解法(分离变量法、凑微分法等)。
高阶微分方程的解法(降阶法、幂级数解法等)。
微分方程的应用(如物理、化学、生物等领域中的实际问题)。
以上只是高等数学的一些主要知识点,实际上高等数学的内容非常丰富且深入,需要学习者不断地探索和实践。
高等数学知识点归纳

第一讲: 极限与连续一. 数列函数: 1. 类型:(1)数列: *()n a f n =; *1()n n a f a += (2)初等函数:(3)分段函数: *0102()(),()x x f x F x x x f x ≤⎧=⎨>⎩; *00()(),x x f x F x x x a ≠⎧=⎨=⎩;* (4)复合(含f )函数: (),()y f u u x ϕ== (5)隐式(方程): (,)0F x y =(6)参式(数一,二): ()()x x t y y t =⎧⎨=⎩(7)变限积分函数: ()(,)xaF x f x t dt =⎰(8)级数和函数(数一,三): 0(),n n n S x a x x ∞==∈Ω∑2. 特征(几何):(1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ⇒∀--定号) (2)奇偶性与周期性(应用).3. 反函数与直接函数: 11()()()y f x x f y y f x --=⇔=⇒=二. 极限性质:1. 类型: *lim n n a →∞; *lim ()x f x →∞(含x →±∞); *0lim ()x x f x →(含0x x ±→)2. 无穷小与无穷大(注: 无穷量):3. 未定型:000,,1,,0,0,0∞∞∞-∞⋅∞∞∞4. 性质: *有界性, *保号性, *归并性 三. 常用结论:11n n →, 1(0)1n a a >→, 1()m a x (,,)nnn na b c a b c ++→, ()00!na a n >→1(0)x x →→∞, 0lim 1xx x +→=, l i m 0n x x x e →+∞=, ln lim 0n x x x→+∞=, 0l i m l n 0nx x x +→=, 0,xx e x →-∞⎧→⎨+∞→+∞⎩四. 必备公式:1. 等价无穷小: 当()0u x →时,s i n()()u x u x ; tan ()()u x u x ; 211cos ()()2u x u x -; ()1()u x e u x -; ln(1())()u x u x +; (1())1()u x u x αα+-;a r c s in ()(u x u x ; arctan ()()u x u x2. 泰勒公式:(1)2211()2!xe x x o x =+++; (2)221ln(1)()2x x x o x +=-+;(3)341sin ()3!x x x o x =-+;(4)24511cos 1()2!4!x x x o x =-++;(5)22(1)(1)1()2!x x x o x αααα-+=+++. 五. 常规方法: 前提: (1)准确判断0,,1,0M α∞∞∞(其它如:00,0,0,∞-∞⋅∞∞); (2)变量代换(如:1t x=) 1. 抓大弃小()∞∞, 2. 无穷小与有界量乘积 (M α⋅) (注:1sin1,x x≤→∞) 3. 1∞处理(其它如:000,∞) 4. 左右极限(包括x →±∞):(1)1(0)x x→; (2)()xe x →∞; 1(0)x e x →; (3)分段函数: x , []x , max ()f x5. 无穷小等价替换(因式中的无穷小)(注: 非零因子)6. 洛必达法则 (1)先”处理”,后法则(00最后方法); (注意对比: 1ln lim 1x x x x →-与0ln lim 1x x x x→-)(2)幂指型处理: ()()ln ()()v x v x u x u x e=(如: 1111111(1)x x x x xee e e-++-=-)(3)含变限积分;(4)不能用与不便用7. 泰勒公式(皮亚诺余项): 处理和式中的无穷小 8. 极限函数: ()lim (,)n f x F x n →∞=(⇒分段函数)六. 非常手段 1. 收敛准则:(1)()lim ()n x a f n f x →+∞=⇒(2)双边夹: *?n n n b a c ≤≤, *,?n n b c a →(3)单边挤: 1()n n a f a += *21?a a ≥ *?n a M ≤ *'()0?f x >2. 导数定义(洛必达?): 00l i m'()x ff x x→= 3. 积分和: 10112l i m [()()()]()n nf f f f x d x n n n n→∞+++=⎰, 4. 中值定理: lim [()()]lim '()x x f x a f x a f ξ→+∞→+∞+-=5. 级数和(数一三):(1)1n n a ∞=∑收敛lim 0n n a →∞⇒=, (如2!lim n n n n n →∞) (2)121lim()n n n n a a a a ∞→∞=+++=∑,(3){}n a 与11()nn n aa ∞-=-∑同敛散七. 常见应用:1. 无穷小比较(等价,阶): *(),(0)?n f x kx x →(1)(1)()(0)'(0)(0)0,(0)n n f f f f a -=====⇔()()!!nn na a f x x x x n n α=+ (2)()xxn f t dtkt dt ⎰⎰2. 渐近线(含斜):(1)()lim,lim[()]x x f x a b f x ax x→∞→∞==-()f x ax b α⇒++(2)()f x ax b α=++,(10x→)3. 连续性: (1)间断点判别(个数); (2)分段函数连续性(附:极限函数, '()f x 连续性) 八. [,]a b 上连续函数性质1. 连通性: ([,])[,]f a b m M = (注:01λ∀<<, “平均”值:0()(1)()()f a f b f x λλ+-=)2. 介值定理: (附: 达布定理)(1)零点存在定理: ()()0f a f b <0()0f x ⇒=(根的个数); (2)()0(())'0xaf x f x dx =⇒=⎰.第二讲:导数及应用(一元)(含中值定理)一. 基本概念:1. 差商与导数: '()f x =0()()limx f x x f x x →+-; 0'()f x =000()()lim x x f x f x x x →--(1)0()(0)'(0)limx f x f f x →-= (注:0()lim(x f x A f x→=连续)(0)0,'(0)f f A ⇒==) (2)左右导: ''00(),()f x f x -+;(3)可导与连续; (在0x =处, x 连续不可导; x x 可导) 2. 微分与导数:()()'()()'()f f x x f x f x x o x df f x dx =+-=+⇒=(1)可微⇔可导; (2)比较,f df ∆与"0"的大小比较(图示); 二. 求导准备:1. 基本初等函数求导公式; (注: (())'f x )2. 法则: (1)四则运算; (2)复合法则; (3)反函数1'dx dy y = 三. 各类求导(方法步骤):1. 定义导: (1)'()f a 与'()x a f x =; (2)分段函数左右导; (3)0()()limh f x h f x h h→+--(注: 0()(),x x F x f x x x a ≠⎧=⎨=⎩, 求:0'(),'()f x f x 及'()f x 的连续性) 2. 初等导(公式加法则):(1)[()]u f g x =, 求:0'()u x (图形题); (2)()()xaF x f t dt =⎰, 求:'()F x (注: ((,))',((,))',(())'x b baaaf x t dt f x t dt f t dt ⎰⎰⎰)(3)0102(),()x x f x y x x f x <⎧=⎨≥⎩,求''00(),()f x f x -+及0'()f x (待定系数) 3. 隐式((,)0f x y =)导: 22,dy d y dx dx (1)存在定理;(2)微分法(一阶微分的形式不变性). (3)对数求导法.4. 参式导(数一,二): ()()x x t y y t =⎧⎨=⎩, 求:22,dy d ydx dx5. 高阶导()()n f x 公式: ()()ax n n ax e a e =; ()11!()()n n n b n a bx a bx +=--; ()(sin )sin()2n n ax a ax n π=+⨯; ()(cos )cos()2n n ax a ax n π=+⨯()()1(1)2(2)()'"n n n n n n uv u v C u v C u v --=+++注: ()(0)n f与泰勒展式: 2012()nn f x a a x a x a x =+++++()(0)!n n f a n ⇒=四. 各类应用:1. 斜率与切线(法线); (区别: ()y f x =上点0M 和过点0M 的切线)2. 物理: (相对)变化率-速度;3. 曲率(数一二):ρ=曲率半径, 曲率中心, 曲率圆)4. 边际与弹性(数三): (附: 需求, 收益, 成本, 利润) 五. 单调性与极值(必求导) 1. 判别(驻点0'()0f x =): (1) '()0()f x f x ≥⇒; '()0()f x f x ≤⇒;(2)分段函数的单调性(3)'()0f x >⇒零点唯一; "()0f x >⇒驻点唯一(必为极值,最值). 2. 极值点:(1)表格('()f x 变号); (由0002'()'()''()lim0,lim 0,lim 00x x x x x x f x f x f x x x x x→→→≠≠≠⇒=的特点)(2)二阶导(0'()0f x =)注(1)f 与',"f f 的匹配('f 图形中包含的信息);(2)实例: 由'()()()()f x x f x g x λ+=确定点“0x x =”的特点. (3)闭域上最值(应用例: 与定积分几何应用相结合, 求最优) 3. 不等式证明(()0f x ≥)(1)区别: *单变量与双变量? *[,]x a b ∈与[,),(,)x a x ∈+∞∈-∞+∞? (2)类型: *'0,()0f f a ≥≥; *'0,()0f f b ≤≥*"0,(),()0f f a f b ≤≥; *00"()0,'()0,()0f x f x f x ≥=≥ (3)注意: 单调性⊕端点值⊕极值⊕凹凸性. (如: max ()()f x M f x M ≤⇔=) 4. 函数的零点个数: 单调⊕介值六. 凹凸与拐点(必求导!): 1. "y ⇒表格; (0"()0f x =)2. 应用: (1)泰勒估计; (2)'f 单调; (3)凹凸. 七. 罗尔定理与辅助函数: (注: 最值点必为驻点) 1. 结论: ()()'()()0F b F a F f ξξ=⇒== 2. 辅助函数构造实例: (1)()f ξ⇒()()xaF x f t dt =⎰(2)'()()()'()0()()()f g f g F x f x g x ξξξξ+=⇒= (3)()'()()()'()0()()f x f g f g F x g x ξξξξ-=⇒= (4)'()()()0f f ξλξξ+=⇒()()()x dxF x e f x λ⎰=;3. ()()0()n ff x ξ=⇔有1n +个零点(1)()n f x -⇔有2个零点4. 特例: 证明()()n fa ξ=的常规方法:令()()()n F x f x P x =-有1n +个零点(()n P x 待定)5. 注: 含12,ξξ时,分家!(柯西定理)6. 附(达布定理): ()f x 在[,]a b 可导,['(),'()]c f a f b ∀∈,[,]a b ξ∃∈,使:'()f c ξ= 八. 拉格朗日中值定理1. 结论: ()()'()()f b f a f b a ξ-=-; (()(),'()0a b ϕϕξϕξ<⇒∃∍>)2. 估计:'()f f x ξ=九. 泰勒公式(连接,',"f f f 之间的桥梁) 1. 结论: 2300000011()()'()()"()()"'()()2!3!f x f x f x x x f x x x f x x ξ=+-+-+-; 2. 应用: 在已知()f a 或()f b 值时进行积分估计十. 积分中值定理(附:广义): [注:有定积分(不含变限)条件时使用]第三讲: 一元积分学一. 基本概念: 1. 原函数()F x :(1)'()()F x f x =; (2)()()f x dx dF x =; (3)()()f x dx F x c =+⎰注(1)()()xaF x f t dt =⎰(连续不一定可导);(2)()()()()xx aax t f t dt f t dt f x -⇒⇒⎰⎰ (()f x 连续)2. 不定积分性质:(1)(())'()f x dx f x =⎰; (())()d f x dx f x dx =⎰(2)'()()f x dx f x c =+⎰; ()()d f x f x c=+⎰ 二. 不定积分常规方法1. 熟悉基本积分公式2. 基本方法: 拆(线性性)1212(()())()()kf x k gx d x k f x d x k g x d x+=+⎰⎰⎰3. 凑微法(基础): 要求巧,简,活(221sin cos x x =+)如: 211(),,ln ,2dxdx d ax b xdx dx d x a x=+==2=(1ln )(ln )x dx d x x =+=4. 变量代换:(1)常用(三角代换,根式代换,倒代换): 1sin ,,,x t t t t x====(2)作用与引伸(化简): x t =5. 分部积分(巧用):(1)含需求导的被积函数(如ln ,arctan ,()xax x f t dt ⎰);(2)“反对幂三指”: ,ln ,n axnx edx xxdx ⎰⎰(3)特别:()xf x dx ⎰ (*已知()f x 的原函数为()F x ; *已知'()()f x F x =)6. 特例: (1)11sin cos sin cos a x b x dx a x b x ++⎰; (2)(),()sin kxp x e dx p x axdx ⎰⎰快速法; (3)()()n v x dx u x ⎰三. 定积分: 1. 概念性质:(1)积分和式(可积的必要条件:有界, 充分条件:连续) (2)几何意义(面积,对称性,周期性,积分中值)*20(0)8a a π>=⎰; *()02baa bx dx +-=⎰ (3)附:()()baf x dx M b a ≤-⎰,()()()bbaaf xg x dx M g x dx ≤⎰⎰)(4)定积分与变限积分, 反常积分的区别联系与侧重2: 变限积分()()xax f t dt Φ=⎰的处理(重点)(1)f 可积⇒Φ连续, f 连续⇒Φ可导 (2)(())'xaf t dt ⎰()f x =; (()())'()x xaax t f t dt f t dt -=⎰⎰;()()()xaf x dt x a f x =-⎰(3)由函数()()xaF x f t dt =⎰参与的求导, 极限, 极值, 积分(方程)问题3. N L -公式:()()()baf x dx F b F a =-⎰(()F x 在[,]a b 上必须连续!)注: (1)分段积分, 对称性(奇偶), 周期性 (2)有理式, 三角式, 根式 (3)含()baf t dt ⎰的方程.4. 变量代换: ()(())'()baf x d x f u t u t d tβα=⎰⎰(1)00()()()aa f x dx f a x dx x a t =-=-⎰⎰,(2)()()()[()()]aaaaaf x dx f x dx x t f x f x dx --=-=-=+-⎰⎰⎰ (如:4411sin dx x ππ-+⎰)(3)2201sin n n n n I xdx I nπ--==⎰, (4)2200(sin )(cos )f x dx f x dx ππ=⎰⎰;20(sin )2(sin )f x dx f x dx ππ=⎰⎰,(5)(sin )(sin )2xf x dx f x dx πππ=⎰⎰,5. 分部积分(1)准备时“凑常数” (2)已知'()f x 或()xaf x =⎰时, 求()baf x dx ⎰6. 附: 三角函数系的正交性: 22200s i n c o s s i n c o s 0n x d x n x d x n x m x d x πππ===⎰⎰⎰2200sin sin cos cos ()0nx mxdx nx mxdx n m ππ=≠=⎰⎰222200sin cos nxdx nxdx πππ==⎰⎰四. 反常积分: 1. 类型: (1)(),(),()aa f x dx f x dx f x dx +∞+∞-∞-∞⎰⎰⎰(()f x 连续)(2)()baf x dx ⎰: (()f x 在,,()x a x b x c a c b ===<<处为无穷间断)2. 敛散;3. 计算: 积分法⊕N L -公式⊕极限(可换元与分部)4. 特例: (1)11p dx x+∞⎰; (2)101p dx x ⎰ 五. 应用: (柱体侧面积除外)1. 面积, (1)[()()];baS f x g x dx =-⎰(2)1()dcS f y dy -=⎰;(3)21()2S r d βαθθ=⎰; (4)侧面积:2(b a S f x π=⎰2. 体积: (1)22[()()]bx aV f x g x dx π=-⎰; (2)12[()]2()d by caV f y dy xf x dx ππ-==⎰⎰(3)0x x V =与0y y V = 3. 弧长: ds =(1)(),[,]y f x x a b =∈)as d x=⎰(2)12(),[,]()x x t t t t y y t =⎧∈⎨=⎩21t t s =⎰(3)(),[,]r r θθαβ=∈:s βαθ=⎰4. 物理(数一,二)功,引力,水压力,质心,5. 平均值(中值定理):(1)1[,]()baf a b f x dx b a =-⎰; (2)0()[0)limxx f t dt f x→+∞+∞=⎰, (f 以T 为周期:0()Tf t dt fT=⎰)第四讲: 微分方程一. 基本概念1. 常识: 通解, 初值问题与特解(注: 应用题中的隐含条件)2. 变换方程:(1)令()'""x x t y Dy =⇒=(如欧拉方程)(2)令(,)(,)'u u x y y y x u y =⇒=⇒(如伯努利方程) 3. 建立方程(应用题)的能力 二. 一阶方程:1. 形式: (1)'(,)y f x y =; (2)(,)(,)0M x y dx N x y dy +=; (3)()y a b =2. 变量分离型: '()()y f x g y =(1)解法:()()()()dyf x dx G y F x Cg y =⇒=+⎰⎰(2)“偏”微分方程:(,)zf x y x∂=∂; 3. 一阶线性(重点): '()()y p x y q x +=(1)解法(积分因子法): 00()01()[()()]()xx p x dxx x M x e y M x q x dx y M x ⎰=⇒=+⎰(2)变化: '()()x p y x q y +=;(3)推广: 伯努利(数一) '()()y p x y q x y α+= 4. 齐次方程: '()y y x=Φ (1)解法: '(),()ydu dxu u xu u x u u x =⇒+=Φ=Φ-⎰⎰(2)特例:111222a xb yc dy dx a x b y c ++=++ 5. 全微分方程(数一): (,)(,)0M x y dx N x y dy +=且N Mx y∂∂=∂∂ dU Mdx Ndy U C =+⇒=6. 一阶差分方程(数三): 1*()()x x x x x n xx y ca y ay b p x y x Q x b+=⎧-=⇒⎨=⎩三. 二阶降阶方程1. "()y f x =: 12()y F x c x c =++2. "(,')y f x y =: 令'()"(,)dpy p x y f x p dx=⇒== 3. "(,')y f y y =: 令'()"(,)dpy p y y pf y p dy=⇒== 四. 高阶线性方程: ()"()'()()a x y b x y c x y f x ++= 1. 通解结构:(1)齐次解: 01122()()()y x c y x c y x =+(2)非齐次特解: 1122()()()*()y x c y x c y x y x =++ 2. 常系数方程: "'()ay by cy f x ++= (1)特征方程与特征根: 20a b c λλ++=(2)非齐次特解形式确定: 待定系数; (附: ()ax f x ke =的算子法) (3)由已知解反求方程.3. 欧拉方程(数一): 2"'()ax y bxy cy f x ++=, 令2"(1),'t x e x y D D y xy Dy =⇒=-= 五. 应用(注意初始条件):1. 几何应用(斜率, 弧长, 曲率, 面积, 体积); 注: 切线和法线的截距2. 积分等式变方程(含变限积分); 可设()(),()0xaf x dx F x F a ==⎰3. 导数定义立方程: 含双变量条件()f x y +=的方程4. 变化率(速度)5. 22dv d x F ma dt dt === 6. 路径无关得方程(数一): Q Px y∂∂=∂∂ 7. 级数与方程:(1)幂级数求和; (2)方程的幂级数解法:201201,(0),'(0)y a a x a x a y a y =+++==8. 弹性问题(数三)第五讲: 多元微分与二重积分一. 二元微分学概念1. 极限, 连续, 单变量连续, 偏导, 全微分, 偏导连续(必要条件与充分条件), (1)000000(,),(,),(,)x y f f x x y y f f x x y f f x y y ∆=++∆=+∆=+(2)lim ,lim ,limy x x y f ff f f x y∆∆∆==∆∆(3),limx y f x f ydf + (判别可微性)注: (0,0)点处的偏导数与全微分的极限定义: 00(,0)(0,0)(0,)(0,0)(0,0)lim,(0,0)lim x y x y f x f f y f f f x y→→--==2. 特例:(1)22(0,0)(,)0,(0,0)xyx y f x y ⎧≠⎪+=⎨⎪=⎩: (0,0)点处可导不连续;(2)(0,0)(,)0,(0,0)f x y ≠==⎩: (0,0)点处连续可导不可微;二. 偏导数与全微分的计算:1. 显函数一,二阶偏导: (,)z f x y = 注: (1)yx 型; (2)00(,)xx y z ; (3)含变限积分2. 复合函数的一,二阶偏导(重点): [(,),(,)]z f u x y v x y =熟练掌握记号''"""12111222,,,,f f f f f 的准确使用 3. 隐函数(由方程或方程组确定): (1)形式: *(,,)0F x y z =; *(,,)0(,,)0F x y zG x y z =⎧⎨=⎩ (存在定理)(2)微分法(熟练掌握一阶微分的形式不变性): 0x y z F dx F dy F dz ++= (要求: 二阶导) (3)注: 00(,)x y 与0z 的及时代入 (4)会变换方程.三. 二元极值(定义?);1. 二元极值(显式或隐式): (1)必要条件(驻点); (2)充分条件(判别)2. 条件极值(拉格朗日乘数法) (注: 应用)(1)目标函数与约束条件: (,)(,)0z f x y x y ϕ=⊕=, (或: 多条件) (2)求解步骤: (,,)(,)(,)L x y f x y x y λλϕ=+, 求驻点即可. 3. 有界闭域上最值(重点).(1)(,){(,)(,)0}z f x y M D x y x y ϕ=⊕∈=≤ (2)实例: 距离问题四. 二重积分计算:1. 概念与性质(“积”前工作): (1)Dd σ⎰⎰,(2)对称性(熟练掌握): *D 域轴对称; *f 奇偶对称; *字母轮换对称; *重心坐标; (3)“分块”积分: *12D D D =; *(,)f x y 分片定义; *(,)f x y 奇偶2. 计算(化二次积分):(1)直角坐标与极坐标选择(转换): 以“D ”为主; (2)交换积分次序(熟练掌握). 3. 极坐标使用(转换): 22()f x y +附: 222:()()D x a y b R -+-≤; 2222:1x y D a b+≤;双纽线222222()()x y a x y +=- :1D x y +≤ 4. 特例:(1)单变量: ()f x 或()f y (2)利用重心求积分: 要求: 题型12()Dk x k y dxdy +⎰⎰, 且已知D 的面积DS与重心(,)x y5. 无界域上的反常二重积分(数三) 五: 一类积分的应用(():;;;;f M d D L σΩ⇒ΩΩΓ∑⎰):1. “尺寸”: (1)D Dd Sσ⇔⎰⎰;(2)曲面面积(除柱体侧面);2. 质量, 重心(形心), 转动惯量;3. 为三重积分, 格林公式, 曲面投影作准备.第六讲: 无穷级数(数一,三)一. 级数概念1. 定义: (1){}n a , (2)12n n S a a a =+++; (3)lim n n S →∞(如1(1)!n nn ∞=+∑)注: (1)lim n n a →∞; (2)n q ∑(或1na ∑); (3)“伸缩”级数:1()n n a a +-∑收敛{}n a ⇔收敛. 2. 性质: (1)收敛的必要条件: lim 0n n a →∞=;(2)加括号后发散, 则原级数必发散(交错级数的讨论); (3)221,0n n n n s s a s s s s +→→⇒→⇒→; 二. 正项级数1. 正项级数: (1)定义: 0n a ≥; (2)特征: nS ; (3)收敛n S M ⇔≤(有界)2. 标准级数: (1)1p n ∑, (2)ln k nnα∑, (3)1ln kn n ∑ 3. 审敛方法: (注:222ab a b ≤+,ln ln ba ab =)(1)比较法(原理):np ka n(估计), 如10()n f x dx ⎰; ()()P n Q n ∑(2)比值与根值: *1limn n nu u +→∞*n (应用: 幂级数收敛半径计算)三. 交错级数(含一般项):1(1)n n a +-∑(0n a >)1. “审”前考察: (1)0?n a > (2)0?n a →; (3)绝对(条件)收敛? 注: 若1lim1n n na a ρ+→∞=>,则n u ∑发散2. 标准级数: (1)11(1)n n +-∑; (2)11(1)n p n +-∑; (3)11(1)ln n pn+-∑ 3. 莱布尼兹审敛法(收敛?) (1)前提:na∑发散; (2)条件: ,0n n a a →; (3)结论:1(1)n n a +-∑条件收敛.4. 补充方法:(1)加括号后发散, 则原级数必发散; (2)221,0n n n n s s a s s s s +→→⇒→⇒→. 5. 注意事项: 对比na∑;(1)nna-∑;na∑;2na∑之间的敛散关系四. 幂级数: 1. 常见形式: (1)nna x∑, (2)()nna x x -∑, (3)20()nna x x -∑2. 阿贝尔定理:(1)结论: *x x =敛*0R x x ⇒≥-; *x x =散*0R x x ⇒≤- (2)注: 当*x x =条件收敛时*R x x ⇒=-3. 收敛半径,区间,收敛域(求和前的准备) 注(1),n nn n a na x x n∑∑与n n a x ∑同收敛半径 (2)nna x∑与20()nna x x -∑之间的转换4. 幂级数展开法:(1)前提: 熟记公式(双向,标明敛域)23111,2!3!xe x x x R =++++Ω= 24111()1,22!4!x x e e x x R -+=+++Ω=35111(),23!5!x x e e x x x R --=+++Ω=3511sin ,3!5!x x x x R =-+-Ω= 2411cos 1,2!4!x x x R =-++Ω=;211,(1,1)1x x x x =+++∈--; 211,(1,1)1x x x x=-+-∈-+ 2311ln(1),(1,1]23x x x x x +=-+-∈-2311ln(1),[1,1)23x x x x x -=----∈-3511arctan ,[1,1]35x x x x x =-+-∈-(2)分解: ()()()f x g x h x =+(注:中心移动) (特别:021,x x ax bx c=++) (3)考察导函数: ()'()g x f x 0()()(0)xf xg x dx f ⇒=+⎰(4)考察原函数: 0()()xg x f x dx ⎰()'()f x g x ⇒=5. 幂级数求和法(注: *先求收敛域, *变量替换): (1)(),S x =+∑∑(2)'()S x =,(注意首项变化)(3)()()'S x =∑,(4)()"()"S x S x ⇒的微分方程 (5)应用:()(1)n nn n aa x S x a S ⇒=⇒=∑∑∑.6. 方程的幂级数解法7. 经济应用(数三):(1)复利: (1)n A p +; (2)现值: (1)n A p -+五. 傅里叶级数(数一): (2T π=)1. 傅氏级数(三角级数): 01()cos sin 2n n n a S x a nx b nx ∞==++∑2. Dirichlet 充分条件(收敛定理): (1)由()()f x S x ⇒(和函数) (2)1()[()()]2S x f x f x =-++ 3. 系数公式: 01()cos 1(),,1,2,3,1()sin n n a f x nxdx a f x dx n b f x nxdx πππππππππ---⎧=⎪⎪==⎨⎪=⎪⎩⎰⎰⎰4. 题型: (注: ()(),?f x S x x =∈) (1)2T π=且(),(,]f x x ππ=∈-(分段表示)(2)(,]x ππ∈-或[0,2]x π∈ (3)[0,]x π∈正弦或余弦 *(4)[0,]x π∈(T π=) *5. 2T l =6. 附产品: ()f x ⇒01()cos sin 2n n n a S x a nx b nx ∞==++∑00001()cos sin 2n n n a S x a nx b nx ∞=⇒=++∑001[()()]2f x f x =-++第七讲: 向量,偏导应用与方向导(数一)一. 向量基本运算1. 12k a k b +; (平行b a λ⇔=)2. a ; (单位向量(方向余弦) 01(c o s ,c o s ,c o s )a a aαβγ=) 3. a b ⋅; (投影:()a a b b a⋅=; 垂直:0a b a b ⊥⇔⋅=; 夹角:(,)a b a b a b⋅=)4. a b ⨯; (法向:,n a b a b =⨯⊥; 面积:S a b =⨯) 二. 平面与直线1.平面∏(1)特征(基本量): 0000(,,)(,,)M x y z n A B C ⊕= (2)方程(点法式): 000:()()()00A x xB y yC z z A x B yC zD π-+-+-=⇒+++= (3)其它: *截距式1x y za b c++=; *三点式2.直线L(1)特征(基本量): 0000(,,)(,,)M x y z s m n p ⊕= (2)方程(点向式): 000:x x y y z z L m n p---== (3)一般方程(交面式): 111122220A xB yC zD A x B y C z D +++=⎧⎨+++=⎩(4)其它: *二点式; *参数式;(附: 线段AB 的参数表示:121121121()(),[0,1]()x a a a t y b b b t t z c c c t=+-⎧⎪=+-∈⎨⎪=+-⎩)3. 实用方法: (1)平面束方程:11112222:()0A x B y C z D A x B y C z D πλ+++++++=(2)距离公式: 如点000(,)M x y 到平面的距离d =(3)对称问题;(4)投影问题.三. 曲面与空间曲线(准备) 1. 曲面(1)形式∑: (,,)0F x y z = 或(,)z f x y =; (注: 柱面(,)0f x y =) (2)法向(,,)(cos ,cos ,cos )x y z n F F F αβγ=⇒ (或(,1)x y n z z =--)2. 曲线(1)形式():()()x x t y y t z z t =⎧⎪Γ=⎨⎪=⎩, 或(,,)0(,,)0F x y z G x y z =⎧⎨=⎩;(2)切向: {'(),'(),'()}s x t y t z t = (或12s n n =⨯)3. 应用(1)交线, 投影柱面与投影曲线;(2)旋转面计算: 参式曲线绕坐标轴旋转;(3)锥面计算.四. 常用二次曲面1. 圆柱面: 222x y R += 2. 球面: 2222x y z R ++=变形: 2222x y R z +=-,z =2222x y z az ++=, 2222000()()()x x y y z z R -+-+-= 3. 锥面: z =变形: 222x y z +=,z a = 4. 抛物面: 22z x y =+,变形: 22x y z +=, 22()z a x y =-+ 5. 双曲面: 2221x y z +=±6. 马鞍面: 22z x y =-, 或z xy =五. 偏导几何应用 1. 曲面(1)法向: (,,)0(,,)x y z F x y z n F F F =⇒=, 注: (,)(,1)x y z f x y n f f =⇒=- (2)切平面与法线:2. 曲线(1)切向: (),(),()(',',')x x t y y t z z t s x y z ===⇒= (2)切线与法平面3. 综合: :Γ00F G =⎧⎨=⎩, 12s n n =⨯六. 方向导与梯度(重点) 1. 方向导(l 方向斜率):(1)定义(条件): (,,)(cos ,cos ,cos )l m n p αβγ=⇒ (2)计算(充分条件:可微):cos cos cos x y z uu u u lαβγ∂=++∂ 附: 0(,),{cos ,sin }z f x y l θθ==cos sin x y zf f lθθ∂⇒=+∂ (3)附: 2222cos 2sin cos sin xx xy yy f f f f lθθθθ∂=++∂2. 梯度(取得最大斜率值的方向) G : (1)计算:()(,)(,)x y a z f x y G gradz f f =⇒==; ()(,,)(,,x yz b u f x y z G g r a d u u u u =⇒== (2)结论 ()a ul∂∂0G l =⋅; ()b 取l G =为最大变化率方向; ()c 0()G M 为最大方向导数值.第八讲: 三重积分与线面积分(数一)一. 三重积分(fdV Ω⎰⎰⎰)1. Ω域的特征(不涉及复杂空间域):(1)对称性(重点): 含: 关于坐标面; 关于变量; 关于重心(2)投影法: 22212{(,)}(,)(,)xy D x y x y R z x y z z x y =+≤⊕≤≤ (3)截面法: 222(){(,)()}D z x y x y R z a z b =+≤⊕≤≤(4)其它: 长方体, 四面体, 椭球 2. f 的特征:(1)单变量()f z , (2)22()f x y +, (3)222()f x y z ++, (4)f ax by cz d =+++ 3. 选择最适合方法: (1)“积”前: *dv Ω⎰⎰⎰; *利用对称性(重点)(2)截面法(旋转体): ()baD z I dz fdxdy =⎰⎰⎰(细腰或中空, ()f z , 22()f x y +)(3)投影法(直柱体): 21(,)(,)xyz x y z x y D I dxdy fdz =⎰⎰⎰(4)球坐标(球或锥体): 220sin ()RI d d f d παθϕϕρρ=⋅⋅⋅⎰⎰⎰,(5)重心法(f ax by cz d =+++): ()I ax by cz d V Ω=+++ 4. 应用问题:(1)同第一类积分: 质量, 质心, 转动惯量, 引力 (2)Gauss 公式 二. 第一类线积分(Lfds ⎰)1. “积”前准备:(1)Lds L =⎰; (2)对称性; (3)代入“L ”表达式2. 计算公式:()[,]((),(()b aLx x t t a b fds f x t y t y y t =⎧∈⇒=⎨=⎩⎰⎰3. 补充说明: (1)重心法:()()Lax by c ds ax by c L ++=++⎰;(2)与第二类互换:LLA ds A dr τ⋅=⋅⎰⎰4. 应用范围(1)第一类积分(2)柱体侧面积(),L z x y ds ⎰ 三. 第一类面积分(fdS ∑⎰⎰)1. “积”前工作(重点):(1)dS ∑=∑⎰⎰; (代入:(,,)0F x y z ∑=)(2)对称性(如: 字母轮换, 重心)(3)分片2. 计算公式:(1)(,),(,)(,,(,xy xy D z z x y x y D I f x y z x y =∈⇒=⎰⎰ (2)与第二类互换: A ndS A dS ∑∑⋅=⋅⎰⎰⎰⎰四: 第二类曲线积分(1): (,)(,)LP x y dx Q x y dy +⎰ (其中L 有向)1. 直接计算: ()()x x t y y t =⎧⎨=⎩,2112:['()'()]t t t t t I Px t Qy t dt →⇒=+⎰ 常见(1)水平线与垂直线; (2)221x y +=2. Green 公式:(1)()L DQ P Pdx Qdy dxdy x y ∂∂+=-∂∂⎰⎰⎰; (2)()L A B →⎰: *P Q y y ∂∂=⇒∂∂换路径; *P Q y y ∂∂≠⇒∂∂围路径 (3)L ⎰(x y Q P =但D 内有奇点) *L L =⎰⎰(变形) 3. 推广(路径无关性):P Q y y∂∂=∂∂ (1)Pdx Qdy du +=(微分方程)()BA L AB u →⇔=⎰(道路变形原理) (2)(,)(,)L P x y dx Q x y dy +⎰与路径无关(f 待定): 微分方程.4. 应用功(环流量):I F dr Γ=⋅⎰(Γ有向τ,(,,)F P Q R =,(,,)dr ds dx dy dz τ==)五. 第二类曲面积分:1. 定义:Pdydz Qdzdx Rdxdy ∑++⎰⎰, 或(,,)R x y z dxdy ∑⎰⎰ (其中∑含侧) 2. 计算:(1)定向投影(单项): (,,)R x y z dxdy ∑⎰⎰, 其中:(,)z z x y ∑=(特别:水平面);注: 垂直侧面, 双层分隔(2)合一投影(多项,单层): (,,1)x y n z z =--[()()]x yPdydz Qdzdx Rdxdy P z Q z R dxdy ∑∑⇒++=-+-+⎰⎰⎰⎰ (3)化第一类(∑不投影): (cos ,cos ,cos )n αβγ=(cos cos cos )Pdydz Qdzdx Rdxdy P Q R dS αβγ∑∑⇒++=++⎰⎰⎰⎰3. Gauss 公式及其应用:(1)散度计算: P Q R divA x y z∂∂∂=++∂∂∂ (2)Gauss 公式: ∑封闭外侧, Ω内无奇点Pdydz Qdzdx Rdxdy divAdv ∑Ω++=⎰⎰⎰⎰⎰(3)注: *补充“盖”平面:0∑∑+⎰⎰⎰⎰; *封闭曲面变形∑⎰⎰(含奇点) 4. 通量与积分:A d S ∑Φ=⋅⎰⎰ (∑有向n ,(),,A P Q R =,(,,)dS ndS dydz dzdx dxdy ==)六: 第二类曲线积分(2): (,,)(,,)(,,)P x y z dx Q x y z dy R x y z dz Γ++⎰1. 参数式曲线Γ: 直接计算(代入)注(1)当0rot A =时, 可任选路径; (2)功(环流量):I F dr Γ=⋅⎰2. Stokes 公式: (要求: Γ为交面式(有向), 所张曲面∑含侧)(1)旋度计算: (,,)(,,)R A P Q R x y z∂∂∂=∇⨯=⨯∂∂∂ (2)交面式(一般含平面)封闭曲线: 00F G =⎧⇒⎨=⎩同侧法向{,,}x y z n F F F =或{,,}x y z G G G ; (3)Stokes 公式(选择):()A d r A ndS Γ∑⋅=∇⨯⋅⎰⎰⎰ (a )化为Pdydz Qdzdx Rdxdy ∑++⎰⎰; (b )化为(,,)R x y z dxdy ∑⎰⎰; (c )化为fdS ∑⎰⎰。
高数复习资料

高等数学期末复习资料第 1 页(共9 页)高等数学第一章函数与极限函数与极限函数与极限函数与极限第一节函数○函数基础(高中部分相关知识)(★)○邻域(去心邻域)(★)....,|Uaxxa.........,|0Uaxxa......第二节数列的极限数列的极限数列的极限数列的极限○数列极限的证明(★)【题型示例】已知数列..nx,证明..limnxxa...【证明示例】N..语言1.由nxa...化简得...gn.,∴..Ng......2.即对0...,..Ng.......,当Nn.时,始终有不等式nxa...成立,∴..axnx (i)第三节函数的极限函数的极限函数的极限函数的极限○0xx.时函数极限的证明(★)【题型示例】已知函数..xf,证明..Axfxx..0lim【证明示例】...语言1.由..fxA...化简得..00xxg....,∴....g.2.即对.. . 0 ,....g..,当00xx....时,始终有不等式..fxA...成立,∴ f .x. Ax x.. 0lim○..x时函数极限的证明(★)【题型示例】已知函数 f .x. ,证明..Axfx (i)【证明示例】X..语言1.由..fxA...化简得..xg..,∴ (X)2.即对.. . 0 ,...gX..,当Xx.时,始终有不等式..fxA...成立,∴..Axfx (i)第四节无穷小与大无穷小与大无穷小与大无穷小与大无穷小与大○无穷小与大的本质(★)函数..xf无穷小...0lim.xf函数..xf无穷大.....xflim○无穷小与大的相关定理推论(★)(定理三)假设 f .x. 为有界函数,..xg为无穷小,则....lim0fxgx......(定理四)在自变量的某个化过程中,若在自变量的某个化过程中,若..xf为无穷大,则无穷大,则无穷大,则..1fx.为无穷小;反之,若为无穷小;反之,若为无穷小;反之,若为无穷小;反之,若为无穷小;反之,若为无穷小;反之,若..xf为无穷小,且..0fx.,则..xf1.为无穷大【题型示例】计算:....0limxxfxgx......(或..x)1.∵..fx≤M∴函数..fx在0xx.的任一去心邻域...,0xU.内是有界的;(∵..fx≤M ,∴函数..fx在Dx.上有界;)2...0lim0..xgxx即函数..xg是0xx.时的无穷小;(..0lim...xgx即函数g.x. 是x . . 时的无穷小;)3.由定理可知....0lim0xxfxgx.......(....lim0xfxgx........)第五节极限运算法则极限运算法则极限运算法则极限运算法则极限运算法则○极限的四则运算法(★)(定理一)加减法则(定理二)乘除法则关于多项式..px、..xq商式的极限运算设:.....................nnnmmmbxbxbxqaxaxaxp110110则有...............0lim00baxqxpxmnmnmn...........000lim00xxfxgxfxgx......................0000000,00gxgxfxgxfx.....(特别地,当....00lim0xxfxgx..(不定型)时,通常分子分母约去公因式约去公因式约去公因式即约去可间断点便即约去可间断点便即约去可间断点便即约去可间断点便即约去可间断点便即约去可间断点便可求解出极可求解出极可求解出极限值,也可以用罗比达法则求解)【题型示例】求值233lim9xxx...高等数学期末复习资料第 2 页(共9 页)【求解示例】解:因为3.x,从而可得3.x,所以原式....23333311limlimlim93336xxxxxxxxx.............其中3x.为函数..239xfxx...的可去间断点倘若运用罗比达法则求解(详见第三章二节):解:....00233323311limlimlim9269xLxxxxxxx.............○连续函数穿越定理(复合函数的极限求解)(★)(定理五)若函数..xf是定义域上的连续函数,那么,....00limlimxxxxfxfx...............【题型示例】求值:93lim23 (xxx)【求解示例】22333316limlim9966xxxxxx.........第六节极限存在准则及两个重要极限存在准则及两个重要极限存在准则及两个重要极限存在准则及两个重要极限存在准则及两个重要极限存在准则及两个重要极限存在准则及两个重要极限存在准则及两个重要○夹迫准则(P53P53)(★)第一个重要极限:1sinlim0..xxx∵........2,0.x,xxxtansin..∴ 1sinlim.. xxx0000lim11limlim1sinsinsinlimxxxxxxxxxx.............(特别地,000sin()lim1xxxxxx....)○单调有界收敛准则(P57P57)(★)第二个重要极限:exxx..........11lim(一般地,(一般地,(一般地,(一般地,........limlimlimgxgxfxfx.........,其中..0lim.xf)【题型示例】求值:11232lim (xxxx)【求解示例】....211121212122121122122121lim21221232122limlimlim121212122lim1lim121212lim121xxxx xxxxxxxxxxxxxxxxxxxx...................................................................................................解:....12lim1212121212122lim121xxxxxxxxxeeee.......................................第七节无穷小量的阶(无穷小量的阶(无穷小量的阶(无穷小量的阶(无穷小量的阶(无穷小的比较无穷小的比较无穷小的比较)○等价无穷小(★)1...~sin~tan~arcsin~arctan~ln(1)~1UUUUUUUe..2.UUcos1~212.(乘除可替,加减不行)【题型示例】求值:....xxxxxx31ln1lnlim20.....【求解示例】..............3131lim31lim31ln1lim31ln1lnlim,0,000020........................xxxxxxxxxxxxxxxxxxxxx所以原式即解:因为第八节函数的连续性函数的连续性函数的连续性函数的连续性函数的连续性○函数连续的定义(★)......000limlimxxxxfxfxfx......○间断点的分类(P67P67)(★).........)无穷间断点(极限为第二类间断点可去间断点(相等)跳越间断点(不等)限存在)第一类间断点(左右极(特别地,可去间断点能在分式中约去相应公因式)【题型示例】设函数.......xaexfx2,00..xx应该怎样选择数a,使得..xf成为在R上的连续函数?【求解示例】1.∵......2010000feeefaafa...................2.由连续函数定义......efxfxfxx.......0limlim00∴ea.高等数学期末复习资料第 3 页(共9 页)第九节闭区间上连续函数的性质区间上连续函数的性质区间上连续函数的性质区间上连续函数的性质区间上连续函数的性质区间上连续函数的性质○零点定理(★)【题型示例】证明:方程】证明:方程】证明:方程】证明:方程....fxgxC..至少有一个根介于a与b之间【证明示例】1.(建立辅助函数)(建立辅助函数)(建立辅助函数)(建立辅助函数)(建立辅助函数)(建立辅助函数)......xfxgxC....在闭区间..,ab上连续;2.∵....0ab....(端点异号)3.∴由零点定理,在开区间∴由零点定理,在开区间∴由零点定理,在开区间∴由零点定理,在开区间∴由零点定理,在开区间∴由零点定理,在开区间..ba,内至少有一点.,使得..0...,即....0fgC.....(10...)4.这等式说明方程这等式说明方程这等式说明方程这等式说明方程....fxgxC..在开区间在开区间.a,b.内至少有一个根.第二章导数与微分导数与微分导数与微分导数与微分第一节导数概念○高等数学中导的定义及几何意(P83P83)(★)【题型示例】已知函数】已知函数】已知函数........baxexfx1,00..xx在0.x处可导,求a,b【求解示例】1.∵....0010fefa............,......00001120012feefbfe...................2.由函数可导定义..........0010002ffafffb..................∴1,2ab..【题型示例】求..xfy.在ax.处的切线与法方程(或:过(或:过(或:过..xfy.图像上点..,afa....处的切线与法处的切线与法处的切线与法处的切线与法方程)【求解示例】1...xfy...,..afyax....|2.切线方程:......yfafaxa....法线方程:......1yfaxafa.....第二节函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则○函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则★)1.线性组合(定理一):线性组合(定理一):()uvuv..........特别地,当1....时,有()uvuv......2.函数积的求导法则(定理二):函数积的求导法则(定理二):()uvuvuv.....3.函数商的求导法则(定理三):函数商的求导法则(定理三):2uuvuvvv...........第三节反函数和复合函数的求导法则复合函数的求导法则复合函数的求导法则复合函数的求导法则复合函数的求导法则○反函数的求导法则(★)【题型示例】求函数..xf1.的导数【求解示例】由题可得【求解示例】由题可得【求解示例】由题可得【求解示例】由题可得【求解示例】由题可得..xf为直接函数,其在定于域为直接函数,其在定于域为直接函数,其在定于域为直接函数,其在定于域为直接函数,其在定于域为直接函数,其在定于域D上单调、可导,且..0..xf;∴....11fxfx........○复合函数的求导法则(★)【题型示例】设..2arcsin122lnxyexa....,求y.【求解示例】................2222222arcsin122arcsin122222arcsin1222arcsin1222arcsin1222arcsin122arcsiarcsin12 211121*********xxxxxxxyexaexaxxaexaxexaxxxexxaeaeexa.......................................................... .......解:2n1222212xxxxxxa.............第四节高阶导数○........1nnfxfx.......(或....11nnnndydydxdx..........)(★)【题型示例】求函数..xy..1ln的n阶导数【求解示例】..1111yxx......,......12111yxx...............,..........2311121yxx....................……..1(1)(1)(1)nnnynx........!第五节隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导○隐函数的求导(等式两边对x求导)(★)【题型示例】试求:方程】试求:方程】试求:方程】试求:方程yexy..所给定的曲线所给定的曲线所给定的曲线所给定的曲线C:..xyy.在点..1,1e.的切线方程与法【求解示例】由y y . x . e 两边对x 求导即..yyxe.....化简得1yyey.....∴eey (11111)高等数学期末复习资料第 4 页(共9 页)∴切线方程:..exey (1111)法线方程:....exey (111)○参数方程型函数的求导【题型示例】设参数方程.........tytx..,求22dxyd【求解示例】1.....ttdxdy.....2...22dydydxdxt..........第六节变化率问题举例及相关变化率问题举例及相关变化率问题举例及相关变化率问题举例及相关变化率问题举例及相关变化率问题举例及相关变化率问题举例及相关变(不作要求)第七节函数的微分函数的微分函数的微分函数的微分○基本初等函数微分公式与运算法则(★★★)..dxxfdy...第三章中值定理与导数的应用中值定理与导数的应用中值定理与导数的应用中值定理与导数的应用中值定理与导数的应用中值定理与导数的应用中值定理与导数的应用第一节中值定理○引理(费马)(○引理(费马)(★)○罗尔定理(★)【题型示例】现假设函数..fx在..0,.上连续,在上连续,在上连续,在..0,.上可导,试证明:..0,....,使得....cossin0ff.......成立【证明示例】1.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令....sinxfxx..显然函数..x.在闭区间.0,. .上连续,在开区间开区间.0,. . 上可导;2.又∵....00sin00f.......sin0f......即....00.....3.∴由罗尔定理知....0,..,使得,使得. .c . . ossin0 f. f ... . . . 成立○拉格朗日中值定理(★)【题型示例】证明不等式:当1x.时,xeex..【证明示例】1.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令函数..xfxe.,则对1x..,显然函数..fx在闭区间..1,x上连续,在开区间..1,x上可导,并且..xfxe..;2.由拉格朗日中值定理可得,..1,x...使得等式..11xeexe....成立,又∵1ee..,∴..111xeexeexe......,化简得xeex..,即证得:当x .1时,x e ex . .【题型示例】证明不等式:当0x.时,..ln1xx..【证明示例】1.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令....ln1fxx..,则对0x..,函数,函数 f .x. 在闭区间..0,x上连续,在开区上连续,在开区上连续,在开区上连续,在开区间.0,. . 上可导,并且..11fxx...;2.由拉格朗日中值定理可得,由拉格朗日中值定理可得,..0,x...使得等式......1ln1ln1001xx.......成立,化简得..1ln11xx....,又∵..0,x..,∴..111f......,∴..ln11xxx....,即证得:当x .1时,x e ex . .第二节罗比达法则罗比达法则罗比达法则罗比达法则○运用罗比达法则进行极限算的基本步骤(★)1.☆等价无穷小的替换(以简化运算)2.判断极限不定型的所属类及是否满足运用罗比及是否满足运用罗比及是否满足运用罗比及是否满足运用罗比及是否满足运用罗比达法则的三个前提条件A.属于两大基本不定型(0,0..)且满足条件,则进行运算:........limlimxaxafxfxgxgx.....(再进行1、2步骤,反复直到结果得出)B.☆不属于两大基本定型(转化为基本不定型)⑴0..型(转乘为除,构造分式)【题型示例】求值:0limlnxxx...【求解示例】..10000201lnlnlimlnlimlimlim111lim0xxLxxxxxxxxxxxxxa.................................解:(一般地,..0limln0xxx.....,其中,R...)⑵...型(通分构造式,观察母)【题型示例】求值:011limsinxxx........【求解示例】200011sinsinlimlimlimsinsinxxxxxxxxxxxx...........................解:........000000002sin1cos1cossinlimlimlimlim0222LxxLxxxxxxxxxx..................高等数学期末复习资料第 5 页(共9 页)⑶00型(对数求极限法)【题型示例】求值:0limxxx.【求解示例】....0000limlnln000002ln,lnlnln1lnln0limlnlimlim111limlim0limlim11xxxxxLxyyxxxxxyxyxxxxxx xyxxxxyeeex...................................解:设两边取对数得:对对数取时的极限:,从而有⑷1.型(对数求极限法)【题型示例】求值:..10limcossinxxxx..【求解示例】..........01000000limlnln100lncossincossin,ln,lncossinln0limlnlimlncossincossin10limlim1,cossin1 0lim=limxxxxLxxyyxxxxyxxyxxxyxyxxxxxxxxyeeee.................................解:令两边取对数得对求时的极限,从而可得⑸0.型(对数求极限法)【题型示例】求值:tan01limxxx.......【求解示例】....tan002000202200011,lntanln,1ln0limlnlimtanln1lnlnlimlimlim1sec1tantantansinsinlimlimlixxx xLxxxLxyyxxxyxyxxxxxxxxxxxxx...................................................................解:令两边取对数得对求时的极限,00limlnln0002sincosm0,1lim=lim1xxyyxxxxyeee.........从而可得○运用罗比达法则进行极限算的基本思路(★)0000001.......................(1)(2)(3)⑴通分获得分式(通常伴有等价无穷小的替换)⑵取倒数获得分式(将乘积形式转化为分)⑶取对数获得乘积式(通过对数运算将指提前)第三节泰勒中值定理泰勒中值定理泰勒中值定理泰勒中值定理泰勒中值定理(不作要求)(不作要求)(不作要求)(不作要求)第四节函数的单调性和曲线凹凸函数的单调性和曲线凹凸函数的单调性和曲线凹凸函数的单调性和曲线凹凸函数的单调性和曲线凹凸函数的单调性和曲线凹凸函数的单调性和曲线凹凸函数的单调性和曲线凹凸○连续函数单调性(单调区间)(★)【题型示例】试确定函数】试确定函数】试确定函数】试确定函数..3229123fxxxx....的单调区间【求解示例】1.∵函数..fx在其定义域R上连续,且可导∴..261812fxxx....2.令......6120fxxx.....,解得:,解得:,解得:121,2xx..3.(三行表).(三行表).(三行表).(三行表)x..,1..1..1,22..2,....fx......fx极大值极小值4.∴函数 f .x. 的单调递增区间为....,1,2,....;单调递减区间为..1,2【题型示例】证明:当0x.时,1xex..【证明示例】1.(构建辅助函数).(构建辅助函数).(构建辅助函数).(构建辅助函数).(构建辅助函数)设..1xxex....,(0x.)2...10xxe.....,(x . 0 )∴....00x....3.既证:当x . 0 时,1 x e .x.【题型示例】证明:当x . 0 时,..ln1xx..【证明示例】1.(构建辅助函数)设.(构建辅助函数)设.(构建辅助函数)设.(构建辅助函数)设.(构建辅助函数)设.(构建辅助函数)设....ln1xxx....,(x . 0 )2...1101xx......,(x . 0 )∴....00x....3.既证:当x . 0 时,l . . n1 .x .x○连续函数凹凸性(★)【题型示例】试讨论函数2313yxx...的单调性、极值的单调性、极值的单调性、极值的单调性、极值的单调性、极值凹凸性及拐点【证明示例】高等数学期末复习资料第 6 页(共9 页)1.....236326661yxxxxyxx........................320610yxxyx................120,21xxx......3.(四行表)x(,0)..(0,1)1(1,2)2(2,)..y.....y......y1(1,3)4.⑴函数 2 3 y 1 3xx . ..单调递增区间为(0,1), (1,2) 单调递增区间为( ,0) .. , (2,) .. ;⑵函数 2 3 y 1 3xx . ..的极小值在0x.时取到,为..01f.,极大值在2x.时取到,为..25f.;⑶函数 2 3 y 1 3xx . ..在区间( ,0) .. , (0,1)上凹,在区间(1,2), (2,) .. 上凸;⑷函数 2 3 y 1 3xx . ..的拐点坐标为..1,3第五节函数的极值和最大、小函数的极值和最大、小函数的极值和最大、小函数的极值和最大、小函数的极值和最大、小函数的极值和最大、小函数的极值和最大、小函数的极值和最大、小○函数的极值与最关系(★)⑴设函数..fx的定义域为的定义域为的定义域为D,如果Mx.的某个邻域..MUxD.,使得对..MxUx..,都适合不等式....Mfxfx.,我们则称函数 f .x. 在点..,MMxfx....处有极大值..Mfx;令..123,,,...,MMMMMnxxxxx.则函数 f .x. 在闭区间..,ab上的最大值M满足:......123max,,,,...,,MMMMnMfaxxxxfb.⑵设函数 f .x. 的定义域为D,如果,如果mx.的某个邻域..mUxD.,使得对,使得对,使得对..mxUx..,都适合不等,都适合不等,都适合不等,都适合不等,都适合不等式....mfxfx.,我们则称函数我们则称函数我们则称函数我们则称函数 f .x. 在点..,mmxfx....处有极小值..mfx;令..123,,,...,mmmmmnxxxxx.则函数 f .x. 在闭区间.a,b. 上的最小值m满足:......123min,,,,...,,mmmmnmfaxxxxfb.;【题型示例】求函数..33fxxx..在..1,3.上的最值【求解示例】1.∵函数 f .x. 在其定义域. 1 . ,3 . 上连续,且可导∴..233fxx....2.令......3110fxxx......,解得:121,1xx...3.(三行表).(三行表).(三行表).(三行表)x1...1,1.1..1,3f. .x...f .x.极小值极大值4.又∵......12,12,318fff......∴........maxmin12,318fxffxf.....第六节函数图形的描绘函数图形的描绘函数图形的描绘函数图形的描绘函数图形的描绘(不作要求)(不作要求)(不作要求)第七节曲率(不作要求)(不作要求)(不作要求)(不作要求)第八节方程的近似解方程的近似解方程的近似解方程的近似解方程的近似解(不作要求)(不作要求)(不作要求)(不作要求)第四章不定积分第一节不定积分的概念与性质不定积分的概念与性质不定积分的概念与性质不定积分的概念与性质不定积分的概念与性质不定积分的概念与性质不定积分的概念与性质○原函数与不定积分的概念(★)⑴原函数的概念:假设在定义区间I上,可导函数上,可导函数上,可导函数..Fx的导函数为..Fx.,即当自变量,即当自变量,即当自变量,即当自变量xI.时,有时,有....Fxfx..或....dFxfxdx..成立,则称成立,则称成立,则称成立,则称F.x. 为..fx的一个原函数⑵原函数存在定理:(★)如果函数..fx在定义区间I 上连续,则在I 上必存在可导函数..Fx使得 F . . . . xfx . . ,也就是说:连续函数一定存在原(可导必)⑶不定积分的概念(★)在定义区间I 上,函数上,函数f .x. 的带有任意常数项C的原函数称为 f .x. 在定义区间I 上的不定积分,即表示为:....fxdxFxC...(.称为积分号, f .x. 称为被积函数,..fxdx称为积分表达式,x则称为积分变量)○基本积分表(★)○不定积分的线性性质(分项积公式)(★)........1212kfxkgxdxkfxdxkgxdx..........第二节换元积分法换元积分法换元积分法换元积分法○第一类换元法(凑微分)((凑微分)((凑微分)((凑微分)(★)(dy . f ..x.. dx 的逆向应用)........fxxdxfxdx......................高等数学期末复习资料第7 页(共9 页)【题型示例】求221dxax..【求解示例】222211111arctan11xxdxdxdCaxaaaaxxaa............................解:【题型示例】求121dxx..【求解示例】....111121************dxdxdxxxxxC.............解:○第二类换元法(去根式)(★)(dy . f ..x.. dx的正向应用)⑴对于一次根式(0,abR..):axb.:令taxb..,于是2tbxa..,则原式可化为t⑵对于根号下平方和的形式(0a.):22ax.:令tanxat.(22t.....),于是arctanxta.,则原式可化为secat;⑶对于根号下平方差的形式( a . 0 ):a.22ax.:令sinxat.(2 2t. .. ..),于是arcsinxta.,则原式可化为cosat;b.22xa.:令secxat.(02t...),于是arccosatx.,则原式可化为tanat;【题型示例】求12 1dxx . . (一次根式)【求解示例】2211122112121txxtdxtdtdxtdtdttCxCtx.....................解:【题型示例】求22axdx..(三角换元)【求解示例】....2sin()222222arcsincos22cos1cos221sin2sincos222xattxtadxataaxdxatdttdtaattCtttC.................... .............解:第三节分部积法分部积法分部积法分部积法○分部积法(★)⑴设函数..ufx.,..vgx.具有连续导数,则其具有连续导数,则其具有连续导数,则其具有连续导数,则其具有连续导数,则其分部积公式可表示为:udvuvvdu....⑵分部积法函数排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”○运用分部积法计算不定积分的基本步骤:⑴遵照分部积法函数排序次对被;⑵就近凑微分:(⑵就近凑微分:(⑵就近凑微分:(⑵就近凑微分:(⑵就近凑微分:(vdxdv...)⑶使用分部积公式:udvuvvdu . . ..⑷展开尾项vduvudx.....,判断a.若vudx...是容易求解的不定积分,则直接计,则直接计,则直接计算出答案(容易表示使用基本积分、换元法算出答案(容易表示使用基本积分、换元法与有理函数积分可以轻易求解出结果);与有理函数积分可以轻易求解出结果);b.若v udx . . . 依旧是相当复杂,无法通过a中方法求解的不定积分,则重复⑵、⑶,直至⑵、⑶,直至⑵、⑶,直至出现容易求解的不定积分;若重复过程中出现循环,则联立方程求解,但是最后要注意添上常数C【题型示例】求2xexdx..【求解示例】....222222222222222xxxxxxxxxxxxxxxexdxxedxxdexeedxxexedxxexdexexeedxxexeeC................ .........解:【题型示例】求sinxexdx..【求解示例】........sincoscoscoscoscoscossincossinsincossinsinxxxxxxxxxxxxxxexdxedxexxdeexexdxexedxexe xxdeexexexdx...........................解:..sincossinsinxxxxexdxexexxde.......即:∴..1sinsincos2xxexdxexxC.....第四节有理函数的不定积分有理函数的不定积分有理函数的不定积分有理函数的不定积分有理函数的不定积分有理函数的不定积分○有理函数(★)设:........101101mmmnnnPxpxaxaxaQxqxbxbxb.............对于有理函数....PxQx,当..Px的次数小于..Qx的次数时,有理函次数时,有理函次数时,有理函次数时,有理函. .. .P xQ x是真分式;当是真分式;当是真分式;当是真分式;当P.x. 的次数高等数学期末复习资料第8 页(共9 页)大于. . Q x 的次数时,有理函. .. .P xQ x是假分式○有理函数(真分式)不定积分的求解思路(★)⑴将有理函数将有理函数将有理函数将有理函数. .. .P xQ x的分母Q.x. 分拆成两个没有公因式的多项式的乘积:其中一个多项式可以表示:其中一个多项式可以表示:其中一个多项式可以表示:其中一个多项式可以表示:其中一个多项式可以表示:其中一个多项式可以表示:其中一个多项式可以表示为一次因式..kxa.;而另一个多项式可以表示为;而另一个多项式可以表示为;而另一个多项式可以表示为;而另一个多项式可以表示为;而另一个多项式可以表示为;而另一个多项式可以表示为;而另一个多项式可以表示为二次质因式..2lxpxq..,(240pq..);即:......12QxQxQx..一般地:nmxnmxm.........,则参数nam..22bcaxbxcaxxaa...........则参数,bcpqaa..⑵则设有理函数. .. .P xQ x的分拆和式为:............122klPxPxPxQxxaxpxq.....其中........1122...kkkPxAAAxaxaxaxa................2112222222...llllPxMxNMxNxpxqxpxqxpxqMxNxpxq...............参数121212,,...,,,,...,lklMMMAAANNN.........由待定系数法(比较)求出⑶得到分拆式后项积即可求解【题型示例】求21xdxx..(构造法)【求解示例】......221111111111ln112xxxxdxdxxdxxxxxdxdxdxxxxCx................................第五节积分表的使用积分表的使用积分表的使用积分表的使用积分表的使用(不作要求)(不作要求)(不作要求)(不作要求)第五章定积分极其应用定积分极其应用定积分极其应用定积分极其应用定积分极其应用第一节定积分的概念与性质定积分的概念与性质定积分的概念与性质定积分的概念与性质定积分的概念与性质定积分的概念与性质○定积分的义(★)....01limnbiiaifxdxfxI.........( f .x. 称为被积函数,f . . xdx称为被积表达式,x则称为积分变量,a称为积分下限,b称为积分上限,..,ab称为积分区间)○定积分的性质(★)⑴....bbaafxdxfudu...⑵..0aafxdx..⑶....bbaakfxdxkfxdx.......⑷(线性质)........1212bbbaaakfxkgxdxkfxdxkgxdx..........⑸(积分区间的可加性)......bcbaacfxdxfxdxfxdx.....⑹若函数..fx在积分区间.a,b. 上满足..0fx.,则..0bafxdx..;(推论一)若函数 f .x. 、函数、函数..gx在积分区间在积分区间在积分区间.a,b. 上满足....fxgx.,则....bbaafxdxgxdx...;(推论二)....bbaafxdxfxdx...○积分中值定理(不作要求)第二节微积分基本公式微积分基本公式微积分基本公式微积分基本公式微积分基本公式○牛顿-莱布尼兹公式(★)(定理三)若果函数..Fx是连续函数..fx在区间..,ab上的一个原函数,则......bafxdxFbFa...○变限积分的导数公式(★)(上导―下)..............xxdftdtfxxfxxdx...................【题型示例】求21cos20limtxxedtx...【求解示例】..221100coscos2002limlim解:ttxxxLxdedtedtdxxx.........高等数学期末复习资料第9 页(共9 页)........2222221coscos000cos00coscos0cos010sinsinlimlim22sinlim2cossin2sincoslim21limsincos2 sincos21122xxxxxLxxxxxxeexxexxdxedxxxexexxexxxee.......................................第三节定积分的换元法及部定积分的换元法及部定积分的换元法及部定积分的换元法及部定积分的换元法及部定积分的换元法及部定积分的换元法及部定积分的换元法及部○定积分的换元法(★)⑴(第一换元法)........bbaafxxdxfxdx......................【题型示例】求20121dxx..【求解示例】....222000111121ln212122121ln5ln5ln122解:dxdxxxx...............⑵(第二换元法)设函数....,fxCab.,函数..xt..满足:a.,...,使得....,ab......;b.在区间.在区间.在区间..,..或..,..上,....,ftt.......连续则:......bafxdxfttdt............【题型示例】求40221xdxx...【求解示例】..221210,43220,1014,332332311132222113111332223522933解:ttxxxtxttxdxdxtxttdttdttxt........................................⑶(分部积法)........................bbaabbbaaauxvxdxuxvxvxuxdxuxdvxuxvxvxdux..............○偶倍奇零(★)设....,fxCaa..,则有以下结论成立:⑴若....fxfx..,则....02aaafxdxfxdx....⑵若....fxfx...,则..0aafxdx...第四节定积分在几何上的应用定积分在几何上的应用定积分在几何上的应用定积分在几何上的应用定积分在几何上的应用定积分在几何上的应用定积分在几何上的应用(不作要求)第五节定积分在物理上的应用定积分在物理上的应用定积分在物理上的应用定积分在物理上的应用定积分在物理上的应用定积分在物理上的应用定积分在物理上的应用(不作要求)第六节反常积分(不作要求)(不作要求)(不作要求)(不作要求)如:不定积分公式如:不定积分公式如:不定积分公式如:不定积分公式如:不定积分公式21arctan1dxxCx....的证明。
高等数学知识点总结

高等数学知识点总结1. 极限与连续性- 极限的定义与性质- 无穷小与无穷大- 极限的运算法则- 连续函数的定义与性质- 闭区间上连续函数的定理(确界存在定理、中值定理、罗尔定理等)2. 导数与微分- 导数的定义与几何意义- 导数的计算方法(基本导数公式、链式法则、乘积法则、商法则、隐函数求导等)- 高阶导数- 微分的定义与应用- 泰勒级数与麦克劳林级数3. 积分学- 不定积分的概念与性质- 基本积分表与积分技巧(换元法、分部积分法等)- 定积分的定义与性质- 定积分的应用(面积、体积、弧长、工作量等)- 微积分基本定理- 积分技巧(特殊技巧、积分表的使用等)4. 多元函数微分学- 多元函数的偏导数与全微分- 多元函数的极值问题与拉格朗日乘数法- 梯度、方向导数与切平面- 多重积分的概念与计算(二重积分、三重积分)5. 向量代数与空间解析几何- 向量的运算与性质- 点、直线与平面的方程- 空间曲线与曲面的方程6. 级数- 级数的基本概念(数项级数、幂级数、函数项级数)- 收敛性判断(柯西准则、比较判别法、比值判别法、根值判别法等)- 幂级数的收敛半径与收敛区间- 傅里叶级数7. 常微分方程- 微分方程的基本概念- 可分离变量的微分方程- 一阶线性微分方程- 二阶常系数线性微分方程- 特殊类型的微分方程(贝塞尔方程、勒让德方程等)8. 复变函数- 复数的基本概念与运算- 解析函数的概念与性质- 复变函数的积分与柯西积分定理- 留数定理与应用9. 泛函分析初步- 赋范线性空间与内积空间- 线性算子与线性泛函- 正交性与谱理论初步10. 概率论与数理统计- 随机事件与概率的定义- 随机变量与分布函数- 多维随机变量及其分布- 大数定律与中心极限定理- 统计量的分布与假设检验以上是高等数学的主要知识点概要。
每个部分都需要深入学习并通过大量的练习来掌握。
这些知识点构成了高等数学的基础,对于理解和应用更高级的数学概念至关重要。
(完整word版)高等数学复习资料大全

(完整word版)高等数学复习资料大全《高等数学复习》教程第一讲函数、连续与极限一、理论要求1.函数概念与性质函数的基本性质(单调、有界、奇偶、周期)几类常见函数(复合、分段、反、隐、初等函数)2.极限极限存在性与左右极限之间的关系夹逼定理和单调有界定理会用等价无穷小和罗必达法则求极限3.连续函数连续(左、右连续)与间断理解并会应用闭区间上连续函数的性质(最值、有界、介值)二、题型与解法A.极限的求法(1)用定义求(2)代入法(对连续函数,可用因式分解或有理化消除零因子)(3)变量替换法(4)两个重要极限法(5)用夹逼定理和单调有界定理求(6)等价无穷小量替换法(7)洛必达法则与Taylor级数法(8)其他(微积分性质,数列与级数的性质)1.612arctan lim )21ln(arctan lim3030-=-=+->->-x x x x x x x x (等价小量与洛必达) 2.已知2030) (6lim 0)(6sin limxx f x x xf x x x +=+>->-,求解:20303')(6cos 6lim )(6sin limx xy x f x x x xf x x x ++=+>->- 72)0(''06)0(''32166'''''36cos 216lim6'''26sin 36lim 00=∴=+-=++-=++-=>->-y y xy y x x xy y x x x362722''lim 2'lim )(6lim0020====+>->->-y x y x x f x x x (洛必达)3.121)12(lim ->-+x xx x x (重要极限) 4.已知a 、b 为正常数,xx x x b a 30)2(lim +>-求解:令]2ln )[ln(3ln ,)2(3-+=+=x x x x x b a xt b a t 2/300)()ln(23)ln ln (3limln lim ab t ab b b a a b a t xx x x x x =∴=++=>->-(变量替换) 5.)1ln(12)(cos lim x x x +>- 解:令)ln(cos )1ln(1ln ,)(cos 2)1ln(12x x t x t x +==+ 2/100212tan limln lim ->->-=∴-=-=e t x x t x x (变量替换)6.设)('x f 连续,0)0(',0)0(≠=f f ,求1)()(lim 22=?>-xx x dtt f xdtt f(洛必达与微积分性质)7.已知=≠=-0,0,)ln(cos )(2x a x x x x f 在x=0连续,求a 解:令2/1/)ln(cos lim 2-==>-x x a x (连续性的概念)三、补充习题(作业) 1.3cos 11lim-=---->-xx x e x x (洛必达)2.)1sin 1(lim 0xx ctgx x ->- (洛必达或Taylor ) 3.11lim 22=--->-?x xt x edte x (洛必达与微积分性质)第二讲导数、微分及其应用一、理论要求 1.导数与微分导数与微分的概念、几何意义、物理意义会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导)会求平面曲线的切线与法线方程2.微分中值定理理解Roll 、Lagrange 、Cauchy 、Taylor 定理会用定理证明相关问题3.应用会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图会计算曲率(半径)二、题型与解法A.导数微分的计算基本公式、四则、复合、高阶、隐函数、参数方程求导1.??=+-==52arctan )(2te ty y t x x y y 由决定,求dxdy2.x y x y x x y y sin )ln()(32+=+=由决定,求1|0==x dxdy解:两边微分得x=0时y x y y ==cos ',将x=0代入等式得y=13.y x x y y xy+==2)(由决定,则dx dy x )12(ln |0-==B.曲线切法线问题4.求对数螺线)2/,2/πθρρπθe e (),在(==处切线的直角坐标方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于高等数学复习资料归纳大全Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】《高等数学复习》教程第一讲函数、连续与极限一、理论要求1.函数概念与性质函数的基本性质(单调、有界、奇偶、周期)几类常见函数(复合、分段、反、隐、初等函数)2.极限极限存在性与左右极限之间的关系夹逼定理和单调有界定理会用等价无穷小和罗必达法则求极限3.连续函数连续(左、右连续)与间断理解并会应用闭区间上连续函数的性质(最值、有界、介值)二、题型与解法的求法(1)用定义求(2)代入法(对连续函数,可用因式分解或有理化消除零因子)(3)变量替换法(4)两个重要极限法(5)用夹逼定理和单调有界定理求(6)等价无穷小量替换法(7)洛必达法则与Taylor级数法(8)其他(微积分性质,数列与级数的性质)1.612arctan lim )21ln(arctan lim3030-=-=+->->-x x x x x x x x (等价小量与洛必达) 2.已知2030)(6lim0)(6sin lim x x f x x xf x x x +=+>->-,求 解:20303')(6cos 6lim)(6sin lim x xy x f x x x xf x x x ++=+>->- 362722''lim 2'lim )(6lim0020====+>->->-y x y x x f x x x (洛必达) 3.121)12(lim ->-+x xx x x (重要极限) 4.已知a 、b 为正常数,xx x x b a 30)2(lim +>-求 解:令]2ln )[ln(3ln ,)2(3-+=+=x x x x x b a x t b a t 2/300)()ln(23)ln ln (3lim ln lim ab t ab b b a a b a t xx x x x x =∴=++=>->-(变量替换) 5.)1ln(12)(cos lim x x x +>-解:令)ln(cos )1ln(1ln ,)(cos 2)1ln(12x x t x t x +==+ 2/100212tan lim ln lim ->->-=∴-=-=e t x x t x x (变量替换) 6.设)('x f 连续,0)0(',0)0(≠=f f ,求1)()(lim22=⎰⎰>-xx x dtt f xdtt f(洛必达与微积分性质)7.已知⎩⎨⎧=≠=-0,0,)ln(cos )(2x a x x x x f 在x=0连续,求a解:令2/1/)ln(cos lim 20-==>-x x a x (连续性的概念)三、补充习题(作业) 1.3cos 11lim-=---->-xx x e x x (洛必达)2.)1sin 1(lim 0xx ctgx x ->- (洛必达或Taylor ) 3.11lim22=--->-⎰x xt x edte x (洛必达与微积分性质)第二讲 导数、微分及其应用一、理论要求1.导数与微分导数与微分的概念、几何意义、物理意义会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导)会求平面曲线的切线与法线方程2.微分中值定理 理解Roll 、Lagrange 、Cauchy 、Taylor 定理会用定理证明相关问题3.应用 会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图会计算曲率(半径)二、题型与解法A.导数微分的计算 基本公式、四则、复合、高阶、隐函数、参数方程求导1.⎩⎨⎧=+-==52arctan )(2t e ty y tx x y y 由决定,求dx dy 2.x y x y x x y y sin )ln()(32+=+=由决定,求1|0==x dxdy解:两边微分得x=0时y x y y ==cos ',将x=0代入等式得y=1 3.y x x y y xy +==2)(由决定,则dx dy x )12(ln |0-== B.曲线切法线问题 4.求对数螺线)2/,2/πθρρπθe e (),在(==处切线的直角坐标方程。
解:1|'),,0(|),(,sin cos 2/2/2/-==⎪⎩⎪⎨⎧====πθππθθθθθy e y x e y e x (x)为周期为5的连续函数,它在x=1可导,在x=0的某邻域内满足f(1+sinx)-3f(1-sinx)=8x+o(x)。
求f(x)在(6,f(6))处的切线方程。
解:需求)1('),1()6('),6(f f f f 或,等式取x->0的极限有:f(1)=0C.导数应用问题 6.已知x e x f x x xf x x f y --=+=1)]('[2)('')(2满足对一切,)0(0)('00≠=x x f 若,求),(00y x 点的性质。
解:令⎩⎨⎧<>>>===-0,00,0)(''00010000x x x e e x f x x x x 代入,,故为极小值点。
7.23)1(-=x x y ,求单调区间与极值、凹凸区间与拐点、渐进线。
解:定义域),1()1,(+∞-∞∈ x8.求函数x e x y arctan 2/)1(+-=π的单调性与极值、渐进线。
解:101'arctan 2/22-==⇒++=+x x e x x x y x与驻点π,2)2(-=-=x y x e y 与渐:π D.幂级数展开问题 9.⎰=-x x dt t x dx d 022sin )sin(或:20202sin sin )(sin x du u dx d du u dx d u t x x x ==-⇒=-⎰⎰ 10.求)0(0)1ln()()(2n f n x x x x f 阶导数处的在=+=解:)(2)1(32()1ln(2213222---+--+⋅⋅⋅-+-=+n n n x o n x x x x x x x =)(2)1(321543n nn x o n x x x x +--+⋅⋅⋅-+-- 2!)1()0(1)(--=∴-n n f n n E.不等式的证明 11.设)1,0(∈x ,211)1ln(112ln 1)1(ln )122<-+<-<++x x x x x ,求证(证:1)令0)0(,)1(ln )1()(22=-++=g x x x x g 2)令单调下降,得证。
,0)('),1,0(,1)1ln(1)(<∈-+=x h x xx x hF.中值定理问题 12.设函数]11[)(,在-x f 具有三阶连续导数,且1)1(,0)1(==-f f ,0)0('=f ,求证:在(-1,1)上存在一点3)('''=ξξf ,使证:32)('''!31)0(''!21)0(')0()(x f x f x f f x f η+++=其中]1,1[),,0(-∈∈x x η将x=1,x=-1代入有)('''61)0(''21)0()1(1)('''61)0(''21)0()1(021ηηf f f f f f f f ++==-+=-=两式相减:6)(''')('''21=+ηηf f13.2e b a e <<<,求证:)(4ln ln 222a b ea b ->-证:)(')()(:ξf ab a f b f Lagrange =-- 令ξξln 2ln ln ,ln )(222=--=a b a b x x f 令2222ln )()(0ln 1)(',ln )(ee t t t t t t >∴>∴<-==ξξϕξϕϕϕ )(4ln ln 222a b ea b ->- (关键:构造函数)三、补充习题(作业)1.23)0('',11ln)(2-=+-=y x x x f 求 2.曲线012)1,0(2cos 2sin =-+⎪⎩⎪⎨⎧==x y te y te x tt处切线为在 3.ex y x x e x y 1)0)(1ln(+=>+=的渐进线方程为4.证明x>0时22)1(ln )1(-≥-x x x证:令3222)1(2)('''),(''),(',)1(ln )1()(xx x g x g x g x x x x g -=---= 第三讲 不定积分与定积分一、理论要求 1.不定积分 掌握不定积分的概念、性质(线性、与微分的关系)会求不定积分(基本公式、线性、凑微分、换元技巧、分部) 2.定积分理解定积分的概念与性质理解变上限定积分是其上限的函数及其导数求法 会求定积分、广义积分会用定积分求几何问题(长、面、体)会用定积分求物理问题(功、引力、压力)及函数平均值 二、题型与解法 A.积分计算1.⎰⎰+-=--=-C x x dx x x dx 22arcsin)2(4)4(22.⎰⎰⎰+=+=+C x e xdx e xdx e dx x e x x x x tan tan 2sec )1(tan 2222223.设xx x f )1ln()(ln +=,求⎰dx x f )( 解:⎰⎰+=dx ee dx xf xx )1ln()( 4.⎰⎰∞∞>-∞+=+-+-=112122ln 214)11(lim |arctan 1arctan b b dx x x x x x dx xx π B.积分性质5.)(x f 连续,⎰=10)()(dt xt f x ϕ,且A xx f x =>-)(lim 0,求)(x ϕ并讨论)('x ϕ在0=x 的连续性。
解:xdy y f x xt y f x⎰=⇒===0)()(,0)0()0(ϕϕ6.⎰⎰---=-x x x t d t x fd dt t x tf d 02222022)()()( C.积分的应用1.⎰+---=C x x x x dx x x cot 2sin ln cot sin sin ln 22.⎰+-+dx x x x 136523.⎰dx xxarcsin第四讲 向量代数、多元函数微分与空间解析几何一、理论要求 1.向量代数理解向量的概念(单位向量、方向余弦、模) 了解两个向量平行、垂直的条件 向量计算的几何意义与坐标表示2.多元函数微分 理解二元函数的几何意义、连续、极限概念,闭域性质理解偏导数、全微分概念 能熟练求偏导数、全微分熟练掌握复合函数与隐函数求导法3.多元微分应用 理解多元函数极值的求法,会用Lagrange 乘数法求极值4.空间解析几何 掌握曲线的切线与法平面、曲面的切平面与法线的求法会求平面、直线方程与点线距离、点面距离二、题型与解法A.求偏导、全微分 1.)(x f 有二阶连续偏导,)sin (y e f z x =满足z e z z x yy xx 2''''=+,求)(x f解:u u e c e c u f f f -+=⇒=-21)(0''2.yx zy x y xy f x z ∂∂∂++=2)()(1,求ϕ3.决定由0),,(),()(),(=+===z y x F y x xf z x z z x y y ,求dx dz /B.空间几何问题 4.求a z y x =++上任意点的切平面与三个坐标轴的截距之和。