初中数学重要公式及定理汇总

合集下载

初中数学公式定理总结汇总归纳大全

初中数学公式定理总结汇总归纳大全

初中数学公式定理总结汇总归纳大全
一、代数公式
1、二元一次方程的解法:
解:二元一次方程的解为:x=(-b±√(b2-4ac))/2a
2、单项式的展开式:
解:单项式展开式有(x+y)^n=ΣCn,mx^(n-m)y^m
其中Cn,m为组合数,即Cn,m=n!/(m!(n-m)!)
3、二次函数的一般式:
解:二次函数一般式为:y=ax2+bx+c
其中a,b,c为实数,a≠0
4、分式的乘法:
解:分式相乘法则为:
(a/b)×(c/d)=ac/bd
5、分式的除法:
解:分式相除法则为:
(a/b)÷(c/d)=ad/bc
6、二次函数的极值:
解:当ax2+bx+c=0时,函数的极值为-(b±√(b2-4ac))/2a
7、二次函数的开口方向:
解:a>0时开口向上,a<0时开口向下
8、多项式的展开式:
解:多项式的展开式为:
(x+y)^n=ΣΣ(A)n,mx^(n-m)y^m
其中A)n,m为组合数,即A)n,m=n!/(m!(n-m)!)
9、二次函数的解析式:
解:解析式为:y=a(x-x1)(x-x2)
其中a为系数,x1和x2为极值点
二、几何公式
1、直线与圆的位置关系:
解:直线与圆的位置关系分为内切、外切、相交(内切外切)、切点相离
2、平行线定理:
解:如果两条直线互相垂直,则它们是平行的。

3、垂线定理:。

初中数学定理公式定律大全

初中数学定理公式定律大全

初中数学定理公式定律大全1.代数定理-同号两数相乘为正,异号两数相乘为负。

-分配率:a×(b+c)=a×b+a×c。

-同底数幂相除,指数相减:(a^m)÷(a^n)=a^(m-n)。

-幂的乘法:(a^m)×(a^n)=a^(m+n)。

2.平方根公式-设a≥0,则√a×√a=a。

-若a≥0,则√(a^2)=a。

3.线性方程- 设a ≠ 0,方程 ax + b = 0 的解是 x = -b/a。

- 形如 ax + b = cx + d 的一次方程,有唯一解 x = (d - b)/(a -c)。

4.角度定理-外角和定理:一个三角形的外角等于它的两个不相邻内角的和。

-三角形内角和定理:一个三角形的内角之和等于180°。

-同位角定理:如果两条直线被一条截线分成两个内交角和两个外交角,则这两个内交角互为同位角,两个外交角互为同位角。

5.平行线和三角形定理-同位角、内错角定理:当两条直线被一条截线分成两个内交角和两个外交角时,同位角相等,内错角相等。

-平行线截割定理:当两条平行线被一条截线截断时,同位角相等,内错角相等。

-三角形内角和定理:一个三角形的内角之和等于180°。

-等腰三角形定理:两边相等的三角形中,两个对应的内角也相等。

6.几何定理-直角三角形定理:一个三角形中,如果一些角是直角,则它是直角三角形。

-直角边定理:在直角三角形中,斜边的平方等于各直角边的平方和。

-勾股定理:在直角三角形中,斜边的平方等于两个直角边的平方和。

-相似三角形定理:如果两个三角形的对应角相等,则这两个三角形相似。

-正方形的对角线垂直定理:正方形的对角线互相垂直且相等。

7.百分数与比例-百分数换分数:将百分数转化为分数,百分数除以100即可得到对应的分数。

-百分数的四则运算:百分数的加减乘除运算,先转化为分数进行计算,最后再转化为百分数。

-比例:设a:b=c:d,称a和b为比例的两个项,c和d为比例的两个对应项。

初中数学所有定理与公式

初中数学所有定理与公式

初中数学所有定理与公式初中数学中的定理与公式有很多,以下是一些重要的定理和公式:一、整数与出列1.整数与负数相乘,结果为负数。

(定理)2.出列法则:同号相乘为正,异号相乘为负。

(公式)二、整式的加减与乘除1.加法交换律:a+b=b+a。

(定理)2.减法可加法运算:a-b=a+(-b)。

(公式)3.乘法交换律:a×b=b×a。

(定理)4.乘法分配律:a×(b+c)=a×b+a×c。

(定理)5.除法公式:a÷b=a×(1/b)。

(公式)6.乘幂公式:a^m×a^n=a^(m+n)。

(公式)三、因式分解与倍数与公约数1.因式分解:将一个多项式写成几个因式相乘的形式。

(规则)2.公约数:能同时整除两个或多个数的数。

(定义)3.最大公约数:一组数的公约数中最大的一个。

(定义)4.最小公倍数:一组数中能被所有数整除的最小整数。

(定义)四、平方根与勾股定理1.平方根的性质:如果a²=b,则√b=,a。

(定理)2.勾股定理:在直角三角形中,a²+b²=c²。

(定理)五、百分数及其应用1.百分比:以百为基数的计数单位。

(定义)2.百分数计算:a%=a/100。

(公式)3.利率计算:利息=本金×利率×时间。

(公式)4.百分数的增减:数据增加或减少的百分比计算。

(公式)六、方程与不等式1. 一元一次方程:ax + b = 0,x = -b/a。

(定理)2. 一元二次方程求解公式:x = (-b ± √(b² - 4ac))/(2a)。

(公式)3.不等式的性质:同意负号,异号取反,非负数平方不小于0。

(定理)七、平行线与相交线1.平行线的性质:同位角相等,内错角相等,外错角相等。

(定理)2.相交线的性质:同位角互补,内错角互补,外错角互补。

(定理)八、三角形与四边形1.三角形内角和为180°。

初中数学公式定理大全

初中数学公式定理大全

初中数学公式定理大全
一、比例
1、比例定义:两个量的比值称为比例。

2、反比例定理:如果两个数中,一个数的倒数与另一个数成正比,则称这两个数成反比。

3、比例的乘法定理:如果两个比例的乘积等于1,则称这两个比例互相等数。

4、比例的加法定理:若两个比例的和为1,则称这两个比例是相等数。

5、三比例定理:若有三个比例a:b:c,他们的和为1,那么
a+b:b+c:c+a=1
二、平行线定理
1、平行线定义:两条直线不相交,且均与同一平行线相平行,则称这两条直线相平行。

2、平行线分割叉定理:若有两条平行线与另一直线相交,则这两条射线所成的四边形的面积是相等的。

3、垂直平分线定理:若有一条直线与另一条直线相垂直,则这二条直线的中垂线所成的四边形的面积是相等的。

4、向量平分定理:若有两条向量,它们的和所成的新向量与该向量成反比,则称这两条向量相平分。

三、三角形定理
1、三角形定义:三点不共线时,连接这三点构成的图形称为三角形。

2、勾股定理:在直角三角形中,斜边的平方等于两条直角边的平方和。

3、相似三角形定理:若两个三角形的各边按比例相等,则称这两个
三角形是相似的。

4、三角形的中线定理:在直角三角形中。

初中数学所有公式定义性质定理

初中数学所有公式定义性质定理

初中数学所有公式定义性质定理初中数学是学生接触的第一门高等数学课程,其中涵盖了许多重要的公式,定义,性质和定理。

这些数学概念和结果将帮助学生发展数学思维,提高解决问题的能力。

本文将介绍常见的初中数学公式、定义、性质和定理,帮助学生更好地理解和应用数学知识。

一、数学公式1.一次方程求解公式一次方程是形如ax+b=0的方程,其中a和b是实数且a≠0。

一次方程的求解公式为x=-b/a。

2.二次方程求根公式二次方程是形如ax²+bx+c=0的方程,其中a、b和c是实数且a≠0。

求根公式为x=(-b±√(b²-4ac))/2a。

3.相似三角形比例公式对于两个相似三角形,它们对应边的比例相等。

设两个相似三角形的对应边长度分别为a、b、c和x、y、z,则有a/x=b/y=c/z。

4.正弦定理正弦定理适用于任意三角形ABC,其中a、b和c是对应的边长,A、B和C是对应的角度。

定理表述为a/sinA=b/sinB=c/sinC。

5.余弦定理余弦定理适用于任意三角形ABC,其中a、b和c是对应的边长,A、B和C是对应的角度。

定理表述为c²=a²+b²-2abcosC。

6.圆的周长公式二、数学定义1.有理数有理数是可以表示为两个整数的比值的数。

有理数包括整数、分数和小数。

2.无理数无理数是不能表示为有理数的小数。

例如,π和√2都是无理数。

3.等差数列等差数列是指数列中相邻两个数之差都相等的数列。

公差是等差数列中相邻两个数之差的值。

4.等比数列等比数列是指数列中相邻两个数之比都相等的数列。

公比是等比数列中相邻两个数之比的值。

5.直角三角形直角三角形是其中一个角为90度的三角形。

直角三角形的斜边是两条直角边的最长边。

三、数学性质1.乘法交换和结合律乘法满足交换律和结合律,即对于任意实数a、b和c,有a*b=b*a,(a*b)*c=a*(b*c)。

2.加法交换和结合律加法满足交换律和结合律,即对于任意实数a、b和c,有a+b=b+a,(a+b)+c=a+(b+c)。

初中数学必背公式及定理

初中数学必背公式及定理

初中数学必背公式及定理数学是一门重要的学科,也是一门需要掌握公式和定理的学科。

初中数学中的公式和定理是学习数学的基础,掌握了这些公式和定理,能够更好地解题和理解数学知识。

下面是初中数学必背的公式和定理。

一、代数中的公式1. 二次方程的求根公式:对于一元二次方程ax²+bx+c=0,其根可以通过以下公式求得:x = (-b ± √(b²-4ac))/(2a)2. 平方差公式:(a±b)² = a²±2ab+b²3. 二次完全平方公式:a²+2ab+b²=(a+b)²4. 立方差公式:(a±b)³=a³±3a²b+3ab²±b³5.平方根的乘法公式:√a*√b=√(a*b)二、几何中的公式1.矩形的周长和面积:对于矩形,其周长C=2(l+w),面积S=l*w,其中l表示矩形的长度,w表示矩形的宽度。

2.三角形的周长和面积:对于三角形,其周长C=a+b+c,面积S=1/2*b*h,其中a、b、c表示三角形的三边长,h表示三角形的高。

3.圆的周长和面积:对于圆,其周长C=2πr,面积S=πr²,其中π取近似值3.14,r表示圆的半径。

4.直角三角形的勾股定理:对于直角三角形,设c为斜边,a、b为两直角边,则满足a²+b²=c²。

5.同心圆弦的等分定理:如果两条弦(或弦和直径)在同一个圆的同一边相交,那么它们所夹的弧(或弧和弦所夹的角)相等。

三、概率与统计中的公式1.事件的概率:设S为一个随机试验的样本空间,E为S的子集(即事件),则事件E的概率P(E)定义为E中的样本点数除以S中的样本点数。

2.互斥事件的概率:设A、B为两个事件,如果A和B不可能同时发生,称A和B为互斥事件,概率计算公式为P(A∪B)=P(A)+P(B)。

27条初中数学公式定理集锦

27条初中数学公式定理集锦

一、有理数1、相反数与绝对值(1)数a的相反数是-a。

若a、b互为相反数,则a+b=0;反之,若a+b=0,则a、b互为相反数.a(a>0),(2)绝对值计算∣a∣= 0(a=0),-a(a<0),a(a≧0),a(a>0),或∣a∣=或∣a∣=-a(a<0),-a(a≦0)2、两个有理数大小的比较(1)在数轴上,右边的数总比左边的数大.(2)正数大于0,负数小于0,正数大于一切负数.(3)两个负数比较,绝对值大的负数反而小.3、有理数的运算4、有理数运算律5、科学记数法把一个大于10的数记作a ×10n的形式,其中a 大于或等于1且小于10,即1 ≤| a| <10,n 是正整数.二、整式的加减1、合并同类项的法则合并同类项时,将同类项的系数相加,所得的和作为系数,字母与字母的指数不变.2、去括号法则括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不改变;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里的各项都改变符号. 3、整式的加减法则整式的加减实质就是去括号、合并同类项,若有括号,就要先去掉括号,然后再合并同类项,直到结果中没有同类项为止.三、一元一次方程1、等式的基本性质(1)如果a=b ,那么a+c=b+c ,a-c=b-c(2)如果a=b ,那么ac=bc ;如果a=b ,那么a c =bc (c ≠0)2、解一元一次方程的步骤四、几何图形初步1、直线、线段公理(1)直线公理:两点确定一条直线. (2)线段公理:两点之间,线段最短. 2、角五、相交线与平行线1.相交线与垂线2.平行线3.命题、定理、证明六、实数1、平方根和立方根2、实数的性质(1)数a的相反数是-a,这里a表示任意一个实数.(2)一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.七、平面直角坐标系各象限内点的坐标特点P(a,b)①点在第一象限,则a>0,b>0; ②点在第二象限,则a<0,b>0;○3点在第三象限,则a<0,b<0; ④点在第四象限,则a>0,b<0 角平分线上点的特点 P(a,b)①在一、三象限的角平分线上,a=b ; ②在二、四象限的角平分线上,a=-b平面直角坐标系中对称点的坐标特点 P(a,b) ①关于x 轴对称,横坐标相同,纵坐标互为相反数,即(a,-b );○2关于y 轴对称,横坐标互为相反数, 纵坐标相同,即(-a ,b ); ○3关于坐标原点对称,横纵坐标都互为相反数,即(-a,-b ) 与坐标轴平行的直线上的点的坐标特点○1与x 轴平行的直线上的所有点的纵坐标相同; ○2与y 轴平行的直线上的所有点的横坐标相同 八、二元一次方程组a 1x+b 1y=c 1, 对于二元一次方程组a 2x+b 2y=c 2.(1) 当a 1a 2 ≠b 1b 2(a 2,b 2≠0)时,方程组有唯一解.(2) 当a 1a 2 =b 1b 2 =c 1c 2 (a 2,b 2,c 2≠0)时,方程组有无数组解.(3) 当a 1a 2 =b 1b 2 ≠c 1c 2(a2,b2,c2≠0)时,方程组无解.九、不等式与不等式组1.不等式性质性质1:不等式的两边同时加(或减)同一个数或同一个含有字母的式子,不等号的方向不变,即如果a>b ,那么a ±m>b ±m.性质2:不等式的两边同时乘(或除)同一个正数,不等号的方向不变,即如果a>b 且m>0,那么am>bm 或a m >bm.性质3:不等式的两边同时乘(或除)同一个负数,不等号的方向改变,即如果a>b 且m<0,那么am<bm 或a m <bm.2.一元一次不等式组的解集不等式组(a<b )数轴表示解集口诀x>a ,x>bx>b同大取大x<a ,x<bx<a同小取小ababa ba b十、三角形1、三角形的分类2、三角形三边关系三角形中任意两边的和大于第三边,三角形中任意两边的差小于第三边.3、三角形内角和定理三角形三个内角的和等于180°.4、直角三角形的性质与判定性质;直角三角形的两个锐角互余.判定:有两个角互余的三角形是直角三角形.5、三角形的外角性质(1)三角形的外角和为360°.(2)三角形的一个外角等于和它不相邻的两个内角的和.(3)三角形的一个外角大于和它不相邻的任何一个内角.6、多边形的内角和与外角和(1)n边形的内角和是(n-2)×180°.(2)n边形的外角和为360°.十一、全等三角形1.全等三角形角形的判定2.角平分线的性质及判定(1)性质:角的平分线上的点到角的两边的距离相等.(2)判定:角的内部到角的两边距离相等的点在角的平分线上.十二、轴对称1.轴对称和线段垂直平分线的性质及判定2.三角形的性质及判定十三、整式的乘法与因式分解1.幂的有关法则2.乘法公式3.因式分解十四、分式1.分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.即 A B =A ·M B ·M ,A B = A ÷M B ÷M (其中M 是不等于0的整式) 2.分式的运算法则(1) 乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.即b a ·d c =bdac .(2) 除法法则:分式除以分式,把除式的分子、分母 颠倒位置后,与被除式相乘.即b a ÷d c =b a ·c d =bcad.(3) 乘方法则:把分子、分母分别乘方.为正整数).(4) 加减法法则:①同分母的分式相加减,分母不变,把分子相加减.即a c ±b c =a ±bc:②异分母分式相加减,先通分,变为同分母分式,再加减.即a b ±d c =ac bc ±bd bc =ac ±bdbc.十五、二次根式十六、勾股定理1.勾股定理如果直角三角形的两条直角边长分别是a ,b,斜边长为c,那么a 2+b 2=c 2.2.勾股定理的逆定理如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么 这个三角形就是直角三角形.十七、平行四边形1.几种特殊四边形常用的判定方法2.中位线三角形的中位线平行于第三边,并且等于第三边的―半.十八、一次函数1.正比例函数的图象和性质2.—次函数的图象和性质Oxy OxyOxyOxy Oxy Oxy十九、数据的分析1. 平均数(1) 平均数: 对于n 个数n 个数的平均数. (2) 加权平均数:若n 则x 1w 1+x 2w 2+…+x n w nw 1+w 2+…+w n叫做这n 个数的加权平均数 2. 数据的波动程度(1) 极差:一组数据的最大值与最小值的差(2) 方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差,通常用s 2来表示,计算公式x 1-⎺x )2+(x 2-⎺x )2+…+(x n -⎺x )2]. (3) 标准差:样本方差的算术平方根表示样本的标准差,它也描述了数据对平均数的离散程度.公式:. 二十、一元二次方程1. 一元二次方程的解法2. —元二次方程根的判别式ax 2+bx+c=0(a ≠0) 的判别式△= b 2-4ac .(1) △>0,一元二次方程ax 2+bx+c=0(a ≠0)有两个不相等的实数根.(2) △=0,一元二次方程ax 2+bx+c=0(a ≠0)有两个相等的实数根.(3) △<0,一元二次方程ax 2+bx+c=0(a ≠0) 没有实数根.3. 一元二次方程根与系数的关系已知关于x 的一元二次方程ax 2+bx+c=0(a ≠0)的两根为x 1,x 2, 则有二十—、二次函数2. 二次函斂y=a(x-h)+k(a ≠0)的性质3. 二次函数y=ax +bx+c 的性质(1) a 的符号:由抛物线的开口方向确定 ○1开口向上○2开口向下。

初中数学必背公式大全初中数学重要公式定律汇总

初中数学必背公式大全初中数学重要公式定律汇总

初中数学必背公式大全初中数学重要公式定律汇总
一、几何公式
1、三角形面积公式
△ABC的面积S=1/2ab sin C
其中a、b为△ABC的两边,C为两边夹角
2、四边形面积公式
正方形面积公式:S=a2
长方形面积公式:S=ab
其中a、b分别为正方形或长方形的边长
3、圆的面积公式
S=πr2
其中r为圆的半径
4、梯形面积公式
S=(a+b)h/2
其中a、b分别为梯形的上下底,h为梯形的高
5、椭圆面积公式
S=πab
其中a、b分别为椭圆的长轴短轴
6、圆柱体体积公式
V=πr2h
其中r为圆柱体的底面半径,h为圆柱体的高
7、圆锥体体积公式
V=1/3πr2h
其中r为圆锥体的底面半径,h为圆锥体的高
8、球的表面积公式
S=4πr2
其中r为球的半径
9、球的体积公式
V=4/3πr3
其中r为球的半径
10、圆柱和圆锥的体积比公式
V1:V2=r2:2r
其中V1为圆柱体体积,V2为圆锥体体积,r为两个体积半径相同
二、三角函数
1、正弦定理
a/sinA=b/sinB=c/sinC=(2S)/R
其中a、b、c分别为△ABC的三边,A、B、C分别为两边夹角,S为△ABC的面积,R为三角形的外接圆半径
2、余弦定理
a2=b2+c2-2bc cosA
其中a、b、c分别为△ABC的三边,A为两边夹角3、正切关系
tanA= a/b
cotA= b/a
其中a、b分别为△ABC的两边,A为两边夹角4、正弦定理的应用
1)角的大小。

初中数学重要公式定理定律

初中数学重要公式定理定律

初中数学重要公式定理定律1. 一次函数的公式:y = kx + b,其中k是斜率,b是y轴截距。

2. 二次函数的公式:y = ax² + bx + c,其中a≠0,a、b、c是实数。

3. 三角函数的正弦定理:在任意三角形ABC中,有a/sinA =b/sinB = c/sinC,其中a、b、c分别是三角形的边长,A、B、C分别是对应的角度。

4. 三角函数的余弦定理:在任意三角形ABC中,有c² = a² + b² - 2abcosC,其中a、b、c分别是三角形的边长,C是夹角。

5. 三角函数的正切定理:在任意三角形ABC中,有tanA = a/b,tanB = b/a,tanC = c/b,其中a、b、c分别是三角形的边长,A、B、C 分别是对应的角度。

6. 对数的性质:logAB = logA + logB,log(A/B) = logA - logB,log(A^m) = m·logA,其中A、B为正实数,m是实数。

7. 平方差公式:(a + b)² = a² + 2ab + b²,(a - b)² = a² - 2ab + b²。

8.平方根性质:√(a·b)=√a·√b,√(a/b)=√a/√b,其中a、b都是非负实数。

9.相似三角形的性质:如果两个三角形的对应角度相等,那么它们对应边长之比相等。

10.二项式定理:(a+b)ⁿ=C(n,0)·aⁿ+C(n,1)·aⁿ⁻¹·b+C(n,2)·aⁿ⁻²·b²+...+C(n,n-1)·a·bⁿ⁻¹+C(n,n)·bⁿ,其中C(n,k)为组合数。

11. 最大公约数性质:如果a能整除b且a能整除c,那么a能整除b和c的最大公约数gcd(b, c)。

初中数学公式定理归纳

初中数学公式定理归纳

初中数学公式定理归纳初中数学是数学学科的重要阶段,是学生数学学习的基础。

在初中数学学习中,熟练掌握各种数学公式和定理是非常重要的。

下面将介绍一些初中数学常用的公式和定理。

一、整数的四则运算规则:1.加法运算法则:a+b=b+a2.减法运算法则:a-b≠b-a3.乘法运算法则:a×b=b×a4.除法运算法则:a÷b≠b÷a二、整数的乘法公式:1. 平方公式:(a + b)² = a² + 2ab + b²2.差平方公式:(a-b)(a+b)=a²-b²3.完全平方公式:a²-b²=(a+b)(a-b)三、分数的四则运算规则:1. 加法运算法则:a/b + c/d = (ad + bc)/bd2. 减法运算法则:a/b - c/d = (ad - bc)/bd3. 乘法运算法则:(a/b) × (c/d) = ac/bd4. 除法运算法则:(a/b) ÷ (c/d) = (ad)/(bc)四、比例和比例方程:1.比例公式:a/b=c/d,称为a、b、c、d四个数成比例。

2. 比例公式的扩展:若a/b = c/d,则a/b = nj/nk = a/(nj/k) =a/c,即a/c = b/d。

3. 比例方程:a/b = c/d,成立条件是ad - bc = 0。

五、直角三角形的三边关系:1.勾股定理:直角三角形的两条直角边的平方和等于斜边的平方。

a²+b²=c²,其中c为斜边,a和b为两条直角边。

2.正弦定理:在任意三角形中,三角形的任意一边与这条边所对应的角的正弦比相等。

a/sinA = b/sinB = c/sinC,其中a、b、c分别为三角形的三边,A、B、C分别为三个对应的角。

3.余弦定理:在任意三角形中,三条边的平方和等于这条边与其他两条边之积的余弦的两倍。

(完整版)初中数学公式定理大全

(完整版)初中数学公式定理大全

一、锐角三角函数:初中数学公式定理大全sin A =∠A 的对边cos A =∠A 的邻边① ∠A 是 Rt △ABC 的任一锐角,则∠A 的正弦:tan A = ∠A 的对边斜边 ,∠A 的余弦: 斜 边 ,∠A 的正切:∠A 的邻边; 并且 sin 2A +cos 2A =1. 0<sin A <1,0<cos A <1,tan A >0. ∠A 越大,∠A 的正弦和正切值越大,余弦值反而越小.② 余角公式:sin(90º-A )=cos A ,cos(90º-A )=sin A .铅垂高度=ℎ ℎ③ 斜坡的坡度:i =水平宽度 ④ 特殊角的三角函数值:l .设坡角为 α,则 i =tan α=l . l二、二次函数: y = ) 1.定义:一般地,如果 ,那么 y 叫做 x 的二次函数. 2. 抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当a > 0时,开口向上;当a < 0时,开口向下;|a |相等,抛物线的开口大小、形状相同。

②平行于 y 轴(或重合)的直线记作x = ℎ,特别地,y 轴记作直线x = 0。

y = ax 2 + bx + c = a(x + b )2 + 4ac ‒ b2(‒ b , 4ac ‒ b 2) x = ‒ b(1)公式法:2a4a,∴顶点是 2a4a,对称轴是直线2a(2)配方法:运用配方的方法,将抛物线的解析式化为y = a (x ‒ ℎ)2+ k 的形式,得到顶点为(h,k),对称轴是直线x = ℎ(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,对称轴与抛物线的交点是顶点。

(x ,y ) (x ,y ) x = x 1 + x 2 若已知抛物线上两点 1 、 2 (及 y 值相同),则对称轴方程可以表示为:2 4.抛物线y = ax 2 + bx + c 中,a ,b ,c 的作用(1)a 决定开口方向及开口大小,这与y = ax 2中的a 完全一样. b a y = ax 2 + bx + c x =‒ bb = 0 (2) 和 共同决定抛物线对称轴的位置.由于抛物线 的对称轴是直线 2a ,故:① 时,对b > 0a b< 0 a称轴为 y 轴;②a (即 、b 同号)时,对称轴在 y 轴左侧;③a (即 、b 异号)时,对称轴在 y 轴右侧.(3)c 的大小决定抛物线y = ax 2+ bx + c 与 y 轴交点的位置. 当x = 0时,y=c ,∴抛物线y = ax 2+ bx + c 与 y 轴有且只有一个交点(0,c )① c = 0,抛物线经过原点; ②c > 0,与 y 轴交于正半轴;③c < 0,与 y 轴交于负半轴b < 0α以上三点中,当结论和条件互换时,仍成立。

初中数学必背公式及定理

初中数学必背公式及定理

初中数学必背公式及定理初中数学中,有很多重要的公式和定理需要掌握。

下面是一些必备的公式和定理:一、基础运算法则:1.加法交换律:a+b=b+a2.减法的定义:a-b=a+(-b)3.减法与加法的关系:a-b=a+(-b)=a+(-1)×b4.乘法交换律:a×b=b×a5.乘法结合律:(a×b)×c=a×(b×c)6.乘法分配律:a×(b+c)=a×b+a×c二、整数运算公式:1.同号相乘,异号相反:正×正=正,负×负=正,正×负=负,负×正=负2.乘方运算:a^m×a^n=a^(m+n),(a^m)^n=a^(m×n)3.含有分数运算:a/b×c/d=(a×c)/(b×d),a/b÷c/d=(a×d)/(b×c)4.分数乘方运算:(a/b)^n=a^n/b^n,a^(1/n)=b,则a=b^n5.注意计算顺序:先乘方,再乘除,最后加减三、平方与立方公式:1. (a+b)² = a² + 2ab + b²2. (a-b)² = a² - 2ab + b²3.a²-b²=(a+b)(a-b)4. (a+b)³ = a³ + 3a²b + 3ab² + b³5. (a-b)³ = a³ - 3a²b + 3ab² - b³四、勾股定理:1.直角三角形的斜边平方等于两直角边平方和:c²=a²+b²五、等腰三角形定理:1.等腰三角形的两底边相等:AB=AC2.等腰三角形的两底角相等:∠B=∠C3.等腰三角形的顶角底角和为180°:∠A+∠B+∠C=180°六、平行线定理:1.同位角相等:如果两条直线被一条直线截断,同位角相等2.内错角相等:平行线被截断时,内错角相等3.顶角、底角和补角的关系:顶角与底角之和为补角4.平行线间的平行线相等:若有两条直线分别与另外两条直线平行,那么这两条直线也平行。

九年级数学常见的公式与定理

九年级数学常见的公式与定理

一、代数公式1. 一元一次方程:ax+b=0,其中a和b为实数,a≠0,解为x=-b/a。

2. 一元二次方程:ax^2+bx+c=0,其中a、b和c为实数,a≠0,解为x=(-b±√(b^2-4ac))/2a。

3.因式分解公式:a^2-b^2=(a+b)(a-b)。

4. 完全平方公式:(a+b)^2=a^2+2ab+b^25. 二次完全平方公式:a^2-2ab+b^2=(a-b)^26. 立方公式:(a+b)^3=a^3+3a^2b+3ab^2+b^37. 立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2)。

二、几何公式1.勾股定理:直角三角形斜边的平方等于两条直角边的平方和。

c^2=a^2+b^22.同位角定理:同位角互相相等,即对应角、内错角、同旁内角、同旁外角。

3.平行线性质:同位角相等、内错角相等、同旁内角和为180°、同旁外角互补。

4. 钝角三角函数定理:在锐角三角函数的定义域内,sin(90°-θ)=cosθ,cos(90°-θ)=sinθ。

5. 锐角三角函数定理:在锐角三角函数的定义域内,sin(180°-θ)=sinθ,cos(180°-θ)=-cosθ,tan(180°-θ)=-tanθ。

6.圆的面积公式:S=πr^2,其中S为圆的面积,r为半径。

7.直角三角形斜边长公式:斜边长c=√(a^2+b^2),其中a、b为直角三角形的直角边。

8. 30°、45°、60°三角函数值:sin30°=1/2,sin45°=cos45°=1/√2,sin60°=√3/2,cos30°=√3/2,cos60°=1/2,tan30°=1/√3,tan45°=1,tan60°=√3三、概率论公式1.组合公式:C(n,m)=n!/(m!(n-m)!),其中C(n,m)表示从n个元素中选取m个元素的组合数。

初中三年最全数学重要公式

初中三年最全数学重要公式

初中数学中有很多重要的公式和定理,下面是一些常见且常用的数学公式和定理。

整数与运算:1.两个负数的乘积为正数:负数×负数=正数2.两个正数的乘积为正数:正数×正数=正数3.正数与负数的乘积为负数:正数×负数=负数4.减法的定义:a-b=a+(-b)5.乘法分配律:a×(b+c)=a×b+a×c6.除法分配律:a÷(b+c)=a÷b+a÷c常用代数公式:1. 一次方程的根:ax + b = 0,解为x = -b/a2. 二次方程的根:ax² + bx + c = 0,解为x = (-b ± √(b² - 4ac))/(2a)几何相关公式:1.圆的周长:C=2πr2.圆的面积:A=πr²3.矩形的周长:C=2(l+w)4.矩形的面积:A=l×w5.三角形的周长:C=a+b+c6.三角形的面积:A=1/2×底×高7.同底异高三角形的面积:A=1/2×(a+b)×h平面几何定理:1.三角形内角和定理:三角形内角的和为180°2.三角形的外角等于不相邻的两个内角的和数列与等差数列:1.等差数列的通项公式:an = a1 + (n - 1)d2. 前n项和公式:Sn = n/2 × (a1 + an)百分数与分数:1.百分数转化为分数:p%=p/1002.分数转化为百分数:p/q=p×100%三角函数:1. 正弦函数:sin A = 对边/斜边2. 余弦函数:cos A = 邻边/斜边3. 正切函数:tan A = 对边/邻边概率与统计:1. 总体平均数:μ = (x1 + x2 + ... + xn)/n2. 样本平均数:x̄ = (x1 + x2 + ... + xn)/n3.组距:组距=最大值-最小值4.中位数:-如果n为奇数,中位数为有序数据中的第(n+1)/2项-如果n为偶数,中位数为有序数据中的第n/2项和第(n/2+1)项的平均数。

初中数学必备公式与定理整理

初中数学必备公式与定理整理

初中数学必备公式与定理整理在初中数学学习中,掌握一些常用的公式和定理是非常重要的。

这些公式和定理不仅帮助我们解决各种数学问题,还为我们打下了数学知识的基础。

下面,我将整理一些初中数学中必备的公式与定理,供大家参考。

一、代数公式:1. 二次方程的解法:对于一元二次方程 ax^2 + bx + c = 0,其解可通过以下公式得到:x = (-b ± √(b^2 - 4ac))/(2a)2. 因式分解公式:(a+b)^2 = a^2 + 2ab + b^2(a-b)^2 = a^2 - 2ab + b^2a^2 - b^2 = (a+b)(a-b)3. 平方差公式:(a+b)(a-b) = a^2 - b^24. 一元一次方程:解一元一次方程 ax + b = 0 的解是 x = -b/a5. 三角函数:三角函数的定义:sinθ = 对边/斜边cosθ = 邻边/斜边tanθ = 对边/邻边6. 平方根公式:√x * √x = |x|(x ≥ 0),其中 |x| 表示 x 的绝对值二、几何公式与定理:1. 三角形:三角形内角和定理:三角形的三个内角的和等于180度。

直角三角形勾股定理:a^2 + b^2 = c^2,其中 c 为斜边,a、b 为直角边。

2. 四边形:平行四边形的性质:- 对角线互相平分- 对角线互相垂直- 对边相等矩形的性质:- 对角线相等- 互为等边三角形的边长正方形的性质:- 对角线相等- 互为等边三角形的边长- 互相垂直的直角边菱形的性质:- 对角线互相平分- 对边相等3. 圆的性质:- 圆的面积公式:S = πr^2(r为半径)- 圆的周长公式:C = 2πr三、概率与统计:1. 概率:- 事件的概率 = 有利的事件数 / 总的可能事件数2. 统计:- 众数:一组数据中出现次数最多的数值。

- 中位数:将一组数按照从小到大的顺序排列,如果有奇数个数,那么中间的数值就是中位数;如果有偶数个数,那么中位数取两个中间数的平均值。

初中数学常见的146条定理和公式

初中数学常见的146条定理和公式

初中数学常见的146条定理和公式
1、几何定理:
(1)直角三角形斜边长的平方等于两直角边长的乘积:a2=b2+c2(2)梯形面积=底边*高/2
(3)三角形面积=底边*高/2
(4)正方形的面积=边长的平方
(5)长方形的面积=长*宽
(6)圆形的面积=πr2
(7)椭圆的面积=πa*b
(8)任意多边形的面积=1/2*a*h
(9)平行四边形面积=对边乘积/2
(10)三角形的周长=a+b+c
(11)正多边形的周长=边数×边长
(12)圆的周长=2πr
(13)椭圆的周长=2π(a+b)/2
(14)正方体的表面积=6a2
(15)正方体的体积=a3
(16)长方体的表面积=2(a+b)h
(17)长方体的体积=a*b*h
(18)圆柱的表面积=2πr(r+h)
(19)圆柱的体积=πr2h
(20)圆锥的表面积=πrl+πr2
(21)圆锥的体积=πr2h/3
(22)球的表面积=4πr2
(23)球的体积=4/3πr3
2、数列定理:
(1)等差数列之和Sn=n(a1+an)/2
(2)等比数列之和Sn=a1(1-qn)/(1-q)
(3)调和数列之和Sn=n2/2(a1+an)
(4)加绝对值的调和数列之和Σ,a,=n(2a1+n-1da/2 ) 3、代数定理:
(1)多项式乘积与乘积分配律:(a+b)(c+d)=ac+ad+bc+bd (2)二次多项式求根公式:X1,2=[-b±√(b2-4ac)]/2a。

初中数学146个常见定理和公式大全

初中数学146个常见定理和公式大全

初中数学146个常见定理和公式大全1.定理1:两点之间的距离公式两点A(x1,y1)和B(x2,y2)之间的距离公式为d=√[(x2-x1)²+(y2-y1)²]。

2.定理2:两点之间的中点公式两点A(x1,y1)和B(x2,y2)的中点公式为M[(x1+x2)/2,(y1+y2)/2]。

3.定理3:两条平行线之间的距离公式平行于x轴的直线l1和l2之间的距离公式为d=,y1-y2;平行于y 轴的直线l1和l2之间的距离公式为d=,x1-x24.定理4:勾股定理直角三角形的斜边的平方等于两直角边的平方和,即a²+b²=c²。

5.定理5:勾股定理的逆定理若三边长度满足a²+b²=c²,则该三边构成一个直角三角形。

6.定理6:正方形的性质正方形每条边的长都相等,且每个角的大小为90°。

7.定理7:矩形的性质矩形相对的边相等,且每个角的大小为90°。

8.定理8:平行四边形的性质平行四边形相对的边平行且相等,相邻角互补(和为180°)。

9.定理9:三角形内角和定理三角形内角和等于180°,即∠A+∠B+∠C=180°。

10.定理10:等腰三角形的性质等腰三角形的两边相等,两底角也相等。

11.定理11:等边三角形的性质等边三角形的三边相等,且每个角的大小为60°。

12.定理12:圆的周长公式圆的周长公式为C=2πr,其中r为圆的半径。

13.定理13:圆的面积公式圆的面积公式为A=πr²,其中r为圆的半径。

14.定理14:同心圆的面积公式半径分别为r1和r2的两个同心圆的面积之比为(r1/r2)²。

15.定理15:棱台的体积公式棱台的体积公式为V=(1/3)Ah,其中A为底面积,h为高。

16.定理16:平行四边形的面积公式平行四边形的面积公式为A = bh,其中b为底边长,h为高。

初一到初三数学必记重要公式定理汇总(大全)

初一到初三数学必记重要公式定理汇总(大全)

初中数学定理公式大全1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1直角三角形的两个锐角互余19、推论2三角形的一个外角等于和它不相邻的两个内角的和20、推论3三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS)有三边对应相等的两个三角形全等26、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27、定理1在角的平分线上的点到这个角的两边的距离相等28、定理2到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31、推论1等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1三个角都相等的三角形是等边三角形36、推论2有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1关于某条直线对称的两个图形是全等形43、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、定理四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理n边形的内角的和等于(n-2)×180°51、推论任意多边的外角和等于360°52、平行四边形性质定理1平行四边形的对角相等53、平行四边形性质定理2平行四边形的对边相等54、推论夹在两条平行线间的平行线段相等55、平行四边形性质定理3平行四边形的对角线互相平分56、平行四边形判定定理1两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2两组对边分别相等的四边形是平行四边形58、平行四边形判定定理3对角线互相平分的四边形是平行四边形59、平行四边形判定定理4一组对边平行相等的四边形是平行四边形60、矩形性质定理1矩形的四个角都是直角61、矩形性质定理2矩形的对角线相等62、矩形判定定理1有三个角是直角的四边形是矩形63、矩形判定定理2对角线相等的平行四边形是矩形64、菱形性质定理1菱形的四条边都相等65、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、菱形判定定理1四边都相等的四边形是菱形68、菱形判定定理2对角线互相垂直的平行四边形是菱形69、正方形性质定理1正方形的四个角都是直角,四条边都相等70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1关于中心对称的两个图形是全等的72、定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论1经过梯形一腰的中点与底平行的直线,必平分另一腰80、推论2经过三角形一边的中点与另一边平行的直线,必平分第三边81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91、相似三角形判定定理1两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3三边对应成比例,两三角形相似(SSS)95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96、性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97、性质定理2相似三角形周长的比等于相似比98、性质定理3相似三角形面积的比等于相似比的平方99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三点确定一个圆。

九年级数学定理、公式汇总(背记版)

九年级数学定理、公式汇总(背记版)

重点公式汇总(背记版):一元二次方程一般形式:ax ²+bx+c =0 (a ≠0) 求根公式:a ac b b x 242-±-=(Δ=b 2-4a c ≥0) 判别法则:当Δ>0时,方程总有两个不相等的实数根当Δ= 0时,方程总有两个相等的实数根当Δ<0时,方程没有实数根韦达定理:若方程有两个实数根x 1和x 2,则x 1+x 2=a b -, x 1x 2=ac (需Δ≥0)增长(降低)率公式b x 1a n =±)(二次函数:一般形式y=ax 2+bx+c (a ≠0) 对称轴:a b x 2-=顶点坐标是)4-4,2-2a b ac a b ( 顶点式y=a(x -h)2+k(a ≠0) 对称轴:x=h ,顶点坐标(h,k )交点式y=a(x -x 1)(x -x 2)(a ≠0) 对称轴:221x x x += 函数平移规律:左加右减对称轴变,上加下减最值变。

抛物线与x 轴的位置关系:对于抛物线y=ax 2+bx+cΔ<0时,它与x 没有交点.Δ=0时,它与x 轴只有一个交点(与x 轴相切).Δ>0时,它与x 轴有两个交点(x 1,0)和(x 2,0),其中x 1和x 2是方程ax 2+bx+c=0的两个根.两点之间的距离公式:22-12222)()-(),,(),,(111y y x x AB y x B y x A +=则有: 中点坐标公式:(221x x +,2y y 21+)圆①垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

(“知二推三”) 推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

②在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。

③圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。

推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学重要公式及定理汇总数学重要公式定理及推论01基础定理1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短02平行线性质及判定1 平行公理经过直线外一点,有且只有一条直线与这条直线平行2 如果两条直线都和第三条直线平行,这两条直线也互相平行3 同位角相等,两直线平行4 内错角相等,两直线平行5 同旁内角互补,两直线平行6 两直线平行,同位角相等7 两直线平行,内错角相等8 两直线平行,同旁内角互补03三角形的性质及判定1 定理三角形两边的和大于第三边2 推论三角形两边的差小于第三边3 三角形内角和定理三角形三个内角的和等于180°4 推论1 直角三角形的两个锐角互余5 推论2 三角形的一个外角等于和它不相邻的两个内角的和6 推论3 三角形的一个外角大于任何一个和它不相邻的内角04全等三角形性质及判定1 全等三角形的对应边、对应角相等2 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等3 角边角公理( ASA) 有两角和它们的夹边对应相等的两个三角形全等4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等5 边边边公理(SSS) 有三边对应相等的两个三角形全等6 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等7 定理1 在角的平分线上的点到这个角的两边的距离相等8 定理2 到一个角的两边的距离相同的点,在这个角的平分线上05等腰三角形的性质及判定1 角的平分线是到角的两边距离相等的所有点的集合2 等腰三角形的性质定理等腰三角形的两个底角相等( 即等边对等角)3 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边4 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合5 推论3 等边三角形的各角都相等,并且每一个角都等于60°6 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)7 推论1 三个角都相等的三角形是等边三角形8 推论2 有一个角等于60°的等腰三角形是等边三角形06直角三角形、垂直平分线1 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半2 直角三角形斜边上的中线等于斜边上的一半3 定理线段垂直平分线上的点和这条线段两个端点的距离相等4 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上5 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合6 定理1 关于某条直线对称的两个图形是全等形7 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线8 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上9 逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称07勾股定理1 勾股定理直角三角形两直角边a 、b 的平方和、等于斜边c 的平方,即a^2+b^2=c^22 勾股定理的逆定理如果三角形的三边长a 、b 、c 有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形08内角和及外角和1 定理四边形的内角和等于360°2 四边形的外角和等于360°3 多边形内角和定理n 边形的内角的和等于(n-2 )×180°4 推论任意多边的外角和等于360°09平行四边形1 平行四边形性质定理1 平行四边形的对角相等2 平行四边形性质定理2 平行四边形的对边相等3 推论夹在两条平行线间的平行线段相等4 平行四边形性质定理3 平行四边形的对角线互相平分5 平行四边形判定定理1 两组对角分别相等的四边形是平行四边形6 平行四边形判定定理2 两组对边分别相等的四边形是平行四边形7 平行四边形判定定理3 对角线互相平分的四边形是平行四边形8 平行四边形判定定理4 一组对边平行相等的四边形是平行四边形010矩形矩形性质定理1 矩形的四个角都是直角矩形性质定理2 矩形的对角线相等矩形判定定理1 有三个角是直角的四边形是矩形矩形判定定理2 对角线相等的平行四边形是矩形011菱形菱形性质定理1 菱形的四条边都相等菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角菱形面积= 对角线乘积的一半,即S= (a×b )÷2菱形判定定理1 四边都相等的四边形是菱形菱形判定定理2 对角线互相垂直的平行四边形是菱形012正方形正方形性质定理1 正方形的四个角都是直角,四条边都相等正方形性质定理2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角定理1 关于中心对称的两个图形是全等的定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称013等腰梯形等腰梯形性质定理等腰梯形在同一底上的两个角相等等腰梯形的两条对角线相等等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形对角线相等的梯形是等腰梯形014等分线段平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边015中位线1 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半2 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b )÷2 S=L×h3 (1) 比例的基本性质如果a:b=c:d, 那么ad=bc, 如果ad=bc, 那么a:b=c:d4 (2) 合比性质如果a /b=c /d, 那么(a±b) /b=(c±d) /d85 (3) 等比性质如果a /b=c /d=…=m /n(b+d+…+n≠0), 那么(a+c+…+m) /(b+d+…+n)=a / b016平行线分线段成比例平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似相似三角形判定定理1 两角对应相等,两三角形相似(ASA )直角三角形被斜边上的高分成的两个直角三角形和原三角形相似判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS )判定定理3 三边对应成比例,两三角形相似(SSS )定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比性质定理2 相似三角形周长的比等于相似比性质定理3 相似三角形面积的比等于相似比的平方任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值017圆1 圆是定点的距离等于定长的点的集合2 圆的内部可以看作是圆心的距离小于半径的点的集合3 圆的外部可以看作是圆心的距离大于半径的点的集合4 同圆或等圆的半径相等5 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆6 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线7 到已知角的两边距离相等的点的轨迹,是这个角的平分线8 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线9 定理不在同一直线上的三点确定一个圆。

10 垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧11 推论1 ① 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧② 弦的垂直平分线经过圆心,并且平分弦所对的两条弧③ 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧12 推论2 圆的两条平行弦所夹的弧相等13 圆是以圆心为对称中心的中心对称图形14 定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等15 推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等16 定理一条弧所对的圆周角等于它所对的圆心角的一半17 推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等18 推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径19 推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形20 定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角21 ① 直线L 和⊙ O 相交d <r② 直线L 和⊙ O 相切d=r③ 直线L 和⊙ O 相离d >r22 切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线23 切线的性质定理圆的切线垂直于经过切点的半径24 推论1 经过圆心且垂直于切线的直线必经过切点25 推论2 经过切点且垂直于切线的直线必经过圆心26 切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角27 圆的外切四边形的两组对边的和相等28 弦切角定理弦切角等于它所夹的弧对的圆周角29 推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等30 相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等31 推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项32 切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项33 推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等34 如果两个圆相切,那么切点一定在连心线上35 ① 两圆外离d >R+r② 两圆外切d=R+r③ 两圆相交R-r <d <R+r(R >r)④ 两圆内切d=R-r(R >r) ⑤ 两圆内含d <R-r(R >r)36 定理相交两圆的连心线垂直平分两圆的公共弦37 定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n 边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n 边形138 定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆022部分计算公式汇总1、正n 边形的每个内角都等于(n-2 )×180°/n2、定理正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形3、正n 边形的面积Sn=pnrn /2 p 表示正n 边形的周长4、正三角形面积√ (3a /4 a )表示边长5、如果在一个顶点周围有k 个正n 边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2 )(k-2)=46、弧长计算公式:L=n 兀R /1807、扇形面积公式:S 扇形=n 兀R^2 /360=LR /28、内公切线长= d-(R-r) 外公切线长= d-(R+r)数学重要公式定理及推论01基础定理1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短02平行线性质及判定1 平行公理经过直线外一点,有且只有一条直线与这条直线平行2 如果两条直线都和第三条直线平行,这两条直线也互相平行3 同位角相等,两直线平行4 内错角相等,两直线平行5 同旁内角互补,两直线平行6 两直线平行,同位角相等7 两直线平行,内错角相等8 两直线平行,同旁内角互补03三角形的性质及判定1 定理三角形两边的和大于第三边2 推论三角形两边的差小于第三边3 三角形内角和定理三角形三个内角的和等于180°4 推论1 直角三角形的两个锐角互余5 推论2 三角形的一个外角等于和它不相邻的两个内角的和6 推论3 三角形的一个外角大于任何一个和它不相邻的内角04全等三角形性质及判定1 全等三角形的对应边、对应角相等2 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等3 角边角公理( ASA) 有两角和它们的夹边对应相等的两个三角形全等4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等5 边边边公理(SSS) 有三边对应相等的两个三角形全等6 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等7 定理1 在角的平分线上的点到这个角的两边的距离相等8 定理2 到一个角的两边的距离相同的点,在这个角的平分线上05等腰三角形的性质及判定1 角的平分线是到角的两边距离相等的所有点的集合2 等腰三角形的性质定理等腰三角形的两个底角相等( 即等边对等角)3 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边4 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合5 推论3 等边三角形的各角都相等,并且每一个角都等于60°6 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)7 推论1 三个角都相等的三角形是等边三角形8 推论2 有一个角等于60°的等腰三角形是等边三角形06直角三角形、垂直平分线1 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半2 直角三角形斜边上的中线等于斜边上的一半3 定理线段垂直平分线上的点和这条线段两个端点的距离相等4 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上5 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合6 定理1 关于某条直线对称的两个图形是全等形7 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线8 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上9 逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称07勾股定理1 勾股定理直角三角形两直角边a 、b 的平方和、等于斜边c 的平方,即a^2+b^2=c^22 勾股定理的逆定理如果三角形的三边长a 、b 、c 有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形08内角和及外角和1 定理四边形的内角和等于360°2 四边形的外角和等于360°3 多边形内角和定理n 边形的内角的和等于(n-2 )×180°4 推论任意多边的外角和等于360°09平行四边形1 平行四边形性质定理1 平行四边形的对角相等2 平行四边形性质定理2 平行四边形的对边相等3 推论夹在两条平行线间的平行线段相等4 平行四边形性质定理3 平行四边形的对角线互相平分5 平行四边形判定定理1 两组对角分别相等的四边形是平行四边形6 平行四边形判定定理2 两组对边分别相等的四边形是平行四边形7 平行四边形判定定理3 对角线互相平分的四边形是平行四边形8 平行四边形判定定理4 一组对边平行相等的四边形是平行四边形010矩形矩形性质定理1 矩形的四个角都是直角矩形性质定理2 矩形的对角线相等矩形判定定理1 有三个角是直角的四边形是矩形矩形判定定理2 对角线相等的平行四边形是矩形011菱形菱形性质定理1 菱形的四条边都相等菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角菱形面积= 对角线乘积的一半,即S= (a×b )÷2菱形判定定理1 四边都相等的四边形是菱形菱形判定定理2 对角线互相垂直的平行四边形是菱形012正方形正方形性质定理1 正方形的四个角都是直角,四条边都相等正方形性质定理2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角定理1 关于中心对称的两个图形是全等的定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称013等腰梯形等腰梯形性质定理等腰梯形在同一底上的两个角相等等腰梯形的两条对角线相等等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形对角线相等的梯形是等腰梯形014等分线段平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边015中位线1 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半2 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b )÷2 S=L×h3 (1) 比例的基本性质如果a:b=c:d, 那么ad=bc, 如果ad=bc, 那么a:b=c:d4 (2) 合比性质如果a /b=c /d, 那么(a±b) /b=(c±d) /d85 (3) 等比性质如果a /b=c /d=…=m /n(b+d+…+n≠0), 那么(a+c+…+m) /(b+d+…+n)=a / b016平行线分线段成比例平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似相似三角形判定定理1 两角对应相等,两三角形相似(ASA )直角三角形被斜边上的高分成的两个直角三角形和原三角形相似判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS )判定定理3 三边对应成比例,两三角形相似(SSS )定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比性质定理2 相似三角形周长的比等于相似比性质定理3 相似三角形面积的比等于相似比的平方任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值017圆1 圆是定点的距离等于定长的点的集合2 圆的内部可以看作是圆心的距离小于半径的点的集合3 圆的外部可以看作是圆心的距离大于半径的点的集合4 同圆或等圆的半径相等5 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆6 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线7 到已知角的两边距离相等的点的轨迹,是这个角的平分线8 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线9 定理不在同一直线上的三点确定一个圆。

相关文档
最新文档