小波的几个术语及常见的小波基介绍
常用小波基函数
常用小波基函数目前主要通过用小波分析方法处理信号的结果与理论结果的误差来判定小波基的好坏,并由此选定小波基。
根据不同的标准,小波函数具有不同的类型,标准通常有:1)小波函数和尺度函数的支撑长度。
2)对称性。
在图像处理中对于避免移相是非常有用的。
3)小波函数和尺度函数的消失矩阶数。
4)正则性。
对于信号或图像的重构以获得较好的平滑效果是非常有用的。
可以通过waveinfo函数获得工具箱中小波函数的主要性质。
小波函数和尺度函数可以通过wavefun函数计算,滤波器可以通过wfilters函数产生。
1、haar函数是小波分析中最早用到的一个具有紧支撑的正交小波基函数,同时也是最简单的一个函数。
2、morlet函数的尺度函数不存在,其本身不具有正交性。
3、墨西哥草帽函数在时域和频域有很好的局部化,不具有正交性。
4、Meyer小波的小波函数和尺度函数都是在频域中进行定义的,是具有紧支撑的正交小波。
5、Daubechies小波系,简称dbN,它的db1是haar小波,其他小波没有明确的表达式,dbN函数是紧支撑标准正交小波,它的出现使离散小波分析成为可能。
dbN大多不具有对称性,对于正交小波函数,不对称性是非常明显的。
正则性随着N的增加而增加。
6、Biorthogonal小波系,简称biorNr.Nd。
它主要应用在信号与图像的重构中,通常的用法是采用一个函数进行分解,用另外一个小波函数进行重构,可以解决分解与重构,对称性和重构的精确性成为一对矛盾的问题。
Nr为重构,Nd为分解。
7、Coiflet小波系,简称coifN,是由db构造的一个小波函数,具有比dbN更好的对称性。
从支撑长度的角度看,coifN具有和db3N、sym3N相同的支撑长度,从消失矩的数目来看,具有和db2N、sym2N相同的消失矩数目。
8、Symlets小波系,简称symN,是由db改进的一种函数,是金丝对称的。
小波分析入门
小波分析的基本知识屠2001.8.2A.基本知识A1.小波(WAVELET)分类1.原始小波:(1).高斯gaus, (2).莫来特morlet, (3).墨西哥帽mexihat2.无限正则小波浪:(4).梅耶meyr (5).离散梅耶dmey3.正交和紧支集小波:(6).达比切斯dbN(Daubechies), (7).对称symN(symlets), (8).coifN4.双正交和紧支集小波: (9).双正交biorNr (10). 逆双正交rbioNr.Nd5.复小波: (11).复高斯cgauN (12)复莫来特 cmor Fb-Fc (13)复香农shan Fb-Fc(14).复频率B样条 fbspM Fb-Fc注1:db1小波也称哈尔Harr小波,也是原始小波注2.symlet小波是Daubechies小波的改进,由不对称改成近似对称注3.紧支集即函数在有限区域内不为零A2.小波函数和尺度(SCALE)函数1.小波函数(psi)--由高通滤波器确定,产生小波分解的细节 D(detail,)2.尺度函数(phi)--由低通正交镜象滤波器确定, 产生小波分解的逼近 A(approximation)A3.小波分解:S(SIGNAL)=A1+D1=(A2+D2)+D1=(A3+D3)+D2+D1=(A4+D4)+D3+D2+D1=...A4.小波包(WP=Wavelet Packet)分解:S=A1+D1=(AA2+DA2)+(AD2+DD2)=(AAA3+DAA3)+(ADA3+DDA3)+(ADA3+DDA3)+...A5.WAVEMENU: 开始图象用户界面GUI工具A6.WAVEDEMO: 小波工具箱演示B小波变换B1.一维连续小波变换:CWT coefs=cwt(S,scales,"wname')coefs=cwt(S,scales,'wname','plot')coefs=cwt(S,scales,'wname','plotmode')scales--正实数,如1:32,[64 32 16:-2:2],...COLORMENU,COLORBARB2.单级一维离散小波变换:DWT,UPCOEF[Ca1,Cd1]=dwt(x,'wname'), Ca1--逼近系数 Cd1--细节系数[Ca1,Cd1]=dwt(x,Lo_D,Hi_D)a1=upcoef('a',Ca1,'wname',1,L); a1--逼近 L--length(x)d1=upcoef('d',Cd1,'wname',1,L); d1--细节 L--length(x)B3.单级一维逆离散小波变换:IDWT, x=idwt(Ca1,Cd1,'wname')B4.多级一维离散小波分解:WAVEDEC,APPCOEF,DETCOEF,WRCOEF[C,L]=wavedec(x,N,'wname'),N--级(LEVEL)数 C--分解(DECOMPOSITION)矢量L--辅助操作(Bookkeeping)矢量B5.APPCOEF:提取一维小波逼近系数,A=appcoef(C,L,'wname',N)B6.DETCOEF:提取一维小波细节系数,A=detcoef(C,L,'wname',N)B7.WRCOEF:X=wrcoef('type',C,L,'wname',N).type=a,逼近;type=d,细节B8.WAVEREC(多级一维离散小波重构) 重构--RECONSTRUCTIONx=waverec(C,L,'wname')x=waverec(C,L,Lo_R,Hi_R)B9.WFILTERS--小波滤波器[Lo_D,Hi_D,Lo_R,Hi_R]=wfilters('wname'),'wname'=db,coif,sym,bior,rbioB10.DYADDOWN:二进(Dyadic)降采样 Y=dyaddown(x,EVENODD)EVENODD--even,y(k)=x(2k), --odd,y(k)=x(2k-1)B11. DYADUP:二进增采样(填零), y=dyadup(x,EVENODD)B12. WKEEP:保留矢量或矩阵的一部分C.小波包变换C1. WPDEC一维离散小波包分解:[T,D]=wpdec(x,N,'wname',E,P), T--树结构Tree structure, D--数据结构E-熵 Entropy E='shannon','threshold','norm','log energy','user'P-附加参数'threshold' 'sure':P=threshold(0<=P)'norm':P=power,1<=P<2)C2. WPREC一维离散小波包重构x=wprec(T,D) T--小波包树(TREE) N—节点(NODE)C3. WPCOEF小波包系数x=wpcoef(S,D,N)D.MALLAT算法(FWT)E.一维试验信号(b1(t): b2(t): )oislop(ramp+color noise):1=<t<=499,(t/500)+b2(t);500=<t<=1000,1+b2(t)2.freqbrk:1=<t<=500,sin(0.03t);501=<t<=1000,sin(0.3t)3. heavysin4.nelec(2000 电力消耗)5.leleccum(4320分(72小时)电力消耗6.linchirp(线性快扫)7.mfreqbrk8.mishmash 9.nearbrk(1~499,511~1500)10.noisbloc 11.noisbump12.noischir 13.noisdopp 噪声多普勒14.noismima 15.noispol: 在[1 1000]间 t^2-t+1+b1(t) 16.noissin:sin(0.03t)+b1(t) 17.qdchirp18.quachip19.scddvbrk:二阶导数不连续,t<0,exp(-4t^2);t>=0,exp(-t^2),t=[-0.5 0.5]20.sinfract 21.sinper8 22.sumlichr23.sumsin:sin(3t)+sin(0.3t)+sin(0.03t)24.trsin:1=<t<=500,((t-1)/500)+sin(0.3t);501=<t<=1000,((1000-t)/500)+sin(0.3t)25.vonkoch:分形,科克雪花26.warma:AR(3),b2(t)=-1.5*b2(t-1)-0.75*b2(t-2)-0.125*b2(t-3)+b1(t)+0.527.wcantor:分形,康托(三分取一)曲线28.whitnois:在[-0.5 0.5]间的均匀白噪声29.wnoislop:1=<t<=499,(3t/500)+b1(t);500=<t<=1000,3+b1(t)30.wntrsin:1=<t<=500,((t-1)/500)+sin(0.3t)+b1(t);501=<t<=1000,((1000-t)/500)+sin(0.3t)+b1(t)31.wstep:1=<t<=500,s=0;501=<t<=1000,s=20.32.cuspamax(1024):x=linspace(0,1.1024);y=exp(-128*((X-0.3).^2))-3*(abs(x-0.7).^0.433.brkintri:顶端折线三角34.wcantsym(2188):对称康托集disp('******)*************MALLAT算法示例***********************************************')x=[1.8 1.0 -1.0 -1.8];[Lo_D,Hi_D]=wfilters('db1','d');tmpo1=conv(x,Lo_D); [1.8 1.0 -1.0 -1.8]*[0.7071 0.7071]tmpo2=conv(x,Hi_D);Ca1=dyaddown(tmpo1);Cd1=dyaddown(tmpo2);disp('低通分解滤波器系数Lo_D 高通分解滤波器系数Hi_D');disp( [(Lo_D)' (Hi_D)'] ),disp('卷积conv(x,Lo_D 卷积conv(x,Hi_D)');disp( [(tmpo1)’ (tmpo2)’] ),disp('一级逼近系数Ca1 一级细节系数Cd1');disp( [(Ca1)’ (Cd1)’] ),% Ca1=1.9799 -1.9799 Cd1= 0.5657 0.5657[Lo_R,Hi_R]=wfilters('db1','r');disp('低通重构滤波器系数Lo_R=');disp(Lo_R),disp('高通重构滤波器系数Hi_R=');disp(Hi_R),tmp1=dyadup(Cd1);tmpo3=conv(tmp1,Hi_R);d1=wkeep(tmpo3,4);tmp2=dyadup(Ca1);tmpo4=conv(tmp2,Lo_R);a1=wkeep(tmpo4,4);disp( '一级逼近a1 一级细节d1 ');DISP( [(a1)’ (d1)’] ),% 一级逼近a1= 1.4000 1.4000 -1.4000 -1.4000% 一级细节d1= 0.4000 -0.4000 0.4000 -0.4000figure(1),a0=a1+d1;subplot(521),bar(x,0.1),title('原始波形x=[1.8 1.0 -1.0 -1.8]'), grid,axis([0 5 -2 2]),subplot(522),bar(a0,0.1),title('分解后重构波形s=a1+d1'),grid,axis([0 5 -2 2])subplot(523),bar(Ca1,0.1),title(' 逼近系数Ca1=[1.98 -1.98]'),grid,axis([0 5 -2 2])subplot(524),bar(Cd1,0.1),title(' 细节系数Cd1=[0.566 0.566]'),grid,axis([0 5 0 1])subplot(525),bar(a1,0.1),title(' 一级逼近a1=[1.4 1.4 -1.4 -1.4]'),grid,axis([0 5 -2 2])subplot(526),bar(d1,0.1),title(' 一级细节d1=[0.4 -0.4 0.4 -0.4]'),grid,axis([0 5 -1 1])subplot(527),bar(Lo_D,0.1),title('低通分解滤波器系数Lo_D'),grid,axis([0 5 0 1])subplot(528),bar(Hi_D,0.1),title('高通分解滤波器系数Hi_D'),grid,axis([0 5 -1 1])subplot(5,2,9),bar(Lo_R,0.1), title('低通重构滤波器系数Lo_R'),grid,axis([0 5 0 1])subplot(5,2,10),bar(Hi_R,0.1),title('高通重构滤波器系数Hi_R'),grid,axis([0 5 -1 1])%******以上为MALLAT算法原理,实际上用简单命令DWT,UPCOEF计算如下************************** x=[1.8 1.0 -1.0 -1.8];length(x);[Ca1,Cd1]=dwt(x,'db1');a1=upcoef('a',Ca1,'db1',1,4);d1=upcoef('d',Cd1,'db1',1,4);x1=a1+d1;a0=idwt(Ca1,Cd1,'db1',4);------------------------------------------------------------------------------------ x=[1.8 -1.8 1.8 -1.8];x=[1.8 1.0 -1.0 -1.8];[Lo_D,Hi_D]=wfilters('db40','d');tmpo1=conv(x,Lo_D);tmpo2=conv(x,Hi_D);Ca1=dyaddown(tmpo1);Cd1=dyaddown(tmpo2);disp('低通分解滤波器系数Lo_D 高通分解滤波器系数Hi_D');disp( [(Lo_D)'(Hi_D)'] )disp('卷积conv(x,Lo_D)');disp(tmpo1),disp('卷积conv(x,Hi_D)');disp(tmpo2),disp('一级逼近系数Ca1=');disp(Ca1),disp('一级细节系数Cd1=');disp(Cd1),[Lo_R,Hi_R]=wfilters('db40','r');disp('低通重构滤波器系数Lo_R=');disp(Lo_R),disp('高通重构滤波器系数Hi_R=');disp(Hi_R),tmp1=dyadup(Cd1);tmpo3=conv(tmp1,Hi_R);d1=wkeep(tmpo3,4);tmp2=dyadup(Ca1);tmpo4=conv(tmp2,Lo_R);a1=wkeep(tmpo4,4);disp('一级逼近a1');disp(a1),disp('一级细节d1');disp(d1),figure(2),a0=a1+d1;subplot(521),bar(x,0.1),title('原始波形x=[1.8 1.0 -1.0 -1.8]'),subplot(521),bar(x,0.1),title('原始波形x=[1.8 -1.8 1.8 -1.8]'),grid,axis([0 5 -2 2]),subplot(522),bar(a0,0.1),title('分解后重构波形s=a1+d1'),grid,axis([0 5 -2 2]) subplot(523),bar(Ca1,0.1),title(' 逼近系数Ca1'),grid,axlimdlg, axis([0 5 -2 2]) subplot(524),bar(Cd1,0.1),title(' 细节系数Cd1'),grid,axlimdlg, axis([0 5 0 1])subplot(525),bar(a1,0.1),title(' 一级逼近a1=[1.296,0.911,-0.6502,-1.5585]'),subplot(525),bar(a1,0.1),title(' 一级逼近a1=[ ]'), axlimdlg,grid, axis([0 5 -2 2])subplot(526),bar(d1,0.1),title(' 一级细节d1=[0.504,0.089,-0.3498,-0.2415'), subplot(526),bar(d1,0.1),title(' 一级细节d1=[ ]'),axlimdlg,grid, axis([0 5 -1 1])subplot(527),bar(Lo_D,0.1),title('低通分解滤波器系数Lo_D'),grid, axis([0 5 0 1]) subplot(528),bar(Hi_D,0.1),title('高通分解滤波器系数Hi_D'),grid, axis([0 5 -1 1]) subplot(5,2,9),bar(Lo_R,0.1), title('低通重构滤波器系数Lo_R'),grid, axis([0 5 0 1]), axlimdlg,subplot(5,2,10),bar(Hi_R,0.1),title('高通重构滤波器系数Hi_R'),grid, axis([0 5 -1 1]) axlimdlg,k=[1.8 1.0 -1.0 -1.8];s=[1.296 0.911 -0.6502 -1.5585];t=[0.504 0.089 -0.3498 -0.2415];ss=abs(fft(s,21));tt=abs(fft(t,21));kk=abs(fft(k,21));subplot(311),plot(kk),grid,axlimdlg,subplot(312),plot(ss),grid,axlimdlg,subplot(313),plot(tt),grid,axlimdlg,k1=[1.8 1.0 -1.0 -1.8];s1=[1.4 1.4 -1.4 -1.4];t1=[0.4 -0.4 0.4 -0.4];k2=[1.8 1.0 -1.0 -1.8];s2=[1.296 0.911 -0.6502 -1.5585];t2=[0.504 0.089 -0.3498 -0.2415];S1=abs(fft(s1,21));T1=abs(fft(t1,21));K1=abs(fft(k1,21));S2=abs(fft(s2,21));T2=abs(fft(t2,21));K2=abs(fft(k2,21));subplot(321),plot(K1),grid,axis([1 11 0 6]),title('Harr')subplot(323),plot(S1),grid,axis([1 11 0 6]),title('Harr')subplot(325),plot(T1),grid,axis([1 11 0 2]),title('Harr')subplot(322),plot(K2),grid,axis([1 11 0 6]),title('db40')subplot(324),plot(S2),grid,axis([1 11 0 6]),title('db40')subplot(326),plot(T2),grid,axis([1 11 0 2]),title('db40')disp('**********MALLAT算法可用简单命令DWT,UPCOEF重算如下*******************')x=[1.8 1.0 -1.0 -1.8];length(x); =4[Ca1,Cd1]=dwt(x,'db1');a1=upcoef('a',Ca1,'db1',1,4);d1=upcoef('d',Cd1,'db1',1,4);disp('一级逼近系数Ca1=');disp(Ca1), disp('一级细节系数Cd1=');disp(Cd1),disp('一级逼近a1=');disp(a1), disp('一级细节d1=');disp(d1),x1=a1+d1;a0=idwt(Ca1,Cd1,'db1',4);figure(1),subplot(321),bar(x,0.1),title('x=a1+d1=[1.8 1.0 -1.0 -1.8]'),grid,axis([0 5 -2 2]),subplot(322),bar(a0,0.1),title('a0=idwt=x'),grid,axis([0 5 -2 2])subplot(323),bar(Ca1,0.1),title(' 逼近系数Ca1=[1.98 -1.98]'),grid,axis([0 5 -2 2])subplot(324),bar(Cd1,0.1),title(' 细节系数Cd1=[0.566 0.566]'),grid,axis([0 5 0 1]) subplot(325),bar(a1,0.1),title(' 一级逼近a1=[1.4 1.4 -1.4 -1.4]'),grid,axis([0 5 -1.5 1.5])subplot(326),bar(d1,0.1),title(' 一级细节d1=[0.4 -0.4 0.4 -0.4]'),grid,axis([0 5 -1 1])pausedisp(' *******************************************************************'), disp(' * *'), disp(' * *'), disp(' * 低通滤波器减低通滤波器等于带通滤波器 *'), disp(' * *'), disp(' *******************************************************************'), pause,f=-10:0.01:10;t=-50:1/20:50;y1=cos(2*pi*100*f);y2=cos(2*pi*100*t);y1(1:50)=zeros(1,50);y1(1952:2001)=zeros(1,50);y2(1:250)=zeros(1,250);y2(1752:2001)=zeros(1,250);yy=y1-y2;u=cos(2*pi*7*t);v=sinc(t);r=u.*v;U=fft(u);V=fft(v);R=fft(r);x1=real(ifft(y1));x2=real(ifft(y2));xx=real(ifft(yy));figure(2),subplot(331),plot(f,y1),axis([-12,12,0,1.1]),...title('低通(尺度) Y1(f),Fc=9.5Hz.'),subplot(332),plot(f,y2),axis([-12,12,0,1.1]),...title('低通(尺度) Y2(f),Fc=7.5Hz.'),subplot(333),plot(f,yy),axis([-12,12,0,1.1]),...title('带通(小波) YY(f),BW=2Hz.'),subplot(334),plot(t,ifftshift(x1)),axis([-5 5 -0.1 1.0]),...title('X1(t)=IFFT(Y1)'),xlabel('t(s)'),...subplot(335),plot(t,ifftshift(x2)),axis([-5 5 -0.3 0.8]),...title('X2(t)=IFFT(Y2)'),xlabel('t(s)'),subplot(336),plot(t,ifftshift(xx)),axis([-5 5 -0.1 0.16]),...title('X3(t)=IFFT(YY)'),xlabel('t(s)'),pausedisp(' ******************************************************************'), disp(' * *'), disp(' * 调制引起频移,低通变成带通 *'), disp(' * *'), disp(' ******************************************************************'), pause, figure(3),subplot(331),plot(t,u),axis([-2 2 -1.1 1.1]),title('u=cos(2pi*7t),t=-50~50'),subplot(332),plot(t,v),axis([-4 4 -0.3 1.1]),title('v=sinc(t),t=-50~50')subplot(333),plot(t,r),axis([-4 4 -0.9 1.1]),title('r=uv,t=-50~50')subplot(334),plot(f,abs(U)),axis([-5 5 0 900]),title('FFT(u),F=3Hz'),xlabel('Hz') subplot(335),plot(f,fftshift(abs(V))),axis([-5 5 0 23]),...title('V=FFT(v)),低通:Fc=0.5Hz'),xlabel('Hz')subplot(336),plot(f,abs(R)),axis([-5 5 0 11]),title('FFT(r),带通:BW=1Hz'),...xlabel('Hz'),pause,********************************************************************************* t1=-10:0.02:10;f1=0:0.05:50;ta=-20:0.02:20;tb=0:0.02:40;f1=0:1/40:50;x1=cos(2*pi*50*t1);x2=cos(2*pi*50*[0:0.02:20]);x3=cos(2*pi*50*[20:0.02:40]);xa=[zeros(1,500) x1 zeros(1,500)];xb=[x2 zeros(1,1000)];xc=[zeros(1,1000) x3]; fxa=fft(xa);fxb=fft(xb);fxc=fft(xc);subplot(531),plot(ta,xa),axis([-20 20 0 1.1]),title(''),subplot(532),plot(tb,xb),axis([0 40 0 1.1]),title(''),subplot(533),plot(tb,xc),axis([0 40 0 1.1]),title(''),subplot(534),plot(f1,abs(fxa)),grid,axlimdlg,title(''),subplot(535),plot(f1,abs(fxb)),grid,axlimdlg,title(''),subplot(536),plot(f1,abs(fxc)),grid,axlimdlg,title(''),subplot(537),plot(f1,angle(fxa)),grid,axlimdlg,title(''),subplot(538),plot(f1,angle(fxb)),grid,axlimdlg,title(''),subplot(539),plot(f1,angle(fxc)),grid,axlimdlg,title(''),subplot(5,3,10),plot(f1,unwrap(angle(fxa))),grid,axlimdlg,title(''),subplot(5,3,11),plot(f1,unwrap(angle(fxb))),grid,axlimdlg,title(''),subplot(5,3,12),plot(f1,unwrap(angle(fxc))),grid,axlimdlg,title(''),disp('**************************END***********************************'),。
小波的几个术语及常见的小波基介绍
小波的几个术语及常见的小波基介绍Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】小波的几个术语及常见的小波基介绍本篇是这段时间学习小波变换的一个收尾,了解一下常见的小波函数,混个脸熟,知道一下常见的几个术语,有个印象即可,这里就当是先作一个备忘录,以后若有需要再深入研究。
一、小波基选择标准小波变换不同于傅里叶变换,根据小波母函数的不同,小波变换的结果也不尽相同。
现实中到底选择使用哪一种小波的标准一般有以下几点:1、支撑长度小波函数Ψ(t)、Ψ(ω)、尺度函数φ(t)和φ(ω)的支撑区间,是当时间或频率趋向于无穷大时,Ψ(t)、Ψ(ω)、φ(t)和φ(ω)从一个有限值收敛到0的长度。
支撑长度越长,一般需要耗费更多的计算时间,且产生更多高幅值的小波系数。
大部分应用选择支撑长度为5~9之间的小波,因为支撑长度太长会产生边界问题,支撑长度太短消失矩太低,不利于信号能量的集中。
这里常常见到“紧支撑”的概念,通俗来讲,对于函数f(x),如果自变量x在0附近的取值范围内,f(x)能取到值;而在此之外,f(x)取值为0,那么这个函数f(x)就是紧支撑函数,而这个0附近的取值范围就叫做紧支撑集。
总结为一句话就是“除在一个很小的区域外,函数为零,即函数有速降性”。
2、对称性具有对称性的小波,在图像处理中可以很有效地避免相位畸变,因为该小波对应的滤波器具有线性相位的特点。
3、消失矩在实际中,对基本小波往往不仅要求满足容许条件,对还要施加所谓的消失矩(Vanishing Moments)条件,使尽量多的小波系数为零或者产生尽量少的非零小波系数,这样有利于数据压缩和消除噪声。
消失矩越大,就使更多的小波系数为零。
但在一般情况下,消失矩越高,支撑长度也越长。
所以在支撑长度和消失矩上,我们必须要折衷处理。
小波的消失矩的定义为,若其中,Ψ(t)为基本小波,0<=p<N。
则称小波函数具有N阶消失矩。
小波的几个术语及常见的小波基介绍
小波的几个术语及常见的小波基介绍本篇是这段时间学习小波变换的一个收尾,了解一下常见的小波函数,混个脸熟,知道一下常见的几个术语,有个印象即可,这里就当是先作一个备忘录,以后若有需要再深入研究。
一、小波基选择标准小波变换不同于傅里叶变换,根据小波母函数的不同,小波变换的结果也不尽相同。
现实中到底选择使用哪一种小波的标准一般有以下几点:1、支撑长度小波函数Ψ(t)、Ψ(ω)、尺度函数φ(t)和φ(ω)的支撑区间,是当时间或频率趋向于无穷大时,Ψ(t)、Ψ(ω)、φ(t)和φ(ω)从一个有限值收敛到0的长度。
支撑长度越长,一般需要耗费更多的计算时间,且产生更多高幅值的小波系数。
大部分应用选择支撑长度为5~9之间的小波,因为支撑长度太长会产生边界问题,支撑长度太短消失矩太低,不利于信号能量的集中。
这里常常见到“紧支撑”的概念,通俗来讲,对于函数f(x),如果自变量x在0附近的取值范围内,f(x)能取到值;而在此之外,f(x)取值为0,那么这个函数f(x)就是紧支撑函数,而这个0附近的取值范围就叫做紧支撑集。
总结为一句话就是“除在一个很小的区域外,函数为零,即函数有速降性”。
2、对称性具有对称性的小波,在图像处理中可以很有效地避免相位畸变,因为该小波对应的滤波器具有线性相位的特点。
3、消失矩在实际中,对基本小波往往不仅要求满足容许条件,对还要施加所谓的消失矩(Vanishing Moments)条件,使尽量多的小波系数为零或者产生尽量少的非零小波系数,这样有利于数据压缩和消除噪声。
消失矩越大,就使更多的小波系数为零。
但在一般情况下,消失矩越高,支撑长度也越长。
所以在支撑长度和消失矩上,我们必须要折衷处理。
小波的消失矩的定义为,若其中,Ψ(t)为基本小波,0<=p<N。
则称小波函数具有N阶消失矩。
从上式还可以得出,同任意n-1阶多项式正交。
在频域内表示就是Ψ(ω)在ω=0处有高阶零点(一阶零点就是容许条件)。
小波分析的基本理论
东北大学研究生考试试卷考试科目:状态监测与故障诊断课程编号:阅卷人:考试日期:2013.12*名:***学号:*******注意事项1.考前研究生将上述项目填写清楚2.字迹要清楚,保持卷面清洁3.交卷时请将本试卷和题签一起上交东北大学研究生院小波分析的基本理论小波分析是当前应用数学和工程学科中一个迅速发展的新领域,是分析和处理非平稳信号的一种有力工具。
经过大量学者不断探索研究,它是以局部化函数所形成的小波基作为基底而展开的。
小波分析在保留傅里叶分析优点的基础上,具有许多特殊的性能和优点。
而小波分析则是一种更合理的时频表示和子带多分辨分析方法。
所以理论基础渐已扎实,理论体系逐步完善,在工程领域已得到广泛应用。
1 小波变换理论1.1 连续小波变换定义1.1 小波函数的定义:设ψ(x )为一平方可积函数,也即ψ(x )∈ L 2(R ),若其傅里叶变换ψ(ω)满足条件:C ψ=∫|ψ̂(ω)||ω|d ω<+∞+∞−∞1-1则称ψ(x )是一个基本小波或小波母函数(Mother Wavelet ),并称上式为小波函数的容许性条件。
由定义1.1可知,小波函数具有两个特点:(1)小:它们在时域都具有紧支集或近似紧支集。
由定义的条件知道任何满足可容许性条件的L 2(R )空间的函数都可以作为小波母函数(包括实数函数或复数函数、紧支集或非紧支集函数等)。
但是在一般的情况下,常常选取紧支集或近似紧支集的同时具有时域和频域的局部性实数或复数函数作为小波母函,让小波母函数在时域和频域都具有较好的局部特性,这样可以更好的完成实验。
(2)波动性:若设ψ̂(ω)在点ω=0连续,则由容许性条件得:∫ψ(x )dx =ψ̂(0)=0+∞−∞ 1-2也即直流分量为零,同时也就说明ψ(x )必是具有正负交替的波动性,这也是其 称为小波的原因。
定义1.2 连续小波基函数的定义:将小波母函数ψ(x )进行伸缩和平移,设其收缩因子(即尺度因子)为a,平移因子为b,使其平移伸缩后的函数为ψa,b (x ),则有:ψa ,b (x )=|a |−12ψ(x−b a),a >0,b ∈R 1-3称ψa,b (x )为依赖于参数a,b 的小波基函数。
第十二讲 小波基构造与常用小波
原始信号
非畸变信号
畸变信号
2 常用小波
Haar 小波 Mexican hat 小波 Morlet 小波 Meyer 小波
Daubechies 小波系
Coiflet 小波系 Biorthogonal 小波系
2.1 Haar小波
Haar 小波是一个最早应用也是最简单的具有紧支撑的正交小波 函数,其定义如下:
2N
2
2
2
)
则 | H ( ) |2 (sin ) 2 N P(cos 2 )
2 2
代入正交条件,可得到如下式子
(cos
2
) 2 N P(sin 2
2
) (sin
2
) 2 N P(cos 2
2
) 1
3.2 多项式P(x)的计算推导(二)
令 x sin 2
2
x r ( x)dx 0
r 0,1,, R 1
则称 ( x) 具有 R 阶消失矩。如果小波的消失矩阶数为 R,则其对应的 小波滤波器长度不少于 2R。在信号检测中,为了能够有效地检测到 奇异点,小波基必须具有足够高的消失矩的阶数,它与 Lipschitz 指 数密切相关。然而,突变信号的 Lipschitz 指数一般在 (0,1) 内,因此为 了分析突变信号,消失矩也不能太高,过高的消失矩阶数将使分析的 结果模糊,另外,从计算量的角度来看,消失矩的阶数也不宜过高。
0 x 1 / 2 1, ( x) 1, 1 / 2 x 1 0 其它
2.2 墨西哥帽小波
因为其形似墨西哥草帽而得名,定义如下:
小波去噪的基本知识
⼩波去噪的基本知识本篇是这段时间学习⼩波变换的⼀个收尾,了解⼀下常见的⼩波函数,混个脸熟,知道⼀下常见的⼏个术语,有个印象即可,这⾥就当是先作⼀个备忘录,以后若有需要再深⼊研究。
⼀、⼩波基选择标准⼩波变换不同于傅⾥叶变换,根据⼩波母函数的不同,⼩波变换的结果也不尽相同。
现实中到底选择使⽤哪⼀种⼩波的标准⼀般有以下⼏点:1、⽀撑长度⼩波函数Ψ(t)、Ψ(ω)、尺度函数φ(t)和φ(ω)的⽀撑区间,是当时间或频率趋向于⽆穷⼤时,Ψ(t)、Ψ(ω)、φ(t)和φ(ω)从⼀个有限值收敛到0的长度。
⽀撑长度越长,⼀般需要耗费更多的计算时间,且产⽣更多⾼幅值的⼩波系数。
⼤部分应⽤选择⽀撑长度为5~9之间的⼩波,因为⽀撑长度太长会产⽣边界问题,⽀撑长度太短消失矩太低,不利于信号能量的集中。
这⾥常常见到“紧⽀撑”的概念,通俗来讲,对于函数f(x),如果⾃变量x在0附近的取值范围内,f(x)能取到值;⽽在此之外,f(x)取值为0,那么这个函数f(x)就是紧⽀撑函数,⽽这个0附近的取值范围就叫做紧⽀撑集。
总结为⼀句话就是“除在⼀个很⼩的区域外,函数为零,即函数有速降性”。
2、对称性具有对称性的⼩波,在图像处理中可以很有效地避免相位畸变,因为该⼩波对应的滤波器具有线性相位的特点。
3、消失矩在实际中,对基本⼩波往往不仅要求满⾜容许条件,对还要施加所谓的消失矩(Vanishing Moments)条件,使尽量多的⼩波系数为零或者产⽣尽量少的⾮零⼩波系数,这样有利于数据压缩和消除噪声。
消失矩越⼤,就使更多的⼩波系数为零。
但在⼀般情况下,消失矩越⾼,⽀撑长度也越长。
所以在⽀撑长度和消失矩上,我们必须要折衷处理。
⼩波的消失矩的定义为,若其中,Ψ(t)为基本⼩波,0<=p<N。
则称⼩波函数具有N阶消失矩。
从上式还可以得出,同任意n-1阶多项式正交。
在频域内表⽰就是Ψ(ω)在ω=0处有⾼阶零点(⼀阶零点就是容许条件)。
小波基构造与常用小波
小波基的特点
01
02
03
多尺度分析
小波基具有多尺度分析的 特性,能够同时分析信号 在不同尺度和频率下的特 征。
灵活性
小波基具有多种不同的形 状和大小,可以根据实际 需求选择适合的小波基进 行信号处理。
高效性
小波基的变换算法具有高 效性,能够快速地完成信 号的分解和重构。
小波基的应用领域
信号处理
小波基在信号处理领域应用广泛,如信号去噪、 特征提取、压缩编码等。
信号检测
信号检测
小波变换具有良好的时频局部化特性,能够检测信号中的突变和异常。通过选择 合适的小波基和阈值,可以将信号中的突变和异常成分提取出来。
检测算法
常用的检测算法包括小波变换模极大值检测和基于小波变换的统计检测。小波变 换模极大值检测是根据小波变换的模极大值点进行突变检测,基于小波变换的统 计检测是根据小波变换系数的统计性质进行异常检测。
THANKS
感谢观看
应用
Daubechies小波基在信号处理、图像处理、数值分析等领域有 广泛的应用。
Symlets小波基
1 2
定义
Symlets小波基是一类对称的小波基,其定义基 于Daubechies小波基的改进。
特性
Symlets小波基具有对称性、紧支撑性和近似正 交性等特性,能够提供更好的信号表示能力。
3
应用
05
小波基在图像处理中的应用
图像压缩
01
图像压缩
小波变换可以将图像分解为不同频率的子带,通过去除高频部分的数据,
达到压缩图像的目的。
02 03
压缩比
小波变换的压缩比通常比传统的JPEG压缩方法更高,因为JPEG压缩方 法只去除空间域中的冗余数据,而小波变换同时去除空间域和频率域中 的冗余数据。
常用小波的分类
2.常用的基本小波
Mexican hat小波
该小波的中文名字为“墨西哥草帽”小波,又称 Marr小波。
2
t 2 / 2
2 1/ 4 ,其傅里叶变换为 式中 c 3 2 2 / 2 () 2 c e
该小波是由一高斯函数的二阶导数所得到的,其波形 和其频谱如图所示。
db小波的特点外,主要是 (t ) 是接近对称的,因此,
所用的滤波器可接近于线性相位。下图中是N=4时
的对称小波。
2016/3/2
21
3.正交小波
Sym4: Phi 1.2 1.5 Sym4: Psi 1 1 0.8 0.5 0.6 0 0.4 -0.5 0.2 -1
0
-0.2
0
2
4
6
8
-1.5
1 0 -1 0 1 2 1 0 -1 3 0 1 0 2 4 -1 0 2 4 1 0 1 0 5 10
d b2
1 0 -1 0 5 10
-1 -1 6 0 2 4 6 8 0
d b3
1 0 -1 0 5 10 15
d b4
1 0 -1 0 5
d b5
1 0 -1 0 10 15 5
d b6
10 15
2016/3/2 14
2.常用的基本小波
Gaussian wavelet: Psi 1.2 1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -10 0 5 15 The FT of Psi 10
-5
0
5
10
0
0.5
1
高斯小波,取k=4,(a)时域波形,(b)频谱
2016/3/2 15
有关小波的几个术语及常见的小波基介绍
General characteristics: Compactlysupported
wavelets with highest number of vanishing
moments for both phi and psi for a given support width.
5、相似性
选择和信号波形相似的小波,这对于压缩和消噪是有参考价值的。
二、常见的小波基
以下列出的15种小波基是Matlab中支持的15种。
小波函数
Ha ar
Daubec hies
Biorthog onal
Coiflet s
Symle ts
Morlet
Mexican Hat
Meyer
小波缩写 ha
名
ar
Symlet小波函数是IngridDaubechies提出的近似对称的小波函数,它是对db函数的一种改进。Symlet小波系通常表示为symN (N=2,3, …,8)。symN小波的支撑范围为2N-1,消失矩为N,同时也具备较好的正则性。该小波与dbN小波相比,在连续性、支集长度、滤波器长度 等方面与dbN小波一致,但symN小波具有更好的对称性,即一定程度上能够减少对信号进行分析和重构时的相位失真。
可以
不可 以
不可以
有限 有限长
2N-1 长度
度
2N [-4, 4] [-5, 5]
近似 对称
对称
对称
N
-
-
-
-
-
无 可以 可以
但无F WT
有限 长度
[-8, 8]
对称
常用小波的分类剖析
0
6
4
-0.2 2
-0.4
0
-4 -2
0
2
4
0
0.5
1
墨西哥草帽小波,(a)时域波形,(b)频谱
2020/11/8
12
2.常用的基本小波
Mexican hat小波不是紧支撑的,不是
正交的,也不是双正交的,但它是对称 的,可用于连续小波变换。由于该小波 在 处0 有二阶零点,因此它满足容许 条件,且该小波比较接近人眼视觉的空 间响应特征
Haar小波是不连续小波,由于 t (t)dt 0 , 因此处() 只有一阶零点 0 ,这就使 得Haar小波在实际的信号分析与处理中 受到了限制。
2020/11/8
7
2.常用的基本小波
Morlet小波
Morlet小波定义为
(t) et2 / 2e jt
其傅里叶变换
() 2 e(0 )2 / 2
(t), (2 j t) 0 • Haar波是对称的。系统的单位冲击响应若具有对称性,
则该系统具有线性相位,这对于去除相位失真是非常有 利的。Haar小波是目前唯一一个既具有对称性又是有限 支撑的正交小波;
• Haar小波仅取+1和-1,计算简单。
2020/11/8
6
2.常用的基本小波
➢ Haar小波缺点
2020/11/8
3
2.常用的基本小波
Haar小波
Haar小波来自于数学家Haar于1910年提出的 Haar正交函数集,其定义是:
1
(t) 1
0
0 t 1/ 2
1/
2
t
1
其它
其波形如图所示。 (t的) 傅里叶变换是:
小波的几个术语及常见的小波基介绍
本篇是这段时间学习小波变换的一个收尾,了解一下常见的小波函数,混个这里就当是先作一个备忘录,以后若有需脸熟,知道一下常见的几个术语,有个印象即可,要再深入研究。
一、小波基选择标准小波变换不同于傅里叶变换,根据小波母函数的不同,小波变换的结果也不尽相同。
现实中到底选择使用哪一种小波的标准一般有以下几点:1、支撑长度小波函数Ψ(t)、Ψ(ω)、尺度函数φ(t)和φ(ω)的支撑区间,是当时间或频率趋向于无穷大时,Ψ(t)、Ψ(ω)、φ(t)和φ(ω)从一个有限值收敛到0的长度。
支撑长度越长,一般需要耗费更多的计算时间,且产生更多高幅值的小波系数。
大部分应用选择支撑长度为5~9之间的小波,因为支撑长度太长会产生边界问题,支撑长度太短消失矩太低,不利于信号能量的集中。
这里常常见到“紧支撑”的概念,通俗来讲,对于函数f(x),如果自变量x在0附近的取值范围内,f(x)能取到值;而在此之外,f(x)取值为0,那么这个函数f(x)就是紧支撑函数,而这个0附近的取值范围就叫做紧支撑集。
总结为一句话就是“除在一个很小的区域外,函数为零,即函数有速降性”。
2、对称性具有对称性的小波,在图像处理中可以很有效地避免相位畸变,因为该小波对应的滤波器具有线性相位的特点。
3、消失矩在实际中,对基本小波往往不仅要求满足容许条件,对还要施加所谓的消失矩(Vanishing Moments)条件,使尽量多的小波系数为零或者产生尽量少的非零小波系数,这样有利于数据压缩和消除噪声。
消失矩越大,就使更多的小波系数为零。
但在一般情况下,消失矩越高,支撑长度也越长。
所以在支撑长度和消失矩上,我们必须要折衷处理。
小波的消失矩的定义为,若其中,Ψ(t)为基本小波,0<=p<N。
则称小波函数具有N阶消失矩。
从上式还可以得出,同任意n-1阶多项式正交。
在频域内表示就是Ψ(ω)在ω=0处有高阶零点(一阶零点就是容许条件)。
4、正则性在量化或者舍入小波系数时,为了减小重构误差对人眼的影响,我们必须尽量增大小波的光滑性或者连续可微性。
小波的几个术语及常见的小波基介绍
CWT possible
Supportwidth 1
Filterslength 2
Regularity haarisnotcontinuous
Symmetry yes
Numberofvanishing
momentsforpsi 1
2
Daubechies,一般音译为“多贝西”。
Daubechies小波是由世界著明的小波分析学者IngridDaubechies(一般音译为英格丽·多贝西)构造的小波函数,我们一般简写成dbN,N是小波的阶数。小波函数Ψ(t)和尺度函数φ(t)中的支撑区为2N-1,Ψ(t)的消失矩为N。dbN小波具有较好的正则性,即该小波作为稀疏基所引入的光滑误差不容易被察觉,使得信号重构过程比较光滑。dbN小波的特点是随着阶次(序列N)的增大消失矩阶数越大,其中消失矩越高光滑性就越好,频域的局部化能力就越强,频带的划分效果越好,但是会使时域紧支撑性减弱,同时计算量大大增加,实时性变差。另外,除N=1外,dbN小波不具有对称性(即非线性相位),即在对信号进行分析和重构时会产生一定的相位失真。dbN没有明确的表达式(除了N=1外,N=1时即为Haar小波)。
消失矩和正则性之间有很大关系,对很多重要的小波(比如,样条小波,Daubechies小波等)来说,随着消失矩的增加,小波的正则性变大,但是,并不能说随着小波消失矩的增加,小波的正则性一定增加,有的反而变小。
5
选择和信号波形相似的小波,这对于压缩和消噪是有参考价值的。
二、常见的小波基
以下列出的15种小波基是Matlab中支持的15种。
可以
不可以
可以
不可以
不可以
不可以
不可以
离散小波变换
五种常见小波基函数及其maab实现
与标准的傅里叶变换相比,小波分析中使用到的小波函数具有不唯一性,即小波函数具有多样性。
小波分析在工程应用中,一个十分重要的问题就是最优小波基的选择问题,因为用不同的小波基分析同一个问题会产生不同的结果。
目前我们主要是通过用小波分析方法处理信号的结果与理论结果的误差来判定小波基的好坏,由此决定小波基。
常用小波基有Haar 小波、Daubechies(dbN)小波、MexicanHat(mexh)小波、Morlet 小波、Meyer 小波等。
Haar 小波Haar 函数是小波分析中最早用到的一个具有紧支撑的正交小波函数,也是最简单的一个小波函数,它是支撑域在[0,1]∈t 范围内的单个矩形波。
Haar 函数的定义如下:Haar 小波在时域上是不连续的,所以作为基本小波性能不是特别好。
但它也有自己的优点:1. 计算简单。
2. (t)ψ不但与j (t)[j z]2ψ∈正交,而且与自己的整数位移正交,因此,在2j a =的多分辨率系统中,Haar小波构成一组最简单的正交归一的小波族。
()t ψ的傅里叶变换是:Haar 小波的时域和频域波形Daubechies(dbN)小波Daubechies 小波是世界着名的小波分析学者Inrid ·Daubechies 构造的小波函数,简写为dbN ,N 是小波的阶数。
小波(t)ψ和尺度函数(t)φ中的支撑区为12-N ,(t)ψ的消失矩为N 。
除1=N (Harr 小波)外,dbN 不具有对称性(即非线性相位)。
除1=N (Harr 小波)外,dbN 没有明确的表达式,但转换函数h 的平方模是明确的:令k N k k N k y p C ∑-=+=101-(y),其中C k N k +1-为二项式的系数,则有其中:Daubechies 小波具有以下特点:1. 在时域是有限支撑的,即(t)ψ长度有限。
2. 在频域)(ωψ在=0ω处有N 阶零点。
3. (t)ψ和它的整数位移正交归一,即⎰=δψψkk)dt -(t (t)。
常用小波基函数
常用小波基函数目前主要通过用小波分析方法处理信号的结果与理论结果的误差来判定小波基的好坏,并由此选定小波基。
根据不同的标准,小波函数具有不同的类型,标准通常有:1)小波函数和尺度函数的支撑长度。
2)对称性。
在图像处理中对于避免移相是非常有用的。
3)小波函数和尺度函数的消失矩阶数。
4)正则性。
对于信号或图像的重构以获得较好的平滑效果是非常有用的。
可以通过waveinfo函数获得工具箱中小波函数的主要性质。
小波函数和尺度函数可以通过wavefun函数计算,滤波器可以通过wfilters函数产生。
1、haar函数是小波分析中最早用到的一个具有紧支撑的正交小波基函数,同时也是最简单的一个函数。
2、morlet函数的尺度函数不存在,其本身不具有正交性。
3、墨西哥草帽函数在时域和频域有很好的局部化,不具有正交性。
4、Meyer小波的小波函数和尺度函数都是在频域中进行定义的,是具有紧支撑的正交小波。
5、Daubechies小波系,简称dbN,它的db1是haar小波,其他小波没有明确的表达式,dbN函数是紧支撑标准正交小波,它的出现使离散小波分析成为可能。
dbN大多不具有对称性,对于正交小波函数,不对称性是非常明显的。
正则性随着N的增加而增加。
6、Biorthogonal小波系,简称biorNr.Nd。
它主要应用在信号与图像的重构中,通常的用法是采用一个函数进行分解,用另外一个小波函数进行重构,可以解决分解与重构,对称性和重构的精确性成为一对矛盾的问题。
Nr为重构,Nd为分解。
7、Coiflet小波系,简称coifN,是由db构造的一个小波函数,具有比dbN更好的对称性。
从支撑长度的角度看,coifN具有和db3N、sym3N相同的支撑长度,从消失矩的数目来看,具有和db2N、sym2N相同的消失矩数目。
8、Symlets小波系,简称symN,是由db改进的一种函数,是金丝对称的。
小波的几个术语及常见的小波基介绍
小波的几个术语及常见的小波基介绍小波分析是一种数学工具,用于在信号和图像处理中分析和处理数据。
小波是由时间和频率两个维度组成的,因此可以提供更加详细和全面的数据描述。
在小波分析中,有一些重要的术语和常见的小波基,下面将进行详细介绍。
几个术语:1. 小波函数(Wavelet Function):小波函数是指满足特定条件的函数,用于构造小波分析。
小波函数可以通过伸缩(Scaling)和平移(Translation)操作得到不同频率和时间的小波基函数。
2. 尺度(Scale):尺度是用来调整小波函数的大小,尺度越大,小波函数的时间范围越大,频率范围越低。
尺度通过尺度变换(Scaling Function)来进行调整。
3. 位移(Translation):位移是用来调整小波函数的位置,位移参数决定了小波函数在时间轴上的位置。
位移通过位移变换(Translation Function)来进行调整。
4. 连续小波变换(Continuous Wavelet Transform,CWT):连续小波变换是指将信号与小波函数进行卷积运算,得到一系列的小波系数。
这种变换能够提供信号在不同尺度和位置上的频率信息。
5. 离散小波变换(Discrete Wavelet Transform,DWT):离散小波变换是指将信号通过一系列的滤波和下采样操作,得到一组小波系数。
这种变换可以实现高效的小波分析,并且能够提供信号在不同尺度上的频率信息。
常见的小波基:1. Haar小波:Haar小波是最简单的小波基函数,它只有两个系数,分别为±1、Haar小波具有边缘保持性质(Edge Preserving),能够有效提取信号的边缘信息。
2. Daubechies小波:Daubechies小波是一类广泛使用的小波基函数,由Ingrid Daubechies提出。
它的设计基于幂等滤波器(Idempotent Filter),可以提供精确的尺度变换和频率分析。
不同小波基下初始信号的小波变换
小波变换是一种信号分析技术,可以将信号分解为不同尺度和频率的成分。
不同小波基函数可以用于对初始信号进行小波变换,每种小波基函数都具有不同的特性和适用场景。
下面是一些常见的小波基函数和它们的特点:
Haar小波基:是最简单的小波基函数之一,适用于处理突变信号,对于突变边缘的定位能力较好。
Daubechies小波基:Daubechies小波基是最常用的小波基之一,具有紧凑的支持区域和良好的频率局部化特性,可用于平滑和压缩信号。
Symlet小波基:Symlet小波基是Daubechies小波基的对称扩展,适用于平稳和非平稳信号的分析。
Coiflet小波基:Coiflet小波基在高频区域具有更好的逼近性能,适用于信号的边缘检测和平滑处理。
Morlet小波基:Morlet小波基是一种连续小波变换的基函数,常用于时频分析,特别是在处理频谱分析和信号中的瞬态特征方面。
对于给定的初始信号,可以选择适合的小波基函数进行小波变换。
不同的小波基函数在时域和频域上具有不同的性质和适用范围,因此在选择小波基函数时需要考虑信号的特点和分析目的。
五种常见小波基函数及其matlab实现精编版
与标准的傅里叶变换相比,小波分析中使用到的小波函数具有不唯一性,即小波函数 具有多样性。
小波分析在工程应用中,一个十分重要的问题就是最优小波基的选择问题,因为用不同的小波基分析同一个问题会产生不同的结果。
目前我们主要是通过用小波分析方法处理信号的结果与理论结果的误差来判定小波基的好坏,由此决定小波基。
常用小波基有Haar 小波、Daubechies(dbN)小波、Mexican Hat(mexh)小波、Morlet 小波、Meyer 小波等。
Haar 小波Haar 函数是小波分析中最早用到的一个具有紧支撑的正交小波函数,也是最简单的一个小波函数,它是支撑域在[0,1]∈t 范围内的单个矩形波。
Haar函数的定义如下:1021121(t)-10t t ≤≤≤≤ψ=⎧⎪⎨⎪⎩其他Haar 小波在时域上是不连续的,所以作为基本小波性能不是特别好。
但它也有自己的优点:1. 计算简单。
2.(t)ψ不但与j (t)[j z]2ψ∈正交,而且与自己的整数位移正交,因此,在2j a=的多分辨率系统中,Haar 小波构成一组最简单的正交归一的小波族。
()t ψ的傅里叶变换是:2/24=sin ()j e aψ-ΩΩΩΩ()jDaubechies(dbN)小波Daubechies 小波是世界著名的小波分析学者Inrid ·Daubechies 构造的小波函数,简写为dbN ,N 是小波的阶数。
小波(t)ψ和尺度函数(t)φ中的支撑区为12-N ,(t)ψ的消失矩为N 。
除1=N (Harr 小波)外,dbN 不具有对称性(即非线性相位)。
除1=N(Harr 小波)外,dbN 没有明确的表达式,但转换函数h 的平方模是明确的:令kN k kN kyp C∑-=+=11-(y),其中C kN k+1-为二项式的系数,则有)2)p(sin2(cos)(2220ωωω=m其中:e h jk N k kωω-12021)(m ∑-==Daubechies 小波具有以下特点:1. 在时域是有限支撑的,即(t)ψ长度有限。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小波的几个术语及常见的小波基介绍本篇是这段时间学习小波变换的一个收尾,了解一下常见的小波函数,混个脸熟,知道一下常见的几个术语,有个印象即可,这里就当是先作一个备忘录,以后若有需要再深入研究。
一、小波基选择标准小波变换不同于傅里叶变换,根据小波母函数的不同,小波变换的结果也不尽相同。
现实中到底选择使用哪一种小波的标准一般有以下几点:1、支撑长度小波函数Ψ(t)、Ψ(ω)、尺度函数φ(t)和φ(ω)的支撑区间,是当时间或频率趋向于无穷大时,Ψ(t)、Ψ(ω)、φ(t)和φ(ω)从一个有限值收敛到0的长度。
支撑长度越长,一般需要耗费更多的计算时间,且产生更多高幅值的小波系数。
大部分应用选择支撑长度为5~9之间的小波,因为支撑长度太长会产生边界问题,支撑长度太短消失矩太低,不利于信号能量的集中。
这里常常见到“紧支撑”的概念,通俗来讲,对于函数f(x),如果自变量x在0附近的取值范围内,f(x)能取到值;而在此之外,f(x)取值为0,那么这个函数f(x)就是紧支撑函数,而这个0附近的取值范围就叫做紧支撑集。
总结为一句话就是“除在一个很小的区域外,函数为零,即函数有速降性”。
2、对称性具有对称性的小波,在图像处理中可以很有效地避免相位畸变,因为该小波对应的滤波器具有线性相位的特点。
3、消失矩在实际中,对基本小波往往不仅要求满足容许条件,对还要施加所谓的消失矩(Vanishing Moments)条件,使尽量多的小波系数为零或者产生尽量少的非零小波系数,这样有利于数据压缩和消除噪声。
消失矩越大,就使更多的小波系数为零。
但在一般情况下,消失矩越高,支撑长度也越长。
所以在支撑长度和消失矩上,我们必须要折衷处理。
小波的消失矩的定义为,若其中,Ψ(t)为基本小波,0<=p<N。
则称小波函数具有N阶消失矩。
从上式还可以得出,同任意n-1阶多项式正交。
在频域内表示就是Ψ(ω)在ω=0处有高阶零点(一阶零点就是容许条件)。
4、正则性在量化或者舍入小波系数时,为了减小重构误差对人眼的影响,我们必须尽量增大小波的光滑性或者连续可微性。
因为人眼对“不规则”(irregular)误差比“平滑”误差更加敏感。
换句话说,我们需要强加“正则性”(regularity)条件。
也就是说正则性好的小波,能在信号或图像的重构中获得较好的平滑效果,减小量化或舍入误差的视觉影响。
但在一般情况下,正则性好,支撑长度就长,计算时间也就越大。
因此正则性和支撑长度上,我们也要有所权衡。
消失矩和正则性之间有很大关系,对很多重要的小波(比如,样条小波,Daubechies 小波等)来说,随着消失矩的增加,小波的正则性变大,但是,并不能说随着小波消失矩的增加,小波的正则性一定增加,有的反而变小。
5、相似性选择和信号波形相似的小波,这对于压缩和消噪是有参考价值的。
二、常见的小波基以下列出的15种小波基是Matlab中支持的15种。
小波函数Haar Daubechies Biorthogonal Coiflets Symlets Morlet MexicanHatMeyer小波缩写名haar db bior coif sym morl mexh meyr 表示形式haar db N biorNr.Nd coif N sym N morl mexh meyr 举例haar db3bior2.4coif3sym2morl mexh meyr 正交性有有无有有无无有1、Haar小波Haar,一般音译为“哈尔”。
Haar函数是小波分析中最早用到的一个具有紧支撑的正交小波函数,也是最简单的一个小波函数,它是支撑域在t∈[0,1]范围内的单个矩形波。
Haar小波在时域上是不连续的,所以作为基本小波性能不是特别好。
在Matlab中输入命令waveinfo('haar')可得到如下信息:General characteristics: Compactlysupportedwavelet, the oldest and the simplestwavelet.scaling function phi = 1 on [0 1] and 0otherwise.wavelet function psi = 1 on [0 0.5], = -1on [0.5 1] and 0 otherwise.Family HaarShort name haarExamples haar is the same as db1Orthogonal yesBiorthogonal yesCompact support yesDWT possibleCWT possibleSupport width 1Filters length 2Regularity haar is not continuousSymmetry yesNumber of vanishingmoments for psi 12、Daubechies(dbN)小波(紧支集正交小波)Daubechies,一般音译为“多贝西”。
Daubechies小波是由世界著明的小波分析学者Ingrid Daubechies(一般音译为英格丽·多贝西)构造的小波函数,我们一般简写成dbN,N是小波的阶数。
小波函数Ψ(t)和尺度函数φ(t)中的支撑区为2N-1,Ψ(t)的消失矩为N。
dbN小波具有较好的正则性,即该小波作为稀疏基所引入的光滑误差不容易被察觉,使得信号重构过程比较光滑。
dbN小波的特点是随着阶次(序列N)的增大消失矩阶数越大,其中消失矩越高光滑性就越好,频域的局部化能力就越强,频带的划分效果越好,但是会使时域紧支撑性减弱,同时计算量大大增加,实时性变差。
另外,除N=1外,dbN小波不具有对称性(即非线性相位),即在对信号进行分析和重构时会产生一定的相位失真。
dbN没有明确的表达式(除了N=1外,N=1时即为Haar小波)。
在Matlab中输入命令waveinfo('db')可得到如下信息:General characteristics: Compactlysupportedwavelets with extremal phase and highestnumber of vanishing moments for a givensupport width. Associated scaling filtersareminimum-phase filters.Family DaubechiesShort name dbOrder N N strictly positive integerExamples db1 or haar, db4, db15Orthogonal yesBiorthogonal yesCompact support yesDWT possibleCWT possibleSupport width 2N-1Filters length 2NRegularity about 0.2 N for large NSymmetry far fromNumber of vanishingmoments for psi N3、Symlet(symN)小波(近似对称的紧支集正交小波)Symlet小波函数是IngridDaubechies提出的近似对称的小波函数,它是对db函数的一种改进。
Symlet小波系通常表示为symN (N=2,3,…,8)。
symN小波的支撑范围为2N-1,消失矩为N,同时也具备较好的正则性。
该小波与dbN小波相比,在连续性、支集长度、滤波器长度等方面与dbN小波一致,但symN小波具有更好的对称性,即一定程度上能够减少对信号进行分析和重构时的相位失真。
在Matlab中输入命令waveinfo('sym')可得到如下信息:General characteristics: Compactlysupported wavelets withleast asymmetry and highest number ofvanishing momentsfor a given support width.Associated scaling filters are nearlinear-phase filters.Family SymletsShort name symOrder N N = 2, 3, ...Examples sym2, sym8Orthogonal yesBiorthogonal yesCompact support yesDWT possibleCWT possibleSupport width 2N-1Filters length 2NRegularitySymmetry near fromNumber of vanishingmoments for psi N4、Coiflet(coifN)小波根据R.Coifman的要求,Daubechies构造了Coiflet小波,它具有coifN (N=1,2,3,4,5)这一系列。
Coiflet的小波函数Ψ(t)的2N阶矩为零,尺度函数φ(t)的2N-1阶矩为零。
Ψ(t)和φ(t)的支撑长度为6N-1。
Coiflet的Ψ(t)和φ(t)具有比dbN更好的对称性。
在Matlab中输入命令waveinfo('coif')可得到如下信息:General characteristics: Compactlysupportedwavelets with highest number of vanishingmoments for both phi and psi for a givensupport width.Family CoifletsShort name coifOrder N N = 1, 2, ..., 5Examples coif2, coif4Orthogonal yesBiorthogonal yesCompact support yesDWT possibleCWT possibleSupport width 6N-1Filters length 6NRegularitySymmetry near fromNumber of vanishingmoments for psi 2NNumber of vanishingmoments for phi 2N-15、Biorthogonal(biorNr.Nd)小波为了解决对称性和精确信号重构的不相容性,引入了双正交小波,称为对偶的两个小波分别用于信号的分解和重构。
双正交小波解决了线性相位和正交性要求的矛盾。