人教版高中数学必修二教学案-《立体几何初步》全章复习

合集下载

人教A版高中数学必修第二册精品课件 复习课 第3课时 立体几何初步

人教A版高中数学必修第二册精品课件 复习课 第3课时 立体几何初步
三个点,且AC⊥BC,AC=BC=1,则三棱锥O-ABC的体积为( )

A.


B.


C.


D.

解析:AC⊥BC,AC=BC=1,设 O1 为 AB 的中点,
连接 CO1,OO1,


CO1= ,由题意
OO1⊥平面 ABC,
在 Rt△OO1C 中,OO1=
则三棱锥 O-ABC
-

在△PAB 中,∵PA=PB,AC=BC,∴AB⊥PC,




∴S△PAB=AB·PC=PC= ,∴PC= ,
∴在 Rt△POC 中,PO= - = ,

∴V 圆锥 PO=·π·(

2
) ·PO= ×3π×

= π.故选 B. 答案:B
3.(2021·全国Ⅱ高考)已知A,B,C是半径为1的球O的球面上的
心, PA,PB 为圆锥的母线,∠AOB=120°,若△PAB 的面积等于

,则该圆锥的体积为(

A.π
B. π
)
C.3π
D.3 π
解析:在△AOB 中,过点 O 作 OC⊥AB 于点 C,连接 PC.
∵△AOB 为等腰三角形且∠AOB=120°,OA= ,
∴C 为

AB 中点,AB=3,OC= .
到平面的距离的常用方法.
【变式训练 2】 已知△ABC,AC=BC=1,AB= ,S 是△ABC 所
在平面外一点,SA=SB=2,SC= ,点 P 是 SC 的中点,求点 P
到平面 ABC 的距离.
解:如图所示,连接PA,PB.由题意知△SAC,△ACB是直角三角

立体几何全部教案(人教A版高中数学必修②教案)

立体几何全部教案(人教A版高中数学必修②教案)

立体几何全部教案(人教A版高中数学必修②教案)第一章:空间几何体的结构特征1.1 教学目标了解柱体、锥体、球体的定义及性质。

掌握空间几何体的结构特征,如表面积、体积等。

1.2 教学内容柱体、锥体、球体的定义及性质。

空间几何体的结构特征的计算方法。

1.3 教学步骤1. 引入新课,讲解柱体、锥体、球体的定义及性质。

3. 讲解空间几何体的结构特征的计算方法,如表面积、体积等。

1.4 课堂练习完成课本练习题,巩固所学知识。

1.5 课后作业完成课后作业,加深对空间几何体的结构特征的理解。

第二章:点、线、面的位置关系2.1 教学目标了解点、线、面的位置关系,如平行、垂直等。

掌握点、线、面的位置关系的判定方法。

2.2 教学内容点、线、面的位置关系的定义及判定方法。

2.3 教学步骤1. 引入新课,讲解点、线、面的位置关系的定义及判定方法。

2.4 课堂练习完成课本练习题,巩固所学知识。

2.5 课后作业完成课后作业,加深对点、线、面的位置关系的理解。

第三章:空间角的计算3.1 教学目标了解空间角的定义及性质。

掌握空间角的计算方法。

3.2 教学内容空间角的定义及性质。

空间角的计算方法。

3.3 教学步骤1. 引入新课,讲解空间角的定义及性质。

3.4 课堂练习完成课本练习题,巩固所学知识。

3.5 课后作业完成课后作业,加深对空间角的计算的理解。

第四章:空间向量的应用4.1 教学目标了解空间向量的定义及性质。

掌握空间向量的应用方法。

空间向量的定义及性质。

空间向量的应用方法。

4.3 教学步骤1. 引入新课,讲解空间向量的定义及性质。

4.4 课堂练习完成课本练习题,巩固所学知识。

4.5 课后作业完成课后作业,加深对空间向量的应用的理解。

第五章:立体几何中的综合问题5.1 教学目标培养学生解决立体几何综合问题的能力。

5.2 教学内容立体几何中的综合问题的解题策略。

5.3 教学步骤1. 引入新课,讲解立体几何中的综合问题的解题策略。

数学必修2立体几何第一章全部教案

数学必修2立体几何第一章全部教案

数学必修2立体几何第一章全部教案第一章:空间几何体1.1.1柱、锥、台、球的结构特征(一)一、教学目标1 ?学问与技能(1)通过实物操作,增加同学的直观感知。

(2)能按照几何结构特征对空间物体举行分类。

(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

(4)会表示有关于几何体以及柱、锥、台的分类。

2. 过程与办法(1)让同学通过直观感触空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

(2)让同学观看、研究、归纳、概括所学的学问。

3. 情感态度与价值观(1)使同学感触空间几何体存在于现实生活周围,增加同学学习的乐观性,同时提高同学的观看能力。

(2)培养同学的空间想象能力和抽象括能力。

二、教学重点、难点重点:让同学感触大量空间实物及模型、概括出柱、锥、台、球的结构特征。

难点:柱、锥、台、球的结构特征的概括。

三、教学用具(1)学法:观看、思量、沟通、研究、概括。

(2)实物模型、投影仪四、教学过程:一、创设情景,揭示课题1. 研究:经典的建造给人以美的享受,其中神秘为何?世间万物,为何千姿百态?2. 提问:学校与初中在平面上讨论过哪些几何图形?在空间范围上讨论过哪些?3. 导入:进入高中,在必修②的第一、二章中,将继续深化讨论一些空间几何图形,即学习立体几何,注重学习办法:直观感知、操作确认、思维辩证、度量计算二、讲授新课:1. 教学棱柱、棱锥的结构特征:②提问:举例生活中有哪些实例给我们以两个面平行的形象?②研究:给一个长方体模型,经过上、下两个底面用刀垂直切,得到的几何体有D哪些公共特征?把这些几何体用水平力推斜后,仍然有哪些公共特征?②定义:有两个面相互平行,其余各面都是四边形,且每相邻两个四边形的公共边都相互平行,由这些面所围成的几何体叫棱柱→列举生活中的棱柱实例(三棱镜、方砖、六角螺帽)结合图形熟悉:底面、侧面、侧棱、顶点、高、对角面、对角线?②分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等表示:棱柱ABCDE-A 'B'C'D''②研究:埃及金字塔具有什么几何特征?②定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥.结合图形熟悉:底面、侧面、侧棱、顶点、高?→研究:棱锥如何分类及表示?②研究:棱柱、棱锥分离具有一些什么几何性质?有什么共同的性质?棱柱:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形棱锥:侧面、对角面都是三角形;平行于底面的截面与底面相像,其相像比等于顶点到截面距离与高的比的平方?2. 教学圆柱、圆锥的结构特征:②研究:圆柱、圆锥如何形成?②定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫圆柱;以直角三角形的一条直角边为旋转轴,其余两边旋转所成的曲面所围成的几何体叫圆锥?→列举生活中的棱柱实例→结合图形熟悉:底面、轴、侧面、母线、高.→表示办法②研究:棱柱与圆柱、棱柱与棱锥的共同特征?→ 柱体、锥体.②观看书P2若干图形,找出相应几何体;举例:生活中的柱体、锥体.3. 质疑答辩,排难解惑,进展思维,老师提出问题,让同学思量。

高中数学必修二《第八章 立体几何初步》复习教案及练习

高中数学必修二《第八章 立体几何初步》复习教案及练习

《第八章立体几何初步》复习教案8.1 基本立体图形第1课时棱柱、棱锥、棱台的结构特征【基础知识拓展】1.几类特殊的四棱柱四棱柱是一种非常重要的棱柱,平行六面体(底面是平行四边形的四棱柱)、直平行六面体(侧棱垂直于底面的平行六面体)、长方体、正四棱柱、正方体等都是一些特殊的四棱柱,它们之间的关系如下.2.棱柱、棱锥、棱台之间的关系棱柱、棱锥、棱台之间有着内在的联系:将棱台的上底面慢慢扩大到与下底面相同时,转化为棱柱;将棱台的上底面慢慢缩小为一点时,转化为棱锥.如图所示.【跟踪训练】1.判一判(正确的打“√”,错误的打“×”)(1)棱柱的侧面可以不是平行四边形.( )(2)各面都是三角形的多面体是三棱锥.( )(3)棱台的上下底面互相平行,且各侧棱延长线相交于一点.( )答案(1)×(2)×(3)√2.做一做(1)有两个面平行的多面体不可能是( )A.棱柱 B.棱锥C.棱台 D.以上都错(2)面数最少的多面体的面的个数是________.(3)三棱锥的四个面中可以作为底面的有________个.(4)四棱台有________个顶点,________个面,________条边.答案(1)B (2)4 (3)4 (4)8 6 12【核心素养形成】题型一对棱柱、棱锥、棱台概念的理解例1 下列命题中,真命题有________.①棱柱的侧面都是平行四边形;②棱锥的侧面为三角形,且所有侧面都有一个公共点;③棱台的侧面有的是平行四边形,有的是梯形;④棱台的侧棱所在直线均相交于同一点;⑤多面体至少有4个面.[解析] 棱柱是由一个平面多边形沿某一方向平移而形成的几何体,因而侧面是平行四边形,故①正确.棱锥是由棱柱的一个底面收缩为一个点而得到的几何体,因而其侧面均是三角形,且所有侧面都有一个公共点,故②正确.棱台是棱锥被平行于底面的平面所截后,截面与底面之间的部分,因而其侧面均是梯形,且所有的侧棱延长后均相交于一点(即原棱锥的顶点),故③错误,④正确.⑤显然正确.因而真命题有①②④⑤.[答案] ①②④⑤【解题技巧】关于棱柱、棱锥、棱台结构特征问题的解题方法(1)根据几何体的结构特征的描述,结合棱柱、棱锥、棱台的定义进行判断,注意判断时要充分发挥空间想象能力,必要时做几何模型通过演示进行准确判断.(2)解决该类题目需准确理解几何体的定义,要真正把握几何体的结构特征,并且学会通过举反例对概念类的命题进行辨析,即要说明一个命题是错误的,设法举出一个反例即可.【跟踪训练】下列关于棱锥、棱柱、棱台的说法:①棱台的侧面一定不会是平行四边形;②由四个平面围成的封闭图形只能是三棱锥;③棱锥被平面截成的两部分不可能都是棱锥;④棱柱的侧棱与底面一定垂直.其中正确说法的序号是________.答案①②解析①正确,棱台的侧面一定是梯形,而不是平行四边形;②正确,由四个平面围成的封闭图形只能是三棱锥;③错误,如图所示四棱锥被平面截成的两部分都是棱锥;④错误,棱柱的侧棱与底面不一定垂直.题型二对棱柱、棱锥、棱台的识别与判断例2 如图长方体ABCD-A1B1C1D1,(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCEF把这个长方体分成两部分,各部分的几何体还是棱柱吗?[解] (1)是棱柱.是四棱柱,因为长方体中相对的两个面是平行的,其余的每个面都是矩形(四边形),且每相邻的两个矩形的公共边都平行,符合棱柱的结构特征,所以是棱柱.(2)截后的各部分都是棱柱,分别为棱柱BB1F-CC1E和棱柱ABFA1-DCED1.[条件探究] 若本例(2)中将平面BCEF改为平面ABC1D1,则分成的两部分各是什么体?解截后的两部分分别为棱柱ADD1-BCC1和棱柱AA1D1-BB1C1.【解题技巧】棱柱判断的方法判断棱柱,依据棱柱的定义,先确定两个平行的面——底面,再判断其余面——侧面是否为四边形及侧棱是否平行.【跟踪训练】判断下图甲、乙、丙所示的多面体是不是棱台?解根据棱台的定义,可以得到判断一个多面体是不是棱台的标准有两个:一是共点,二是平行,即各侧棱延长线要交于一点,上、下两个底面要平行,二者缺一不可.据此,在图甲中多面体侧棱延长线不相交于同一点,不是棱台;图乙中多面体不是由棱锥截得的,不是棱台;图丙中多面体虽是由棱锥截得的,但截面与底面不平行,因此也不是棱台.题型三空间几何体的展开图问题例3 如下图是三个几何体的侧面展开图,请问各是什么几何体?[解] 由几何体的侧面展开图的特点,结合棱柱、棱锥、棱台的定义,可把侧面展开图还原为原几何体,如图所示:所以(1)为五棱柱,(2)为五棱锥,(3)为三棱台.【解题技巧】空间几何体的展开图(1)解答空间几何体的展开图问题要结合多面体的结构特征发挥空间想象能力和动手能力.(2)若给出多面体画其展开图,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面.(3)若是给出表面展开图,则按上述过程逆推.【跟踪训练】根据如下图所给的平面图形,画出立体图.解将各平面图折起来的空间图形如下图所示.【课堂达标训练】1.下列说法中,正确的是( )A.棱柱中所有的侧棱都相交于一点B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱相等,侧面是平行四边形答案 D解析A选项不符合棱柱的特点;B选项中,如图①,构造四棱柱ABCD-A1B1C1D1,令四边形ABCD是梯形,可知平面ABB1A1∥平面DCC1D1,但这两个面不能作为棱柱的底面;C选项中,如图②,底面ABCD可以是平行四边形;D选项是棱柱的特点.故选D.2.下列三种叙述,正确的有( )①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个底面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.A.0个 B.1个 C.2个 D.3个答案 A解析本题考查棱台的结构特征.①中的平面不一定平行于底面,故①错误;②③可用如图的反例检验,故②③不正确.故选A.3.下列图形中,不是三棱柱展开图的是( )答案 C解析本题考查三棱柱展开图的形状.显然C无法将其折成三棱柱,故选C.4.①棱锥的各个侧面都是三角形;②有一个面是多边形,其余各面都是三角形,由这些面围成的几何体是棱锥;③四面体的任何一个面都可以作为棱锥的底面;④棱锥的各侧棱长相等.以上说法正确的序号有________.答案①③解析由棱锥的定义,知棱锥的各侧面都是三角形,故①正确;有一个面是多边形,其余各面都是三角形,如果这些三角形没有一个公共顶点,那么这个几何体就不是棱锥,故②错误;四面体就是由四个三角形所围成的几何体,因此四面体的任何一个面作底面的几何体都是三棱锥,故③正确;棱锥的侧棱长可以相等,也可以不相等,故④错误.5.已知M是棱长为2 cm的正方体ABCD-A1B1C1D1的棱CC1的中点,求沿正方体表面从点A到M的最短路程是多少?解若以BC或DC为轴展开,则A,M两点连成的线段所在的直角三角形的两条直角边的长度分别为2 cm,3 cm,故两点之间的距离为13 cm,若以BB1为轴展开,则A,M两点连成的线段所在的直角三角形的两条直角边的长度分别为1 cm,4 cm.故两点之间的距离是17 cm.故沿正方体表面从A到M的最短路程是13 cm.第2课时圆柱、圆锥、圆台、球和简单组合体的结构特征【基础知识拓展】1.圆柱、圆锥、圆台的关系如图所示.2.处理台体问题常采用还台为锥的补体思想.3.处理组合体问题常采用分割思想.4.空间几何体的轴截面(1)圆柱、圆锥、圆台可以分别看作以矩形的一条边、直角三角形的一条直角边、直角梯形垂直于底边的腰所在直线为旋转轴,经过旋转而成的曲面所围成的几何体.(2)圆柱、圆锥、圆台的轴截面分别是矩形、等腰三角形、等腰梯形,这些轴截面集中反映了旋转体的各主要元素,处理旋转体的有关问题时,一般要画出轴截面.(3)画出轴截面图形,将立体几何的空间问题转化为平面问题来计算,这种把有关立体几何问题转化为平面几何问题的数学思想方法是我们解决立体几何问题的重要思想方法.【跟踪训练】1.判一判(正确的打“√”,错误的打“×”)(1)到定点的距离等于定长的点的集合是球.( )(2)用平面去截圆锥、圆柱和圆台,得到的截面都是圆.( )(3)用平面截球,无论怎么截,截面都是圆面.( )答案(1)×(2)×(3)√2.做一做(1)圆锥的母线有( )A.1条 B.2条C.3条 D.无数条(2)图①中的几何体叫做________,O叫它的________,OA叫它的________,AB叫它的________.(3)图②的组合体是由________和________构成.(4)图③中的几何体有________个面.答案(1)D (2)球球心半径直径(3)圆柱圆锥(4)3【核心素养形成】题型一旋转体的概念例1 下列命题:(1)以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;(2)以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;(3)圆柱、圆锥、圆台的底面都是圆;(4)用一个平面截圆锥,得到一个圆锥和一个圆台.其中正确命题的个数为( )A.0 B.1 C.2 D.3[解析] 根据圆柱、圆锥、圆台的概念不难做出判断.(1)以直角三角形的一条直角边为轴旋转才可以得到圆锥;(2)以直角梯形垂直于底边的一腰为轴旋转才可以得到圆台;(3)圆柱、圆锥、圆台的底面都是圆面;(4)用平行于圆锥底面的平面截圆锥,才可得到一个圆锥和一个圆台.故4个均不正确.[答案] A[条件探究] 若本例中(2)改为“以直角梯形的各边为轴旋转”,得到的几何体是由哪些简单几何体组成的?解①以垂直于底边的腰为轴旋转得到圆台;②以较长的底为轴旋转得到的几何体为一圆柱加上一个圆锥;③以较短的底为轴旋转得到的几何体为一圆柱挖去一个同底圆锥;④以斜腰为轴旋转得到的几何体为圆锥加上一个圆台挖去一个小圆锥.【解题技巧】平面图形旋转形成的几何体的结构特征圆柱、圆锥、圆台和球都是由平面图形绕着某条轴旋转而成的,平面图形不同,得到的旋转体也不同,即使是同一平面图形,所选轴不同,得到的旋转体也不一样.判断旋转体,要抓住定义,分清哪条线是轴,什么图形,怎样旋转,旋转后生成什么样的几何体.【跟踪训练】一个有30°角的直角三角尺绕其各条边所在直线旋转所得几何体是圆锥吗?如果以斜边上的高所在的直线为轴旋转180°得到什么几何体?旋转360°又得到什么几何体?解如图(1)和(2)所示,绕其直角边所在直线旋转一周围成的几何体是圆锥;如图(3)所示,绕其斜边所在直线旋转一周围成的几何体是两个同底相对的圆锥.如图(4)所示,绕其斜边上的高所在直线旋转180°围成的几何体是两个半圆锥,旋转360°围成的几何体是一个圆锥.题型二简单组合体的结构特征例2 描述下图几何体的结构特征.[解] 图(1)中的几何体是由一个四棱柱和一个四棱锥拼接而成的组合体.图(2)中的几何体是在一个圆台中挖去一个圆锥后得到的组合体.图(3)中的几何体是在一个圆柱中挖去一个三棱柱后得到的组合体.图(4)中的几何体是由两个同底的四棱锥拼接而成的简单组合体.【解题技巧】简单组合体的两种构成方法(1)简单组合体的构成一般有两种基本形式:一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成.(2)识别或运用几何体的结构特征,要从几何体的概念入手,掌握画图或识图的方法,并善于运用身边的特殊几何体进行判断、比较、分析.【跟踪训练】观察下列几何体,并分析它们是由哪些基本几何体组成的.解图(1)是由一个圆柱中挖去一个圆台形成的.图(2)是由一个球、一个四棱柱和一个四棱台组合而成的.题型三旋转体的计算问题例3 一个圆台的母线长为12 cm,两底面面积分别为4π cm2和25π cm2.求:(1)圆台的高;(2)截得此圆台的圆锥的母线长.[解] (1)如图,圆台的轴截面是等腰梯形ABCD,由已知可得上底面半径O1A =2 cm,下底面半径OB=5 cm,又腰长AB=12 cm,所以圆台的高为AM=122-(5-2)2=315(cm).(2)设截得此圆台的圆锥的母线长为l,则由△SAO1∽△SBO可得l-12l=25,所以l=20(cm).故截得此圆台的圆锥的母线长为20 cm.【解题技巧】旋转体中的计算问题及截面性质(1)圆柱、圆锥和圆台中的计算问题,一要结合它们的形成过程,分辨清轴、母线及底面半径与旋转前平面图形量的关系;二要切实体现轴截面的作用.解题时,可把轴截面从旋转体中分离出来,以平面图形的计算解决立体问题.(2)球中的计算应注意一个重要的直角三角形,设球的半径为R,截面圆的半径为r,球心到截面的距离为d,则R2=d2+r2.(3)用平行于底面的平面去截柱体、锥体、台体等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的经过旋转轴的截面(轴截面)的性质,利用相似三角形中的相似比,构设相关几何变量的方程组而得解.【跟踪训练】圆台的两底面面积分别为1,49,平行于底面的截面面积的2倍等于两底面面积之和,求圆台的高被截面分成的两部分的比.解将圆台还原为圆锥,如图所示.O2,O1,O分别是圆台上底面、截面和下底面的圆心,V 是圆锥的顶点,令VO 2=h ,O 2O 1=h 1,O 1O =h 2, 设上底面的面积为S 1,半径为r 1, 则S 1=πr 21=1,下底面的面积为S 2,半径为r 2,则S 2=πr 22=49, 截面的面积为S =S 1+S 22=25,半径为r 3,则S =πr 23.由三角形相似得⎩⎪⎨⎪⎧h +h 1h =49+121,h +h 1+h 2h =491,所以⎩⎨⎧h 1=4h ,h 2=2h ,即h 1∶h 2=2∶1.题型四 圆柱、圆锥、圆台侧面展开图的应用例4 如图所示,已知圆柱的高为80 cm ,底面半径为10 cm ,轴截面上有P ,Q 两点,且PA =40 cm ,B 1Q =30 cm ,若一只蚂蚁沿着侧面从P 点爬到Q 点,问:蚂蚁爬过的最短路径长是多少?[解] 将圆柱侧面沿母线AA 1展开,得如图所示矩形.【解题技巧】求圆柱、圆锥、圆台侧面上两点间最短距离都要转化到侧面展开图中,“化曲为直”是求几何体表面上两点间最短距离的好方法.【跟踪训练】国庆节期间,要在一圆锥形建筑物上挂一宣传标语,经测量得圆锥的母线长为3米,高为22米,如图所示.为了美观需要,在底面圆周上找一点M拴系彩绸的一端,沿圆锥的侧面绕一周挂彩绸,彩绸的另一端仍回到原处M,则彩绸最短要多少米?解把圆锥的侧面沿过点M的母线剪开,并铺平得扇形MOM1,如图所示.这样把空间问题转化为平面问题,易知彩绸的最短长度即为线段MM1的长度,由母线长为3米,高为22米,得底面半径为1米,所以扇形的圆心角为120°,所以MM1=33米,即彩绸最短要33米.【课堂达标训练】1.下列几何体中不是旋转体的是( )答案 D解析正方体不可能是旋转体.2.一个等腰三角形绕它的底边所在直线旋转360°形成的曲面所围成的几何体是( )A.球体B.圆柱C.圆台D.两个共底面的圆锥的组合体答案 D解析过等腰三角形的顶点向底边作垂线,得到两个有一条公共边的全等直角三角形,而直角三角形以一条直角边为轴旋转得到的几何体是圆锥.故选D.3.下列几何体中是旋转体的是( )①圆柱;②六棱锥;③正方体;④球体;⑤四面体.A.①和⑤ B.① C.③和④ D.①和④答案 D解析根据旋转体的概念知①④正确.4.指出如图(1)(2)所示的图形是由哪些简单几何体构成的.解分割图形,使它的每一部分都是简单几何体.图(1)是由一个三棱柱和一个四棱柱拼接而成的简单组合体.图(2)是由一个圆锥和一个四棱柱拼接而成的简单组合体.5.圆台的两底面圆的半径分别为2 cm,5 cm,母线长是310 cm,求其轴截面的面积.解如图,在轴截面内过点A作AB⊥O1A1,垂足为B.由已知OA=2,O1A1=5,AA1=310,∴A1B=3.∴AB=AA21-A1B2=90-9=9.∴S轴截面=12(2OA+2O1A1)·AB=12×(4+10)×9=63(cm2).故圆台轴截面的面积为63 cm2.8.2 立体图形的直观图【基础知识拓展】1.斜二测画法是联系直观图和原图形的桥梁,可根据它们之间的可逆关系寻找它们的联系;在求直观图的面积时,可根据斜二测画法,画出直观图,从而确定其高和底边等,而求原图形的面积可把直观图还原为原图形.两者之间关系为:S 直S 原=24.2.在用斜二测画法画直观图时,平行线段仍然平行,所画平行线段之比仍然等于它的真实长度之比,但所画夹角大小不一定是其真实夹角大小.【跟踪训练】1.判一判(正确的打“√”,错误的打“×”)(1)相等的角,在直观图中仍相等.( )(2)长度相等的线段,在直观图中长度仍相等.( )(3)若两条直线垂直,在直观图中对应的直线也互相垂直.( )答案(1)×(2)×(3)×2.做一做(1)利用斜二测画法画边长为3 cm的正方形的直观图,可以是下列选项中的( )(2)在已知图形中平行于x轴的线段AB=6 cm,则在直观图中线段A′B′=______cm;在已知图形中平行于y轴的线段CD=4 cm,则在直观图中线段C′D′=______cm.(3)在空间几何体中,平行于z轴的线段AB=10 cm,则在直观图中对应的线段A′B′=________cm.(4)在用斜二测画法画水平放置的△ABC时,若∠A的两边平行于x轴、y轴,则在直观图中,∠A′=________.答案(1)C (2)6 2 (3)10 (4)45°或135°【核心素养形成】题型一平面图形的直观图画法例1 画水平放置的正五边形的直观图.[解] (1)建立如图①所示的直角坐标系xOy,再建立如图②所示的坐标系x′O′y′,使∠x′O′y′=45°.(2)在图①中作BG⊥x轴于G,EH⊥x轴于H,在坐标系x′O′y′中作O′H′=OH,O′G′=OG,O′A′=12OA,O′F′=12OF.过F′作C′D′∥x′轴且C′D′=CD,C′F′=F′D′.(3)在平面x′O′y′中,过G′作G′B′∥y′轴,且G′B′=12GB,过H′作H′E′∥y′轴,且H′E′=12HE.连接A′B′,B′C′,C′D′,D′E′,E′A′,得五边形A′B′C′D′E′为正五边形ABCDE的直观图.【解题技巧】画平面图形直观图的技巧(1)要画好对应平面图形的直观图,首先应在原图形中确定直角坐标系,然后在此基础上画出水平放置的平面坐标系.(2)画水平放置的平面多边形的直观图的关键是确定多边形的顶点位置.顶点位置可以分为两类:一类是在轴上或在与轴平行的线段上,这类顶点比较容易确定;另一类是不在轴上且不在与轴平行的线段上,这类顶点一般通过过此点作与轴平行的线段,将此点转到与轴平行的线段上来确定.【跟踪训练】用斜二测画法画边长为4 cm的水平放置的正三角形的直观图.解(1)如图①所示,以BC边所在的直线为x轴,以BC边上的高线AO所在的直线为y轴.(2)画对应的x′轴、y′轴,使∠x′O′y′=45°.在x′轴上截取O′B′=O′C′=2 cm,在y′轴上截取O′A′=12OA,连接A′B′,A′C′,则三角形A′B′C′即为正三角形ABC的直观图,如图②所示.题型二空间几何体的直观图画法例2 画出底面是正方形,侧棱均相等的四棱锥的直观图.[解] 画法:(1)画轴.画Ox轴、Oy轴、Oz轴,∠xOy=45°(或135°),∠xOz=90°,如图①.(2)画底面.以O为中心在xOy平面内,画出正方形的直观图ABCD.(3)画顶点.在Oz轴上截取OP,使OP的长度是原四棱锥的高.(4)成图.顺次连接PA,PB,PC,PD,并擦去辅助线,将被遮住的部分改为虚线,得四棱锥的直观图如图②.【解题技巧】画空间几何体的直观图应遵循的原则(1)对于一些常见简单几何体(柱体、锥体、台体、球)的直观图,应该记住它们的大致形状,以便可以较快、较准确地画出.(2)画空间几何体的直观图比画平面图形的直观图增加了一个z轴,表示竖直方向.(3)平行于z轴(或在z轴上)的线段,平行性与长度都与原来保持一致.(4)画空间几何体的直观图,可先画出底面的平面图形,坐标系的建立要充分利用几何体的对称性,然后画出竖轴.此题也可以把点A,B,C,D放在坐标轴上,画法实质是各顶点的确定.【跟踪训练】已知几何体的三视图如图所示,用斜二测画法画出它的直观图.解(1)画轴.如图①,画x轴,y轴,z轴,使∠xOy=45°,∠xOz=90°.(2)画圆台的两底面.利用椭圆模板,画出底面⊙O,在z轴上截取OO′,使OO′等于三视图中相应的长度,过点O′作Ox的平行线O′x′,Oy的平行线O′y′,类似底面⊙O的作法作出上底面⊙O′.(3)画圆锥的顶点.在O′z上截取O′P,使O′P等于三视图中O′P的长度.(4)成图.连接PA′,PB′,A′A,B′B,整理得到三视图所表示的几何体的直观图,如图②.题型三直观图还原平面图形例 3 (1)如图,△A′B′C′是水平放置的平面图形的斜二测直观图,将其恢复成原图形;(2)在(1)中若|C′A′|=2,B′D′∥y′轴且|B′D′|=1.5,求原平面图形△ABC的面积.[解] (1)画法:①画直角坐标系xOy,在x轴上取OA=O′A′,即CA=C′A′.②在题图中,过B′作B′D′∥y′轴,交x′轴于D′,在x轴上取OD=O′D′,过D作DB∥y轴,并使DB=2D′B′.③连接AB,BC,则△ABC即为△A′B′C′原来的图形,如图.(2)∵B′D′∥y′,∴BD⊥AC.又|B′D′|=1.5且|A′C′|=2,∴|BD|=3,|AC|=2.∴S△ABC=12·|BD|·|AC|=3.[结论探究] 若设原平面图形的面积为S,则其直观图的面积S′为多少?解设原图形的高为h,则直观图的高为24h.又平行于x轴的线段长度不变,∴S′=24 S.【解题技巧】直观图还原平面图形的策略还原的关键是找与x′轴、y′轴平行的直线或线段,且平行于x′轴的线段还原时长度不变,平行于y′轴的线段还原时放大为斜二测直观图中相应线段长的2倍,由此确定图形的各个顶点,顺次连接即可.【跟踪训练】如图是四边形ABCD的水平放置的直观图A′B′C′D′,则原四边形ABCD的面积是( )A.14 B.10 2 C.28 D.14 2答案 C解析∵A′D′∥y′轴,A′B′∥C′D′,A′B′≠C′D′,∴原图形是一个直角梯形.又A′D′=4,∴原直角梯形的上、下底及高分别是2,5,8,故其面积为S=12×(2+5)×8=28.题型四直观图与原图间的计算问题例4 已知正三角形ABC的边长为a,那么△ABC的平面直观图△A′B′C′的面积为( )A.34a2 B.38a2 C.68a2 D.616a2[解析] 如图①②所示的实际图形和直观图,由②可知,A′B′=AB=a,O′C′=12OC=34a,在图②中作C′D′⊥A′B′于点D′,则C′D′=22O′C′=68a,所以S△A′B′C′=12A′B′·C′D′=12×a×68a=616a2.[答案] D【解题技巧】1.利用斜二测画法画空间图形的直观图应遵循的基本原则(1)画空间图形的直观图在要求不太严格的情况下,长度和角度可适当选取.为了增强立体感,被挡住的部分通常用虚线表示.(2)画图时要紧紧把握一斜——在已知图形中垂直于x轴的线段,在直观图中与x轴成45°或135°;二测——两种度量形式,即在直观图中,平行于x轴的线段长度不变,平行于y轴的线段变为原长度的一半2.若一个平面多边形的面积为S原,斜二测画法得到的直观图的面积为S直,则有S直=24S原.【跟踪训练】如图所示,矩形O′A′B′C′是水平放置的平面图形OABC的斜二测直观图,其中O′A′=6 cm,C′D′=2 cm,则四边形OABC的形状是________.答案菱形解析如图,在四边形OABC中,有OD=2O′D′=2×22=4 2 cm,CD=C′D′=2 cm,∴OC=OD2+CD2=(42)2+22=6 cm,∴OA=OC,故四边形OABC是菱形.【课堂达标训练】1.关于“斜二测画法”,下列说法不正确的是( )A.原图形中平行于x轴的线段,其对应线段平行于x′轴,长度不变B.原图形中平行于y轴的线段,其对应线段平行于y′轴,长度变为原来的12C.画与直角坐标系xOy对应的x′O′y′时,∠x′O′y′必须是45°D.在画直观图时,由于选轴的不同,所得的直观图可能不同答案 C解析∠x′O′y′也可以是135°.2.如图所示,△A′B′C′是水平放置的△ABC的直观图,则在△ABC的三边及中线AD中,最长的线段是( )A.AB B.ACC.BC D.AD答案 B解析由直观图可知△ABC是以∠B为直角的直角三角形,所以斜边AC最长.3.如图,已知等腰三角形ABC,则如图所示的四个图中,可能是△ABC的直观图的是( )A.①② B.②③ C.②④ D.③④答案D解析根据平面图形直观图的斜二测画法知③④可能是△ABC的直观图.4.如图,一个三角形的斜二测直观图是等腰直角三角形A′B′O′,若O′B′=1,则原△AOB的面积是________.答案 2解析由题意得O′B′=B′A′=1,∴O′A′=2,且∠B′O′A′=45°,∴△AOB是以∠O为直角的三角形,且OB=1,OA=22,∴S△AOB =12OB·OA=12×1×22= 2.5.有一个正六棱锥(底面为正六边形,侧面为全等的等腰三角形的棱锥),底面边长为3 cm,高为3 cm,画出这个正六棱锥的直观图.解(1)先画出边长为3 cm的正六边形的水平放置的直观图,如图①所示.(2)过正六边形的中心O′建立z′轴,在z′轴上截取O′V′=3 cm,如图②所示.(3)连接V′A′,V′B′,V′C′,V′D′,V′E′,V′F′,如图③所示.(4)擦去辅助线,遮挡部分用虚线表示,即得到正六棱锥的直观图,如图④所示.。

最新人教版高中数学必修2第二章《立体几何初步》教案

最新人教版高中数学必修2第二章《立体几何初步》教案

答案:D
点评:本题主要考查台体的结构特征.像这样的概念辨析题,主要是依靠对简单几何体
的结构特征的准确把握.
变式训练
1.将一个等腰梯形绕着它的较长的底边所在的直线旋转一周,所得的几何体包括( )
A.一个圆台、两个圆锥
B.两个圆台、一个圆柱
C.两个圆台、一个圆柱
D.一个圆柱、两个圆锥
解析:因为梯形的两底平行,故另一底旋转形成了圆柱面.而两条腰由于与旋转轴相交,
教学过程 导入新课 设计 1.第一章是整个立体几何的基础,为了系统地掌握本章的知识和方法,本节对第一 章进行复习.教师点出课题. 设计 2.大家都知道,农民伯伯在春天忙着耕地、播种、浇水、施肥、治虫,非常辛劳, 到了秋天,他们便忙着收获.到了收获的季节,他们既高兴又紧张,因为收获比前面的工作 更重要,收获的多少决定着一年的收成.我们前面的学习就像播种,今天的小结就像收获, 希望大家重视今天的小结学习.教师点出课题. 推进新课 新知探究 提出问题
答案:D
点评:解决球与其他几何体的简单组合体问题,通常借助于球的截面来明确构成组合体
的几何体的结构特征及其联系,本题利用正方体外接球的直径是正方体的对角线这一隐含条
件使得问题顺利获解.
空间几何体的表面积和体积问题是高考考查的热点之一.主要以选择题或填空题形式出
现,也不排除作为解答题中的最后一问,题目难度属于中、低档题,以考查基础知识为主,
1请同学们自己梳理本章知识结构. 2对比直线与平面、平面与平面的平行关系与垂直关系. 3对比面积、体积各自之间的关系.
讨论结果: (1)本章知识结构:
(2)平行关系与垂直关系的对比:
平行
垂直
公共点
0个
1个
如果一条直线和

立体几何全部教案(人教A版高中数学必修②教案)

立体几何全部教案(人教A版高中数学必修②教案)

立体几何全部教案(人教A版高中数学必修②教案)一、第一章:空间几何体的结构特征1. 教学目标(1) 了解柱体、锥体、球体的定义及性质。

(2) 掌握空间几何体的结构特征,如表面积、体积等。

(3) 培养学生的空间想象能力和抽象思维能力。

2. 教学内容(1) 柱体、锥体、球体的定义及性质。

(2) 空间几何体的结构特征,如表面积、体积的计算。

(3) 空间几何体的分类及应用。

3. 教学方法(1) 采用多媒体课件辅助教学,展示空间几何体的直观图形。

(2) 结合实物模型,引导学生感知空间几何体的结构特征。

(3) 利用例题和练习,巩固所学知识。

4. 教学重点与难点(1) 重点:空间几何体的结构特征,如表面积、体积的计算。

(2) 难点:空间几何体的分类及应用。

二、第二章:点、线、面的位置关系1. 教学目标(1) 了解点、线、面的位置关系,如平行、垂直等。

(2) 掌握空间点、线、面的判定方法及其性质。

(3) 培养学生的空间想象能力和逻辑推理能力。

2. 教学内容(1) 点、线、面的位置关系,如平行、垂直等。

(2) 空间点、线、面的判定方法及其性质。

(3) 空间点、线、面的应用,如线面垂直、面面垂直等。

3. 教学方法(1) 利用多媒体课件,展示空间点、线、面的位置关系。

(2) 结合实物模型,引导学生感知空间点、线、面的性质。

(3) 利用例题和练习,巩固所学知识。

4. 教学重点与难点(1) 重点:空间点、线、面的判定方法及其性质。

(2) 难点:空间点、线、面的应用,如线面垂直、面面垂直等。

三、第三章:空间向量及其应用1. 教学目标(1) 了解空间向量的定义及坐标表示。

(2) 掌握空间向量的运算规则,如加法、减法、数乘、点乘、叉乘等。

(3) 学会运用空间向量解决立体几何问题。

2. 教学内容(1) 空间向量的定义及坐标表示。

(2) 空间向量的运算规则,如加法、减法、数乘、点乘、叉乘等。

(3) 空间向量在立体几何中的应用,如线线、线面、面面间的夹角等。

第8章 立体几何初步(复习课件)高一数学(人教A版2019必修第二册)

第8章 立体几何初步(复习课件)高一数学(人教A版2019必修第二册)

81 C. 4 π
D.16π
(1)如图,设 PE 为正四棱锥 P-ABCD 的高,则正四棱锥 P-ABCD 的 外接球的球心 O 必在其高 PE 所在的直线上,延长 PE 交球面于一点 F,连接 AE,AF.
由球的性质可知△PAF为直角三角形且AE⊥PF,
又底面边长为4, 所以AE=2 2 , PE=6, 所以侧棱长PA=
3
在Rt△CDE中,
故二面角B-AP-C的正切值为2.
tanCED CD 2 3 2, DE 3
归纳总结
(1)求异面直线所成的角常用平移转化法(转化为相交直线的 夹角). (2)求直线与平面所成的角常用射影转化法(即作垂线、找射影). (3)二面角的平面角的作法常有三种:①定义法;②三垂线法; ③垂面法.
的表面积为 16π,则 O 到平面 ABC 的距离为
A. 3
3 B.2
√C.1
3 D. 2
解析 如图所示,过球心O作OO1⊥平面ABC, 则O1为等边三角形ABC的外心. 设△ABC的边长为a, 则 43a2=943,解得 a=3, ∴O1A=23× 23×3= 3. 设球O的半径为r,则由4πr2=16π,得r=2,即OA=2. 在 Rt△OO1A 中,OO1= OA2-O1A2=1,
五、直线、平面平行的判定与性质
1.直线与平面平行
(1)判定定理:平面外一条直线与这个平面内的一条直线平行, 则该直线与此平面平行(线线平行⇒线面平行).
(2)性质定理:一条直线与一个平面平行,则过这条直线的任 一平面与此平面的交线与该直线平行(简记为“线面平行⇒线 线平行”).
2.平面与平面平行
则直线 PB 与 AD1 所成的角为( )
A.
2

高中数学新教材人教版2019必修第二册第八章《立体几何初步》空间平行垂直复习课教学设计

高中数学新教材人教版2019必修第二册第八章《立体几何初步》空间平行垂直复习课教学设计

师生互动、分组探究、个别指导等多种形式相结合,学生在学习中既能感受轻松愉悦的参与感、又能体验被个别关注的存在感;在方法技术上,将实物模型观察、课件演示、思维导图展示、投影、小组竞赛等引入课堂,学生既可以借助这些技术手段帮助思考,同时还可以体会学科知识的学习与实际生活以及信息技术的联系,从而提高学习兴趣,激发学习欲望和探究精神。

■六、教学过程设计教学环节(一)回顾知识强化记忆教学内容师生活动设计意图回顾平行与垂直的相关知识,展示平行与垂直在空间位置关系之间的的地位以及知识之间的联系完成三种语言转化表格问题1:请同学们完成以下表格!学生完成学案上三种语言的转化表格,师生共同浏览幻灯片回顾知识;并和学生一起核对答案学生通过浏览了解整个小节知识框架和地位,培养学生看待问题的整体意识和联系意识的习惯。

学生通过完成表格方式替代老师念读或幻灯片放映,既强化了对知识的理解和记忆,同时也在这样的学习习惯中养成自主学习意识.请大家核对答案教学环节(二)分析强调、深化理解教学内容师生活动设计意图课堂演练1、判断正误(一道5分)(1)若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行。

()(2)若两条不同的直线垂直于第三条直线,则这两条直线互相平行。

()(3)若两个不同的平面垂直于一条直线,则这两个平面互相平行。

()(4)若一条直线平行于一个平面,另一条直线与这个平面垂直,学生自主完成后,小组交流讨论,并把讨论的最终答案交上来老师逐题询问,考查学生对空间的认知能力,并掌握判断空间位置的方法则这两条直线互相垂直。

( )学生分析后,给出答案教学环节(三)一题多问,空间平行、垂直之间的转化2、解答题:如图,已知四棱锥中,底面ABCD 是正方形,PA 平面,点是的中点,点是的中点问题1.求证://平面P ABCD ABCD M CD N PB MN PAD-⊥学生自主完成后,小组交流讨论,并把解题思路整理出来,以抢答的形式,小组派代表展示,有需要时老师适当引导。

立体几何初步复习课

立体几何初步复习课

立体几何初步复习课一、内容和内容解析1.内容人教版普通高中教科书数学必修第二册第167页至第171页第八章立体几何初步小结及复习参考题8.重点是通过分析常见几何图形及典型问题,梳理立体几何初步的核心概念、定理等内容与思想方法.本章知识结构如下框图:2.内容解析本章包括两部分内容,第一部分是认识基本立体图形:包括从空间几何体的整体观察入手,通过认识柱、锥、台、球等基本立体图形的组成元素及其相互关系,认识这些图形的几何结构特征,以及它们在平面上的直观图表示和它们的表面积和体积的计算.第二部分是认识基本图形位置关系:主要是讨论组成立体图形的几何元素之间的位置关系.从组成立体图形的基本元素——点、直线、平面出发,研究平面基本性质,认识空间点、直线、平面的位置关系,重点研究直线、平面之间的平行和垂直这两种特殊的位置关系.因此本节课的教学重点是通过分析常见几何图形及典型问题,梳理立体几何初步的核心概念、定理等内容与思想方法,从而构建立体几何的核心体系.难点是分析组合体的结构特征以及运用有关定理推理证明一些几何元素间的位置关系.二、目标和目标解析1.目标(1)在回顾与思考本章的主要内容的基础上,引导学生梳理立体几何的核心概念、定理等内容与思想方法,构建立体几何的核心体系,体会研究空间图形的基本思路:直观感知、操作确认、推理论证、度量计算.(2)借助分析典型问题的通性通法,通过“图”(识图、画图、用图)提升学生直观想象素养,通过“写”(图形、文字、符号三种语言)培养学生逻辑推理能力,通过“悟”(直观感知、操作确认)发展学生数学抽象水平.2.目标解析(1)通过问题的形式回顾主要内容,并不是简单的重复,而是深入思考、归纳概括、建立知识结构,形成研究空间图形的基本方法.(2)借助正方体等常见几何体模型,设计一些综合性较强的问题让学生自主探究,建立一套解决复杂问题的处理模式.三、教学问题诊断分析学生虽然学完了立体几何初步的内容,但对几何图形的认识基本上停留在碎片化的就题论题的表层水平,对空间元素位置关系的研究不深入,需要在一两节复习课上以师生相互交流的方式更深入地认识立体几何.四、教学支持条件分析观察和展示现实生活中的实例与图片,“几何画板”的画图软件,投影仪等.五、教学过程设计问题1:我们是从哪些角度入手研究基本几何体的结构特征的?你能用基本几何体的结构特征解释身边物体的结构吗?请举例说明.我们从对空间几何体(实物、模型、图片等)的整体观察入手,认识多面体、旋转体以及一些基本几何体(棱柱、棱锥、棱台、圆柱、圆锥、圆台、球)的结构特征,研究这些几何体的组成元素及其相互关系.师生共同总结:(1)n棱锥:F=n+1,E=2n,V=n+1,V+F-E=2n棱柱与n棱台:F=n+2,E=3n,V=2n,V+F-E=2n棱锥的本质特征:有一个面是n边形,其余各面是有一个公共顶点的三角形.n棱柱的本质特征:有两个面(均为n边形)相互平行,其余各面是每相邻两个面的公共边互相平行的四边形面.n棱台是用一个平行于n棱锥底面的平面去截棱锥,所得的底面与截面之间的部分.当n棱柱的一个底面“均匀”缩小变为面积较小的相似底面时,变成n棱台;继续“均匀”缩小成一个点时,便变成n棱锥.(2)V+F-E=2这个规律是欧拉拓扑公式:V+F-E=2,其中V,F,E分别是简单多面体的顶点个数、面数、棱的条数.例2 中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体,它的所有顶点都在同一个正方体的表面上,半正多面体体现了数学的对称美.图2是图1“半正多面体”的直观图.(1)请你数一数该几何体的面数F,棱数E,顶点数V,是否有例1的规律?(2)请你说说是怎样数出来的?说说该半正多面体的结构特征.师生共同总结:(1)F=26,E=48,V=24,F+V-E=2(2)①该半正多面体可看成一个组合体,从上而下看,最上层与最下层是两个全等的多面体(如图3,图5),图3多面体的下底面是正八边形,上底面是正方形,且下底面与上底面平行,侧面有四个正方形,四个正三角形;中间是正八棱柱(如图4).②从上下、左右、前后三个方向看,该半正多面体都具有相同的结构,体现了数学的对称美,也展示了南北朝时期的审美观与几何文化.问题2:利用斜二测画法可以画出空间几何体的直观图.你能结合实例说出用斜二测画法画空间几何体的直观图的基本步骤吗?斜二测画法画空间几何体的直观图,是用平面图形表示空间图形的重要方法,我们能够根据直观图想象空间几何体的形状和结构.简单说,斜二测画法的规则是:横竖不变,纵减半,平行性不变.我们可以例1中的正八棱柱为例,具体展示用斜二测画法画空间几何体的直观图的基本步骤(如图6).问题3:对于空间几何体,可以有不同的分类,你能选择不同的分类标准对柱、锥、台、球等空间几何体进行分类吗?如何计算柱、锥、台、球的表面积和体积?你能说出柱、锥、台、球的体积公式之间的联系吗?空间几何体按照围成它的各个面的特征(平面还是曲面)分类,可以得到多面体、旋转体.进一步地,按照组成多面体和旋转体的面、棱、顶点等组成要素的特征及其位置关系分类,又可以得到棱柱、棱锥、棱台等基本的多面体以及圆柱、圆锥、圆台、球等基本的旋转体.棱柱、棱锥和棱台的表面积就是组成它们的各个面的面积和,圆柱、圆锥、圆台的侧面与表面积可以通过侧面展开为平面图形来处理.用运动变化的观点研究棱柱、棱锥和棱台的体积公式之间的关系:分析:考虑旋转后得到怎样的几何体.解析:图7旋转后形成的几何体是底面圆半径与高均为的圆柱挖去一个圆锥后的几何体,该圆锥的顶点为圆柱下底的圆心,底面与圆柱上底面重合(如图9中的右图所示).为什么这两个几何体的体积相等呢?课后同学们可上网查阅“祖暅原理”进行更多的了解.探究1:问以该正方体的顶点为顶点的四面体有几种(全等的算一种)?比较这些四面体的结构特征.展示同学们的作业,同时交流思路.四面体的四个顶点不可能在正方体的同一个面上,应该分布在正方体的上、下两个面上,以在下底面的顶点为标准分类考虑.归纳总结有以下四种(如图11):探究2:是否存在四个面都是直角三角形的四面体?总结:(1)求四面体的体积一般可根据四面体的结构特征,确定高与底面,转化为求三棱锥的体积;图11(4)中的四面体是正四面体(各面都是全等的正三角形),也可通过割补法求得;定义法、转化法、割补法等是求几何体体积的重要方法.(2)经计算发现,图11(4)中的正四面体的体积最大,表面积最小,这也是现实中经常要考虑的最优化问题.探究4:怎样求图11中的四个四面体的外接球与内切球的半径?四个四面体的外接球与正方体的外接球相同,其一条直径为正方体的体对角线,半径.如图12,可以类比三角形内切圆半径的面积计算思路,可计算出四个内切球的半径.问题4:刻画平面的三个基本事实是立体几何公理体系的基石,是研究空间图形、进行逻辑推理的基础.实际上,三个基本事实刻画了平面的“平”、平面的“无限延展”,你能归纳一下刻画的方法吗?平面的三个基本事实是按照从简单到复杂的顺序,刻画平面的基本性质.基本事实1是从点与平面关系的角度刻画平面的唯一存在性,基本事实2是从直线与平面关系的角度利用直线的“直”和“无限延伸”的属性刻画了平面的“平”和“无限延展”的属性,基本事实3是从平面与平面关系的角度进一步说明了平面的“平”和“无限延展”的特征:由于平面是“平的”,因而它们才可能交于一条直线,否则交线就不是“直”的,而是“曲”的了,例如圆柱的侧面和底面的交线就是一条曲线;另外,两个平面相交于一条直线,直线是“无限延伸”的,也说明平面的交点有无数个,平面是“无限延展”的.空间直线与直线,直线与平面,平面与平面之间的位置关系是从生活世界中找到模型,再根据公共点的个数、是否共面等进行逻辑分类建立起来的.例5(复习参考题8第5题)三个平面可将空间分成几部分?请分情况说明.探究1:一个平面将空间分成两个部分,两个平面有几种位置关系?它们将空间分成几部分?图13(1)中αPβ,它们将空间分成三部分;图13(2)中αIβ=a,它们将空间分成四部分.探究2:在图13中再增加一个平面,这三个平面可能产生哪些位置关系?每种位置关系可将空间分成几部分?可能出现五种不同的位置关系如图14,三个不同的平面α,β,γ,直线a,b,c,l.将12条分成三个共面组,侧棱组4条,上底面棱组4条,下底面棱组4条,若“异面直线组”含四条或以上的棱,则至少有两条棱在同一组,这样两条棱便共面,这与“异面直线组”的定义矛盾,故“异面直线组”最多有三条棱.问题5:在直线、平面的位置关系中,“平行”和“垂直”是最重要的.(1)在研究这些位置关系的判定时,我们采用了哪些思想方法?以直线与平面垂直为例,总结一下研究判定的内容、过程和方法.(2)研究这些位置关系的性质,实际上就是要研究什么问题?以两个平面相互垂直为例,总结一下研究性质的内容、过程和方法.研究“什么是空间直线、平面的垂直?”以及“空间直线、平面垂直时其要素(直线、平面)有什么确定不变关系”;确立研究空间直线、平面垂直的内容(判定与性质)与路径:“化繁为简”“以简驭繁”“空间问题平面化”是空间元素位置关系的一般思路.我们利用直线与直线的垂直研究直线与平面的垂直,利用直线与直线垂直、直线与平面垂直研究平面与平面垂直.反过来,由直线与平面垂直又可以得到直线与直线垂直,由平面与平面垂直又可以得到直线与直线、直线与平面垂直.小结:正方体(或长方体)是重要的几何体模型,我们要深入研究正方体模型,对它进行变形,构建出新的模型,探求各种空间位置关系或几何模型与正方体之间的联系,彰显正方体的“母体”地位.课后作业:5.教材第170页复习参考题8第10题.6.教材第170页复习参考题8第11题.7.教材第171页复习参考题8第13题.8.教材第171页复习参考题8第14题.六、目标检测设计(时间:90分,满分:100分)一、选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列说法错误的是().(A)一个八棱柱有10个面(B)任意n面体都可以分割成n个棱锥(C)棱台侧棱的延长线必相交于一点(D)矩形旋转一周一定形成一个圆柱2.给出下列4个命题:①平行于同一直线的两条直线平行;②平行于同一平面的两条直线平行;③平行于同一直线的两个平面平行;④平行于同一平面的两个平面平行.其中正确的命题是().(A)①②(B)③④(C)①④(D)②③3.给出下列4个命题:①垂直于同一直线的两条直线平行;②垂直于同一平面的两条直线平行;③垂直于同一直线的两个平面平行;④垂直于同一平面的两个平面平行.其中正确的命题是().(A)①②(B)③④(C)①④(D)②③4.三棱锥的三条侧棱两两互相垂直,长分别为,则这个三棱锥的体积是().二、填空题:本大题共6小题,每小题5分,共30分.请将答案填在对应题号的位置上.9.正方体相邻两个面的两条对角线所成角的大小是________.10.长方体的所有顶点都在一个球面上,长、宽、高分别为3,2,1,那么这个球面的面积是________.11.正三棱锥的底面边长为2,侧棱长为3,则它的体积为________.13.已知矩形ABCD,AB=2,AD=1,沿BD将△ABD折起成△.若点A′在平面BCD上的射影落在△BCD的内部,则四面体的体积的取值范围是________.14.空间的4个平面,最多能将空间分成________个区域.三、解答题:本大题共4小题,共38分.解答应写出文字说明、证明过程或演算步骤.15.(本题满分8分)画图,并证明:若m//α,n⊥α,则m⊥n.16.(本题满分10分)17.(本题满分10分)如图,正四棱锥P-ABCD中,已知侧棱和底面边长都等于2,E是AB的中点.(1)求证:AB∥平面PCD.(2)求异面直线PE与BC所成角的余弦值.。

最新新课标人教版高中数学必修2全册导学教案学案同步练习课堂巩固【附答案](可编辑)名师优秀教案

最新新课标人教版高中数学必修2全册导学教案学案同步练习课堂巩固【附答案](可编辑)名师优秀教案

新课标人教版高中数学必修2全册导学教案学案同步练习课堂巩固【附答案](可编辑)新课标人教版高中数学必修2全册导学教案学案同步练习课堂巩固【附答案]第一章立体几何初步一、知识结构二、重点难点重点:空间直线,平面的位置关系。

柱、锥、台、球的表面积和体积的计算公式。

平行、垂直的定义,判定和性质。

难点:柱、锥、台、球的结构特征的概括。

文字语言,图形语言和符号语言的转化。

平行,垂直判定与性质定理证明与应用。

第一课时棱柱、棱锥、棱台【学习导航】知识网络学习要求1.初步理解棱柱、棱锥、棱台的概念。

掌握它们的形成特点。

2.了解棱柱、棱锥、棱台中一些常用名称的含义。

3.了解棱柱、棱锥、棱台这几种几何体简单作图方法4.了解多面体的概念和分类.【课堂互动】自学评价棱柱的定义:表示法:思考:棱柱的特点:.【答】棱锥的定义:表示法:思考:棱锥的特点:.【答】3.棱台的定义:表示法:思考:棱台的特点:.【答】4.多面体的定义:5.多面体的分类:?棱柱的分类?棱锥的分类?棱台的分类【精典范例】例1:设有三个命题: 甲:有两个面平行,其余各面都是平行四边形所围体一定是棱柱; 乙:有一个面是四边形,其余各面都三角形所围成的几何体是棱锥;丙:用一个平行与棱锥底面的平面去截棱锥,得到的几何体叫棱台。

以上各命题中,真命题的个数是 (A)A.0B. 1C. 2D. 3 例2:画一个四棱柱和一个三棱台。

【解】四棱柱的作法:?画上四棱柱的底面----画一个四边形;?画侧棱-----从四边形的每一个顶点画平行且相等的线段;?画下底面------顺次连结这些线段的另一个端点互助参考7页例1?画一个三棱锥,在它的一条侧棱上取一点,从这点开始,顺次在各个侧面画出与底面平行的线段,将多余的线段檫去.互助参考7页例1点评:1被遮挡的线要画成虚线2画台由锥截得思维点拔:解柱、锥、台概念性问题和画图需要:1.准确地理解柱、锥、台的定义2.灵活理解柱、锥、台的特点:例如:棱锥的特点是:?两个底面是全等的多边形;?多边形的对应边互相平行;?棱柱的侧面都是平行四边形。

立体几何全部教案(人教A版高中数学必修②教案)

立体几何全部教案(人教A版高中数学必修②教案)

立体几何全部教案(人教A版高中数学必修②教案)教案章节一:绪论——立体几何的概念与意义教学目标:1. 理解立体几何的概念,认识立体几何的研究对象。

2. 理解空间点、线、面的位置关系,掌握空间中点、线、面的基本性质。

教学重点:立体几何的概念,空间点、线、面的位置关系。

教学难点:立体几何的概念,空间点、线、面的位置关系的理解与运用。

教学准备:多媒体教学设备,立体几何模型。

教学过程:1. 引入:通过实物展示,让学生感受立体几何的存在,激发学生的学习兴趣。

2. 讲解:讲解立体几何的概念,阐述立体几何的研究对象。

3. 演示:利用多媒体教学设备和立体几何模型,展示空间点、线、面的位置关系。

4. 练习:让学生通过观察模型,判断空间点、线、面的位置关系。

教案章节二:立体图形的性质与分类教学目标:1. 了解立体图形的概念,掌握立体图形的基本性质。

2. 学会立体图形的分类,能够识别常见立体图形。

教学重点:立体图形的基本性质,立体图形的分类。

教学难点:立体图形的基本性质的理解与运用,立体图形的分类的掌握。

教学准备:多媒体教学设备,立体图形模型。

教学过程:1. 引入:通过实物展示,让学生感受立体图形的存在,激发学生的学习兴趣。

2. 讲解:讲解立体图形的基本性质,引导学生理解立体图形的特点。

3. 演示:利用多媒体教学设备和立体图形模型,展示立体图形的分类。

4. 练习:让学生通过观察模型,识别常见立体图形。

教案章节三:空间点、线、面的位置关系教学目标:1. 理解空间点、线、面的位置关系,掌握空间中点、线、面的基本性质。

2. 学会运用空间点、线、面的位置关系解决实际问题。

教学重点:空间点、线、面的位置关系,空间中点、线、面的基本性质。

教学难点:空间点、线、面的位置关系的理解与运用。

教学准备:多媒体教学设备,立体几何模型。

教学过程:1. 引入:通过实物展示,让学生感受空间点、线、面的存在,激发学生的学习兴趣。

2. 讲解:讲解空间点、线、面的位置关系,引导学生理解空间点、线、面的基本性质。

人教A版【新教材】高中数学必修第二册第八章立体几何初步小结及复习教学设计

人教A版【新教材】高中数学必修第二册第八章立体几何初步小结及复习教学设计

《空间中平行关系证明》教学设计一、内容分析空间直线与平面的平行关系和证明是立体几何的基本任务,通过本节课对知识点的复习与梳理,为学生构建完整的知识体系。

特别是采用了“执果索因”法以后,让学生能更好的找到了证明空间中平行关系的实质即为线线平行,空间想象能力得到较大的提高。

二、学情分析1.由于这是复习课,学生已经系统学习了立体几何的知识,本节课就是让学生更深入地对空间中几何图形的平行位置和数量关系进行推理和计算;2.学生在学习过程中将会遇到一些问题:不能很好地使用直观图来表示立体图形、不能准确的做出辅助线、证明过程书写不规范等等。

三、教学目标1.认知目标:熟知空间中关于平行关系的公理定理,能流利运用自己的语言正确表述出线与面、面与面平行的相互转化。

2.能力目标:能从空间图形中正确识别出线与面的平行关系,并能依照相关公理定理进行证明。

3.情感、态度、价值观目标:通过相关题目训练,对数学公理、定理等相关科学结论的发现过程有所认识,学会数学证明的基本思想方法,进一步感受数学的逻辑美。

四、核心素养1.逻辑推理:归纳空间中平行关系判定定理和性质定理,线线、线面、面面之间的相互转化。

2.直观想象:空间中几何体的点、线、面的位置关系。

五、教学重难点重点:培养空间想象能力,明确证明空间中的平行关系的一般思想方法,并会应用。

难点:在证明的过程中做辅助线或辅助平面。

六、教学过程设计(一)复习引入(PK 游戏)1.平行于同一平面的两条直线平行。

( )2.若直线a 与平面α内无数条直线平行,则α//a 。

( )3.若平面βα,都与平面γ相交,且交线平行,则βα//。

( )4.如果一条直线和平面内一条直线平行,那么这条直线和这个平面平行。

( )(二)知识结构:(三)合作探究设计意图:使学生更明确本节课的主题----三个平行的关系;通过知识点的复习与梳理,为学生构建完整的知识体系。

(四)经典例题(课本P170,第11题)11、如图,在四面体A-BCD 中,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ=3QC 。

高中数学必修第二册第八章立体几何初步整体单元教学设计

高中数学必修第二册第八章立体几何初步整体单元教学设计

高中数学必修第二册第八章立体几何初步整体单元教学设计高中数学必修第二册第八章立体几何初步整体单元教学设计教学目标:1. 理解立体几何的基本概念和性质;2. 掌握立体几何中常见的几何体的表面积和体积计算方法;3. 运用所学知识解决实际问题。

教学内容:1. 立体几何的基本概念和性质- 点、线、面的概念- 空间几何体的分类和特点- 空间几何体的投影和视图2. 立体几何中的表面积计算- 正方体、长方体、正方体锥、正方体台的表面积计算- 圆柱体、圆锥、球的表面积计算3. 立体几何中的体积计算- 正方体、长方体、正方体锥、正方体台的体积计算- 圆柱体、圆锥、球的体积计算4. 实际问题的解决- 利用立体几何的知识解决生活中的实际问题教学过程:1. 导入:通过展示一些立体几何的图片或实物,引发学生对立体几何的兴趣,激发他们的思考和探索欲望。

2. 知识讲解:依次讲解立体几何的基本概念和性质、常见几何体的表面积和体积计算方法,并结合示意图或实物进行讲解,确保学生能够理解和掌握所学知识。

3. 知识巩固:通过小组活动或个人练习,让学生运用所学知识计算不同几何体的表面积和体积,并相互讨论和交流解题思路。

4. 拓展应用:通过实际问题的解决,让学生将所学知识运用到生活中,例如计算房间的表面积和体积、设计一个纸盒的制作等。

5. 总结归纳:让学生总结本章内容,并强调重点、难点和易错点,指导学生进行重点知识的复习和巩固。

6. 拓展延伸:提供一些拓展练习,让有能力的学生尝试更复杂的立体几何问题,并鼓励他们在解题过程中运用自己的创造力和思维能力。

7. 课堂检测:通过小测验或解答问题的方式检测学生对本章内容的掌握情况,并及时发现和纠正学生的错误。

教学资源:1. 教材《高中数学必修第二册》第八章相关内容;2. 立体几何的图片或实物;3. 小组活动或个人练习的题目;4. 实际问题的案例。

教学评价:1. 教师观察学生在课堂上的学习态度和表现;2. 学生完成的小组活动或个人练习的成果;3. 学生在实际问题解决中的应用能力;4. 学生的课后作业和考试成绩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版高中数学必修一教学讲义年级:上课次数:学员姓名:辅导科目:数学学科教师:课题《立体几何初步》全章复习课型□预习课□同步课■复习课□习题课授课日期及时段教学内容《立体几何初步》全章复习【知识网络】【要点梳理】知识点一:空间几何体的结构与特征本章出现的几何体有:①棱柱与圆柱统称为柱体;②棱锥与圆锥统称为锥体;③棱台与圆台统称为台体;④球体.柱体常以直三棱柱、正三棱柱、正四棱柱、正六棱柱、圆柱等为载体,锥体一般以正三棱锥、正四棱锥、正六棱锥、圆锥等为载体,计算高、斜高、边心距、底面半径、侧面积和体积等.在研究正棱锥和圆锥、正棱台和圆台时要充分利用其中的直角三角形:高线,边心距,斜高组成的直角三角形;高线,侧棱(母线),外接圆半径(底面半径)组成的直角三角形.空间几何体的三视图:主视图:它能反映物体的高度和长度;左视图:它能反映物体的高度和宽度;俯视图:【典型例题】类型一:空间几何体的三视图例1.某高速公路收费站入口处的安全标识墩如图4所示,墩的上半部分是正四棱锥P-EFGH,下半部分是长方体ABCD-EFGH.图5、图6分别是该标识墩的正(主)视图和俯视图.(1)请画出该安全标识墩的侧(左)视图(2)求该安全标识墩的体积(3)证明:直线BD 平面PEG【思路点拨】(1)由于墩的上半部分是正四棱锥P-EFGH,下半部分是长方体ABCD-EFGH,故其正视图与侧视图全等.(2)由三视图我们易得,底面为边长为40cm的正方形,长方体的高为20cm,棱锥高为60cm,代入棱柱和棱锥体积公式,易得结果.【解析】(1)侧视图同正视图,如下图所示.(2)该安全标识墩的体积为:P EFGH ABCD EFGH V V V --=+ 221406040203200032000640003=⨯⨯+⨯=+= ()2cm (3)如图,连结EG,HF 及 BD ,EG 与HF 相交于O,连结PO. 由正四棱锥的性质可知,PO ⊥平面EFGH , PO HF ∴⊥ 又EG HF ⊥ HF ∴⊥平面PEG 又BD HF BD ∴⊥平面PEG ;【总结升华】根据三视图判断空间几何体的形状,进而求几何体的表(侧/底)面积或体积,是高考必考内容,处理的关键是准确判断空间几何体的形状,一般规律是这样的:如果三视图均为三角形,则该几何体必为三棱锥;如果三视图中有两个三角形和一个多边形,则该几何体为N 棱锥(N 值由另外一个视图的边数确定);如果三视图中有两个为矩形和一个多边形,则该几何体为N 棱柱(N 值由另外一个视图的边数确定);如果三视图中有两个为梯形和一个多边形,则该几何体为N 棱柱(N 值由另外一个视图的边数确定);如果三视图中有两个三角形和一个圆,则几何体为圆锥.如果三视图中有两个矩形和一个圆,则几何体为圆柱.如果三视图中有两个梯形和一个圆,则几何体为圆台. 举一反三:【变式1】一个几何体的三视图如图所示,则该几何体的表面积为______________.【答案】38【解析】由三视图可知该几何体为一个长方体在中间挖去了一个等高的圆柱,其中长方体的长、宽、高分别为4、3、1,圆柱的底面直径为2,所以该几何体的表面积为长方体的表面积加圆柱的侧面积再减去圆柱的底面积,即为2(344131)211238ππ⨯+⨯+⨯+⨯⨯-=【总结升华】本题主要考查几何体的三视图、柱体的表面积公式,考查空间想象能力、运算求解能力,属于容易题.本题解决的关键是根据三视图还原出几何体,确定几何体的形状,然后再根据几何体的形状计算出表面积.例2.如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm )。

【总结升华】长方体的有关知识、体积计算及三视图的相关知识,对三视图的相关知识掌握不到位,求不出有关数据.三视图是新教材中的新内容,故应该是新高考的热点之一,要予以足够的重视. 类型二:几何体的表面积和体积例3.一几何体按比例绘制的三视图如图所示 (单位:m ):(1)试画出它的直观图; (2)求它的表面积和体积.【思路点拨】(1)由三视图可知该几何体为棱柱,底面为直角梯形,上下底边长分别为1和2,高为1,侧棱垂直于底面,长为1.由此可画出直观图.(2)分别求出个面的面积,之和即为表面积;法一:将该几何体看作一个长方体被截去一个角,而且被截去的部分为一直三棱柱,利用长方体和棱柱的体积公式求解即可.法二:该几何体为直四棱柱,体面为直角梯形,故利用棱柱的体积公式求解即可.【解析】(1)由三视图可知该几何体为棱柱,底面为直角梯形,上下底边长分别为1和2,高为1,侧棱垂直于底面,长为1.直观图如图所示:(2)法一:由三视图可知该几何体是长方体被截去一个角,且该几何体的体积是以A 1A ,A 1D 1,A 1B 1为棱的长方体的体积的34,在直角梯形AA 1B 1B 中,作BE ⊥A 1B 1于E ,则AA 1EB 是正方形,∴AA 1=BE=1. 在Rt △BEB 1中,BE=1,EB 1=1,∴BB 1=2∴几何体的表面积S=S 正方形AA1D1D +2S 梯形AA1B1B +S 矩形BB1C1C +S 正方形ABCD +S 矩形A1B1C1D1 =1+12(12)1121122⨯⨯+⨯+⨯++⨯ =72+(m 2)几何体的体积333121()42V m =⨯⨯⨯= ∴该几何体的表面积为(72+)m 2,体积为332m 。

法二:几何体也可以看作是以AA 1B 1B 为底面的直四棱柱,其表面积求法同法一, V 直四棱柱D1C1CD-A1B1BA =Sh=313(12)11()22m ⨯+⨯⨯=∴该几何体的表面积为(72+)m 2,体积为332m 。

举一反三:【变式1】设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为 ( ) A .2a π B .273a π C .2113a π D .25a π 【答案】 B【解析】设三棱柱底面所在圆的半径为r ,球的半径为R ,易知233323r a a =⨯=,所以球的半径R 满足:22223173212R a a a ⎛⎫⎛⎫=+= ⎪ ⎪ ⎪⎝⎭⎝⎭,所以22743S R a ππ==球. 【变式2】如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,12cm AA =,则四棱锥11A BB D D -的体积为cm 3.【答案】6.【解析】∵长方体底面ABCD 是正方形,∴△ABD 中=32BD cm,BD 边上的高是322cm(它也是11A BB D D -中11BB D D 上的高).∴四棱锥11A BB D D -的体积为133222=632⨯⨯⨯. 类型三:直线、平面的位置关系例4.如图所示,直三棱柱ABC —A 1B 1C 1中,B 1C 1=A 1C 1,AC 1⊥A 1B ,M 、N 分别是A 1B 1、AB 的中点. (1)求证:C 1M ⊥平面A 1ABB 1; (2)求证:A 1B ⊥AM ;(3)求证:平面AMC 1∥平面NB 1C ; (1)【证明】方法一 由直棱柱性质可得AA 1⊥平面A 1B 1C 1, 又∵C 1M ⊂平面A 1B 1C 1,∴AA 1⊥MC 1.又∵C1A1=C1B1,M为A1B1中点,∴C1M⊥A1B1.又A1B1∩A1A=A1,∴C1M⊥平面AA1B1B.方法二由直棱柱性质得:平面AA1B1B⊥平面A1B1C1,交线为A1B1,又∵C1A1=C1B1,M为A1B1的中点,∴C1M⊥A1B1于M.由面面垂直的性质定理可得C1M⊥平面AA1B1B.(2)【证明】由(1)知C1M⊥平面A1ABB1,∴C1A在侧面AA1B1B上的射影为MA.∵AC1⊥A1B,MC1⊥A1B,MC1∩AC1=C1,∴A1B⊥平面AMC1,又AM⊂平面AMC1,∴A1B⊥AM.(3)【证明】方法一由棱柱性质知四边形AA1B1B是矩形,M、N分别是A1B1、AB的中点,∴AN//B1M.∴四边形AMB1N是平行四边形.∴AM∥B1N.连接MN,在矩形AA1B1B中有A1B1 //AB.∴MB1 //BN,∴四边形BB1MN是平行四边形.∴BB1 MN.又由BB1//CC1,知MN//CC1.∴四边形MNCC1是平行四边形.∴C1M//CN.又C1M∩AM=M,CN∩NB1=N,∴平面AMC1∥平面NB1C.方法二由(1)知C1M⊥平面AA1B1B,A1B⊂平面AA1B1B,∴C1M⊥A1B.又∵A1B⊥AC1,而AC1∩C1M=C1,∴A1B⊥平面AMC1.同理可证,A1B⊥平面B1NC.∴平面AMC1∥平面B1NC.【总结升华】证明线面之间的垂直关系,要注意在各个阶段以某一直线为主线进行推理,以使推理过程清晰、明朗.举一反三:【变式1】如图所示,PA平面ABC,点C在以AB为直径的⊙O上,30CBA,2PA AB,点E为线段PB的中点,点M在AB上,且OM∥AC.(Ⅰ)求证:平面MOE∥平面P AC;(Ⅱ)求证:平面P AC 平面PCB ;【解析】(Ⅰ)证明:因为点E 为线段PB 的中点,点O 为线段AB 的中点,所以 OE ∥PA .因为 PA平面PAC ,OE平面PAC ,所以 OE ∥平面P AC .因为 OM ∥AC , 因为 AC平面PAC ,OM平面PAC ,所以 OM ∥平面P AC .因为 OE 平面MOE ,OM 平面MOE ,OE OM O ,所以 平面MOE ∥平面P AC . (Ⅱ)证明:因为 点C 在以AB 为直径的⊙O 上,所以 90ACB ,即BC AC ⊥.因为 PA平面ABC ,BC平面ABC ,所以 PA BC ⊥. 因为 AC 平面PAC ,PA 平面PAC ,PAAC A ,所以 BC 平面PAC . 因为 BC平面PBC ,所以 平面P AC平面PCB .【总结升华】(1)当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线。

把面面垂直转化为线面垂直,进而可以证明线段线线垂直,构造二面角的平面角或得到点到面的距离相等。

(2)已知面面垂直时,通过作辅助线可转化为线面垂直,从而有更多的线线垂直的条件可用,必要时可以通过平面几何的知识证明垂直关系,通过证线面垂直来证线线垂直是空间中两直线垂直证明的最常用方法。

例5.如图所示,在五棱锥P -ABCDE ,AB ∥CD ,AC ∥ED ,AE ∥BC ,∠ABC =45°,AB =22,BC =2AE =4,三角形PAB 是等腰三角形.(1)求证:平面PCD ⊥平面PAC ; (2)求直线PB 与平面PCD 所成角的大小; (3)求四棱锥P -ACDE 的体积.【解析】 (1)证明:因为∠ABC =45°,AB =22,BC =4,所以在△ABC中,由余弦定理得:AC 2=22(22)42224cos 458+-⨯⨯=°,解得22AC =.所以AB 2+AC 2=8+8=16=BC 2,所以AB ⊥AC .又PA ⊥平面ABCDE ,所以PA ⊥AB .又PA ∩AC =A ,所以AB ⊥平面PAC .又AB ∥CD ,所以CD ⊥平面PAC .又因为CDC 平面PCD ,所以平面PCD ⊥平面PAC .(2)由(1)知平面PCD ⊥平面PAC ,所以在平面PAC 内,过点A 作AH ⊥PC 于H ,则AH ⊥平面PCD .又AB ∥CD ,AB ⊄平面PCD ,所以AB ∥平面PCD ,所以点A 到平面PCD 的距离等于点B 到平面PCD 的距离.过点B 作BO ⊥平面PCD 于点O ,连接PO ,则∠BPO 为所求角,且AH =BO ,又容易求得AH =2,所以sin ∠BPO =12,即∠BPO =30°,所以直线PB 与平面PCD 所成角的大小为30°. (3)由(1)知CD ⊥平面PAC ,所以CD ⊥AC .又AC ∥ED ,所以四边形ACDE 是直角梯形.又容易求得DE =2,所以四边形ACDE 的面积为1(222)232⨯+⨯=,所以四棱锥P -AC -DE 的体积为1223223⨯⨯=. 【总结升华】 本题考查了空间几何体的线面与面面垂直、线面角的求解以及几何体的体积,考查了同学们的空间想象能力. 举一反三:【变式1】如图,在四棱锥P-ABCD 中,平面PAD ⊥平面ABCD ,AB//DC ,ΔPAD 是等边三角形,已知BD=2AD=8,AB=2DC=45。

相关文档
最新文档