高中数学人教版必修一知识点总结梳理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章集合与函数概念

一:集合的含义与表示

1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东

西,并且能判断一个给定的东西是否属于这个整体。

把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。

2、集合的中元素的三个特性:

(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属

于。

(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。

(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合

3、集合的表示:{…}

(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

(2)集合的表示方法:列举法与描述法。

a、列举法:将集合中的元素一一列举出来 {a,b,c……}

b、描述法:

①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。

{x∈R| x-3>2} ,{x| x-3>2}

②语言描述法:例:{不是直角三角形的三角形}

③Venn图:画出一条封闭的曲线,曲线里面表示集合。

4、集合的分类:

(1)有限集:含有有限个元素的集合

(2)无限集:含有无限个元素的集合

(3)空集:不含任何元素的集合

5、元素与集合的关系:

(1)元素在集合里,则元素属于集合,即:a∈A

(2)元素不在集合里,则元素不属于集合,即:a¢A

注意:常用数集及其记法:

非负整数集(即自然数集)记作:N

正整数集 N*或 N+

整数集Z

有理数集Q

实数集R

6、集合间的基本关系

(1).“包含”关系(1)—子集

定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。记作:B

A⊆(或B⊇A)注意:B

A⊆有两种可能(1)A是B的一部分;

(2)A与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A (2).“包含”关系(2)—真子集

如果集合B

A⊆,但存在元素x∈B且x¢A,则集合A是集合B的真子集如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)读作A真含与B

(3).“相等”关系:A=B

“元素相同则两集合相等”

如果A⊆B 同时 B⊆A 那么A=B

(4). 不含任何元素的集合叫做空集,记为Φ

规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

(5)集合的性质

①任何一个集合是它本身的子集。A⊆A

②如果 A⊆B, B⊆C ,那么 A⊆C

③如果A B且B C,那么A C

④有n个元素的集合,含有2n个子集,2n-1个真子集

运算类型交集并集补集

定义由所有属于A且属于B

的元素所组成的集合,

叫做A,B的交集.记作

A B(读作‘A交B’),

即A B={x|x∈A,且

x∈B}.由所有属于集合A或属

于集合B的元素所组成

的集合,叫做A,B的并

集.记作:A B(读作

‘A并B’),即A B

={x|x∈A,或x∈B}).

全集:一般,若一个集合汉语我们

所研究问题中这几道的所有元素,

我们就称这个集合为全集,记作:U

设S是一个集合,A是S的一个子集,

由S中所有不属于A的元素组成的

集合,叫做S中子集A的补集(或

余集)记作A

C

S

C

S

A=}

,

|

{A

x

S

x

x∉

∈且

韦恩图示

A B 图1

A B 图2

性质 A ∩ A=A

A ∩Φ=Φ

A ∩B=

B A

A ∩B⊆A A ∩

B⊆B A U A=A

A U Φ=A

A U B=

B U A

A U B⊇A

A U B⊇B

(C u A)∩(C u B)= C u(AUB)

(C u A) U (C u B)= C u(A∩B)

AU(C u A)=U

A∩(C u A)=Φ.

S

A

二、函数的概念

1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对

应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),

x∈A.

(1)其中,x叫做自变量,x的取值范围A叫做函数的定义域;

(2)与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.

2.函数的三要素:定义域、值域、对应法则

3.函数的表示方法:(1)解析法:明确函数的定义域

(2)图想像:确定函数图像是否连线,函数的图像可

以是连续的曲线、直线、折线、离散的点

等等。

(3)列表法:选取的自变量要有代表性,可以反应定

义域的特征。

4、函数图象知识归纳

(1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,

函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x ∈

A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过

来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),

均在C上 .

(2) 画法

A、描点法:

B、图象变换法:平移变换;伸缩变换;对称变换,即平移。

(3)函数图像平移变换的特点:

1)加左减右——————只对x

2)上减下加——————只对y

3)函数y=f(x) 关于X轴对称得函数y=-f(x)

4)函数y=f(x) 关于Y轴对称得函数y=f(-x)

5)函数y=f(x) 关于原点对称得函数y=-f(-x)

6)函数y=f(x) 将x轴下面图像翻到x轴上面去,x轴上面图像不动得

函数y=| f(x)|

7)函数y=f(x) 先作x≥0的图像,然后作关于y轴对称的图像得函数

f(|x|)

三、函数的基本性质

1、函数解析式子的求法

(1)、函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.

(2)、求函数的解析式的主要方法有:

相关文档
最新文档