人教版九年级数学下《反比例函数》同步练习
人教版初三数学9年级下册 第26章(反比例函数)26.1反比例函数 课后练习

人教九下26.1反比例函数一、选择题1. 下列函数中,是反比例函数的是( )A.y=−x2B.y=−12xC.y=1x−1D.y=1x22. 已知函数y=kx,当x=1时,y=−3,那么这个函数的解析式是( )A.y=3x B.y=−3xC.y=13xD.y=−13x3. 下列函数关系中,是反比例函数的是( )A.等边三角形面积S与边长a的关系B.直角三角形两锐角A与B的关系C.长方形面积一定时,长y与宽x的关系D.等边三角形的顶角A与底角B的关系4. 若点(3,6)在反比例函数y=kx(k≠0)的图象上,那么下列各点在此图象上的是( ) A.(−3,6)B.(2,9)C.(2,−9)D.(3,−6)5. 在反比例函数y=k−1x的图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是( )A.k>1B.k>0C.k≥1D.k<16. 下列反比例函数的图象一定在第一、三象限的是( )A.y=mx B.y=m+1xC.y=m2+1xD.y=−mx7. 已知函数y=kx的图象经过(2,3),下列说法正确的是( )A.y随着x增大而增大B.函数的图象只在第一象限C.当x<0时,必有y<0D.点(−2,−3)不在此函数的图象上8. 已知A(x1,y1),B(x2,y2)是反比例函数y=kx(k≠0)的图象上的两点,当x1<x2<0时,y1 >y2,那么一次函数y=kx−k的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限9. 一次函数y=kx+b(k≠0)与反比例函数y=kx(k≠0)的图象在同一平面直角坐标系中的大致图象如图所示,则k,b的取值范围是( )A.k>0,b>0B.k<0,b>0C.k<0,b<0D.k>0,b<010. 如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上,反比例函数y=kx (x>0)的图象经过顶点B,则k的值为( )A.12B.20C.24D.3211. 在反比例函数y=k(k<0)的图象上有两点A(x1,y1),B(x2,y2),且x1>x2>0,则y1−y2的x值为( )A.正数B.负数C.非正数D.非负数二、填空题12. 设三角形的底边、对应高、面积分别为a,ℎ,S.(1)当a=10时,S与ℎ的关系式为,是函数;(2)当S=18时,a与ℎ的关系式为,是函数.13. 已知变量y,x成反比例,且当x=2时,y=6,则这个函数关系是.14. 若函数y=(n−1)x n2−2是反比例函数,则n=.15. 点(1,3)在反比例函数y=k的图象上,则k=,在图象的每一支上,y随x的增大x而.16. 如图所示,某反比例函数的图象经过点(−2,1),则此反比例函数表达式为.17. 反比例函数y=2a−1的图象有一支位于第一象限,则常数a的取值范围是.x18. 已知点A(2,y1),B(4,y2)都在反比例函数y=k(k<0)的图象上,则y1y2(填“>”“<”x或“=”).19. 已知函数y=(m+1)x m2−5是反比例函数,且图象在第一、三象限内,则m=.20. 反比例函数y=k+1,点(x1,y1),(x2,y2)在其图象上,当x1<0<x2时,有y1>y2,则k x的取值范围是.图象上的概率21. 从2,3,4,5中任意选两个数,记作a和b,那么点(a,b)在函数y=12x是.三、解答题22. 已知y−1与x成反比例,当x=3时,y=5,求y与x的函数关系式.23. 作出反比例函数y=−4的图象,并结合图象回答:x(1) 当x=2时,y的值;(2) 当1<x≤4时,y的取值范围;(3) 当1≤y<4时,x的取值范围.的图象的一支位于第一象限.24. 已知反比例函数y=m−7x(1) 判断该函数图象的另一支所在的象限,并求出m的取值范围;(2) 如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为6,求m的值.25. 如图,在平面直角坐标系中,点O为坐标原点,正方形OABC的边OA,OC分别在x轴、y轴上,点B的坐标为(2,2),反比例函数y=k(x>0,k≠0)的图象经过线段BC的中点D.x(1) 求k的值;(2) 若点P(x,y)在该反比例函数的图象上运动(不与点D重合),过点P作PR⊥y轴于点R,作PQ⊥BC所在直线于点Q,记四边形CQPR的面积为S,求S关于x的解析式,并写出x的取值范围.26. 已知反比例函数的图象过点(1,−2).(1) 求这个函数的解析式,并画出图象;(2) 若点A(−5,m)在该图象上,则点A关于两坐标轴和原点的对称点是否也在图象上?27. 如图,一次函数y=kx+b的图象l分别与x轴,y轴交于点E,F,与双曲线y=−4x (x<0)交于点P(−1,n),F是PE的中点.(1) 求直线l的解析式;(2) 若直线x=a与l交于点A,与双曲线交于点B(不同于A),问a为何值时,PA=PB?答案一、选择题1. 【答案】B2. 【答案】B3. 【答案】C4. 【答案】B5. 【答案】A6. 【答案】C7. 【答案】C8. 【答案】B9. 【答案】D10. 【答案】D11. 【答案】A二、填空题12. 【答案】S=5ℎ;正比例;a=36;反比例ℎ13. 【答案】y=12x14. 【答案】−115. 【答案】3;减小16. 【答案】y=−2x17. 【答案】a>1218. 【答案】<19. 【答案】220. 【答案】k<−121. 【答案】16三、解答题22. 【答案】y=12+x.x23. 【答案】(1) y=−2.(2) −4<y≤−1.(3) −4≤x<−1.24. 【答案】(1) 第三象限;m−7>0,则m>7.(2) m=13.25. 【答案】(1) k=2.(2) S=2x−2,x>12−2x,0<x<1.26. 【答案】(1) y=−2,图略.x(2) m=2,点A−5,关于两坐标轴对称的点均不在函数图象上,关于原点对称的点在函数图5象上.27. 【答案】(1) y=−2x+2.(2) 当a=−2时,PA=PB(提示:过点P作PD⊥AB).。
2022-2023学年人教版九年级下册数学 第二十六章反比例函数 章节测试卷

九年级下册数学《第二十六章反比例函数》章节测试卷测试时间:120分钟试卷满分:120分一.选择题(共10小题,共30分)1.(2022秋•招远市期中)下列函数中,y是x的反比例函数的有()个.①y=−1x;①y=3x;①xy=﹣1;①y=3x;①y=2x−1;①y=1x−1.A.2B.3C.4D.52.(2022秋•沈河区校级期中)关于反比例函数y=−4x下列说法正确的是()A.图象经过点(﹣2,﹣2)B.图象分别在第一、三象限C.在每个象限内,y随x的增大而增大D.当y≤1时,x≤﹣43.(2022•鹿城区校级开学)如图,A为反比例函数y=kx(k>0)图象上一点,AB①x轴于点B,若S①AOB=3,则k的值为()A.1.5B.3C.√3D.64.(2022秋•晋州市期中)在同一平面直角坐标系中,反比例函数y=kx与一次函数y=kx﹣k(k为常数,且k≠0)的图象可能是()A .B .C .D .5.(2022•鼓楼区校级模拟)在平面直角坐标系中,若一个反比例函数的图象经过A (m ,6),B (5,n )两点,则m ,n 一定满足的关系式是( ) A .m ﹣n =1B .m n=56C .m n=65D .mn =306.(2022秋•石阡县期中)若P 1(x 1,y 1),P 2(x 2,y 2)是反比例函数y =−6x的图象上的两点,且x 1<x 2<0,则( ) A .0<y 2<y 1B .0<y 1<y 2C .y 1<0<y 2D .y 2<0<y 17.(2022秋•虹口区校级期中)下列函数中,y 的值随x 值的增大而增大的函数是( ) A .y =2xB .y =﹣2x +1C .y =x ﹣2D .y =﹣x ﹣28.(2022春•丰城市校级期末)如图已知反比例函数C 1:y =k x(k <0)的图象如图所示,将该曲线绕点O 顺时针旋转45°得到曲线C 2,点N 是曲线C 2上一点,点M 在直线y =﹣x 上,连接MN 、ON ,若MN =ON ,①MON 的面积为2√3,则k 的值为( )A.﹣2B.﹣4C.−2√3D.−4√39.(2022秋•平桂区期中)如图,正比例函数y1=k1x的图象与反比例函数y2=k2x的图象相交于A、B两点,其中A点的横坐标为3,当y1<y2时,x的取值范围是()A.x<﹣3或x>3B.x<﹣3或0<x<3C.﹣3<x<0或0<x<3D.﹣3<x<0或x>310.(2022秋•覃塘区期中)如图,已知点A(﹣1,6)在双曲线y=kx(x<0)上,动点P在y轴正半轴上,将点A绕点P逆时针旋转90°,点A的对应点为B,若点B恰好落在双曲线上,则点P的坐标为()A.(0,3)B.(3,0)或(4,0)C.(0,2)或(0,6)D.(0,3)或(0,4)二.填空题(共8小题,共24分)11.(2022秋•蜀山区校级月考)若函数y=(m−1)x m2−2是反比例函数,则m的值是.12.(2022秋•澧县期中)若反比例函数y=kx的图象经过点(﹣2,32),则此函数的解析式为.13.(2022秋•固镇县校级期中)如图,点P(x,y)在双曲线y=kx的图象上,P A①x轴,垂足为A,若S①AOP=4,则该反比例函数的表达式为.14.(2022秋•淄川区月考)在反比例y=k−1x的图象的每一支上,y都随x的增大而减小,且整式x2﹣kx+4是一个完全平方式,则该反比例函数的解析式为.15.(2022秋•冷水滩区校级月考)已知y关于x的函数表达式是y=a−1x,且x=2时,y=3,则a的值为.16.(2022秋•滁州期中)如图,双曲线y=kx(x>0)与正方形ABCD的边BC交于点E,与边CD交于点F,且BE=3CE,A(4,0),B(8,0),则CF=.17.(2022秋•莱阳市期中)如图,在平面直角坐标系中,菱形ABOC的顶点A在反比例函数y=kx(k>0,x>0)的图象上,点C的坐标为(4,3),则k的值为.18.(2022春•锡山区期末)点P,Q,R在反比例函数y=kx(常数k>0,x>0)图象上的位置如图所示,分别过这三个点作x 轴、y 轴的平行线.图中所构成的阴影部分面积从左到右依次为S 1,S 2,S 3.若OE =ED =DC ,S 2+S 3=20,则S 1的值为 .三.解答题(共66分)19.(6分)(2022秋•德江县期中)已知反比例函数y =kx (k ≠0)的图象经过点A (2,6). (1)求这个函数的表达式;(2)点B (10,65),C (﹣3,﹣5)是否在这个函数的图象上?20.(7分)(2022秋•青浦区校级期中)已知:y =y 1﹣y 2,并且y 1与x 成正比例,y 2与(x ﹣2)成反比例,且当x =﹣2时,y =﹣7,当x =3时,y =13,求: (1)求y 与x 之间的函数解析式; (2)求当x =√2时的函数值.21.(7分)(2022•游仙区校级二模)如图,菱形ABOC在平面直角坐标系中,边OB在x轴的负半轴上,点C在反比例函数y=kx(k≠0)的图象上.若AB=2,①A=60°,求反比例函数的解析式.22.(9分)(2022秋•中山区月考)某气球内充满了一定量的气体,当温度不变时,气球内气体的压强P(kPa)是气体体积V(m3)的反比例函数,其图象过点A(0.8,120)如图所示.(1)求这一函数的表达式;(2)当气体压强为48kPa时,求V的值;(3)当气球内的体积小于0.6m3时,气球将爆炸,为了安全起见,气体的最大压强为多少?23.(9分)(2022秋•中原区月考)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=m x的图象的两个交点.(1)求反比例函数和一次函数的函数关系式;(2)求①AOB的面积;(3)求出反比例函数大于一次函数的解集.24.(8分)(2022秋•如皋市期中)如图,矩形ABCD的两边AD,AB的长分别为3,8.边BC落在x轴上,E是AB的中点,连接DE,反比例函数y=mx的图象经过点E,与CD交于点F.(1)若B(3,0),求F点坐标;(2)若DF=DE,求反比例函数的解析式.25.(8分)(2022秋•虹口区校级期中)如图,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数y=1x和y=9x在第一象限的图象于点A,B,过点B作BD①x轴于点D,交y=1x的图象于点C,联结AC,若①ABC是等腰三角形,求k的值.26.(12分)(2022秋•青浦区校级期中)如图,A为反比例函数y=kx(k<0)的图象上一点,AP①y轴,垂足为P.(1)联结AO,当S①APO=2时,求反比例函数的解析式;(2)联结AO,若A(﹣1,2),y轴上是否存在点M,使得S①APM=S①APO,若存在,求出M的坐标:若不存在,说明理由,(3)点B在直线AP上,且PB=3P A,过点B作直线BC①y轴,交反比例函数的图象于点C,若①P AC的面积为4,求k的值.九年级下册数学《第二十六章反比例函数》章节测试卷解析版测试时间:120分钟试卷满分:120分三.选择题(共10小题,共30分)1.(2022秋•招远市期中)下列函数中,y是x的反比例函数的有()个.①y=−1x;①y=3x;①xy=﹣1;①y=3x;①y=2x−1;①y=1x−1.A.2B.3C.4D.5【分析】根据反比例函数的定义(形如y=kx(k为常数,k≠0)的函数称为反比例函数)逐一判断即可得答案.【解答】解:①y=−1x,符合反比例函数的定义,是反比例函数;①y=3x,符合反比例函数的定义,是反比例函数;①xy=﹣1,符合反比例函数的定义,是反比例函数;①y=3x,不符合反比例函数的定义,不是反比例函数;①y=2x−1,不符合反比例函数的定义,不是反比例函数;①y=1x−1,不符合反比例函数的定义,不是反比例函数.故选:B.【点评】本题考查了反比例函数的定义,形如y=kx(k为常数,k≠0)的函数称为反比例函数.其中x是自变量,y是函数,自变量x的取值范围是不等于0的一切实数.2.(2022秋•沈河区校级期中)关于反比例函数y=−4x下列说法正确的是()A.图象经过点(﹣2,﹣2)B.图象分别在第一、三象限C.在每个象限内,y随x的增大而增大D.当y≤1时,x≤﹣4【分析】根据反比例函数的性质对各选项进行逐一分析即可.【解答】解:A、①(﹣2)×(﹣2)=4≠﹣4,①图象不经过点(﹣2,﹣2),故本选项不符合题意;B 、①﹣4<0,①图象分别在第二、四象限,故本选项不符合题意; C 、①﹣4<0,①在每个象限内,y 随x 的增大而增大,故本选项符合题意; D 、当0<y ≤1时,x ≤﹣4,故本选项不符合题意. 故选:C .【点评】本题考查的是反比例函数的性质,熟知反比例函数y =kx(k ≠0)的图象是双曲线;当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大是解题的关键.3.(2022•鹿城区校级开学)如图,A 为反比例函数y =kx (k >0)图象上一点,AB ①x 轴于点B ,若S ①AOB =3,则k 的值为( )A .1.5B .3C .√3D .6【分析】过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 是个定值,即S =12|k |.【解答】解:由于点A 是反比例函数y =k x图象上一点,则S ①AOB =12|k |=3; 又由于k >0,则k =6. 故选:D .【点评】本题考查了反比例函数系数的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得三角形面积为12|k |,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.4.(2022秋•晋州市期中)在同一平面直角坐标系中,反比例函数y=kx与一次函数y=kx﹣k(k为常数,且k≠0)的图象可能是()A.B.C.D.【分析】分别根据反比例函数及一次函数图象的特点对四个选项进行逐一分析即可.【解答】解:A、①由反比例函数的图象在一、三象限可知,k>0,①﹣k<0,①一次函数y=kx﹣k的图象应该经过一、三、四象限,故本选项不符合题意;B、①由反比例函数的图象在二、四象限可知,k<0,①﹣k>0,①一次函数y=kx﹣k的图象应该经过一、二、四象限,故本选项符合题意;C、①由反比例函数的图象在二、四象限可知,k<0,①﹣k>0,①一次函数y=kx﹣k的图象应该经过一、二、四象限,故本选项不符合题意;D、①由反比例函数的图象在一、三象限可知,k>0,①﹣k<0,①一次函数y=kx﹣k的图象应该经过一、三、四象限,故本选项不符合题意;故选:B.【点评】本题考查的是反比例函数及一次函数图象,解答此题的关键是先根据反比例函数所在的象限判断出k的符号,再根据一次函数的性质进行解答.5.(2022•鼓楼区校级模拟)在平面直角坐标系中,若一个反比例函数的图象经过A(m,6),B(5,n)两点,则m,n一定满足的关系式是()A .m ﹣n =1B .m n=56C .m n=65D .mn =30【分析】设该函数解析式为y =k x,由题意可得6m =5n =k ,可求得此题结果. 【解答】解:设该函数解析式为y =kx ,由题意可得: 6m =5n =k , 即6m =5n , 解得m n=56,故选:B .【点评】此题考查了运用待定系数法求反比例函数解析式解决相关问题的能力,关键是能灵活运用该方法进行变式求解.6.(2022秋•石阡县期中)若P 1(x 1,y 1),P 2(x 2,y 2)是反比例函数y =−6x的图象上的两点,且x 1<x 2<0,则( ) A .0<y 2<y 1B .0<y 1<y 2C .y 1<0<y 2D .y 2<0<y 1【分析】根据反比例函数的性质和增减性,结合横坐标的大小和正负,即可得到答案. 【解答】解:①反比例函数y =−6x ,k <0, ①x <0时,y >0,y 随着x 的增大而增大, 又①x 1<x 2<0, ①0<y 1<y 2. 故选:B .【点评】本题考查了反比例函数图象上点的坐标特征,正确掌握反比例函数的性质和增减性是解题的关键.7.(2022秋•虹口区校级期中)下列函数中,y 的值随x 值的增大而增大的函数是( ) A .y =2xB .y =﹣2x +1C .y =x ﹣2D .y =﹣x ﹣2【分析】根据一次函数和反比例函数的性质分别进行判断即可.【解答】解:A、y=2x是反比例函数,k=2>0,在每个象限内,y随x的增大而减小,所以A选项不合题意;B、y=﹣2x+1是一次函数,k=﹣2<0,y随x的增大而减小,所以B选项不合题意;C、y=x﹣2是一次函数,k=1>0,y随x的增大而增大,所以C选项符合题意;D、y=﹣x﹣2是一次函数,k=﹣1<0,y随x的增大而减小,所以D选项不合题意.故选:C.【点评】本题考查了反比例函数的性质,一次函数的性质,熟练掌握反比例函数与一次函数的性质是解题的关键.8.(2022春•丰城市校级期末)如图已知反比例函数C1:y=kx(k<0)的图象如图所示,将该曲线绕点O顺时针旋转45°得到曲线C2,点N是曲线C2上一点,点M在直线y=﹣x上,连接MN、ON,若MN=ON,①MON的面积为2√3,则k的值为()A.﹣2B.﹣4C.−2√3D.−4√3【分析】将直线y=﹣x和曲线C2绕点O逆时针旋转45°,则直线y=﹣x与x轴重合,曲线C2与曲线C1重合,即可求解.【解答】解:①将直线y=﹣x和曲线C2绕点O逆时针旋转45°后直线y=﹣x与x轴重合,①旋转后点N落在曲线C1上,点M落在x轴上,如图所示,设点M和点N的对应点分别为点M'和N',过点N'作N'P①x轴于点P,连接ON',M'N',①MN=ON,①M'N'=ON',M'P=OP,①S①MON=2S①PN'O=2×12|k|=|k|=2√3,①k<0,①k=﹣2√3.故选:C.【点评】本题考查了反比例函数比例系数k的几何意义、旋转的性质,体现了直观想象、逻辑推理的核心素养.9.(2022秋•平桂区期中)如图,正比例函数y1=k1x的图象与反比例函数y2=k2x的图象相交于A、B两点,其中A点的横坐标为3,当y1<y2时,x的取值范围是()A.x<﹣3或x>3B.x<﹣3或0<x<3C.﹣3<x<0或0<x<3D.﹣3<x<0或x>3【分析】由正、反比例的对称性结合点A的横坐标即可得出点B的横坐标,根据函数图象的上下位置关系结合交点的横坐标,即可得出不等式y1<y2的解集.【解答】解:①正比例函数与反比例函数的图象均关于原点对称,点A的横坐标为3,①点B的横坐标为﹣3.观察函数图象,发现:当0<x<3或x<﹣3时,正比例函数图象在反比例函数图象的下方,①当y1<y2时,x的取值范围是x<﹣3或0<x<3.故选:B.【点评】本题考查了反比例函数与一次函数的交点问题,解题的关键是找出点B的横坐标.本题属于基础题,难度不大,解决该题型题目时,根据函数的对称性找出两函数交点的横坐标,再根据函数图象的上下位置关系结合交点的横坐标解决不等式是关键.10.(2022秋•覃塘区期中)如图,已知点A(﹣1,6)在双曲线y=kx(x<0)上,动点P在y轴正半轴上,将点A绕点P逆时针旋转90°,点A的对应点为B,若点B恰好落在双曲线上,则点P的坐标为()A.(0,3)B.(3,0)或(4,0)C.(0,2)或(0,6)D.(0,3)或(0,4)【分析】先把A(﹣1,6)代入反比例函数y=kx(x<0)求出k的值,分别过A、B两点作x轴的垂线AC,BD,由旋转的性质证明①APC①①PBD,再设P(0,m),即可得出B 的坐标,由双曲线上的点横坐标与纵坐标的积即相等,列方程求m的值,确定P点坐标.【解答】解:分别过A 、B 两点作AC ①y 轴,BD ①y 轴,垂足为C 、D ,①A (﹣1,6)是双曲线y =k x(x <0)上一点, ①k =﹣6,①反比例函数的解析式为y =−6x , ①①APB =90°, ①①APC +①BPD =90°, 又①APC +①P AC =90°, ①①P AC =①BPD , 在①APC 和①PBD 中, {∠PAC =∠BPD∠ACP =∠PDB =90°AP =PB, ①①APC ①①PBD (AAS ), ①CP =BD ,AC =PD =1, 设P (0,m ), ①OP =m , ①PC =6﹣m , ①B (m ﹣6,m ﹣1), ①点B 在双曲线上,①m ﹣1=−6m−6,解得m =3或m =4, ①P (0,3)或(0,4). 故选:D .【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键. 四.填空题(共8小题,共24分)11.(2022秋•蜀山区校级月考)若函数y =(m −1)x m2−2是反比例函数,则m 的值是 .【分析】形如y =kx(k 为常数,k ≠0)的函数称为反比例函数,由此即可判断. 【解答】解:因为函数y =(m ﹣1)x m 2−2是自变量为x 的反比例函数,所以m 2﹣2=﹣1,m ﹣1≠0, 所以m =﹣1. 故答案为:﹣1.【点评】本题考查反比例函数的定义,解题的关键是记住反比例函数的定义,属于中考基础题.12.(2022秋•澧县期中)若反比例函数y =kx 的图象经过点(﹣2,32),则此函数的解析式为 .【分析】把(﹣2,32)代入y =kx 中求出k 即可得到反比例函数解析式,【解答】解:把(﹣2,32)代入y =kx 中,得32=k−2,解得k =﹣3,所以反比例函数解析式为y =−3x . 故答案为:y =−3x .【点评】本题考查了待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征,熟知待定系数法是解题的关键.13.(2022秋•固镇县校级期中)如图,点P (x ,y )在双曲线y =kx的图象上,P A ①x 轴,垂足为A ,若S ①AOP =4,则该反比例函数的表达式为 .【分析】根据反比例函数的几何意义解答即可.【解答】解:①点P (x ,y )在双曲线y =kx 的图象上,P A ①x 轴, ①xy =k ,OA =﹣x ,P A =y . ①S ①AOP =4, ①12AO •P A =4.①﹣x •y =8. ①xy =﹣8, ①k =xy =﹣8.①该反比例函数的解析式为xy 8﹣=.故答案为:xy 8﹣=.【点评】本题主要考查了反比例函数的几何意义,反比例函数图象上点的坐标的特征,待定系数法,利用点的坐标表示出相应线段的长度是解题的关键.14.(2022秋•淄川区月考)在反比例y =k−1x 的图象的每一支上,y 都随x 的增大而减小,且整式x 2﹣kx +4是一个完全平方式,则该反比例函数的解析式为 . 【分析】由整式x 2﹣kx +4是一个完全平方式,可得k =±4,由反比例函y =k−1x 的图象的每一支上,y 都随x 的增大而减小,可得k ﹣1>0,解得k >1,则k =4,即可得反比例函数的解析式.【解答】解:①整式x2﹣kx+4是一个完全平方式,①k=±4,①反比例函数y=k−1x的图象的每一支上,y都随x的增大而减小,①k﹣1>0,解得k>1,①k=4,①反比例函数的解析式为y=3 x.故答案为:y=3 x.【点评】本题考查反比例函数的图象与性质、完全平方式,熟练掌握反比例函数的图象与性质、完全平方式是解答本题的关键.15.(2022秋•冷水滩区校级月考)已知y关于x的函数表达式是y=a−1x,且x=2时,y=3,则a的值为.【分析】将x=2,y=3代入y=a−1x即可求出a的值.【解答】解:将x=2,y=3代入y=a−1x得,3=a−12,解得a=7,故答案为:7.【点评】本题考查了反比例函数图象上点的坐标特征,熟练掌握反比例函数的图象上点的坐标特征是解题的关键.16.(2022秋•滁州期中)如图,双曲线y=kx(x>0)与正方形ABCD的边BC交于点E,与边CD交于点F,且BE=3CE,A(4,0),B(8,0),则CF=.【分析】直接利用已知点坐标得出AB=4,则AD=BC=4,F点纵坐标为4,进而利用反比例函数图象上点的坐标特点得出答案.【解答】解:①A(4,0),B(8,0),四边形ABCD是正方形,①AB=4,则AD=BC=4,F点纵坐标为4,①BE=3CE,①BE=3,EC=1,①E(8,3),故k=8×3=24,则设F点横坐标为m,故4m=24,解得:m=6,故FC=8﹣6=2.故答案为:2.【点评】此题主要考查了反比例函数图象上点的坐标特点,正确得出E点坐标是解题关键.17.(2022秋•莱阳市期中)如图,在平面直角坐标系中,菱形ABOC的顶点A在反比例函数y=kx(k>0,x>0)的图象上,点C的坐标为(4,3),则k的值为.【分析】延长AC交x轴于E,则AE①OC,根据菱形的性质以及勾股定理得出AB=OC=OB=5,即可得出A点坐标,进而求出k的值即可.【解答】解:延长AC交x轴于E,如图所示:则AE①x轴,①C的坐标为(4,3),①OE=4,CE=3,①OC=√42+32=5,①四边形OBAC是菱形,①AB=OB=OC=AC=5,①AE=5+3=8,①点A的坐标为(4,8),把A(4,8)代入函数y=kx(x>0)得:k=4×8=32;故答案为:32.【点评】此题主要考查了菱形的性质、勾股定理和反比例函数图象上点的坐标性质;得出A点坐标是解题关键.18.(2022春•锡山区期末)点P,Q,R在反比例函数y=kx(常数k>0,x>0)图象上的位置如图所示,分别过这三个点作x轴、y轴的平行线.图中所构成的阴影部分面积从左到右依次为S1,S2,S3.若OE=ED=DC,S2+S3=20,则S1的值为.【分析】根据CD =DE =OE 以及反比例函数系数k 的几何意义得到S 1=13k ,S 四边形OGQD =k ,列方程即可得到结论.【解答】解:①CD =DE =OE ,①S 1=13k ,S 四边形OGQD =k ,①S 2=13(k −13k ×2)=k 6,S 3=k −13k −16k =12k ,①16k +12k =20, ①k =30,①S 1=13k =10,故答案为:10.【点评】本题考查反比例函数系数k 的几何意义,矩形的性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.三.解答题(共66分)19.(6分)(2022秋•德江县期中)已知反比例函数y =k x (k ≠0)的图象经过点A (2,6).(1)求这个函数的表达式;(2)点B (10,65),C (﹣3,﹣5)是否在这个函数的图象上?【分析】(1)首先设这个反比例函数的解析式为y =k x(k ≠0),再把点A (2,6)的坐标代入函数关系式,即可算出k 的值,进而可得函数关系式;(2)只要把点B (10,65),C (﹣3,﹣5)分别代入(1)中求出的函数关系式,满足关系式,就是函数图象上的点,反之则不在.【解答】解:(1)设这个反比例函数的解析式为y =k x(k ≠0),依题意得:6=k 2,①k =12,故这个反比例函数解析式为y =12x ;(2)由(1)求得:y =12x ,当x =10时,y =65,当x =﹣3时,y =﹣4,①点B (10,65)在这个函数图象上,C (﹣3,﹣5)不在这个函数的图象上. 【点评】此题主要考查了利用待定系数法求反比例函数解析式,正确求出函数解析式是解题关键.20.(7分)(2022秋•青浦区校级期中)已知:y =y 1﹣y 2,并且y 1与x 成正比例,y 2与(x ﹣2)成反比例,且当x =﹣2时,y =﹣7,当x =3时,y =13,求:(1)求y 与x 之间的函数解析式;(2)求当x =√2时的函数值.【分析】(1)设y 1=kx ,y 2=m x−2,则y =kx −m x−2,然后利用待定系数法即可求得;(2)把x =√2代入(1)求得函数解析式求解.【解答】解:(1)设y 1=kx ,y 2=m x−2,则y =kx −m x−2, 根据题意得:{−2k +m 4=−73k −m =13, 解得:{k =3m =−4, 则函数解析式是:y =3x +4x−2;(2)当x =√2时,y =3√2+√2−2=√2−4. 【点评】本题考查了待定系数法求函数的解析式,注意在本题中的正比例系数和反比例系数是两个不同的值,用不同的字母区分.21.(7分)(2022•游仙区校级二模)如图,菱形ABOC 在平面直角坐标系中,边OB 在x 轴的负半轴上,点C 在反比例函数y =k x(k ≠0)的图象上.若AB =2,①A =60°,求反比例函数的解析式.【分析】连接BC ,过C 作CD ①OB 于D ,根据菱形的性质得出OC =AB =2,①COB =①A =60°,根据直角三角形的性质求出OD 和CD ,得出点C 的坐标,再代入反比例函数的解析式y =kx 即可.【解答】解:连接BC ,过C 作CD ①OB 于D ,则①CDO =90°,①四边形ABOC 是菱形,AB =2,①A =60°,①OC =AB =2,①COB =①A =60°,①①DCO =30°,①OD=12OC=1,①CD=√OC2−OD2=√22−12=√3,①点C的坐标是(﹣1,√3),①点C在反比例函数y=kx(k≠0)的图象上,①k=(﹣1)×√3=−√3,∴反比例函数的解析式是y=−√3 x,【点评】本题考查了菱形的性质,反比例函数图象上点的坐标特征,用待定系数法求反比例函数的解析式,直角三角形的性质等知识点,能求出点C的坐标是解此题的关键.,22.(9分)(2022秋•中山区月考)某气球内充满了一定量的气体,当温度不变时,气球内气体的压强P(kPa)是气体体积V(m3)的反比例函数,其图象过点A(0.8,120)如图所示.(1)求这一函数的表达式;(2)当气体压强为48kPa时,求V的值;(3)当气球内的体积小于0.6m3时,气球将爆炸,为了安全起见,气体的最大压强为多少?【分析】(1)设函数解析式为P=kv,把点(0.8,120)的坐标代入函数解析式求出k值,即可求出函数关系式;(2)将P=48代入(1)中的函数式中,可求气球的体积V.(3)依题意V =0.6,即 96P =0.6,求解即可.【解答】解:(1)设P 与V 的函数关系式为P =k v ,则 k =0.8×120,解得k =96,①函数关系式为P =96v .(2)将P =48代入P =96v 中, 得96v =48,解得V =2,①当气球内的气压为48kPa 时,气球的体积为2立方米.(3)当V =0.6m 3时,气球将爆炸,①V =0.6,即96P =0.6,解得 P =160kpa故为了安全起见,气体的压强不大于160kPa .【点评】本题考查了反比例函数的实际应用,关键是建立函数关系式,并会运用函数关系式解答题目的问题.23.(9分)(2022秋•中原区月考)如图,已知A (﹣4,n ),B (2,﹣4)是一次函数y =kx +b 的图象和反比例函数y =m x 的 图象的两个交点.(1)求反比例函数和一次函数的函数关系式;(2)求①AOB 的面积;(3)求出反比例函数大于一次函数的解集.【分析】(1)先把B 点坐标代入反比例函数的解析式中求得反比例解析式,再求A 点坐标,最后用待定系数法求出一次函数的解析式;(2)求出AB 与x 轴的交点C 的坐标,再由OC 求三角形面积;(3)根据函数图象便可求解.【解答】解:(1)把B (2,﹣4)代入y =m x 中,得﹣4=m 2, 解得m =﹣8,①反比例函数的解析式为:y =−8x ,把A (﹣4,n )代入y =−8x 中,得n =−8−4=2,①A (﹣4,2),把A (﹣4,2),B (2,﹣4)代入y =kx +b 中,得{−4k +b =22k +b =−4, 解得{k =−1b =−2, ①一次函数的解析式为:y =﹣x ﹣2;(2)在y =﹣x ﹣2中,令y =0,则﹣x ﹣2=0,解得x =﹣2,①C (﹣2,0),①OC =2,①S ①AOB =S ①AOC +S ①BOC =12×2×(2+4)=6; (3)由函数图象可知,反比例函数大于一次函数的解集为﹣4<x <0或x >2.【点评】本题是反比例函数与一次函数的交点问题,主要考查了待定系数法求函数解析式,利用函数图象求不等式的解集,求三角形的面积,此题难度适中,注意掌握数形结合思想的应用.24.(8分)(2022秋•如皋市期中)如图,矩形ABCD 的两边AD ,AB 的长分别为3,8.边BC 落在x 轴上,E 是AB 的中点,连接DE ,反比例函数y =m x 的图象经过点E ,与CD 交于点F .(1)若B (3,0),求F 点坐标;(2)若DF =DE ,求反比例函数的解析式.【分析】(1)先求得点E 的坐标为(3,4),然后利用待定系数法求得m ,进一步即可求得点F 的坐标.(2)在Rt①ADE 中,利用勾股定理可求出AE 的长,由DF =DE ,BC =3可得出点E 的坐标为(m 3−3,4),再利用反比例函数图象上点的坐标特征,可得出关于m 的一元一次方程,解之即可得出m 的值,进而可得出反比例函数的表达式.【解答】解:(1)①反比例函数y =m x 的图象经过点E ,E 是AB 的中点,AB =8, ①BE =4,①B (3,0),①E (3,4),①反比例函数y =m x的图象经过点E , ①m =3×4=12,①y =12x ,①BC =AD =3,①OC =6, 把x =6代入y =12x 得y =2,①点F 的坐标为(6,2);(2)在Rt①ADE 中,AD =3,AE =4,①A =90°,①DE =5.①DF =DE ,①DF =5,①CF =8﹣5=3,①点E 的坐标为(m 3−3,4).①反比例函数y =m x 的图象经过点F ,①4×(m 3−3)=m ,解得:m =36,①反比例函数的表达式为y =36x .【点评】本题考查了矩形的性质、待定系数法求反比例函数解析式、反比例函数图象上点的坐标特征、勾股定理,解题的关键是利用含m 的代数式表示出点E ,F 的坐标.25.(8分)(2022秋•虹口区校级期中)如图,在平面直角坐标系xOy 中,已知直线y =kx (k >0)分别交反比例函数y =1x 和y =9x 在第一象限的图象于点A ,B ,过点B 作BD ①x 轴于点D ,交y =1x 的图象于点C ,联结AC ,若①ABC 是等腰三角形,求k 的值.【分析】根据一次函数和反比例函数的解析式,即可求得点A、B、C的坐标(用k表示),再讨论①AB=BC,①AC=BC,即可解题.【解答】解:①点B是y=kx和y=9x的交点,则kx=9x,①点B坐标为(√k,3√k),同理可求出点A的坐标为(√k,√k),①BD①x轴,①点C(√k ,√k3),①BA=√4k+4k,AC=√4k+4k9,BC=83√k,①BA2≠AC2,①BA≠AC,若①ABC是等腰三角形,①AB=BC,则√4k+4k=83√k,解得k=3√7 7;①AC=BC,则√4k+4k9=83√k,解得k=√15 5;故k 的值为3√77或√155. 【点评】本题考查了点的坐标的计算,考查了一次函数和反比例函数交点的计算,本题中用k 表示点A 、B 、C 坐标是解题的关键.26.(12分)(2022秋•青浦区校级期中)如图,A 为反比例函数y =k x (k <0)的图象上一点,AP ①y 轴,垂足为P .(1)联结AO ,当S ①APO =2时,求反比例函数的解析式;(2)联结AO ,若A (﹣1,2),y 轴上是否存在点M ,使得S ①APM =S ①APO ,若存在,求出M 的坐标:若不存在,说明理由,(3)点B 在直线AP 上,且PB =3P A ,过点B 作直线BC ①y 轴,交反比例函数的图象于点C ,若①P AC 的面积为4,求k 的值.【分析】(1)根据反比例函数系数k 的几何意义即可求解;(2)求得S ①APM =S ①APO =1,即可求得PM =2从而求得点M (0,4);(3)当B 点在P 点右侧,如图,设A (t ,k t ),则可表示出B (﹣3t ,k t ),C (﹣3t ,−k 3t),利用三角形面积公式得到12×(﹣t )×(k t+k 3t )=4;当B 点在P 点左侧,设A (t ,k t ),则可表示出B (3t ,k t ),C (3t ,k 3t ),利用三角形面积公式得到12×(﹣t )×(k t −k 3t )=4,然后分别解关于k 的方程即可.【解答】解:(1)①S ①APO =2,AP ①y 轴,①S ①APO =12|k |=2,①反比例函数的解析式为y =−4x ;(2)存在,理由如下:①A (﹣1,2),①AP =1,OP =2,①S ①APO =12×1×2=1, ①S ①APM =S ①APO =1,①12PM •AP =1, ①PM =2,①M (0,4);(3)当B 点在P 点右侧,如图,设A (t ,k t ), ①PB =3P A ,①B (﹣3t ,k t ), ①BC ①y 轴,①C (﹣3t ,−k 3t), ①①P AC 的面积为4,①12×(﹣t )×(k t +k 3t )=4,解得k =﹣6;当B 点在P 点左侧,设A (t ,k t ),①B (3t ,k t ), ①BC ①y 轴,①C (3t ,k 3t ), ①①P AC 的面积为4,①12×(﹣t )×(k t −k 3t )=4,解得k =﹣12;综上所述,k 的值为﹣6或﹣12.【点评】本题考查了反比例函数系数k 的几何意义:在反比例函数y =k x 图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k |.也考查了反比例函数图象上点的坐标特征.。
九年级数学下册《第二十六章反比例函数》单元测试卷附答案解析-人教版

九年级数学下册《第二十六章反比例函数》单元测试卷附答案解析-人教版班级:___________姓名:___________考号:____________一、单选题1.如果反比例函数的图象经过点P (﹣3,﹣1),那么这个反比例函数的表达式为( ) A .y =3xB .y =﹣3xC .y =13xD .y =﹣13x2.若反比例函数2y x=的图像经过(),n n ,则n 的值是( )A .2±B .CD .3.如图,点A 在x 轴正半轴上,B (5,4).四边形AOCB 为平行四边形,反比例函数y =8x的图象经过点C和AB 边的中点D ,则点D 的坐标为( )A .(2,4)B .(4,2)C .(83,3)D .(3,83)4.对于反比例函数4y x=,下列说法错误的是( ) A .它的图象与坐标轴永远不相交 B .它的图象绕原点旋转180°能和本身重合 C .它的图象关于直线y x =±对称D .它的图象与直线y x =-有两个交点5.如图是同一直角坐标系中函数12y x =和22y x=的图象.观察图象可得不等式22x x >的解集为( )A .11x -<<B .1x <-或1x >C .1x <-或01x <<D .10x -<<或1x >6.如图,在平面直角坐标系中直线y mx =(0m ≠,m 为常数)与双曲线ky x=(0k ≠,k 为常数)交于点A ,B ,若()1,A a -和(),3B b -,过点A 作AM x ⊥轴,垂足为M ,连接BM ,则ABM ∆的面积是( )A .2B .1m -C .3D .67.如图,在平面直角坐标系中函数()0ky x x=>的图象经过点P 、Q 、R ,分别过这个三个点作x 轴、y 轴的平行线,阴影部分图形的面积从左到右依次为若OE ED DC ==,1310S S +=则k 的值为( )A .6B .12C .18D .24二、填空题8.平面直角坐标系xOy 中已知点(,6),(3,2),(3,2)--A m m B m n C m n 是函数(0)ky k x =≠图象上的三点.若2ABC S =△,则k 的值为___________.9.如图,△AOB 中AO =AB ,OB 在x 轴上C ,D 分别为AB ,OB 的中点,连接CD ,E 为CD 上任意一点,连接AE ,OE ,反比例函数y k x=(x >0)的图象经过点A .若△AOE 的面积为2,则k 的值是___.10.在平面直角坐标系xOy 中过一点分别作坐标轴的垂线,若垂线与坐标轴围成矩形的周长的值与面积的值相等,则这个点叫做“和谐点”.已知直线y =﹣2x +k 1与y 轴交于点A ,与反比例函数y 2k x=的图象交于点P (52-,m ),且点P 是“和谐点”,则△OAP 的面积为___.11.不透明的袋子里装有除标号外完全一样的四个小球,小球上分别标有-1,2,3,4四个数,从袋子中随机抽取一个小球,记标号为k ,不放回,将袋子摇匀,再随机抽取一个小球,记标号为b ,两次抽取完毕后,则直线y kx =与反比例函数by x=的图象经过的象限相同的概率为______. 12.如图,点()2,A m ,B 分别在双曲线()60y x x =>和()0ky x x=>上,AB x ∥轴,作AC x ⊥轴于点C ,交OB 于点D .若2OD BD =,则k 的值是______.13.如图所示,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数y =﹣6x(x <0)和y=8x(x >0)的图象交于点A 和点B ,若点C 是x 轴上任意一点,连接AC 、BC ,则△ABC 的面积为__.14.一定质量的二氧化碳,其密度()3kg /m ρ=是体积()3m V 的反比例函数,请你根据图中的已知条件,写出反比例函数的关系式___________,当33m V =时,则ρ=_______3kg /m .三、解答题15.如图1,反比例函数()0my x x=>的图象过点()4,3M .(1)求反比例函数my x=的表达式,判断点()2,8在不在该函数图象上,并说明理由; (2)反比例函数()16my x x=≤≤的图象向左平移2个单位长度,平移过程中图象所扫过的面积是______; (3)如图2,直线:8l y x =-+与x 轴、y 轴分别交于点A 、点B ,点P 是直线l 下方反比例函数my x=图象上一个动点,过点P 分别作PC x ∥轴交直线l 于点C ,作PD y ∥轴交直线l 于点D ,请判断AC BD ⋅的值是否发生变化,并说明理由,如果不变化,求出这个值. 16.阅读下列材料定义运算min ,a b ,当a b ≥时,则min ,a b b =;当a b <时,则min ,a b a =.例如:min 1,31-=-与min 1,22--=-.完成下列任务(1)①()0min 3,2-= _________;②min 4--=_________ (2)如图,已知反比例函数1ky x=和一次函数22y x b =-+的图像交于A 、B 两点.当20x -<<时,则()()2min,213kx b x x x x-+=+--.求这两个函数的解析式. 17.在如图平面直角坐标系中矩形OABC 的顶点B 的坐标为(4,2),OA 、OC 分别落在x 轴和y 轴上,OB 是矩形的对角线.将△OAB 绕点O 逆时针旋转,使点B 落在y 轴上,得到△ODE ,OD 与CB 相交于点F ,反比例函数y =kx(x >0)的图象经过点F ,交AB 于点G .(1)求k 的值和点G 的坐标;(2)连接FG ,则图中是否存在与△BFG 相似的三角形?若存在,请把它们一一找出来,并选其中一种进行证明;若不存在,请说明理由;(3)在线段OA 上存在这样的点P ,使得△PFG 是等腰三角形.请直接写出点P 的坐标.18.我们不妨约定:在平面直角坐标系中若某函数图象上至少存在不同的两点关于直线x n =(n 为常数)对称,则把该函数称之为“()X n 函数”.(1)在下列关于x 的函数中是“()X n 函数”的是________(填序号); ①6y x=,②4y x =,③225y x x =-- (2)若关于x 的函数y x h =-(h 为常数)是“()3X 函数”,与my x=(m 为常数,0m >)相交于A (A x ,A y )、B (B x ,B y )两点,A 在B 的左边,5B A x x -=,求m 的值;(3)若关于x 的“()X n 函数”24y ax bx =++(a ,b 为常数)经过点(1-,1),且1n =,当1t x t -≤≤时,则函数的最大值为1y ,最小值为2y ,且1212y y -=,求t 的值. 19.如图,在平面直角坐标系中四边形ABCD 为正方形,已知点A (0,﹣6)、D (﹣3,﹣7),点B 、C 在第三象限内.(1)求点B 的坐标;(2)在y 轴上是否存在一点P ,使ABP 是AB 为腰的等腰三角形?若存在,求点P 的坐标;若不存在,请说明理由.(3)将正方形ABCD 沿y 轴向上平移,若存在某一位置,使在第二象限内点B 、D 两点的对应点B '、D 正好落在某反比例函数的图象上,求该反比例函数的解析式.参考答案与解析1.【答案】A【分析】根据点P 的坐标,利用待定系数法即可得.【详解】解:设这个反比例函数的表达式为(0)ky k x =≠ 由题意,将点(3,1)P --代入得:3(1)3k =-⨯-= 则这个反比例函数的表达式为3y x =故选:A .【点睛】本题考查了求反比例函数的解析式,熟练掌握待定系数法是解题关键. 2.【答案】B【分析】将(),n n 代入解析式中即可求出n 的值. 【详解】解:将(),n n 代入2y x =中得2n n=解得:n =故选B.【点睛】此题考查的是根据点所在的图像求点的坐标,将点的坐标代入解析式求点的坐标是解决此题的关键.3.【答案】B【分析】作CE ⊥OA 于E ,依据反比例函数系数k 的几何意义求得OE ,即可求得C 的坐标,从而求得点A 坐标,再根据中点坐标公式即可求得D 的坐标. 【详解】解:作CE ⊥OA 于E ,如图∵B(5,4),四边形AOCB为平行四边形∴CE=4∵反比例函数y=8x的图象经过点C∴S△COE=12OE•CE=12×8∵CE=4∴OE=2∴C(2,4),OA=BC=5-2=3 ∴A(3,0)∵点D是AB的中点∴点D的坐标为(3+50+422,),即D(4,2)故选:B.【点睛】本题考查了平行四边形的性质,反比例函数系数k的几何意义等,求得点C和点A的坐标是解题的关键.4.【答案】D【分析】当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小,根据反比例函数的性质对四个选项进行逐一分析即可.【详解】解:A.∵反比例函数4yx=中4>0,∴此函数图象在一、三象限,故本选项正确;B.∵反比例函数4yx=的图象双曲线关于原点对称,故本选项正确;C.反比例函数的图象可知,图象关于直线y x=±对称,故本选项正确;D.∵反比例函数4yx=的图象位于第一、三象限,直线y x=-经过第二、四象限,所以直线y x=-与双曲线4yx=无交点,故本选项错误;故选D.【点睛】本题考查了反比例函数的性质,熟知反比例函数的增减性是解答此题的关键. 5.D【分析】根据图象进行分析即可得结果; 【详解】解:∵22x x> ∴12y y >由图象可知,函数12y x=和22y x =分别在一、三象限有一个交点,交点的横坐标分别为11x x ==-, 由图象可以看出当10x -<<或1x >时,则函数12y x=在22y x =上方,即12y y >故选:D .【点睛】本题主要考查一次函数和反比例函数的应用,掌握一次函数和反比例函数图象的性质是解本题的关键. 6.【答案】C【分析】根据直线y mx =与双曲线k y x =都经过点A ,得出1a mk a =-⎧⎪⎨=⎪⎩-,进而得到k m =,再由直线y mx =与双曲线k y x =都经过点B ,得到33k b bm ⎧-=⎪⎨⎪-=⎩,进而得到2b m k =,进而求出b 的值,得到点A 的坐标,即可得到答案.【详解】由题,直线y mx =与双曲线ky x=都经过点A ∴1a m k a =-⎧⎪⎨=⎪⎩- ,得:k m =直线y mx =与双曲线ky x=都经过点B 33bm k b -=⎧⎪∴⎨-=⎪⎩,得:2b m k = 21b ∴=0b >1b ∴=13B ∴-(,)将点B 代入y mx =,得:3m -=3y x ∴=-13A ∴-(,)111313322ABM S ∆∴=⨯⨯+⨯⨯=故选:C【点睛】本题考查一次函数与反比例函数的图像问题,根据两者的交点结合解析式求出点的坐标是解题关键.7.【答案】B【分析】设未知数,表示出点P 、Q 、R 的坐标,进而表示S 1、S 2、S 3,由S 1+S 3=10列方程求解即可. 【详解】解:设OE =ED =DC =a ∵函数ykx =(x >0)的图象经过点P 、Q 、R∴点P (3k a ,3a ),Q (2k a ,2a ),R (ka ,a )∴OF 3k a =,OG 2k a =,OA k a =∴S 1=OF •CD 3k a =⨯a 3k =S 3=AG •OE =(2k k a a -)×a 2k =又∵S 1+S 3=10 ∴32k k +=10 解得k =12 故选:B .【点睛】本题考查反比例函数系数k 的几何意义以及反比例函数图象上点的坐标特征,用坐标表示线段的长是解决问题的关键. 8.【答案】34##0.75 【分析】由点A 、B 、C 的坐标可知260k m =>,m =n ,点B 、C 关于原点对称,求出直线BC 的解析式,不妨设m >0,如图,过点A 作x 轴的垂线交BC 于D ,根据2ABC S =△列式求出2m ,进而可得k 的值. 【详解】解:∵点(,6),(3,2),(3,2)--A m m B m n C m n 是函数(0)ky k x=≠图象上的三点 ∴260k m => 6k mn = ∴m =n∴(3,2)B m m (3,2)C m m -- ∴点B 、C 关于原点对称∴设直线BC 的解析式为()0y kx k =≠ 代入(3,2)B m m 得:23m mk = 解得:23k =∴直线BC 的解析式为23y x =不妨设m >0,如图,过点A 作x 轴的垂线交BC 于D 把x =m 代入23y x =得:23y m =∴D (m ,23m )∴AD =216633m m m -=∴()11633223ABCSm m m =⨯⋅+= ∴218m =∴2136684k m ==⨯=而当m <0时,则同样可得34k =故答案为:34【点睛】本题考查了反比例函数与几何综合,中心对称的性质,待定系数法求函数解析式,熟练掌握反比例函数的图象和性质,学会利用数形结合的数学思想解答是解题的关键.9.【答案】4【分析】根据等腰△AOB,中位线CD得出AD⊥OB,S△AOE=S△AOD=2,应用|k|的几何意义求k.【详解】解:如图:连接AD△AOB中AO=AB,OB在x轴上,C、D分别为AB,OB的中点∴AD⊥OB,AO∥CD∴S△AOE=S△AOD=2∴k=4.故答案为:4.【点睛】本题考查了反比例函数图象、等腰三角形以及中位线的性质、三角形面积,解题的关键是灵活运用等腰三角形的性质.10.【答案】254或754【分析】先根据“和谐点”的定义求出m的值,进而可求出点A的坐标,根据三角形的面积可求出△OAP的面积.【详解】解:∵点P(52-,m)是“和谐点”∴5+2|m|52=|m|,解得m=±10当m=10时,则P(52-,10)把点P的坐标代入一次函数和反比例的解析式得:k1=5,k2=﹣25∴A(0,5)∴S△OAP15255224=⨯⨯=.当m =﹣10时,则P (52-,﹣10)∴k 1=﹣15,k 2=25 ∴A (0,﹣15) ∴S △OAP 12=⨯1557524⨯=. 故答案为:254或754. 【点睛】本题考查反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k |,读懂题意,明确和谐点的定义是解题的关键. 11.【答案】12【分析】画树状图,共有12个等可能的结果,直线y kx =与反比例函数by x=的图象经过的象限相同的结果有6个,再由概率公式求解即可. 【详解】解:画树状图如图:∵从袋子中随机抽取一个小球,记标号为k ,不放回后将袋子摇匀,再随机抽取一个小球,记标号为b ,共有12个数组∴直线y kx =与反比例函数by x=的图象经过的象限相同的数组有(2,3),(2,4),(3,2),(3,4),(4,2),(4,3),共有6组∴k ,b 直线y kx =与反比例函数b y x=的图象经过的象限相同的概率为61122=.故答案为:12【点睛】此题考查了用列表法或树状图法求概率及一次函数与反比例函数的性质,熟练掌握利用列表法或树状图列出所有等可能的结果以及一次函数与反比例函数的性质是解题的关键. 12.【答案】9【分析】先求解A 的坐标,再表示B 的坐标,再证明,ABD COD ∽利用相似三角形的性质列方程求解即可.【详解】解: 点()2,A m ,B 分别在双曲线()60y x x =>和()0ky x x=>上,AB x ∥轴 63,,3,23kmB2,3,AAC x ⊥轴2,0,CAB x ∥轴,ABD COD ∽,ABBDOC OD而2OD BD = 213,22k 解得:9,k = 故答案为:9【点睛】本题考查的是反比例函数的性质,相似三角形的判定与性质,掌握“反比例函数的图像与性质”是解本题的关键. 13.【答案】7【分析】连接OA ,OB ,利用同底等高的两三角形面积相等得到三角形AOB 面积等于三角形ACB 面积,再利用反比例函数k 的几何意义求出三角形AOP 面积与三角形BOP 面积,即可得到结果. 【详解】解:如图,连接OA ,OB∵△AOB 与△ACB 同底等高 ∴S △AOB =S △ACB ∵AB ∥x 轴∴AB ⊥y 轴∵A 、B 分别在反比例函数y =﹣6x (x <0)和y =8x (x >0)的图象上∴S △AOP =3,S △BOP =4∴S △ABC =S △AOB =S △AOP +S △BOP =3+4=7. 故答案为:7.【点睛】本题考查的是反比例函数系数k 的几何意义,即在反比例函数y =kx的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k |,且保持不变.也考查了三角形的面积. 14.【答案】10V ρ=103【分析】由函数图像信息可得反比例函数过点(5,2),根据待定系数法求解析式;将3V =代入即可求得ρ. 【详解】反比例函数过点(5,2) 设反比例函数解析式为kVρ= 则10k =∴反比例函数解析式为10Vρ=当3V =时,则103ρ= 故答案为:10V ρ=103【点睛】本题考查了反比例函数的应用,待定系数法求反比例函数的解析式,根据解析式求函数值,从图像获取信息是解题的关键.15.【答案】(1)不在,理由见解析 (2)20 (3)不变化,24【分析】对于(1),利用待定系数法求出函数关系式,再代入判断即可;对于(2),设点E 的横坐标和点F 的横坐标,再分别表示出点E ,F ,G ,H 的坐标,进而得出线段的长度,再根据平行四边形面积公式得出答案;对于(3),设点P 的横坐标为t ,分别表示点C ,点D 的坐标,再根据两点之间的距离公式得出AC 和BD 的长,进而得出答案.(1)将点()4,3M 代入m y x =得34m= 12m =∴12y x=;当2x =时,则6y = ∵68≠∴点()2,8不在函数图象上;(2)设点E 的横坐标是1,点F 的横坐标是6,点G ,H 分别对应点E ,F ,如图所示.图形扫过的面积即为平行四边形EFHG 的面积.令12y x=中1x =,则12y = 所以(112)E , -1,12G ()令12y x=中6x =,则2y = 所以(62)F ,,(4,2)H . 因为EG FH ∥,且EM FH = 所以四边形EGHF 为平行四边形所以=()2(122)20E F S EG y y ⋅-=⨯-=. 故答案为:20;(3)不变化,理由如下:因为直线l :8y x =-+与x 轴,y 轴分别交于点A ,点B 所以点A (8,0),B (0,8). 设点P 的横坐标是t 所以12(,)P t t.因为PC x ∥轴交直线l 于点C ,PD y ∥轴交直线l 于点D 所以1212(8,)C tt-+ (,8)D t t -+所以AC =BD =即24AC BD ⋅=⋅=所以AC BD ⋅为定值,为24..【点睛】本题主要考查了反比例函数图象上点的坐标特征,待定系数法求函数关系式,求平行四边形面积等,掌握数形结合思想是解题的关键.16.【答案】(1)①1;②4- (2)12y x=- 223y x =--【分析】(1)根据材料中的定义进行计算,即可求出答案; (2)由函数图像可知当20x -<<时,则2kx bx ,则min ,22k x b x b x-+=-+,结合已知可得()()2213x b x x x -+=+--,即可求出b ,得到一次函数解析式,求出点A 的坐标,再利用待定系数法求出反比例函数解析式. (1)解:根据题意∵min ,a b ,当a b ≥时,则min ,a b b =;当a b <时,则min ,a b a = ∴①()0min 3,21-=;∵4-∴②min 44-=-; 故答案为:①1;②4-;(2)解:由函数图像可知当20x -<<时,则2k x bx∴min,22kx b x b x-+=-+ 又∵()()2min,213kx b x x x x-+=+-- ∴()()2213x b x x x -+=+-- ∴3b =-∴一次函数223y x =-- 当x =-2时21y = ∴A (-2,1) 将A (-2,1)代入1ky x=得212k =-⨯=-∴反比例函数12y x=-.【点睛】本题考查了新定义的运算法则,零次幂,反比例函数与一次函数的综合问题,解题的关键是掌握题意,正确的运用数形结合的思想求解.17.【答案】(1)k =2,点G 的坐标为(4,12);(2)△COF ∽△BFG ;△AOB ∽△BFG ;△ODE ∽△BFG ;△CBO ∽△BFG ,证明详见解析;(3)点P 的坐标为(40)或(158,00). 【分析】(1)证明△COF ∽△AOB ,则CF OCAB OA=,求得:点F 的坐标为(1,2),即可求解; (2)△COF ∽△BFG ;△AOB ∽△BFG ;△ODE ∽△BFG ;△CBO ∽△BFG .证△OAB ∽△BFG :43AO BF = 24332AB BG ==即可求解.(3)分GF =PF 、PF =PG 、GF =PG 三种情况,分别求解即可. 【详解】解:(1)∵四边形OABC 为矩形,点B 的坐标为(4,2) ∴∠OCB =∠OAB =∠ABC =90°,OC =AB =2,OA =BC =4 ∵△ODE 是△OAB 旋转得到的,即:△ODE ≌△OAB ∴∠COF =∠AOB ,∴△COF ∽△AOB ∴CF OC AB OA =,∴2CF =24,∴CF =1∴点F 的坐标为(1,2) ∵y =kx(x >0)的图象经过点F∴2=1k ,得k =2 ∵点G 在AB 上 ∴点G 的横坐标为4对于y =2x ,当x =4,得y =12∴点G 的坐标为(4,12);(2)△COF ∽△BFG ;△AOB ∽△BFG ;△ODE ∽△BFG ;△CBO ∽△BFG . 下面对△OAB ∽△BFG 进行证明: ∵点G 的坐标为(4,12),∴AG =12 ∵BC =OA =4,CF =1,AB =2∴BF=BC﹣CF=3BG=AB﹣AG=32.∴43AOBF=24332ABBG==∴AO AB BF BG=∵∠OAB=∠FBG=90°∴△OAB∽△FBG.(3)设点P(m,0),而点F(1,2)、点G(4,12)则FG2=9+94=454,PF2=(m﹣1)2+4,PG2=(m﹣4)2+14当GF=PF时,则即454=(m﹣1)2+4,解得:m;当PF=PG时,则同理可得:m=158;当GF=PG时,则同理可得:m=4综上,点P的坐标为(40)或(158,00).【点睛】本题考查的是反比例函数综合运用,涉及到旋转的性质、三角形相似、等腰三角形的性质等,其中(3),要注意分类求解,避免遗漏.18.【答案】(1)②③( 2)4 (3)t=2或t=1【分析】(1)根据定义分析判断即可;(2)作出图形,y=x﹣3与x轴交于C点,与y轴交于D点,作AM⊥x轴交于M点,BN⊥x轴交于N点,由xB﹣xA=5,设CN=x,则MC=5﹣x,则B(3+x,x),A(x﹣2,5﹣x),根据轴对称的性质以及反比例函数的性质可得(3+x)x+(x﹣2)(5﹣x)=0,继而求得x的值,即可求得B的坐标,根据反比例函数的意义即可求得m的值;(3)根据题意以及二次函数的性质,待定系数求二次函数解析式,进而分类讨论,根据121 2y y-=,即可求得t的值.(1)解:根据定义,函数关于直线x n=(n为常数)对称,即该函数图象是轴对称图形①6yx=的图象是中心对称图象,不符合题意;②4y x=,③225y x x=--的图象是轴对称图形,符合题意故答案为:②③(2)∵y=|x-h|是“X(3)”函数∴h=3如图,y=x﹣3与x轴交于C点,与y轴交于D点,作AM⊥x轴交于M点,BN⊥x轴交于N点∴C(3,0),D(0,﹣3)∴∠BCN=∠OCD=45°由对称性可知,∠ACM=∠OCD=45°∴AM=CM,BN=CN∵xB﹣xA=5∴MN=5设CN=x,则MC=5﹣x∴B(3+x,x),A(x﹣2,5﹣x)∴(3+x)x+(x﹣2)(5﹣x)=0∴x=1∴B(4,1)∴m=4;(3)由题意得4112a bba-+=⎧⎪⎨-=⎪⎩解得12 ab=-⎧⎨=⎩∴此“X(n)函数”为y=﹣x2+2x+4①当t<1时x=t时,则y1=﹣t2+2t+4x=t﹣1时,则y2=﹣(t﹣1)2十2(t﹣1)+4y1﹣y2=(﹣t2+2t+4)﹣[﹣(t﹣1)2+2(t﹣1)+4]=﹣2t+3=12∴t=54(舍);②当t﹣1≥1,即t≥2时x=t﹣1时,则y1=﹣(t﹣1)2十2(t﹣1)+4x=t时,则y2=﹣t2+2t+4y1-y2=﹣(t﹣1)2+2(t﹣1)+4﹣(﹣t2+2t+4)=2t﹣3=12∴t=74(舍);③当1≤t<32时x=1时,则y1=5x=t﹣1时,则y2=﹣(t﹣1)2十2(t﹣1)+4y1﹣y2=5﹣[﹣(t﹣1)2+2(t﹣1)+4]=t2﹣4t+4=12∴t=2±,又因为1≤t<3 2∴t=2-④32≤t<2时x=1时,则y1=5x=t时,则y2=﹣t2十2t+4y1﹣y2=5﹣(﹣t2+2t+4)=t2﹣4t+4=12∴t=1,又因为32≤t<2∴t=1综上所述:t=2-t=1【点睛】本题考查了新定义,一次函数的性质,反比例函数的性质,二次函数的性质,根据新定义以及轴对称的性质求解是解题的关键.19.【答案】(1)B (-1,-3)(2)存在,(06-,或(06-,或()00,(3)6y x =-【分析】(1)过点B 作BE ⊥y 轴于点E ,过点D 作DF ⊥y 轴于点F ,证明ADF BAE ≅得出BE 与OE 的长度便可求得B 点坐标;(2)先求出AB 的值,再根据题意可得分类讨论,分为当AB =AP 时有两种情况和当AB =BP 时有一种情况进行求解即可;(3)先设向上平移了m 表示B '和D 的坐标,再根据B 、D 两点的对应点B '、D 正好落在某反比例函数的图象上得B '和D 点的横、纵坐标的积相等,列出关于m 的方程即可求解.(1)过点B 作BE ⊥y 轴于点E ,过点D 作DF ⊥y 轴于点F ,如下图则90AFD AEB ∠=∠=︒∵点A (0,-6),D (-3,-7)∴DF =3,AF =1∵四边形ABCD 是正方形∴AB =AD 90BAD ∠=︒∴90DAF BAE DAF ADF ∠+∠=∠+∠=︒∴ADF BAE =∠∠∵ADF BAE F EAD BA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ADF BAE ≅∴DF =AE =3,AF =BE =1∴OE=OA-AE=6-3=3∴B(-1,-3).(2)存在3种情况由(1)得ADF BAE≅且在Rt AFD中AB=AD①当AB=AP时的等腰三角形,如图则AP∵A为(0,-6)∴P点的坐标为(0,);②当AB=AP时,则如下图则AP∵A 为(0,-6)∴P 点的坐标为(0,);③当AB =BP 时,则如下图则BP ,且过B 作BE ⊥AP 于点E∵AB BP BE AP =⊥,∴3PE AE ==∴P 点在原点上则P 为(0,0).综上所述点P 的坐标为(06-,或(06-,或()00,. (3)设向上平移了m 可得B '为(-1,-3+m ),D 为(-3,-7+m ) 反比例函数关系式为k y x=()0k ≠ ∴()()1337k m m =-⨯-+=-⨯-+解得m =9∴k =()13166m -⨯-+=-⨯=- ∴反比例函数解析式为:6y x=- 【点睛】此题是反比例函数与正方形结合的综合体,主要考查了反比例函数的性质、待定系数法、全等三角形的性质和判定和等腰三角形的性质和判定,解决本题的关键是证明全等三角形和分类讨论.。
人教版九年级数学下册第二十六章《反比例函数》单元练习题(含答案)

人教版九年级数学下册第二十六章《反比例函数》单元练习题(含答案)一、单选题1.如图,A、B两点在双曲线y=上,分别经过A、B两点向坐标轴作垂线段,已知S阴影=1,则S1+S2=()A.3 B.4 C.1 D.62.矩形的长为x,宽为y,面积为12,则y与x之间的函数关系用图象表示大致为()A.B.C.D.3.若反比例函数图象经过点(﹣1,6),则此函数图象也经过的点是().A.(6,1) B.(3,2) C.(2,3) D.(﹣3,2)4.在2017年石家庄体育中考中,王亮进行了1000米跑步测试,他的跑步速度v(米/分)与测试时间t(分)的函数图象是( )A.A B.B C.C D.D5.如图,A、B、C是反比例函数ky(k<0)x图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有A .4条B .3条C .2条D .1条6.已知点A(x 1,y 1),B( x 2,y 2)在反比例函数y =1x的图象上,若x 1<x 2,且x 1x 2>0,那么y 1与y 2的大小关系是( ) A .y 1>y 2B .y 2>y 1C .y 1<y 2D .y 2<y 17.如图,点A 在双曲线y=kx的图象上,AB ⊥x 轴于B ,且△AOB 的面积为2,则k 的值为( )A .4B .﹣4C .2D .﹣28.如图,在平面直角坐标系xOy 中,已知正比例函数11y k x =的图象与反比例函数22k y x=的图象交于(4,2)A --,(4,2)B 两点,当12y y >时,自变量x 的取值范围是( )A .4x >B .40x -<<C .4x <-或04x <<D .40x -<<或4x >9.若1x与y 成反比例,1y 与z 成正比例,则x 与z 所成的函数关系为( )A .正比例函数关系B .反比例函数关系C .不成比例关系D .一次函数关系 10.已知反比例函数y =k x,当﹣2≤x≤﹣1时,y 的最大值时﹣4,则当x≥8时,y 有( )A.最小值12B.最小值1 C.最大值12D.最大值111.如图所示,菱形ABCD的顶点A、C在y轴正半轴上,反比例函数y=kx(k≠0)经过顶点B,若点C为AO中点,菱形ABCD的面积3,则k的值为()A.32B.3 C.4 D.9212.定义:给定关于x的函数y,若对于该函数图象上任意两点(x1,y1),(x2,y2),当x1<x2时,都有y1>y2,称该函数为减函数,根据以上定义,则下列函数中是减函数的是()A.y=2x B.y=﹣2x+2 C.y=2xD.y=2x2+2二、填空题13.如图,点P在反比例函数kyx的图象上,PA⊥x轴于点A,PB⊥y轴于点B,且△APB的面积为2,则k等于______.14.如图所示,点B是反比例函数y=图象上一点,过点B分别作x轴、y•轴的垂线,如果构成的矩形面积是4,那么反比例函数的解析式是 _____________15.反比例函数ky x=的图象经过点(2,-1),则k 的值为______. 16.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=kx在第一象限的图象经过点B ,若OA 2﹣AB 2=8,则k 的值为_____.17.如图,点A 在函数y=2x(x >0)的图象上,点B 在函数y=6x (x >0)的图象上,点C在x 轴上.若AB ∥x 轴,则△ABC 的面积为__.18.设函数y =2x与y =3x ﹣6的图象的交点坐标为(a ,b),则代数式13a b -的值是_____.19.如图,在平面直角坐标系中,点A 和点C 分别在y 轴和x 轴正半轴上,以OA 、OC 为边作矩形OABC ,双曲线6y x=(x >0)交AB 于点E,AE ︰EB=1︰3.则矩形OABC 的面积是 __________.20.利用实际问题中的总量不变可建立反比例函数关系式,装货速度×装货时间=__________.三、解答题21.如图,一次函数y kx b =+的图像与反比例函数my x=的图像交于点A ﹙−2,−4﹚、C ﹙4,n ﹚,交y 轴于点B ,交x 轴于点D . (1)求反比例函数my x=和一次函数y kx b =+的表达式;(2)连接OA、OC,求△AOC的面积;(3)写出使一次函数的值大于反比例函数的x的取值范围.22.已知一次函数y=kx+b的图象与反比例函数6yx=的图象相交于A和B两点,点A的横坐标是3,点B的纵坐标是﹣3.(1)求一次函数的解析式;(2)当x为何值时,一次函数的函数值小于零.23.如图,函数kyx= (x>0,k为常数)的图象经过A(1,4),B(m,n),其中m>1,过点B作y轴的垂线,垂足为D,连结AD.(1)求k的值;(2)若△ABD的面积为4,求点B的坐标;并回答当x取何值时,直线AB的图象在反比例函数kyx=图象的上方.24.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=6x的图象相交于点A(m,3)、B(–6,n),与x轴交于点C.(1)求一次函数y=kx+b的关系式;(2)结合图象,直接写出满足kx+b>6x的x的取值范围;(3)若点P在x轴上,且S△ACP=32BOCS△,求点P的坐标.25.已知一次函数与反比例函数的图象交于点P(-3,m),Q(1,-3).(1)求反函数的函数关系式;(2)在给定的直角坐标系(如图)中,画出这两个函数的大致图象;(3)当x为何值时,一次函数的值大于反比例函数的值?26.如图,直线y x b =-+与反比例函数3y x=-的图象相交于点(),3A a ,且与x 轴相交于点B .(1)求a 、b 的值;(2)若点P 在x 轴上,且AOP 的面积是AOB 的面积的12,求点P 的坐标.27.如图,直线y =﹣x+2与反比例函数ky x=(k ≠0)的图象交于A (a ,3),B (3,b )两点,过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥x 轴于点D .(1)求a ,b 的值及反比例函数的解析式;(2)若点P 在直线y =﹣x+2上,且S △ACP =S △BDP ,请求出此时点P 的坐标;(3)在x 轴正半轴上是否存在点M ,使得△MAB 为等腰三角形?若存在,请直接写出M 点的坐标;若不存在,说明理由.28.如图,直角坐标系中,直线12y x=-与反比例函数kyx=的图象交于A,B两点,已知A点的纵坐标是2.(1)求反比例函数的解析式.(2)将直线12y x=-沿x轴向右平移6个单位后,与反比例函数在第二象限内交于点C.动点P在y轴正半轴上运动,当线段PA与线段PC之差达到最大时,求点P的坐标.29.服装厂承揽一项生产1600件夏凉小衫的任务,计划用t天完成.(1)写出每天生产夏凉小衫w(件)与生产时间t(天)(4t>)之间的函数关系式;(2)服装厂按计划每天生产100件夏凉小衫,那么需要多少天能够完成任务?(3)由于气温提前升高,商家与服装厂商议调整计划,决定提前6天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?参考答案1.D2.C3.D.4.C5.A6.A7.B8.D9.B10.D11.D12.B13.4-14.15.-216.4. 17.2 18.-3 19.24 20.装货总量 21.(1),82y y x x==-;(2)6;(3)-2<x <0或x >4 22.(1)y =x ﹣1;(2)x <1. 23.24.(1)122y x =+;(2)-6<x <0或2<x ;(3)(-2,0)或(-6,0) 25.(1)设反函数的函数关系式为:y=kx, ∵一次函数与反比例函数的图象交于点Q (1,-3), ∴-3=1x, 解得:k=-3,∴反函数的函数关系式为:y=-3x ; (2)将点P (-3,m )代入y=-3x,解得:m=1, ∴P(-3,1), 函数图象如图:(3)观察图象可得:当x<-3或0<x<1时,一次函数的值大于反比例函数的值.26.(1)a=﹣1,b=2;(2)P的坐标为(1,0 )或(﹣1,0 ).27.(1)y=3x-;(2)P(0,2)或(-3,5);(3)M(123-+,0)或(331+,0).28.(1)8yx=-;(2)P(0,6)29.(1)1600(4)w tt=>;(2)服装厂需要16天能够完成任务;(3)服装厂每天要多做60件夏凉小衫才能完成任务.。
数学人教版九年级下册26.1 反比例函数同步练习(有答案)

数学人教版九年级下册26一、选择题1.(−3,y1),(−15,y2),(2,y3)在正比例函数y=−a2上,那么y1,y2,y3的大小关系x为()A. y1>y2>y3B. y1>y3>y2C. y3>y2>y1D. y3>y1>y22.关于正比例函数y=2,以下说法正确的选项是()xA. 图象经过点(1,−2)B. 图象在二、四象限C. 事先x>0,y随x的增大而增大D. 事先x<0,y随x的增大而减小3.如图,平面直角坐标系中,点A是x轴负半轴上一个定点,(x<0)上一个动点,PB⊥y轴于点B,当点P是函数y=−6x点P的横坐标逐渐增大时,四边形OAPB的面积将会()A.先增后减B. 先减后增C. 逐渐减小D. 逐渐增大4.点(2,−3)在正比例函数y=k的图象上,那么以下各点在此函数图象上的是()xA. (2,3)B. (3,−2)C. (−2,−3)D. (−6,−1)(k≠0),它们在同一坐标系内的图象大5.如图,关于x的函数y=k(x−1)和y=kx致是()A. B.C. D.6.正比例函数y=k中,事先x=−1,y=−4,假设y的取值范围为−4≤y≤−1,x那么x的取值范围是()A. 1<x<4B. 4<x<1C. −1<x<−4D. −4≤x≤−17.正比例函数y=k+3的图象在二、四象限,那么k的取值范围是()xA. k≤3B. k≥−3C. k>3D. k<−38.如图,两个边长区分为a,b(a>b)的正方形连在一同,三点C,B,F在同不时线上,正比例函数y=k在第一x象限的图象经过小正方形右下顶点E.假定OB2−BE2=10,那么k的值是()A. 3B. 4C. 5D. 4√5(k≠0)图象上的两个点,事先x1<x2<0,9.A(x1,y1),B(x2,y2)是正比例函数y=kxy1>y2,那么一次函数y=kx−k的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限(x>0)10.如图,直线l⊥x轴于点P,且与正比例函数y1=k1x(x>0)的图象区分交于点A,B,衔接OA,OB,及y2=k2x△OAB的面积为2,那么k1−k2的值为()A. 2B. 3C. 4D. −4二、填空题11.正比例函数y=k+1,在其图象所在的每个象限内,y随x的增大而减小,那么k的x值取值范围为______ .12.正比例函数y=8的图象经过点A(m,−2),那么m的值为______.x13.正比例函数y=k的图象经过点(1,6)和(m,−3),那么m=______ .x14.如图,一次函数y=kx+b的图象与正比例函数y=m的图象交于点A(−2,−5),x>0的解集是______ .C(5,n),交y轴于点B,交x轴于点D,那么不等式kx+b−mx15.正比例函数y=n−1的图象在第二、四象限,那么n的取值范围为______,A(2,y1),xB(3,y2)为图象上两点,那么y1______y2(用〝<〞或〝>〞填空).三、计算题16.正比例函数y=k的图象经过A(−2,1)、B(1,m)、C(2,n)两点,试比拟m、n大小.x17.y=y1+y2,其中y1与x成正比例,y2与x成正比例,且事先x=1,y=4;事先x=2,y=5;求y与x的函数解析式.x+2的图象区分与坐标轴相交于A、B两点18.一次函数y=23(x>0)的图象相交于C点.(如下图),与正比例函数y=kx(1)写出A、B两点的坐标;(2)作CD⊥x轴,垂足为D,假设OB是△ACD的中位线,(x>0)的关系式.求正比例函数y=kx【答案】1. A2. D3. D4. B5. D6. D7. D8. C9. B10. C11. k>−112. −413. −214. −2<x<0或x>515. n<1;<16. 解:∵正比例函数y=kx ,它的图象经过A(−2,1),1=k−2,k=−2∴y=−2x,将B,C两点代入正比例函数得,m=−21=−2,n=−22=−1,∴m<n故答案为:m<n17. 解:由题意可设y=k1x+k2x(k1≠0且k2≠0).(1分)∵事先x=1,y=4;事先x=2,y=5,所以{2k1+12k2=5k1+k2=4(2分),解得,{k2=2k1=2(2分),∴y=2x+2x.(1分)18. 解:(1)∵y=23x+2,∴事先x=0,y=2,事先y=0,x=−3,∴A的坐标是(−3,0),B的坐标是(0,2).(2)∵A(−3,0),∴OA=3,∵OB是△ACD的中位线,∴OA=OD=3,即D点、C点的横坐标都是3,把x=3代入y=23x+2得:y=2+2=4,即C的坐标是(3,4),∵把C的坐标代入y=kx得:k=3×4=12,∴正比例函数y=kx (x>0)的关系式是y=12x(x>0).。
人教版九年级数学下册 26.1 反比例函数 同步训练(含答案)

26.1反比例函数同步训练一.选择题1.下列图象中是反比例函数y=x2-的图象的是( )2.当x >0时,函数y =-x5的图象在()A .第四象限B .第三象限C .第二象限D .第一象限3.已知点A(-2,y 1),B(3,y 2)是反比例函数y =xk(k <0)图象上的两点,则有( ) A .y 1<0<y 2B .y 2<0<y 1C .y 1<y 2<0D .y 2<y 1<04.若反比例函数ky x=(k≠0)的图象经过点P(-2,3),则该函数的图象不经过的点是( )A .(-1,-6)B .(1,-6)C .(-1,6)D .(3,-2)5. 在反比例函数y =1-3mx 的图象上有两点A(x 1,y 1),B(x 2,y 2),x 1<0<x 2,y 1<y 2,则m 的取值范围是( )A .m>13B .m ≥13C m<13D .m ≤136.若点A(a ,b)在反比例函数2y x=的图象上,则代数式ab -4的值为( ) A .0 B .-2 C .2 D .-67.在同一直角坐标系中,函数y =-kx +k 与y = (k ≠0)的图象大致是( )A. B. C. D.8.如图,在函数的图像上有A ,B ,C 三点,过这三点分别向轴、轴作垂线,过每一点所作的两条垂线段与轴、轴围成的矩形的面积分别为S 1,S 2,S 3,则( )A.S1>S2>S3 B.S1<S2<S3 C.S1<S3<S2 D.S1=S2=S39.如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数y=(x>0)的图象经过顶点B,则k的值为( )A.12 B.20 C.24 D.3210.若在同一直角坐标系中,直线y=k1x与双曲线y=有两个交点,则有( )A.k1+k2>0 B.k1+k2<0 C.k1k2>0 D.k1k2<011.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数y=(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k=()A. B.9 C. D.312.已知反比例函数y=K/X的图象经过点(2,-2),则k的值为()A. 4 B.-1 C.-4 D.-213.已知反比例函数(k≠0),当x=2时,y=﹣7,那么k等于()A.14 B.2 C. 6 D.﹣1414.下列关于y 与x 的表达式中,反映y 是x 的反比例函数的是( ) A .y=4x B .y=﹣2x C .xy=4 D .y=8x ﹣315.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(Pa)是气体体积V(cm 3)的反比例函数,其图象如图所示。
人教版九年级数学下册:单元练习卷 《反比例函数》(含解析)

人教版数学九年级(下)单元练习卷:《反比例函数》一.选择题1.已知反比例函数y=,在下列结论中,不正确的是()A.图象必经过点(1,2)B.每一象限内y随x的增大而减少C.图象在第一、三象限D.若x>1,则y<22.已知点A(x1,y1)、B(x2,y2)是反比例函数y=﹣图象上的点,若x1>0>x2,则下列一定成立的是()A.y1<0<y2B.y1<y2<0 C.y2<0<y1D.0<y1<y23.如图,当x>2时,反比例函数y=的函数值y的取值范围是()A.y>1 B.0<y<1 C.y>2 D.0<y<24.如图,点B在反比例函数y=(x>0)的图象上,过点B向x轴作垂线,垂足为A,连结BO,则△OAB的面积为()A.1 B.2 C.3 D.45.反比例函数y=(k≠0)的图象经过点(2,5),若点(﹣5,n)在反比例函数的图象上,则n等于()A.﹣10 B.﹣5 C.﹣2 D.﹣6.已知反比例函数y=﹣,下列各点中,在其图象上的有()A.(﹣2,﹣3)B.(2,3)C.(2,﹣3)D.(1,6)7.如图,反比例函数的图象经过矩形OABC对角线的交点M,分别于AB、BC 交于点D、E,若四边形ODBE的面积为9,则k的值为()A.3 B.4 C.5 D.68.如图,在平面直角坐标系中,点A在函数y=(k<0,x<0)的图象上,过点A作AB ∥y轴交x轴于点B,点C在y轴上,连结AC、BC.若△ABC的面积是3,则k的值是()A.3 B.﹣3 C.6 D.﹣69.若反比例函数y=的图象在其所在的每一个象限内,y都随x的增大而增大,则k的值可以是()A.2018 B.0 C.2017 D.﹣201710.如图,矩形的中心为直角坐标系的原点O,各边分别与坐标轴平行,其中一边AB交x 轴于点C,交反比例函数图象于点P,且点P是AC的中点.已知图中阴影部分的面积为8,该反比例函数的表达式是()A.B.C.D.11.以矩形ABCD两条对角线的交点O为坐标原点,建立如图的平面直角坐标系,且AB⊥x 轴,双曲线y=经过点D,则矩形的面积为()A.10 B.11 C.12 D.1312.如图,直线y=x+m交双曲线y=于A、B两点,交x轴于点C,交y轴于点D,过点A作AH⊥x轴于点H,连结BH,若OH:HC=1:5,S=1,则k的值为()△ABHA.1 B.C.D.二.填空题13.如图,一次函数的图象y=﹣x+b与反比例函数的图象y=交于A(2,﹣4),B(m,2)两点.当x满足条件时,一次函数的值大于反比例函数值.14.如图,已知A(5,0),B(4,4),以OA、AB为边作▱OABC,若一个反比例函数的图象经过C 点,则这个函数的解析式为 .15.如图,已知点A ,点C 在反比例函数y =(k >0,x >0)的图象上,AB ⊥x 轴于点B ,OC 交AB 于点D ,若CD =OD ,则△AOD 与△BCD 的面积比为 .16.如图,分别过第二象限内的点P 作x ,y 轴的平行线,与y ,x 轴分别交于点A ,B ,与双曲线分别交于点C ,D .下面三个结论,①存在无数个点P 使S △AOC =S △BOD ; ②存在无数个点P 使S △POA =S △POB ; ③存在无数个点P 使S 四边形OAPB =S △ACD . 所有正确结论的序号是 .17.如图,直线y =mx ﹣1交y 轴于点B ,交x 轴于点C ,以BC 为边的正方形ABCD 的顶点A (﹣1,a )在双曲线y =﹣(x <0)上,D 点在双曲线y =(x >0)上,则k 的值为.( )18.如图,在平面直角坐标系中,直线y =﹣4x +4与x 轴、y 轴分别交于A 、B 两点,以AB 为边在第一象限作正方形ABCD ,点D 在双曲线y =上;将正方形A BCD 沿x 轴负方向平移a 个单位长度后,点C 恰好落在双曲线在第一象限的分支上,则a 的值是 .19.如图在Rt △ABC 中,∠BAC =90°,AB =2,边AB 在x 轴上,BC 边上的中线AD 的反向延长线交y 轴于点E (0,3),反比例函数y =(x >0)的图象过点C ,则k 的值为 .三.解答题20.如图,一次函数y 1=k 1x +2与反比例函数y 2=的图象交于点A (4,m )和B (﹣8,﹣2),与y 轴交于点C .(1)k 1= ,k 2= ;(2)根据函数图象可知,当y 1>y 2时,x 的取值范围是 ;(3)过点A 作AD ⊥x 轴于点D ,点P 是反比例函数在第一象限的图象上一点.设直线OP 与线段AD 交于点E ,当S 四边形ODAC :S △ODE =3:1时,求直线OP 的解析式.21.如图,在平面直角坐标系中,边长为4的等边△OAB的边OB在x轴的负半轴上,反比例函数y=(x<0)的图象经过AB边的中点C,且与OA边交于点D.(1)求k的值;(2)连接OC,CD,求△OCD的面积;(3)若直线y=mx+n与直线CD平行,且与△OAB的边有交点,直接写出n的取值范围.22.如图,反比例函数y=(x>0)过点A(4,3),直线AC与x轴交于点C(6,0),过点C作x轴的垂线BC交反比例函数图象于点B.(1)求k的值与B点的坐标;(2)在平面内有点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,试直接写出符合条件的所有D点的坐标.23.在平面直角坐标系中,已知点A、B的坐标分别为(﹣,0)、(0,﹣1),把点A绕坐标原点O 顺时针旋转135°得点C ,若点C 在反比例函数y =的图象上. (1)求反比例函数的表达式;(2)若点D 在y 轴上,点E 在反比例函数y =的图象上,且以点A 、B 、D 、E 为顶点的四边形是平行四边形.请画出满足题意的示意图并在示意图的下方直接写出相应的点D 、E 的坐标.24.已知蓄电池的电压为定值.使用此蓄电池作为电源时,电流Ⅰ(单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示. (1)求这个反比例函数的表达式;(2)如果以此蓄电池为电源的用电器的电流不能超过8A ,那么该用电器的可变电阻至少是多少?25.如图,直线y 1=x +b 交x 轴于点B ,交y 轴于点A (0,2),与反比例函数y 2=的图象交于C (1,m ),D (n ,﹣1),连接OC ,OD . (1)求k 的值; (2)求△COD 的面积.(3)根据图象直接写出y 1<y 2时,x 的取值范围.(4)点M 是反比例函数y 2=上一点,是否存在点M ,使点M 、C 、D 为顶点的三角形是直角三角形,且CD 为直角边,若存在,请直接写出点M 的坐标;若不存在,请说明理由.参考答案一.选择题1.解:A 、图象必经过点(1,2),说法正确;B 、每一象限内y 随x 的增大而减少,说法正确;C 、图象在第一、三象限,说法正确;D 、若x >1,则y <2,说法错误,应为0<y <2.故选:D .2.解:∵k =﹣2<0,∴双曲线在第二,四象限,在每个象限内,y 随x 的增大而增大, 又∵x 1>0>x 2,∴A ,B 两点不在同一象限内, ∴y 1<0<y 2; 故选:A .3.解:当x =2时,y ===1,即当x >2时,反比例函数y =的函数值y 的取值范围是0<y <1, 故选:B . 4.解:设B 点坐标为(x ,y ),则xy =2,OA =x ,AB =y , ∴S △OAB =OA •AB =xy =×2=1,(本题也可以直接利用反比例函数系数k 的几何意义来求得答案). 故选:A .5.解:∵反比例函数y =(k ≠0)的图象经过点(2,5), ∴代入得:k =2×5=10, 即y =,∵点(﹣5,n )在反比例函数的图象上, ∴代入得:n ==﹣2,故选:C .6.解:∵反比例函数y =﹣中,k =﹣6,∴只需把各点横纵坐标相乘,结果为﹣6的点在函数图象上, 四个选项中只有C 选项符合. 故选:C .7.解:由题意得:E 、M 、D 位于反比例函数的图象上,则S △OCE =|k |,S △OAD =|k |.过点M 作MG ⊥y 轴于点G ,作MN ⊥x 轴于点N ,则S 矩形ONMG =|k |, 又∵M 为矩形ABCO 对角线的交点, ∴S 矩形ABCO =4S 矩形ONMG =4|k |,由于函数图象在第一象限,k >0,则k +k +9=4k , 解得:k =3. 故选:A .8.解:连接AO ,由同底等高得到S △AOB =S △ABC =3, ∴|k |=3,即|k |=6, ∵反比例函数在第二象限过点A , ∴k =﹣6, 故选:D .9.解:∵它在每个象限内,y随x增大而增大,∴2017﹣k<0,则k>2017观察选项,只有A选项符合题意.故选:A.10.解:∵矩形的中心为直角坐标系的原点O,图中阴影部分的面积为8,∴矩形OCAD的面积是8,设A(x,y),则xy=8,∵点P是AC的中点,∴P(x, y),设反比例函数的解析式为y=,∵反比例函数图象于点P,∴k=x•y=xy=4,∴反比例函数的解析式为y=.故选:B.11.解:∵双曲线y=经过点D,∴第一象限的小长方形的面积是3,∴矩形ABCD的面积是3×4=12.故选:C.12.解:设OH=a,则HC=5a,∴C(6a,0)代入y=﹣x+m,得m=3a,设A点坐标为(a,n)代入y=﹣x+m,得n=﹣a+3a=a,∴A(a, a),代入y=得,∴k=a2,∴y=,解方程组,可得:,,∴A点坐标为(a, a),B点坐标为(5a, a),∴AH=a,∴S=×a×(5a﹣a)=5a2,△ABH=1,∵S△ABH∴5a2=1,即a2=,∴k=×=.故选:B.二.填空题(共7小题)13.解:∵反比例函数的图象y=经过A(2,﹣4),B(m,2)两点,∴a=2×(﹣4)=2m,解得m=﹣4∴点B(﹣4,2),∴由函数的图象可知,当x<﹣4或0<x<2时,一次函数值大于反比例函数值,故答案为x<﹣4或0<x<2.14.解:∵A(5,0),B(4,4),以OA、AB为边作▱OABC,∴BC=AO=5,BE=4,EO=4,∴EC=1,故C(﹣1,4),若一个反比例函数的图象经过C点,则这个函数的解析式为:y=﹣.故答案为:y=﹣.15.解:作CE⊥x轴于E,如图,∵DB∥CE,∴===,设D(m,n),则C(2m,2n),∵C(2m,2n)在反比例函数图象上,∴k=2m×2n=4mn,∴A(m,4n),∵S△AOD =×(4n﹣n)×m=mn,S△BCD=×(2m﹣m)×n=mn∴△AOD与△BCD的面积比=mn: mn=3.故答案为3.16.解:如图,设C (m ,),D (n ,),则P (n ,), ∵S △AOC =3,S △BOD =3, ∴S △AOC =S △BOD ;所以①正确;∵S △POA =﹣n ×=﹣,S △POB =﹣n ×=﹣, ∴S △POA =S △POB ;所以②正确; ∵S 四边形OAPB =﹣n ×=﹣,S △ACD =×(﹣n )×(﹣)=﹣+3,∴S 四边形OAPB ≠S △ACD .所以③不正确. 故答案为①②.17.解:∵A (﹣1,a )在双曲线y =﹣(x <0)上, ∴a =2, ∴A (﹣1,2),∵点B 在直线y =mx ﹣1上, ∴B (0,﹣1), ∴AB ==,∵四边形ABCD 是正方形, ∴BC =AB =,设C (n ,0),∴=,∴n=﹣3(舍)或n=3,∴C(3,0),∴点B向右平移3个单位,再向上平移1个单位,∴点D是点A向右平移3个单位,再向上平移1个单位,∴点D(2,3),∵D点在双曲线y=(x>0)上,∴k=2×3=6,故答案为6.18.解:当x=0时,y=4,∴B(0,4),当y=0时,x=1,∴A(1,0),∴OA=1,OB=4,∵ABCD是正方形,∴AB=BC=CD=DA,∠ABC=∠BCD=∠CDA=∠DAB=90°,过点D、C作DM⊥x轴,CN⊥y轴,垂足为M、N,∴∠ABO=∠BCN=∠DAM,∵∠AOB=∠BNC=∠AMD=90°,∴△AOB≌△BNC≌△DMA(AAS),∴OA=DM=BN=1,AM=OB=CN=4∴OM=1+4=5,ON=4+1=5,∴C(4,5),D(5,1),把D(5,1)代入y=得:k=5,∴y=,当y=5时,x=1,∴E(1,5),点C向左平移到E时,平移距离为4﹣1=3,即:a=3,故答案为:3.19.解:∵E (0,3), ∴OE =3,∵AD 是Rt △ABC 中斜边BC 上的中线, ∴AD =DB =DC , ∴∠DAB =∠ABC , ∵∠BAC =∠AOE =90° ∴△ABC ∽△OAE ∴,∴OA •AC =AB •OE =3×2=6, 又∵反比例函数的图象在第四象限, ∴k =﹣6, 故答案为:﹣6. 三.解答题(共6小题)20.解:(1)把B (﹣8,﹣2)代入y 1=k 1x +2得﹣8k 1+2=﹣2,解得k 1=, ∴一次函数解析式为y 1=x +2; 把B (﹣8,﹣2)代入y 2=得k 2=﹣8×(﹣2)=16, ∴反比例函数解析式为y 2=,故答案为:,16;(2)∵当y 1>y 2时即直线在反比例函数图象的上方时对应的x 的取值范围, ∴﹣8<x <0或x >4; 故答案为:﹣8<x <0或x >4;(3)把A (4,m )代入y 2=得4m =16,解得m =4,∴点A 的坐标是(4,4),而点C 的坐标是(0,2), ∴CO =2,AD =OD =4.∴S 梯形ODAC =×(2+4)×4=12, ∵S 梯形ODAC :S △ODE =3:1, ∴S △ODE =×12=4, ∴OD •DE =4, ∴DE =2,∴点E 的坐标为(4,2).设直线OP 的解析式为y =kx ,把E (4,2)代入得4k =2,解得k =, ∴直线OP 的解析式为y =x . 21.解:(1)∵等边△OAB ,∴AB =BO =AO =4,∠ABO =∠BOA =∠OAB =60°, ∵点C 是AB 的中点, ∴BC =AC =2,过点C 作CM ⊥OB ,垂足为M ,在Rt △BCM 中,∠BCM =90°﹣60°=30°,BC =2, ∴BM =1,CM =,∴OM =4﹣1=3, ∴点C 的坐标为(﹣3,),代入y =得:k =﹣3答:k 的值为﹣3.(2)过点A 作AN ⊥OB ,垂足为N , 由题意得:AN =2CM =2,ON =OB =2,∴A (﹣2,2),设直线OA 的关系式为y =kx ,将A 的坐标代入得:k =﹣,∴直线OA 的关系式为:y =﹣x ,由题意得:,解得:舍去,,∴D(﹣,3)过D作DE⊥OB,垂足为E,S△OCD =S CMED+S△DOE﹣S△COM=S CMED=(+3)×(3﹣)=3,答:△OCD的面积为3.(3)①当与直线CD平行的直线y=mx+n过点O时,此时y=mx+n的n=0,②当与直线CD平行的直线y=mx+n经过点A时,设直线CD的关系式为y=ax+b,把C、D坐标代入得:,解得:a=1,b=3+∴直线CD的关系式为y=x+3+,∵y=mx+n过与直线y=x+3+平行,∴m=1,把A(﹣2,2)代入y=x+n得:n=2+2因此:0≤n≤2+2.答:n的取值范围为:0≤n≤2+2.22.解:(1)把A(4,3)代入y=得:k=12,当x=6时,y=12÷6=2,∴点B(6,2),答:k的值为12,点B的坐标为(6,2).(2)A(4,3),B(6,2)、C(6,0),BC=2,①过A 作BC 的平行线,在这条平行线上截取AD 1=BC ,AD 2=BC , 此时D 1(4,1),D 2(4,5),②过点C 作AB 的平行线与过B 作AC 的平行线相交于D 3, 过点A 作AM ⊥BC ,垂足为M ,过D 3作D 3N ⊥BC ,垂足为N , ∵ABCD 3是平行四边形, ∴AC =BD 3,∠ACM =∠DBN , ∴△ACM ≌△D 3BN (AAS ) ∴D 3N =AM =6﹣4=2,CM =BN =3, ∴D 3的横坐标为6+2=8,CN =3﹣2=1 ∴D 3(8,﹣1)答:符合条件的所有D 点的坐标为(4,1),(4,5),(8,﹣1).23.解:(1)由旋转得:OA =OA =,∠AOC =135°,过点C 作CM ⊥y 轴,垂足为M ,则∠COM =135°﹣90°=45°, 在Rt △OMC 中,∠COM =45°,OC =,∴OM =CM =1,∴点C (1,1),代入y =得: k =1, ∴反比例函数的关系式为:y =, 答:反比例函数的关系式为:y =(2)①当点E 在第三象限反比例函数的图象上,如图1,图2, ∵点D 在y 轴上,AEDB 是平行四边形, ∴AE ∥DB ,AE =BD ,AE ⊥OA , 当x =﹣时,y ==﹣,∴E (﹣,﹣)∵B(0,﹣1),BD=AE=,当点D在B的下方时,∴D(0,﹣1﹣)当点D在B的上方时,∴D(0,﹣1+),②当点E在第一象限反比例函数的图象上时,如图3,过点E作EN⊥y轴,垂足为N,∵ABED是平行四边形,∴AB=DE,AB=DE,∴∠ABO=∠EDO,∴△AOB≌△END(AAS),∴EN=OA=,DN=OB=1,当x=时,代入y=得:y=,∴E(,),∴ON=,OD=ON+DN=1+,∴D(0,1+)24.解(1)设反比例函数表达式为I=(k≠0)将点(10,4)代入得4=∴k=40∴反比例函数的表达式为(2)由题可知,当I=8时,R=5,且I随着R的增大而减小,∴当I≤8时,R≥5∴该用电器的可变电阻至少是5Ω.25.解:(1)把A(0,2)代入y=x+b得:b=2,1即一次函数的表达式为y 1=x +2,把C (1,m ),D (n ,﹣1)代入得:m =1+2,﹣1=n +2, 解得m =3,n =﹣3,即C (1,3),D (﹣3,﹣1),把C 的坐标代入y 2=得:3=,解得:k =3;(2)由y 1=x +2可知:B (﹣2,0),∴△AOC 的面积为×2×3+×2×1=4;(3)由图象可知:y 1<y 2时,x 的取值范围是x <﹣3或0<x <1;(4)当M 在第一象限,根据题意MC ⊥CD ,∵直线y 1=x +2,∴设直线CM 的解析式为y =﹣x +b 1,代入C (1,3)得,3=﹣1+b 1解得b 1=4,∴直线CM 为y =﹣x +4,解得,, ∴M (3,1);当M 在第三象限,根据题意MD ⊥CD ,∵直线y 1=x +2,∴设直线DM 的解析式为y =﹣x +b 2,代入D (﹣3,﹣1)得,﹣1=3+b 2解得b 2=﹣4,∴直线DM 为y =﹣x ﹣4,解得或,∴M(﹣1,﹣3),综上,点M的坐标为(3,1)或(﹣1,﹣3).。
人教版数学九年级下册26.1.1《反比例函数》同步练习 (含答案)

人教版数学九下《反比例函数》同步练习一、选择题1.一个圆柱的侧面展开图是一个面积为10的矩形,这个圆柱的高为L与这个圆柱的底面半径r之间的函数关系为()A.正比例函数B.反比例函数C.一次函数D.二次函数2.若点M(﹣3,a),N(4,﹣6)在同一个反比例函数的图象上,则a的值为()A.8B.﹣8C.﹣7D.53.如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是( ) A.两条直角边成正比例 B.两条直角边成反比例C.一条直角边与斜边成正比例 D.一条直角边与斜边成反比例4.已知y与x-1成反比例,那么它的解析式为( )5.已知反比例函数的图象过点(2,3),那么下列四个点中,也在这个函数上的是( )A.(-6,1)B.(1,6)C.(2,-3)D.(3,-2)6.下列函数表达式中,y不是x的反比例函数的是( )7.若函数y=x2m+1为反比例函数,则m的值是( )A.1B.0C.0.5D.-18.若反比例函数的图象经过点(2,-6),则k 的值为( ) A.-12B.12C.-3D.39.下列关系中,两个量之间为反比例函数关系的是( )A.正方形的面积S 与边长a 的关系B.正方形的周长L 与边长a 的关系C.长方形的长为a ,宽为20,其面积S 与a 的关系D.长方形的面积为40,长为a ,宽为b ,a 与b 的关系10.已知反比例函数的解析式为y=,则a 的取值范围是( ) A .a≠2B .a≠﹣2C .a≠±2D .a=±211.反比例函数中常数k 为( )12.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25 m ,则y 与x 的函数关系式为( )二、填空题13.若函数52)2(--=k x k y 是反比例函数,则k=________.14.把一个长、宽、高分别为3cm ,2cm ,1cm 的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积s (cm 2)与高h (cm )之间的函数关系式为 .15.若反比例函数的图象经过点(﹣1,2),则k的值是 .三、解答题16.列出下列问题中的函数关系式,并判断它们是否为反比例函数.(1)某农场的粮食总产量为1 500 t,则该农场人数y(人)与平均每人占有粮食量x(t)的函数关系式;(2)在加油站,加油机显示器上显示的某一种油的单价为每升4.75元,总价从0元开始随着加油量的变化而变化,则总价y(元)与加油量x(L)的函数关系式;(3)小明完成100 m赛跑时,时间t(s)与他跑步的平均速度v(m/s)之间的函数关系式.17.已知函数y=(5m-3)x2-n+(n+m).(1)当m,n为何值时,为一次函数?(2)当m,n为何值时,为正比例函数?(3)当m,n为何值时,为反比例函数?18.已知y=y1+y2,其中y1与x成正比例,y2与(x﹣2)成反比例.当x=1时,y=2;x=3时,y=10.求:(1)y与x的函数关系式;(2)当x=﹣1时,y的值.19.在平面直角坐标系中,直线y=-x+2平移后经过点(-2,1),且与反比例函数y=kx-1的图象的一个交点为A(a,3),试确定反比例函数的解析式.20.已知反比例函数和一次函数y=kx-1的图象都经过点P(m,-3m).⑴求点P的坐标和这个一次函数的解析式;⑵若点M(a,y1)和点N a+1,y2)都在这个一次函数的图象上.试通过计算或利用一次函数的性质,说明y1大于y2.参考答案1.B2.A3.B4.C5.B6.B7.D8.A9.D10.C11.D12.C13.答案为:﹣2;14.答案为:s=.15.答案为:﹣2.16.略17.略18.(1)(2)-19.20.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《反比例函数》同步练习
基础训练
1.下列函数中,表示y是x的反比例函数的是( )
A.y=x
B.y=
C.y=
D.y=
2.下列说法不正确的是( )
A.在y=-1中,y+1与x成反比例
B.在xy=-2中,y与成正比例
C.在y=中,y与x成反比例
D.在xy=-3中,y与x成反比例
3.若y=(a+1)是反比例函数,则a的取值为( )
A.1
B.-1
C.±1
D.任意实数
4.若函数y=是反比例函数,则m的取值范围是;当m= 时,y是x的反比例
函数,且比例系数为3.
5.一个反比例函数的图象过点A(-2,-3),则这个反比例函数的解析式是.
6.若y与x-2成反比例,且当x=-1时,y=3,则y与x之间的关系是( )
A.正比例函数
B.反比例函数
C.一次函数
D.其他
7.已知y是x的反比例函数,下列表格给出了x与y的一些值,则☆和¤所表示的数分别为( )
x ☆-1
y 2 ¤
A.6,2
B.-6,2
8.把一个长、宽、高分别为3 cm,2 cm,1 cm的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积S(cm2)与高h(cm)之间的函数关系式为.
9.在下列选项中,是反比例函数关系的是( )
A.多边形的内角和与边数的关系
B.正三角形的面积与边长的关系
C.直角三角形的面积与边长的关系
D.三角形的面积一定时,它的底边长a与这边上的高h之间的关系
10.某工厂现有原材料300 t,平均每天用去x t,这批原材料能用y天,则y与x之间的函数解析式是( )
A.y=300x
B.y=
C.y=300-
D.y=300-x
11.近视眼镜的度数y(单位:度)与镜片焦距x(单位:m)成反比例.已知400度近视眼镜镜片的焦距为0.25 m,则y与x的函数解析式为( )
A.y=
B.y=
C.y=
D.y=
12.用20元钱买钢笔,写出钢笔的单价y(元)与支数x(支)之间的关系式: ,x的取值范围为.
提升训练
13.下列各式中,y是不是x的反比例函数?若是,写出比例系数k.
(1)xy=3; (2)y=3x+2; (3)y=-; (4)y=-5x-1.
14.已知y=(m2+2m).
(1)当m为何值时,y是x的正比例函数?
(2)当m为何值时,y是x的反比例函数?
15.已知y与x-1成反比例,且当x=3时,y=2.
(1)求y与x的函数解析式;
(2)当x=2时,求y的值.
16.已知y=y1+y2,y1与x2成正比例函数关系,y2与x成反比例函数关系,且x=1时,y=3;x=-1时,y=1.
(1)求y与x之间的函数解析式;
(2)当x=-时,求y的值.
17.已知y是关于x
x -3 -2 1 3 4
y 3 --
请探索:y是x.
18.小贝说:“在如图所示的矩形ABCD中,AB=6,BC=8,P是BC边上一动点,过点D作DE⊥AP于点E.设AP=x,DE=y,则y是x的反比例函数.”你认为是这样吗?请给出证明.
(第18题)
参考答案
基础训练
1.D
2.C
3.A
4.m≠1;4
解析:∵函数y=是反比例函数,∴m-1≠0,∴m≠1.
5.y=
6.D
7.D
8.S=
9.D 10.B 11.C
12.y=;x为正整数
解析:此处易误认为x是不为0的数.
提升训练
13.解:(1)是,可变形为y=,其中比例系数k=3.
(2)不是.
(3)是,其中比例系数k=-.
(4)是,其中比例系数k=-5.
解析:反比例函数有三种形式,只有理解它们的本质,才能灵活判断.
14.解:(1)由题意得
2
2
11
20 m m
m m
⎧+-=⎪
⎨
+≠
⎪⎩
解得
∴1
m=.
∴当m=1时,y是x的正比例函数.
(2)由题意得
2
2
11
20
m m
m m
⎧+-=-⎪
⎨
+≠
⎪⎩
解得
∴1
m=- .
∴当1
m=-时,y是x的反比例函数.
15.解:(1)设函数解析式为y=(k≠0).
因为当x=3时,y=2,
所以=2,解得k=4.故y=.
(2)当x=2时,y==4.
解析:根据y与x-1成反比例,设出解析式的形式为y=(k≠0)是解决问题的关键.
16.解:(1)设y1=k1x2,y2=(k1,k2≠0),
则y=k1x2+.
将x=1,y=3和x=-1,y=1分别代入,
得解得
∴y与x之间的函数解析式为y=2x2+.
(2)当x=-时,y=2×+=-.
17.解:假设y与x是正比例函数关系,则可设y=k1x(k1≠0),把x=-2,y=代入,得k1=-,所以
y=-x.
把x=4,y=-代入y=-x,等式不成立,所以y不是x的正比例函数.
假设y与x是反比例函数关系,则可设y=(k2≠0),把x=-2,y=代入,得k2=-3,所以y=-.把x=4,y=-代入y=-,等式成立,所以y是x的反比例函数.所求函数解析式为y=-.
补充表格如下:
x -3 -2 -1 1 2 3 4
y 1 3 -3 --1 -
18.解:小贝的说法正确.证明如下:连接DP.
∵S△APD=S矩形ABCD-S△ABP-S△DCP=6×8-AB·(BP+PC)=48-×6×8=24,且S△APD=xy,
∴xy=48,即y=(6≤x≤10).∴y是x的反比例函数.。