变频器电路中的制动控制电路
变频器制动原理
变频器制动原理
变频器制动原理是通过控制电机的供电电压和频率来实现。
变频器中的电源模块将交流电源转换为直流电源,然后通过逆变器模块将直流电源转换为可调频率的交流电源。
控制器模块通过调节逆变器的输出频率来调节电机的转速。
当需要制动电机时,控制器会将逆变器的输出频率逐渐减小,从而降低电机的转速。
同时,控制器还会通过调节逆变器的输出电压来控制电机的转矩。
变频器制动的基本原理是通过减小电机的供电频率和电压,使电机变为发电机运行,并将发电的能量消耗掉,从而实现制动的效果。
在变频器制动过程中,通过控制逆变器的输出频率和电压,可以灵活调节制动力度和速度的变化。
这种制动方式具有调节范围宽、制动平稳可靠等特点。
需要注意的是,变频器制动时会产生大量的能量,会导致电机的发热,因此需要在设计变频器制动系统时考虑散热和保护措施,以防止电机过热和其他安全问题的发生。
变频器控制系统的制动单元及其应用
36 变频器控制系统的制动单元及其应用方涌奎1 屈敏娟 2 张支钢2上海机床厂有限公司1(200093)上海长机自动化有限公司 2(200093)摘 要 阐述了在变频器控制系统中,电动机制动所带来的问题。
介绍了在变频器控制系统中,电动机的能耗制动、直流制动和回馈(再生)制动等几种方法和及其制动单元的基本原理与应用,最后以二个实例来说明制动单元的实际应用。
关键词 变频器 控制系统 制动 制动单元在日常工作中需要电动机迅速而准确的停车,为此对电动机采取一定的制动方法来实现。
但在变频器控制系统中采用同样的制动方法,由于变频器的结构而带来了一些问题,这一点必须加以重视。
1 变频器控制系统电动机制动所存在的问题在变频器控制系统中经常遇到需要电动机制动的场合,如大惯量负载的快速停车、势能负载的拖动、多级传动中的同步控制及负载突变等。
当变频器给定频率的下降速度过快时,由于所拖动的电动机带有负载(机械装置),有较大的机械惯量而不能很快地下降,使电动机绕组切割旋转磁场的速度加快, 绕组的电动势和电流增大,造成电动机侧的反电势E 大于端电压U ,电动机处于制动状态或发电状态,且有较强的制动转矩。
这一能量的回馈将通过变频器的逆变环节中与大功率管并联的二极管流向变频器的直流供电环节。
对于通用变频器来说,其基本结构多是“整流+滤波+逆变”的“交-直-交”系统, 其整流部分大多采用不可逆的桥式整流电路,因此无法将这能量回馈给主电路,结果就造成变频器直流供电环节中的电容器二端电压(通常称之泵升电压)升高。
当回馈能量较大时,还会引起直流回路的过电压而发生变频器的过电压故障。
这就是在变频器控制系统中,电动机制动所带来的新问题,必须加以注意。
2 变频器控制系统电动机制动的方法 2.1 能耗制动对于变频器,如果输出频率降低,电动机转速将跟随频率同样降低,这时会产生制动过程。
由制动产生的功率将返回到变频器侧,这些功率以电阻发热形式消耗,因此该制动方法被称作“能耗制动”。
变频器制动单元的组成
变频器制动单元的组成随着现代工业的发展,变频器作为一种重要的电力传动设备,在许多领域发挥着关键作用。
变频器的核心部件之一就是制动单元,它有助于实现电机的快速制动和控制。
本文将介绍变频器制动单元的组成。
1. 制动电阻制动电阻是变频器制动单元中最关键的部件之一。
它通过将电机的降频电能转化为热能来实现制动。
当电机需要制动时,变频器会将电机的旋转能量转换为电能,并通过制动电阻来消耗这部分电能,从而使电机停止运行。
制动电阻通常由金属板或者陶瓷片制成,能够快速耗散能量,并具有较高的耐电压能力。
2. 制动单元控制电路制动单元控制电路是变频器制动单元的另一个关键组成部分。
该电路负责控制制动电阻的工作状态,也就是在电机需要制动时,工作电流是否流经制动电阻。
当电机需要制动时,通过控制电路将电阻器接入电路中,从而完成制动操作。
此外,制动单元控制电路还需具备多种保护功能,如过流保护、过热保护等,以确保制动单元的稳定运行。
3. 制动单元散热系统制动单元在工作过程中会产生大量的热量,如果不能及时散热,将会影响制动单元的性能和寿命。
因此,制动单元通常都配备有散热系统来提高散热效率。
散热系统通常由散热风扇、散热片和散热器等组成,通过增加与外界的换热面积,有效地提高制动单元的散热效果,并保持正常工作温度。
4. 制动电压和制动时间控制装置制动单元需要根据实际需求来调节制动电压和制动时间。
制动电压控制装置通常根据电机工作状态和制动需求来自动调节制动电压的大小,以达到合适的制动效果。
制动时间控制装置则是根据电机的转动惯量和停止要求来设置制动时间,确保电机在适当的时间内停止旋转。
5. 辅助电源辅助电源是为了使制动单元能够正常工作而设计的。
由于制动单元需要消耗较多的电能,因此需要供给足够的电源来支持其工作。
辅助电源可以通过主电源供电,也可以通过电池或其他独立电源供电,以确保制动单元在各种情况下都能稳定运行。
综上所述,变频器制动单元由制动电阻、制动单元控制电路、散热系统、制动电压和制动时间控制装置以及辅助电源等组成。
变频器怎么接线变频器主电路和控制电路接线方法变频器_软启动器
变频器怎么接线?变频器主电路和把握电路接线方法 - 变频器_软启动器变频器怎么接线?变频器主电路和把握电路接线方法一、主电路的接线1、电源应接到变频器输入端R、S、T接线端子上,肯定不能接到变频器输出端(U、V、W)上,否则将损坏变频器。
接线后,零碎线头必需清除洁净,零碎线头可能造成特别,失灵和故障,必需始终保持变频器清洁。
在把握台上打孔时,要留意不要使碎片粉末等进入变频器中。
2、在端子+,PR间,不要连接除建议的制动电阻器选件以外的东西,或确定不要短路。
3、电磁波干扰,变频器输入/输出(主回路)包含有谐波成分,可能干扰变频器四周的通讯设备。
因此,安装选件无线电噪音滤波器FR-BIF或FRBSF01或FR-BLF线路噪音滤波器,使干扰降到最小。
4、长距离布线时,由于受到布线的寄生电容充电电流的影响,会使快速响应电流限制功能降低,接于二次侧的仪器误动作而产生故障。
因此,最大布线长度要小于规定值。
不得已布线长度超过时,要把Pr.156设为1。
5、在变频器输出侧不要安装电力电容器,浪涌抑制器和无线电噪音滤波器。
否则将导致变频器故障或电容和浪涌抑制器的损坏。
6、为使电压降在2%以内,应使用适当型号的导线接线。
变频器和电动机间的接线距离较长时,特殊是低频率输出状况下,会由于主电路电缆的电压下降而导致电机的转矩下降。
7、运行后,转变接线的操作,必需在电源切断10min以上,用万用表检查电压后进行。
断电后一段时间内,电容上仍旧有危急的高压电。
二、把握电路的接线变频器的把握电路大体可分为模拟和数字两种。
1、把握电路端子的接线应使用屏蔽线或双绞线,而且必需与主回路,强电回路(含200V继电器程序回路)分开布线。
2、由于把握电路的频率输入信号是微小电流,所以在接点输入的场合,为了防止接触不良,微小信号接点应使用两个并联的节点或使用双生接点。
3、把握回路的接线一般选用0.3~0.75平方米的电缆。
三、地线的接线1、由于在变频器内有漏电流,为了防止触电,变频器和电机必需接地。
变频器的控制电路及几种常见故障分析
变频器的控制电路及几种常见故障分析变频器的控制电路及几种常见故障分析1、引言随着变频器在工业生产中日益广泛的应用,了解变频器的结构,主要器件的电气特性和一些常用参数的作用及其常见故障对于实际工作越来越重要。
2、变频器控制电路给异步电动机供电(电压、频率可调)的主电路提供控制信号的网络,称为控制回路,控制电路由频率,电压的运算电路,主电路的电压,电流检测电路,电动机的速度检测电路,将运算电路的控制信号进行放大的驱动电路,以及逆变器和电动机的保护电路等组成。
无速度检测电路为开环控;在控制电路增加了速度检测电路,即增加速度指令,可以对异步电动机的速度进行更精确的闭环控制。
(1)运算电路将外部的速度,转矩等指令同检测电路的电流,电压信号进行比较运算,决定逆变器的输出电压、频率。
(2)电压、电流检测电路为与主回路电位隔离检测电压,电流等。
(3)驱动电路为驱动主电路器件的电路,它与控制电路隔离,控制主电路器件的导通与关断。
(4)I/O电路使变频更好地人机交互,其具有多信号(比如运行多段速度运行等)的输入,还有各种内部参数(比如电流,频率,保护动作驱动等)的输入。
(5)速度检测电路将装在异步电动机轴上的速度检测器(TG、PLG等)的信号设为速度信号,送入运算回路,根据指令和运算可使电动机按指令速度运转。
(6)保护电路检测主电路的电压、电流等。
当发生过载或过电压等异常时,为了防止逆变器和异步电动机损坏,使逆变器停止工作或抑制电压,电流值。
逆变器控制电路中的保护电路,可分为逆变器保护和异步电动机保护两种,保护功能如下:(1)逆变器保护①瞬时过电流保护,用于逆变电流负载侧短路等,流过逆变电器回件的电流达到异常值(超过容许值)时,瞬时停止逆变器运转,切断电流,变流器的输出电流达到异常值,也得同样停止逆变器运转。
②过载保护,逆变器输出电流超过额定值,且持续流通超过规定时间,为防止逆变器器件、电线等损坏,要停止运转,恰当的保护需要反时限特性,采用热继电器或电子热保护,过载是由于负载的GD2(惯性)过大或因负载过大使电动机堵转而产生。
变频器制动单元工作原理
变频器制动单元工作原理变频器制动单元是变频器中的一个重要组成部分,它用于实现变频器的制动功能。
在工业领域,变频器广泛应用于电机控制系统中,可以实现电机的调速、反向运行以及制动等功能。
下面我们来详细了解一下变频器制动单元的工作原理。
1.刹车电阻:刹车电阻是变频器制动单元中的核心部件之一,其主要作用是将电机的动能转化为热能,并将其散发到周围环境中。
刹车电阻一般由耐高温的金属材料制成,可以经受较高功率的放热。
2.刹车电路:刹车电路主要由继电器、触发电路和刹车电阻组成。
当需要制动电机时,变频器会通过触发电路将继电器闭合,并将刹车电阻连接到电机回路中。
此时,电机运行时产生的反电动势会通过刹车电阻进行耗散,从而实现制动功能。
3.相关控制电路:相关控制电路用于对刹车过程进行调节和控制,以满足不同工况下的制动要求。
其中包括刹车时间、刹车力度、刹车方式等参数的设定和调整,以及对刹车电路的监测和保护功能。
当需要进行制动操作时,变频器将通过控制电路发送刹车信号。
控制电路会关闭电机的供电开关,并同时触发刹车电路。
刹车电路将刹车电阻连接到电机回路中,此时,电机的运行过程中产生的反电动势将通过刹车电阻进行耗散。
电机转动的动能将转化为热能,并散发到周围环境中,从而实现制动。
在整个刹车过程中,控制电路将监测电机的转速和电流,以及刹车电路的工作状态。
一旦发现异常情况,如刹车电路开路、刹车电阻过热等,控制电路会立即停止刹车操作,并进行相应的保护措施,从而确保变频器和电机的安全运行。
总之,变频器制动单元通过使用刹车电阻进行动能转化,实现对电机的制动功能。
其工作原理是通过控制电路发出刹车信号,触发刹车电路,使刹车电阻连接到电机回路中,实现电机转速的减速和停止。
同时,控制电路会监测刹车过程中的相关参数,确保操作的安全性和可靠性。
变频器制动电路工作原理
变频器制动电路工作原理
首先,反电动势脉冲监控模块通过监测电机输出的反电动势信号,实
时监控电机的运行状态。
当电机运行时,由于反电动势的存在,系统的总
电流会较小;而当电机停止运行时,反电动势消失,总电流会变大。
通过
对反电动势信号的监测,可以及时判断出电机是否停止运行,从而做出相
应的制动处理。
接下来,反电动势捕捉模块主要用于捕捉电机停止后产生的反电动势
信号。
当电机停止运行时,由于惯性作用,电机转子会继续旋转一段时间,并产生反电动势信号。
反电动势捕捉模块能够快速捕捉到反电动势信号并
将其反馈到电机控制模块中,以提供制动信号。
然后,电流检测模块主要用于检测电机的电流变化,并根据变化结果
进行制动控制。
当电机停止运行后,电流会突然增大,超过额定电流值。
电流检测模块通过检测电流的变化情况,判断出电机是否停止运行,并将
检测结果反馈给电机控制模块。
最后,电机控制模块根据反电动势信号、反电动势捕捉信号和电流检
测信号,对电机进行制动控制。
当电机停止运行时,电机控制模块接收到
反电动势信号,并根据信号进行相应的制动处理,如调整输出频率和电压等,以达到平稳停车的效果。
总结起来,变频器制动电路通过监测反电动势信号、捕捉反电动势信号、检测电流变化和控制电机制动,实现了对电机的平稳停车和安全运行。
它在制动过程中能够根据实际情况进行调整,保证了电机的制动效果和工
作安全。
电动机制动电路图和原理
电动机断电后,由于惯性作用,不会马上停止转动。
这种情况对于某些生产机械是不适宜的。
往往需要在电动机断电后采取某些制动措施。
制动的方法一般有两类,一是机械制动,二是电气制动。
1、机械制动利用外部的机械作用力使电动机转子迅速停止转动的方法称作机械制动。
应用较多的机械制动装置是电磁抱闸,它采用制动闸紧紧抱住与电动机同轴的制动轮来产生机械制动力。
由于结构上的区别,这种制动又有通电制动和断电制动两种方法。
即一种方法是电磁抱闸的线圈通电时产生制动作用,另一种方法是电磁抱闸的线圈断电时产生制动作用。
电磁抱闸的线圈虽然要受电源控制才能启动制动或解除制动,但制动力的产生和解除依赖于电磁抱闸装置的弹簧等机械结构,因此称作机械制动。
上图为通电制动的电磁抱闸控制电路。
电动机通电运行时,电磁抱闸线圈YB断电,起制动作用的闸瓦和闸轮分离,不影响电动机的正常运行。
当电动机断电停止运行时,电磁抱闸的线圈YB得电,闸瓦紧紧抱住闸轮使电动机迅速停车,实现了制动。
电动机被制动停车后,电磁抱闸的线圈处于断电状态。
这时操作人员可用手动方法扳动传动轴调整工件或进行对刀操作。
具体操作与动作的顺序如下,首先合上电源开关QS,之后如果准备起动电动机,则按下起动按钮SB2,交流接触器KM1线圈通电,接触器KM1的常开辅助触点闭合自锁,同时,其主触点闭合,电动机M得电起动运转。
电动机停机制动时,按下复合按钮SB1,其常闭触点首先断开,接触器KM1的线圈断电,常开辅助触点断开,KM1的自锁解除,主触点断开,电动机M断电停机;之后SB1的常开触点迅即闭合,接触器KM2线圈得电,主触点闭合,电磁抱闸线圈YB通电,电磁抱闸的闸瓦紧紧抱住闸轮使电动机迅速停车,实现制动。
电动机制动停转后,松开复合按钮SB1,接触器KM2线圈断电,电磁抱闸线圈YB断电,抱闸松开。
上图为断电制动的电磁抱闸控制电路。
它是在电源切断时才起制动作用,机械设备在停止状态时,电磁抱闸的闸瓦紧紧抱住闸轮使电动机可靠停车。
变频器直流制动
变频器直流制动如上图所示。
图中DR是制动电阻,V是制动单元。
制动单元是一个控制开关,当直流电路的电压UD增高到一定限值时,开关接通,将制动电阻并联到电容器C两端,泄放电容器上存储的过多电荷。
其控制原理如下图虚线框内电路所示。
电压比较器的反向输入端接一个稳定的基准电压。
而正向输入端则通过电阻R1和R2对直流电路电压UD取样,当UD数值超过一定限值时。
正向端电压超过反向端,电压比较器的输出端为高。
经驱动电路使IGBT管导通,制动电阻开始放电。
当UD电压数值在正常范围时,IGBT管截止,制动电阻退出工作。
IGBT管是一种新型半导体元件,它兼有场效应管输入阻抗高、驱动电流小和双极性晶体管增益高、工作电流大和工作电压高的优点。
在变频器中被普遍使用,除了制动电路外,其逆变电路中的开关管也几乎清一色地选用IGBT管。
上图中的电阻R是限流电阻,可以限制开机瞬间电容器C较大的充电涌流。
适当延时后,交流接触器KM触点接通。
将电阻R短路。
有的变频器在这里使用一只晶闸管,作用与此类似。
当异步电动机的定子绕组中通入直流电流时,所产生的磁场将是空间位置不变的恒定磁场,而转子因惯性而继续以其原来的速度旋转,此时,转动的转子切割这个静止磁场而产生制动转矩,系统存储的动能转换成电能消耗于电动机的转子回路,进而达到电动机快速制动的效果。
为保证电动机的安全,直流制动最好与能耗制动配合使用。
直流制动的定义直流制动,一般指当变频器输出频率接近为零,电机转速降低到一定数值时,变频器改向异步电动机定子绕组中通入直流,形成静止磁场,此时电动机处于能耗制动状态,转动着转子切割该静止磁场而产生制动转矩,使电动机迅速停止。
直流制动可以用于要求准确停车的情况或起动前制动电机由于外界因素引起的不规则旋转。
直流制动的要素1.1、直流制动电压值,实质是在设定制动转矩的大小,显然拖动系统惯性越大,直流制动电压值该相应大些,一般直流电压在15-20%左右的变频器额定输出电压约为60-80V,有的用制动电流的百分值;1.2、直流制动时间,即是向定子绕组通入直流电流的时间,它应比实际需要的停机时间略长一些;1.3、直流制动起始频率,当变频器的工作频率下降到多大时开始由能耗制动转为直流制动,这与负载对制动时间的要求有关,若并无严格要求情况下,直流制动起始频率尽可能设定得小一些;电机拖动大惯量负载电机拖动大惯量负载,并要求急剧减速或停车,如如离心机、龙门刨、巷道车、行车的大小车等;电机拖动位能负载电动机拖动位能负载,如电梯,起重机,矿井提升机等;电机经常处于被拖动状态电机经常处于被拖动状态,如离心机副机、造纸机导纸辊电机、化纤机械牵伸机等;。
变频器控制电路设计方法(1)
控制线路的设计方法
功能添加法 较简单的控制线路 步进逻辑公式法 多个工作过程自动循环的复杂线路
功能添加法举例说明
设计要求: 1、有两台电动机,正转运行, 2、第一台电机必须先开后停,正常停车为 斜坡停车。 3、如果任何一台电机过载时,两台电机同 时快速停车。
设计两个能独立开停的控制线路
第三次添加功能——加过载同时停车 过载保护可以在Set-ttd参数设置电机热态阈值, 然后用变频器的内部继电器R1(或R2)停车, 即设置R1参数为I-O-r1=tSA(达到热态阈值)。 由于正常停车与过载停车停车模式与停车时间均 不相同,所以过载时应通过逻辑输入快速停车, 设置Fun-StC-FSt=LI5,即分配变频器的输入 端子LI5为过载停车端子
第三次添加功能后,虽然过载后两台电机 能快速停车,但停车后1KA、2KA线圈仍 处于吸合状态,无法重新起动,除非先按 下按钮2SB1和1SB1,使1KA、2KA线圈失 电,很不方便。我们可以用KA的触点使 1KA、2KA线圈自动失电,主电路不变
第四次添加功能——过载停车后,1KA、2KA线 圈自动失电
第二次添加功能——第一台电机不能先停。将 2KA的常开触点与停车按钮1SB1并联
第三次添加功能——加过载同时停车 过载保护可以在Set-ttd参数设置电机热态阈值, 然后用变频器的内部继电器R1(或R2)停车, 即设置R1参数为I-O-r1=tSA(达到热态阈值)。 由于正常停车与过载停车停车模式与停车时间均 不相同,所以过载时应通过逻辑输入快速停车, 设置Fun-StC-FSt=LI5,即分配变频器的输入 端子LI5为过载停车端子
L
N
1QS 2QSFU1SB Nhomakorabea 2SB1
简述变频器的控制电路
简述变频器的控制电路
为变频器的主电路提供通断控制信号的电路,称为控制电路。
其主要任务是完成对逆变器开关器件的开关控制和提供多种保护功能。
控制方式有模拟控制和数字控制两种。
目前已广泛采用了以微处理器为核心的全数字控制技术,采用尽可能简单的硬件电路,主要靠软件完成各种控制功能,以充分发挥微处理器计算能力强和软件控制灵活性高的特点,完成许多模拟控制方式难以实现的功能=控制电路主要由以下部分组成:
1)运算电路。
运算电路的主要作用是将外部的速度、转矩等指令信号同检测电路的电流、电压信号进行比较运算,决定变频器的输出频率和电压。
2)信号检测电路。
将变频器和电动机的工作状态反馈至微处理器,并由微处理器按事先确定的算法进行处理后为各部分电路提供所需的控制或保护信号。
3)驱动电路。
驱动电路的作用是为变频器中逆变电路的换流器件提供驱动信号。
当逆变电路的换流器件为晶体管时,称为基极驱动电路;当逆变电路的换流器件为SCR、IGBT或GTO时,称为门极驱动电路。
4)保护电路。
保护电路的主要作用是对检测电路得到的各种信号进行运算处理,以判断变频器本身或系统是否出现异常状况。
当检测到异常状况时,进行各种必要的处理,如使变频器停止工作或抑制电压、电流值等。
变频器电路中的制动电路
变频器电路中的制动控制电路一、为嘛要米用制动电路?因惯性或某种原因,导致负载电机的转速大于变频器的输出转速时,此时电机由“电动”状态进入“动电”状态,使电动机暂时变成了发电机。
一些特殊机械,如矿用提升机、卷扬机、高速电梯等,风机等当电动机减速、制动或者下放负载重物时,因机械系统的位能和势能作用,会使电动机的实际转速有可能超过变频器的给定转速,电机转子绕组中的感生电流的相位超前于感生电压,并由互感作用,使定子绕组中出现感生电流——容性电流,而变频器逆变回路两端并联的二极管和直流回路的储能电容器,恰恰提供了这一容性电流的通路。
电动机因有了容性励磁电流,进而产生励磁磁动势,电动机自励发电,向供电电源回馈能量。
这是一个电动机将机械势能转变为电能回馈回电网的过程。
此再生能量由变频器的逆变电路所并联的二极管整流,馈入变频器的直流回路,使直流回路的电压由左右上升到六、七百伏,甚至更高。
尤其在大惯性负载需减速停车的过程中,更是频繁发生。
这种急剧上升的电压,有可能对变频器主电路的储能电容和逆变模块,造成较大的电压和电流冲击甚至损坏。
因而制动单元与制动电阻(又称刹车单元和刹车电阻)常成为变频器的必备件或首选辅助件。
在小功率变频器中,制动单元往往集成于功率模块内,制动电阻也安装于机体内。
但较大功率的变频器,直接从直流回路引出、端子,由用户则根据负载运行情况选配制动单元和制动电阻。
—例维修实例:一台东元变频器,因模块炸裂送修。
检查、相模块俱已损坏,驱动电路受强电冲击也有损坏元件。
将模块和驱动电路修复后,带电机试机,运行正常。
即交付用户安装使用了。
运行约一个月时间,用户又因模块炸裂。
检查又为两相模块损坏。
这下不敢大意了,询问用户又说不大清楚。
到用户生产现场,算是弄明白了损坏的原因。
原来变频器的负载为负机,因工艺要求,运行三分钟,又需在秒内停机。
采用自由停车方式,现场做了个试验,因风机为大惯性负荷,电机完全停住需接近分钟。
变频器三相制动单元原理
变频器三相制动单元原理变频器(Variable Frequency Drive,简称VFD)是一种能够控制交流电机的电子设备。
它可以通过改变电源供电频率来调整交流电机的转速,从而实现对电机的速度调节。
三相制动单元是变频器的一个重要组成部分,用于控制电机的制动过程。
本文将详细介绍变频器三相制动单元的原理。
变频器三相制动单元主要分为散流型制动单元和逆变型制动单元。
散流型制动单元是通过外接电阻来实现制动的,逆变型制动单元则是通过逆变电路来实现制动的。
下面分别对这两种制动单元的原理进行介绍。
散流型制动单元的原理是通过改变电机回馈的电能来实现制动。
当电机在运行过程中需要制动时,散流型制动单元会将电机接入到外接电阻上,使电机的电能转化为热能进行散热,从而减慢电机的转速。
具体实现时,散流型制动单元通常包括一个电机回路切换器和一个电阻调节器。
电机回路切换器用于控制电机的运行状态,将电机从主回路切换到制动回路;电阻调节器则用于控制电机接入电阻的阻值,从而控制制动过程的效果。
逆变型制动单元的原理是通过逆变电路来实现制动。
逆变电路是一种可以将直流电转换为交流电的电路,它由多个功率半导体器件(如晶闸管、IGBT等)组成。
当电机在运行过程中需要制动时,逆变型制动单元会对电机的供电进行逆变,将直流电转换为交流电,并通过逆变电路的控制,使电机产生与运行方向相反的电磁转矩,从而实现制动。
逆变型制动单元通常包括一个逆变电路和一个制动电阻。
逆变电路用于控制电机的供电,而制动电阻则用于吸收电机回馈的电能,从而实现电机的制动。
无论是散流型制动单元还是逆变型制动单元,它们都可以通过变频器的控制面板来进行操作。
在制动过程中,变频器可以检测电机的电流和速度,并根据设定的参数来调节制动单元的工作状态,从而实现精确的制动控制。
此外,变频器还可以通过反馈回路来实时监测电机的转速和电流,从而调整制动单元的工作参数,保证制动过程的平稳性和可靠性。
总之,变频器三相制动单元是通过改变电机的供电方式来实现制动的。
(完整版)《变频器内部结构》
• 制动单元BV的功能是控制放电回路的工作。具体地说,当直 流回路的电压UD超过规定的限值时,VB导通,使直流回路通 过RB释放能量,降低直流电压。而当UD在正常范围内时,BV 将可靠截止,以避免不必要的能量损失。
四、主电路
• 将上述各部分电路汇总后成为主电路,如下图所示。
• 短路开关SL的作用是:限流电阻RL如长期接在电路内,会影 响直流电压UD和变频器输出电压的大小。所以,当UD增大 到一定程度时,令短路开关SL接通,把RL切出电路。SL大多 由晶闸管构成,在容量较小的变频器中,也常有接触器或继 电器的触点构成。
3、电源指示
• 电源指示灯HL除了表示电源是否接通外,还有一个十分重 要的功能,即在变频器切断电源后,表示滤波电容器CF上 的电荷是否已经释放完毕。
第六章:变频器内部结构
• (1)电容C01-C06。逆变管V1-V6每次由导通状态转换成 截止状态的过程中,集电极(C极)和发射极(E极)之间 的电压UCE将极为迅速地由近乎0V上升至直流电压值UD。 在此过程中,电压增长率是很高的,将容易导致逆变管的损 坏。C01--C06的功能便是减小V1-V6在关断时的电压增长 率
1、 全波整流电路 • 在SPWM变频器中,大多采用桥式全波整流电路。在中、
小容量的变频器中,整流器件采用不可控的整流二极管或 二极管模块,如图中的VD1-VD6所示。 • 当三相线电压为380V时,整流后的峰值电压为537V,平 均电压为515V。
整流电路 Um m Ud0
单相全波 2U 2 * 2
2、能耗电路的构成
• 能耗电路由制动电阻RB和制动单元BV构 成,如图所示。电阻能耗制动采用的方 法是在变频器直流侧加放电电阻单元组 件,将再生电能消耗在功率电阻上来实 现制动。这是一种处理再生能量的最直 接的办法,它是将再生能量通过专门的 能耗制动电路消耗在电阻上,转化为热 能
变频器工作原理图解
变频器工作原理图解1 变频器的工作原理变频器分为 1 交---交型输入是交流,输出也是交流将工频交流电直接转换成频率、电压均可控制的交流,又称直接式变频器2 交—直---交型输入是交流,变成直流再变成交流输出将工频交流电通过整流变成直流电,然后再把直流电变成频率、电压、均可控的交流电又称为间接变频器。
多数情况都是交直交型的变频器。
2 变频器的组成由主电路和控制电路组成主电路由整流器中间直流环节逆变器组成先看主电路原理图三相工频交流电经过VD1 ~ VD6 整流后,正极送入到缓冲电阻RL中,RL的作用是防止电流忽然变大。
经过一段时间电流趋于稳定后,晶闸管或继电器的触点会导通短路掉缓冲电阻RL ,这时的直流电压加在了滤波电容CF1、CF2 上,这两个电容可以把脉动的直流电波形变得平滑一些。
由于一个电容的耐压有限,所以把两个电容串起来用。
耐压就提高了一倍。
又因为两个电容的容量不一样的话,分压会不同,所以给两个电容分别并联了一个均压电阻R1、R2 ,这样,CF1 和CF2 上的电压就一样了。
继续往下看,HL 是主电路的电源指示灯,串联了一个限流电阻接在了正负电压之间,这样三相电源一加进来,HL就会发光,指示电源送入。
接着,直流电压加在了大功率晶体管VB的集电极与发射极之间,VB的导通由控制电路控制,VB上还串联了变频器的制动电阻RB,组成了变频器制动回路。
我们知道,由于电极的绕组是感性负载,在启动和停止的瞬间都会产生一个较大的反向电动势,这个反向电压的能量会通过续流二极管VD7~VD12使直流母线上的电压升高,这个电压高到一定程度会击穿逆变管V1~V6 和整流管VD1~VD6。
当有反向电压产生时,控制回路控制VB导通,电压就会通过VB在电阻RB释放掉。
当电机较大时,还可并联外接电阻。
一般情况下“+”端和P1端是由一个短路片短接上的,如果断开,这里可以接外加的支流电抗器,直流电抗器的作用是改善电路的功率因数。
变频器基本电路图
变频器基本电路图目前,通用型变频器绝大多数是交—直—交型变频器,通常尤以电压器变频器为通用,其主回路图(见图1.1),它是变频器的核心电路,由整流回路(交—直交换),直流滤波电路(能耗电路)及逆变电路(直—交变换)组成,当然还包括有限流电路、制动电路、控制电路等组成部分。
1)整流电路如图1.2所示,通用变频器的整流电路是由三相桥式整流桥组成。
它的功能是将工频电源进行整流,经中间直流环节平波后为逆变电路和控制电路提供所需的直流电源。
三相交流电源一般需经过吸收电容和压敏电阻网络引入整流桥的输入端。
网络的作用,是吸收交流电网的高频谐波信号和浪涌过电压,从而避免由此而损坏变频器。
当电源电压为三相380V时,整流器件的最大反向电压一般为1200—1600V,最大整流电流为变频器额定电流的两倍。
2)滤波电路逆变器的负载属感性负载的异步电动机,无论异步电动机处于电动或发电状态,在直流滤波电路和异步电动机之间,总会有无功功率的交换,这种无功能量要靠直流中间电路的储能元件来缓冲。
同时,三相整流桥输出的电压和电流属直流脉冲电压和电流。
为了减小直流电压和电流的波动,直流滤波电路起到对整流电路的输出进行滤波的作用。
通用变频器直流滤波电路的大容量铝电解电容,通常是由若干个电容器串联和并联构成电容器组,以得到所需的耐压值和容量。
另外,因为电解电容器容量有较大的离散性,这将使它们随的电压不相等。
因此,电容器要各并联一个阻值等相的匀压电阻,消除离散性的影响,因而电容的寿命则会严重制约变频器的寿命。
3)逆变电路逆变电路的作用是在控制电路的作用下,将直流电路输出的直流电源转换成频率和电压都可以任意调节的交流电源。
逆变电路的输出就是变频器的输出,所以逆变电路是变频器的核心电路之一,起着非常重要的作用。
最常见的逆变电路结构形式是利用六个功率开关器件(GTR、IGBT、GTO等)组成的三相桥式逆变电路,有规律的控制逆变器中功率开关器件的导通与关断,可以得到任意频率的三相交流输出。
变频器控制启动、停止、正反转电路图详细讲解
变频器控制启动、停止、正/反转电路图详细讲解 变频器的控制,不外是启动,停止,正转,反转,调速这几样基本的逻辑,这些逻辑基本上要求是电平状态有效,而不是上升边缘有效,所以使用按钮开关控制变频器的时候,一般需要使用自保形式的按钮开关来完成,如果不是自保形式的,需要另外加中间继电器来做自保。
1、单开关启停变频器只通过RUN端子给高电平,变频器就可以启动了,当开关断开,相当于RUN端子变成了低电平,变频器就停止运行了。
这种情况使用一个自保按钮开关就可以满足变频器的启停控制,多出来的一个开关,可以用来做故障复位,接到RST上,当然是用非保持的开关更理想,当变频器有故障的时候,按一下复位开关,就可以清楚变频器的故障了。
因为没有单独的电位器给定,这时候可以通过操作面板来给定频率。
上边的逻辑,当然也可以通过PLC之类的逻辑控制器来完成。
2、双开关实现正反转启停有些场合需要控制变频器正反转,而交流异步电机虽然可以在变频器输出端把任何两条相线调转就能反转,但是操作起来比较麻烦费劲,而变频器都带有反转直接启动控制功能。
比如一个开关接到变频器的正转端子(有些是FWD,这里是DI1),这时候变频器会正转,开关当然要选择保持式的,当开关断开后,变频器会直接停止。
文章来源网络,目的在于分享给广大电友,如有侵权烦请联系删除!同样,当另外一个开关接到变频器的反转端子(有些是REV,这里是DI2),这时候变频器会反正,开关同样要保持式的,当开关断开后,变频器会停止运行。
如果没有外接电位器,同样可以通过面板来给定变频器的频率值。
3、一个开关控制启停,另外一个控制转速给定上边已经说到一个开关控制变频器启停的情况了,另外一个开关其实还可以用来做转速给定的,最简单的,比如点动控制,有些变频器特别是欧系的,可以通过内部参数设定多功能端子,可以把一个开关设置成点动形式,这样通过这个开关可以控制变频器工作在点动状态,点动状态变频器往往会以5%的转速运行,当然这个值还可以通过面板另外修改的。
变频器刹车电阻原理
变频器刹车电阻原理
变频器刹车电阻原理是指在变频器控制的电机停止运行时,通过刹车电阻将电机的动能转化为热能,从而实现电机的快速停止。
刹车电阻是一种电阻器,通常由金属丝或电阻材料制成,具有较高的电阻值和较大的功率承载能力。
当电机停止运行时,变频器会通过控制电路将电机的绕组接入刹车电阻,使电机的电流通过刹车电阻流动,从而产生电流的热效应,将电机的动能转化为热能。
刹车电阻的原理可以通过以下几个方面来解释:
1. 电流的热效应:根据欧姆定律,电流通过电阻时会产生热效应。
当电机停止运行时,电机的绕组仍然具有一定的电流,通过刹车电阻流动时会产生热量。
刹车电阻的电阻值较大,电流通过时会产生较大的热量,从而将电机的动能转化为热能。
2. 能量转化:电机在运行时具有一定的动能,当电机停止运行时,这部分动能需要被消耗掉。
通过将电机的电流引导到刹车电阻上,电机的动能会转化为电流的热效应,从而实现能量的转化。
3. 刹车电阻的功率承载能力:刹车电阻通常具有较大的功率承载能力,可以承受较大的电流和功率。
当电机停止运行时,电机的电流通过刹车电阻流动,刹车
电阻能够承受电流的热效应,从而将电机的动能转化为热能。
总结起来,变频器刹车电阻的原理是通过将电机的电流引导到刹车电阻上,利用电流的热效应将电机的动能转化为热能,从而实现电机的快速停止。
刹车电阻具有较大的功率承载能力,能够承受电流的热效应,从而实现能量的转化。
这种原理在工业控制系统中广泛应用,可以实现电机的快速停止和精确控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变频器电路中的制动控制电路一、为嘛要采用制动电路?因惯性或某种原因,导致负载电机的转速大于变频器的输出转速时,此时电机由“电动”状态进入“动电”状态,使电动机暂时变成了发电机。
一些特殊机械,如矿用提升机、卷扬机、高速电梯等,风机等,当电动机减速、制动或者下放负载重物时,因机械系统的位能和势能作用,会使电动机的实际转速有可能超过变频器的给定转速,电机转子绕组中的感生电流的相位超前于感生电压,并由互感作用,使定子绕组中出现感生电流——容性电流,而变频器逆变回路IGBT两端并联的二极管和直流回路的储能电容器,恰恰提供了这一容性电流的通路。
电动机因有了容性励磁电流,进而产生励磁磁动势,电动机自励发电,向供电电源回馈能量。
这是一个电动机将机械势能转变为电能回馈回电网的过程。
此再生能量由变频器的逆变电路所并联的二极管整流,馈入变频器的直流回路,使直流回路的电压由530V左右上升到六、七百伏,甚至更高。
尤其在大惯性负载需减速停车的过程中,更是频繁发生。
这种急剧上升的电压,有可能对变频器主电路的储能电容和逆变模块,造成较大的电压和电流冲击甚至损坏。
因而制动单元与制动电阻(又称刹车单元和刹车电阻)常成为变频器的必备件或首选辅助件。
在小功率变频器中,制动单元往往集成于功率模块内,制动电阻也安装于机体内。
但较大功率的变频器,直接从直流回路引出P、N端子,由用户则根据负载运行情况选配制动单元和制动电阻。
一例维修实例:一台东元7300PA 75kW变频器,因IGBT模块炸裂送修。
检查U、V相模块俱已损坏,驱动电路受强电冲击也有损坏元件。
将模块和驱动电路修复后,带7.5kW 电机试机,运行正常。
即交付用户安装使用了。
运行约一个月时间,用户又因模块炸裂。
检查又为两相模块损坏。
这下不敢大意了,询问用户又说不大清楚。
到用户生产现场,算是弄明白了损坏的原因。
原来变频器的负载为负机,因工艺要求,运行三分钟,又需在30秒内停机。
采用自由停车方式,现场做了个试验,因风机为大惯性负荷,电机完全停住需接近20分钟。
为快速停车,用户将控制参数设置为减速停车,将减速时间设置为30秒。
在减速停车过程中,电机的再生电能回馈,使变频器直流回路电压异常升高,有时即跳出过电压故障而停机。
用户往往实施故障复位后,又强制开机。
正是这种回馈电能,使直流回路电压异常升高,超出了IGBT 的安全工作范围,而炸裂了。
此次修复后,给用户说明情况,增上了制动单元和制动电阻器后,变频器投入运行,几年来再未发生模块炸裂故障。
此种制动方式,加快机械惯性能量的消耗,利于缩短停车进程,将电机的再生发电能量耗散于“制动电阻”上,其工作状态为动力制动状态。
小功率变频器,由内置制动开关管和内置制动功率电阻,根据直流回路的电压检测信号,直接或由CPU 输出控制指令控制制动开关管的通断,将制动电阻并接入直流回路,使直流回路的电压增量,变为电阻的热量耗散于空气中。
二、变频器制动电路的类型:康沃CVF-G 3.7kW主电路模块内部置有制动开关管002--E-P00-01 8.6kVA 13AST RE小功率变频器机型常采用一体化模块,制动单元和温度检测电路也集成在内了。
上图Q0为制动开关管,该机器内置1.5k80W 的制动电阻一只,并预留了P1、PB 制动电阻的接入端子,当内置制动电阻不足将将再生能量消耗掉时,可外接辅助制动电阻,进一步加大消耗量。
因制动电阻为线绕式电阻,有一定的电感量存在,接入D8,提供Q0截止期间的续流,保护制动开关管的安全。
制动控制信号的来源有二:1、由CPU 根据直流回路电压检测信号,发送制动动作指令,经普通光耦或驱动光耦控制制动开关管的通断。
制动指令可能为脉冲信号,也可能为直流电压信号;2、由直流回路电压检测电路,处理成直流开关量信号,直接控制光耦器件,进而控制制动开关管的开通和断开。
制动开关管的控制电路如下图:15PC4GBRE制动控制脉冲下图为台达VFD-A 型3.7kW 变频器的制动控制电路,控制电路由独立绕组供电,以实现强、弱电隔离。
从CPU 来的BRK 信号,经KPH 光耦隔离与功率放大,驱动制动开关管。
B1、B2为制动电阻接入端子。
DTB1DRL1-2OZ-SS-112LM1 Array RST台达(中达)VFD-A型3.7kW 460V3PHASE 制动控制电路三、制动单元:中、大功率变频器,安装空间、制动功率、现场运行情况不一等原因,一般不内置制动开关管和制动电阻,只是从直流回路引出P、N两个端子,供用户外接制动单元和制动电阻。
下图为一变频器选配件——制动单元的电路原理图:P+N-aVcc制动功率加大时,附加功放电路本制动单元的供电,是由一只380V/18V 变压器取得的,由整流、滤波、稳压电路取出+15V 的稳压电源,供整机控制电路。
变频器的P+、N-端子,接至制动单元的主电路和电压检测电路上。
由R3-R7构成电压取样电路,在直流电路电压为550V 时,R7约为7V 电压,稳压器DW2提供输入保护,C6滤掉引线噪声电压,检测电路经R8输入到由运算放大器LM324的5脚,该级放大器构成电压跟随输出器。
由7脚输出的电压检测信号,一路经R9加至后级电压跟随器,驱动HL2——主直流回路电压接入指示灯;一路经R11输入到后级电压比较器的10脚(同相输入端),该级放大器的9脚(反相输入端)接有RP1半可变电阻,接入RP1的目的, 是为了克服取样电阻网络的离散性,可以精确调整制动动作值。
RP1的中心臂电压即为基准电压,10脚电压检测信号与此基准电压相比较,在因负载电机反发电能量馈回直流电路使其电压上升到660V (或680V )时,检测信号电压上为8.5V 左右,因9脚基准电压已事先调整为8.4V 左右,该组放大器两个输入端信号比较的结果,使放大器的输出反转,8脚输出高电平,HL3指示灯点亮,提示电路正在实施制动动作。
HL3的电流通路正是Q1的正偏压通路,三极管Q1导通,提供了驱动IC-TLP520(光耦型驱动IC )的输入电流,TLP250的6/7输出脚输出正的激励电压,经R18直接驱动IGBT模块。
图中Q2即为IGBT模块,型号为MG100Q2YS42,为100A 模块。
需更大的制动功率、驱动更大的IGBT模块时,从A点接入由两只中、大功率三极管构成的互补式电压跟随器(功率放大器电路),将PC2输出的激励电流信号放大到一定幅度后,再驱动IGBT开关模块。
制动单元电路往往由三部分组成:1、供电电路,由降压变压器整流、滤波、稳压取得;由功率电阻降压、稳压取得;再讲究一、点的,由开关电源逆变再整流、稳压取得。
本电路采用了第一种供电方式。
2、直流电路电压检测(采样)电路:一般由电阻分压网络取得,再由后级电压比较器,取出制动动作信号,送后级IGBT模块驱动电路。
3、IGBT模块驱动电路。
往简单处考虑,制动单元就是一个电子开关,承担将制动电阻接入直流电路的任务,此一电子开关用一只接触器来取代也未尝不可。
反正开关接通时还有一只制动电阻在电路“限着流”,开关本身的安全性还是有所保障的,只是开关的额定电流值取一定富裕量就可以了。
对于电子开关器件,当然还要考虑工作中的散热问题。
比较简单的控制,是由电压比较器的输出信号直接控制驱动IC的输出,在直流电路电压高到660V时,模块开通(开关闭合),接入制动电阻进行“能耗制动”,当直流电路电压回落到600V左右时,电压比较器输出状态反转,模块截止(开关断开),制动动作结束。
制动动作点和结束点的整定,也不是那么严格和精确,各个厂家的整定值可能有一定的偏差,只要保证直流电路不受高电压冲击就可以了。
讲究一点的驱动电路,对IGBT模块,是采用脉冲方式驱动的,效果就要好一些了。
四、另一种制动方式:上述制动方式,起到缩短刹车进程、保护IGBT及直流回路储能电容器的作用。
还有一种制动控制方式,其目的不是消耗反发电再生能量,电机负载也不一定为惯性负荷。
即将电机定子绕组通直流电,常称为直流制动。
用于要求准确停车或快速停车的情况可起动前制止电动机由外界因素引起的不规则旋转。
由变频器的逆变电路可方便地实施直流制动控制。
如某一纺织机械,停车过猛容易断针,停车太慢容易断线。
要求减速到一定值时,1.2秒内柔停车。
机械由变频器拖动,设置以下参数:1、启用直流刹车功能;2、直流刹车起始频率,即电机运行到什么频率下实施直流制动刹车,将起始频率调低一些,如8Hz,效果更佳;3、刹车给定直流电压值,决定刹车的力量和快慢;4、刹车电压给定时间。
其中2、3、4必须依据现场情况,进行试验调定。
直流刹车动作时,变频器先行中断三相电压输出,后输出直流到定子绕组,实施能耗制动。
此过程并无电机发电的再生能量馈入变频器直流回路,所以不需加装制动单元及制动电阻。
但若为惯性负荷,减速过程中有可能需要启用制动单元及制动电阻。
有人以为:只要是要求快速停车的场合,一概都要装制动单元和制动电阻,这是一个误区。
一些机械几乎没有什么运转惯性,电机一停,机械就不动了。
采用常规的自由停车控制就可以了。
变频器的输出一停,机械也就马上停下来了嘛。
大惯性机械,如对停机时间无要求,一个小时停止下来也不耽误什么事,用自由停车控制也可以呀。
两种情况,只要能采用自由停车控制方式的,都无必要加装制动单元和制动电阻。
制动单元和制动电阻,只是用于快速停车和对停车时间有要求的场所,变频器处于减速停车控制方式下,起到对电机再生能量进行消耗、保护IGBT安全、并缩短停车进程的作用。