郑州中考数学—二次函数的综合压轴题专题复习
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当﹣2<m≤2时,n=4.
【点睛】
本题是一道二次函数综合题,解答本题的关键是明确题目中的新定义,找出所求问题需要的条件,利用新定义解答相关问题.
5.某商场经营某种品牌的玩具,购进时的单价是3元,经市场预测,销售单价为40元时,可售出600个;销售单价每涨1元,销售量将减少10个设每个销售单价为x元.
解得,m= 0或m=b2﹣1,
∴n=|b2﹣1﹣0|=|b2﹣1|,
∵﹣1≤b≤3,
∴0≤n≤8;
(3)∵y= ,
∴当x≥m时,
﹣m=m2﹣3m,得m=0或m=2,
∴n=2﹣0=2,
∴m>2或m≤﹣2;
当x<m时,
﹣m=﹣m2﹣3m,
解得,m=0或m=﹣4,
∴n=0﹣(﹣4)=4,
∴﹣2<m≤2,
由上可得,当m>2或m≤﹣2时,n=2,
w=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+12250
∵a=﹣10<0,对称轴x=65
∴当44≤x≤46时,y随x的增大而增大
∴当x=46时,w最大值=8640元
即商场销售该品牌玩具获得的最大利润是8640元.
【点睛】
本题考查了二次函数的实际应用,难度较大,求解二次函数与利润之间的关系时,需要用代数式表示销售数量和销售单价,熟悉二次函数顶点式的性质是解题关键.
【详解】
解:(Ⅰ)把点 和 代入函数 ,
有 。解得
(Ⅱ)由 ,得
∵点E在直线 上,
当 时,点A是最高点此时,
(Ⅲ):抛物线经过点 ,有
∴E关于x轴的对称点 为
设过点A,P的直线为 .把 代入 ,得
把点 代入 .
得 ,即
解得, 。
舍去.
【点睛】
本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次的解析式、最短距离,数形结合思想及待定系数法的应用是解题的关键,属于中考压轴题.
(3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;
(4)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由.
【答案】(1)y=x2﹣4x+3;(2) ;(3)点P(1,0)或(2,﹣1);(4)M(2,﹣3).
【解析】
试题分析:(1)把点A、B的坐标代入抛物线解析式,解方程组得到b、c的值,即可得解;
4.对于某一函数给出如下定义:若存在实数m,当其自变量的值为m时,其函数值等于﹣m,则称﹣m为这个函数的反向值.在函数存在反向值时,该函数的最大反向值与最小反向值之差n称为这个函数的反向距离.特别地,当函数只有一个反向值时,其反向距离n为零.
例如,图中的函数有4,﹣1两个反向值,其反向距离n等于5.
(1)分别判断函数y=﹣x+1,y= ,y=x2有没有反向值?如果有,直接写出其反向距离;
(2)对于函数y=x2﹣b2x,
①若其反向距离为零,求b的值;
②若﹣1≤b≤3,求其反向距离n的取值范围;
(3)若函数y= 请直接写出这个函数的反向距离的所有可能值,并写出相应m的取值范围.
【答案】(1)y=− 有反向值,反向距离为2;y=x2有反向值,反向距离是1;(2)①b=±1;②0≤n≤8;(3)当m>2或m≤﹣2时,n=2,当﹣2<m≤2时,n=4.
令x2﹣3x=0,解得:x=0或3。∴AO=3。
∵△AOB的面积等于6,∴ AO•BD=6。∴BD=4。
∵点B在函数y=x2﹣3x的图象上,
∴4=x2﹣3x,解得:x=4或x=﹣1(舍去)。
又∵顶点坐标为:(1.5,﹣2.25),且2.25<4,
∴x轴下方不存在B点。
∴点B的坐标为:(4,4)。
(3)存在。
(1)写出销售量y(件)和获得利润w(元)与销售单价x(元)之间的函数关系;
(2)若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?
【答案】(1)y=﹣10x+1000;w=﹣10x2+1300x﹣30000
(2)商场销售该品牌玩具获得的最大利润是8640元.
当﹣m= 时,m=±1,∴n=1﹣(﹣1)=2,故y= 有反向值,反向距离为2,
当﹣m=m2,得m=0或m=﹣1,∴n=0﹣(﹣1)=1,故y=x2有反向值,反向距离是1;
(2)①令﹣m=m2﹣b2m,
解得,m=0或m=b2﹣1,
∵反向距离为零,
∴|来自百度文库2﹣1﹣0|=0,
解得,b=±1;
②令﹣m=m2﹣b2m,
(2)求出点C的坐标,再利用待定系数法求出直线AC的解析式,再根据抛物线解析式设出点P的坐标,然后表示出PD的长度,再根据二次函数的最值问题解答;
(3)①∠APD是直角时,点P与点B重合,②求出抛物线顶点坐标,然后判断出点P为在抛物线顶点时,∠PAD是直角,分别写出点P的坐标即可;
(4)根据抛物线的对称性可知MA=MB,再根据三角形的任意两边之差小于第三边可知点M为直线CB与对称轴交点时,|MA﹣MC|最大,然后利用待定系数法求出直线BC的解析式,再求解即可.
一、二次函数真题与模拟题分类汇编(难题易错题)
1.如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.
(1)求这个二次函数的解析式;
(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;
(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P的坐标,并求出△POB的面积;若不存在,请说明理由.
∵∠POB=90°,∴△POB的面积为: PO•BO= × × =8。
2.已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y轴交直线AC于点D.
(1)求抛物线的解析式;
(2)求点P在运动的过程中线段PD长度的最大值;
【解析】
【分析】
(1)根据题目中的新定义可以分别计算出各个函数是否有方向值,有反向值的可以求出相应的反向距离;
(2)①根据题意可以求得相应的b的值;
②根据题意和b的取值范围可以求得相应的n的取值范围;
(3)根据题目中的函数解析式和题意可以解答本题.
【详解】
(1)由题意可得,
当﹣m=﹣m+1时,该方程无解,故函数y=﹣x+1没有反向值,
(Ⅱ)先运用配方求出顶点E的坐标,再根据顶点E在直线 上得出吧b与c的关系,利用二次函数的性质得出当b=1时,点A位置最高,从而确定抛物线的解析式;
(Ⅲ)根据抛物线经过(-1,0)得出c=b+1,再根据(Ⅱ)中顶点E的坐标得出E点关于x轴的对称点 的坐标,然后根据A、P两点坐标求出直线AP的解析式,再根据点在直线AP上,此时 值最小,从而求出b的值.
(3)①∠APD是直角时,点P与点B重合,此时,点P(1,0),②∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1).∵A(3,0),∴点P为在抛物线顶点时,∠PAD=45°+45°=90°,此时,点P(2,﹣1).
综上所述:点P(1,0)或(2,﹣1)时,△APD能构成直角三角形;
∵点B的坐标为:(4,4),∴∠BOD=45°, 。
若∠POB=90°,则∠POD=45°。
设P点坐标为(x,x2﹣3x)。
∴ 。
若 ,解得x="4"或x=0(舍去)。此时不存在点P(与点B重合)。
若 ,解得x="2"或x=0(舍去)。
当x=2时,x2﹣3x=﹣2。
∴点P的坐标为(2,﹣2)。
∴ 。
(3)若一条抛物线系数为[﹣1,2b,0],其“抛物线三角形”是个直角三角形,求该抛物线的解析式;
(4)在(3)的前提下,该抛物线的顶点为A,与x轴交于O,B两点,在抛物线上是否存在一点P,过P作PQ⊥x轴于点Q,使得△BPQ∽△OAB?如果存在,求出P点坐标;如果不存在,请说明理由.
【答案】(1)假;(2) ;(3)y=-x2+2x或y=-x2-2x;(4)P(1,1)或P(-1,-3)或P(1,-3)或(-1,1).
试题解析:解:(1)∵抛物线y=x2+bx+c过点A(3,0),B(1,0),∴ ,解得 ,∴抛物线解析式为y=x2﹣4x+3;
(2)令x=0,则y=3,∴点C(0,3),则直线AC的解析式为y=﹣x+3,设点P(x,x2﹣4x+3).∵PD∥y轴,∴点D(x,﹣x+3),∴PD=(﹣x+3)﹣(x2﹣4x+3)=﹣x2+3x=﹣(x﹣ )2+ .∵a=﹣1<0,∴当x= 时,线段PD的长度有最大值 ;
(Ⅰ)当 时,求点A,点E的坐标;
(Ⅱ)若顶点E在直线 上,当点A位置最高时,求抛物线的解析式;
(Ⅲ)若 ,当 满足 值最小时,求b的值。
【答案】(Ⅰ) , ;(Ⅱ) ;(Ⅲ) .
【解析】
【分析】
(Ⅰ)将(-1,0),(3,0)代入抛物线的解析式求得b、c的值,确定解析式,从而求出抛物线与y轴交于点A的坐标,运用配方求出顶点E的坐标即可;
【详解】
解:
(1)依题意,易得销售量y(件)与销售单价x(元)之间的函数关系:y=600﹣10(x﹣40)=﹣10x+1000
获得利润w(元)与销售单价x(元)之间的函数关系为:w=y•(x﹣30)=(1000﹣10x)(x﹣30)=﹣10x2+1300x﹣30000
(2)根据题意得,x≥14时且1000﹣10x≥540,解得:44≤x≤46
(4)由抛物线的对称性,对称轴垂直平分AB,∴MA=MB,由三角形的三边关系,|MA﹣MC|<BC,∴当M、B、C三点共线时,|MA﹣MC|最大,为BC的长度,设直线BC的解析式为y=kx+b(k≠0),则 ,解得: ,∴直线BC的解析式为y=﹣3x+3.∵抛物线y=x2﹣4x+3的对称轴为直线x=2,∴当x=2时,y=﹣3×2+3=﹣3,∴点M(2,﹣3),即,抛物线对称轴上存在点M(2,﹣3),使|MA﹣MC|最大.
点睛:本题是二次函数综合题,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,二次函数的对称性以及顶点坐标的求解,(2)整理出PD的表达式是解题的关键,(3)关键在于利用点的坐标特征作出判断,(4)根据抛物线的对称性和三角形的三边关系判断出点M的位置是解题的关键.
3.抛物线 (b,c为常数)与x轴交于点 和 ,与y轴交于点A,点E为抛物线顶点。
【解析】
分析:(1)当△>0时,抛物线与x轴有两个交点,由此可得出结论;
(2)根据“抛物线三角形”定义得到 ,由此可得出结论;
(3)根据“抛物线三角形”定义得到y=-x2+2bx,它与x轴交于点(0,0)和(2b,0);
当抛物线三角形是直角三角形时,根据对称性可知它一定是等腰直角三角形,
由抛物线顶点为(b,b2),以及直角三角形斜边上的中线等于斜边的一半得到 ,解方程即可得到结论;
(3)根据B点坐标可求出直线OB的解析式,由于OB⊥OP,由此可求出P点的坐标特点,代入二次函数解析式可得出P点的坐标.求△POB的面积时,求出OB,OP的长度即可求出△BOP的面积。
【详解】
解:(1)∵函数的图象与x轴相交于O,∴0=k+1,∴k=﹣1。
∴这个二次函数的解析式为y=x2﹣3x。
(2)如图,过点B做BD⊥x轴于点D,
【解析】
【分析】
(1)利用销售单价每涨1元,销售量将减少10个即可表示出y=600﹣10(x﹣40),再利用w= y•(x﹣30)即可表示出w与x之间的关系式;(2)先将w=﹣10x2+1300x﹣30000变成顶点式,找到对称轴,利用函数图像的增减性确定在44≤x≤46范围内当x=46时有最大值,代入求值即可解题.
6.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”,[a,b,c]称为“抛物线系数”.
(1)任意抛物线都有“抛物线三角形”是(填“真”或“假”)命题;
(2)若一条抛物线系数为[1,0,﹣2],则其“抛物线三角形”的面积为;
【答案】(1)y=x2﹣3x。
(2)点B的坐标为:(4,4)。
(3)存在;理由见解析;
【解析】
【分析】
(1)将原点坐标代入抛物线中即可求出k的值,从而求得抛物线的解析式。
(2)根据(1)得出的抛物线的解析式可得出A点的坐标,也就求出了OA的长,根据△OAB的面积可求出B点纵坐标的绝对值,然后将符合题意的B点纵坐标代入抛物线的解析式中即可求出B点的坐标,然后根据B点在抛物线对称轴的右边来判断得出的B点是否符合要求即可。
【点睛】
本题是一道二次函数综合题,解答本题的关键是明确题目中的新定义,找出所求问题需要的条件,利用新定义解答相关问题.
5.某商场经营某种品牌的玩具,购进时的单价是3元,经市场预测,销售单价为40元时,可售出600个;销售单价每涨1元,销售量将减少10个设每个销售单价为x元.
解得,m= 0或m=b2﹣1,
∴n=|b2﹣1﹣0|=|b2﹣1|,
∵﹣1≤b≤3,
∴0≤n≤8;
(3)∵y= ,
∴当x≥m时,
﹣m=m2﹣3m,得m=0或m=2,
∴n=2﹣0=2,
∴m>2或m≤﹣2;
当x<m时,
﹣m=﹣m2﹣3m,
解得,m=0或m=﹣4,
∴n=0﹣(﹣4)=4,
∴﹣2<m≤2,
由上可得,当m>2或m≤﹣2时,n=2,
w=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+12250
∵a=﹣10<0,对称轴x=65
∴当44≤x≤46时,y随x的增大而增大
∴当x=46时,w最大值=8640元
即商场销售该品牌玩具获得的最大利润是8640元.
【点睛】
本题考查了二次函数的实际应用,难度较大,求解二次函数与利润之间的关系时,需要用代数式表示销售数量和销售单价,熟悉二次函数顶点式的性质是解题关键.
【详解】
解:(Ⅰ)把点 和 代入函数 ,
有 。解得
(Ⅱ)由 ,得
∵点E在直线 上,
当 时,点A是最高点此时,
(Ⅲ):抛物线经过点 ,有
∴E关于x轴的对称点 为
设过点A,P的直线为 .把 代入 ,得
把点 代入 .
得 ,即
解得, 。
舍去.
【点睛】
本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次的解析式、最短距离,数形结合思想及待定系数法的应用是解题的关键,属于中考压轴题.
(3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;
(4)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由.
【答案】(1)y=x2﹣4x+3;(2) ;(3)点P(1,0)或(2,﹣1);(4)M(2,﹣3).
【解析】
试题分析:(1)把点A、B的坐标代入抛物线解析式,解方程组得到b、c的值,即可得解;
4.对于某一函数给出如下定义:若存在实数m,当其自变量的值为m时,其函数值等于﹣m,则称﹣m为这个函数的反向值.在函数存在反向值时,该函数的最大反向值与最小反向值之差n称为这个函数的反向距离.特别地,当函数只有一个反向值时,其反向距离n为零.
例如,图中的函数有4,﹣1两个反向值,其反向距离n等于5.
(1)分别判断函数y=﹣x+1,y= ,y=x2有没有反向值?如果有,直接写出其反向距离;
(2)对于函数y=x2﹣b2x,
①若其反向距离为零,求b的值;
②若﹣1≤b≤3,求其反向距离n的取值范围;
(3)若函数y= 请直接写出这个函数的反向距离的所有可能值,并写出相应m的取值范围.
【答案】(1)y=− 有反向值,反向距离为2;y=x2有反向值,反向距离是1;(2)①b=±1;②0≤n≤8;(3)当m>2或m≤﹣2时,n=2,当﹣2<m≤2时,n=4.
令x2﹣3x=0,解得:x=0或3。∴AO=3。
∵△AOB的面积等于6,∴ AO•BD=6。∴BD=4。
∵点B在函数y=x2﹣3x的图象上,
∴4=x2﹣3x,解得:x=4或x=﹣1(舍去)。
又∵顶点坐标为:(1.5,﹣2.25),且2.25<4,
∴x轴下方不存在B点。
∴点B的坐标为:(4,4)。
(3)存在。
(1)写出销售量y(件)和获得利润w(元)与销售单价x(元)之间的函数关系;
(2)若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?
【答案】(1)y=﹣10x+1000;w=﹣10x2+1300x﹣30000
(2)商场销售该品牌玩具获得的最大利润是8640元.
当﹣m= 时,m=±1,∴n=1﹣(﹣1)=2,故y= 有反向值,反向距离为2,
当﹣m=m2,得m=0或m=﹣1,∴n=0﹣(﹣1)=1,故y=x2有反向值,反向距离是1;
(2)①令﹣m=m2﹣b2m,
解得,m=0或m=b2﹣1,
∵反向距离为零,
∴|来自百度文库2﹣1﹣0|=0,
解得,b=±1;
②令﹣m=m2﹣b2m,
(2)求出点C的坐标,再利用待定系数法求出直线AC的解析式,再根据抛物线解析式设出点P的坐标,然后表示出PD的长度,再根据二次函数的最值问题解答;
(3)①∠APD是直角时,点P与点B重合,②求出抛物线顶点坐标,然后判断出点P为在抛物线顶点时,∠PAD是直角,分别写出点P的坐标即可;
(4)根据抛物线的对称性可知MA=MB,再根据三角形的任意两边之差小于第三边可知点M为直线CB与对称轴交点时,|MA﹣MC|最大,然后利用待定系数法求出直线BC的解析式,再求解即可.
一、二次函数真题与模拟题分类汇编(难题易错题)
1.如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.
(1)求这个二次函数的解析式;
(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;
(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P的坐标,并求出△POB的面积;若不存在,请说明理由.
∵∠POB=90°,∴△POB的面积为: PO•BO= × × =8。
2.已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y轴交直线AC于点D.
(1)求抛物线的解析式;
(2)求点P在运动的过程中线段PD长度的最大值;
【解析】
【分析】
(1)根据题目中的新定义可以分别计算出各个函数是否有方向值,有反向值的可以求出相应的反向距离;
(2)①根据题意可以求得相应的b的值;
②根据题意和b的取值范围可以求得相应的n的取值范围;
(3)根据题目中的函数解析式和题意可以解答本题.
【详解】
(1)由题意可得,
当﹣m=﹣m+1时,该方程无解,故函数y=﹣x+1没有反向值,
(Ⅱ)先运用配方求出顶点E的坐标,再根据顶点E在直线 上得出吧b与c的关系,利用二次函数的性质得出当b=1时,点A位置最高,从而确定抛物线的解析式;
(Ⅲ)根据抛物线经过(-1,0)得出c=b+1,再根据(Ⅱ)中顶点E的坐标得出E点关于x轴的对称点 的坐标,然后根据A、P两点坐标求出直线AP的解析式,再根据点在直线AP上,此时 值最小,从而求出b的值.
(3)①∠APD是直角时,点P与点B重合,此时,点P(1,0),②∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1).∵A(3,0),∴点P为在抛物线顶点时,∠PAD=45°+45°=90°,此时,点P(2,﹣1).
综上所述:点P(1,0)或(2,﹣1)时,△APD能构成直角三角形;
∵点B的坐标为:(4,4),∴∠BOD=45°, 。
若∠POB=90°,则∠POD=45°。
设P点坐标为(x,x2﹣3x)。
∴ 。
若 ,解得x="4"或x=0(舍去)。此时不存在点P(与点B重合)。
若 ,解得x="2"或x=0(舍去)。
当x=2时,x2﹣3x=﹣2。
∴点P的坐标为(2,﹣2)。
∴ 。
(3)若一条抛物线系数为[﹣1,2b,0],其“抛物线三角形”是个直角三角形,求该抛物线的解析式;
(4)在(3)的前提下,该抛物线的顶点为A,与x轴交于O,B两点,在抛物线上是否存在一点P,过P作PQ⊥x轴于点Q,使得△BPQ∽△OAB?如果存在,求出P点坐标;如果不存在,请说明理由.
【答案】(1)假;(2) ;(3)y=-x2+2x或y=-x2-2x;(4)P(1,1)或P(-1,-3)或P(1,-3)或(-1,1).
试题解析:解:(1)∵抛物线y=x2+bx+c过点A(3,0),B(1,0),∴ ,解得 ,∴抛物线解析式为y=x2﹣4x+3;
(2)令x=0,则y=3,∴点C(0,3),则直线AC的解析式为y=﹣x+3,设点P(x,x2﹣4x+3).∵PD∥y轴,∴点D(x,﹣x+3),∴PD=(﹣x+3)﹣(x2﹣4x+3)=﹣x2+3x=﹣(x﹣ )2+ .∵a=﹣1<0,∴当x= 时,线段PD的长度有最大值 ;
(Ⅰ)当 时,求点A,点E的坐标;
(Ⅱ)若顶点E在直线 上,当点A位置最高时,求抛物线的解析式;
(Ⅲ)若 ,当 满足 值最小时,求b的值。
【答案】(Ⅰ) , ;(Ⅱ) ;(Ⅲ) .
【解析】
【分析】
(Ⅰ)将(-1,0),(3,0)代入抛物线的解析式求得b、c的值,确定解析式,从而求出抛物线与y轴交于点A的坐标,运用配方求出顶点E的坐标即可;
【详解】
解:
(1)依题意,易得销售量y(件)与销售单价x(元)之间的函数关系:y=600﹣10(x﹣40)=﹣10x+1000
获得利润w(元)与销售单价x(元)之间的函数关系为:w=y•(x﹣30)=(1000﹣10x)(x﹣30)=﹣10x2+1300x﹣30000
(2)根据题意得,x≥14时且1000﹣10x≥540,解得:44≤x≤46
(4)由抛物线的对称性,对称轴垂直平分AB,∴MA=MB,由三角形的三边关系,|MA﹣MC|<BC,∴当M、B、C三点共线时,|MA﹣MC|最大,为BC的长度,设直线BC的解析式为y=kx+b(k≠0),则 ,解得: ,∴直线BC的解析式为y=﹣3x+3.∵抛物线y=x2﹣4x+3的对称轴为直线x=2,∴当x=2时,y=﹣3×2+3=﹣3,∴点M(2,﹣3),即,抛物线对称轴上存在点M(2,﹣3),使|MA﹣MC|最大.
点睛:本题是二次函数综合题,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,二次函数的对称性以及顶点坐标的求解,(2)整理出PD的表达式是解题的关键,(3)关键在于利用点的坐标特征作出判断,(4)根据抛物线的对称性和三角形的三边关系判断出点M的位置是解题的关键.
3.抛物线 (b,c为常数)与x轴交于点 和 ,与y轴交于点A,点E为抛物线顶点。
【解析】
分析:(1)当△>0时,抛物线与x轴有两个交点,由此可得出结论;
(2)根据“抛物线三角形”定义得到 ,由此可得出结论;
(3)根据“抛物线三角形”定义得到y=-x2+2bx,它与x轴交于点(0,0)和(2b,0);
当抛物线三角形是直角三角形时,根据对称性可知它一定是等腰直角三角形,
由抛物线顶点为(b,b2),以及直角三角形斜边上的中线等于斜边的一半得到 ,解方程即可得到结论;
(3)根据B点坐标可求出直线OB的解析式,由于OB⊥OP,由此可求出P点的坐标特点,代入二次函数解析式可得出P点的坐标.求△POB的面积时,求出OB,OP的长度即可求出△BOP的面积。
【详解】
解:(1)∵函数的图象与x轴相交于O,∴0=k+1,∴k=﹣1。
∴这个二次函数的解析式为y=x2﹣3x。
(2)如图,过点B做BD⊥x轴于点D,
【解析】
【分析】
(1)利用销售单价每涨1元,销售量将减少10个即可表示出y=600﹣10(x﹣40),再利用w= y•(x﹣30)即可表示出w与x之间的关系式;(2)先将w=﹣10x2+1300x﹣30000变成顶点式,找到对称轴,利用函数图像的增减性确定在44≤x≤46范围内当x=46时有最大值,代入求值即可解题.
6.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”,[a,b,c]称为“抛物线系数”.
(1)任意抛物线都有“抛物线三角形”是(填“真”或“假”)命题;
(2)若一条抛物线系数为[1,0,﹣2],则其“抛物线三角形”的面积为;
【答案】(1)y=x2﹣3x。
(2)点B的坐标为:(4,4)。
(3)存在;理由见解析;
【解析】
【分析】
(1)将原点坐标代入抛物线中即可求出k的值,从而求得抛物线的解析式。
(2)根据(1)得出的抛物线的解析式可得出A点的坐标,也就求出了OA的长,根据△OAB的面积可求出B点纵坐标的绝对值,然后将符合题意的B点纵坐标代入抛物线的解析式中即可求出B点的坐标,然后根据B点在抛物线对称轴的右边来判断得出的B点是否符合要求即可。