实验3贪心算法和回溯法
背包问题实验报告
背包问题实验报告背包问题实验报告背包问题是计算机科学中的经典问题之一,它涉及到在给定的一组物品中选择一些物品放入背包中,以使得背包的总重量不超过其容量,并且所选择的物品具有最大的总价值。
在本次实验中,我们将通过不同的算法来解决背包问题,并对比它们的效率和准确性。
1. 实验背景和目的背包问题是一个重要的优化问题,它在许多实际应用中都有广泛的应用,比如货物装载、资源分配等。
在本次实验中,我们的目的是通过实际的算法实现,比较不同算法在解决背包问题时的性能差异,并分析其优缺点。
2. 实验方法和步骤为了解决背包问题,我们选择了以下几种常见的算法:贪心算法、动态规划算法和遗传算法。
下面将对每种算法的具体步骤进行介绍。
2.1 贪心算法贪心算法是一种简单而直观的算法,它通过每次选择当前状态下最优的解决方案来逐步构建最终解决方案。
在背包问题中,贪心算法可以按照物品的单位价值进行排序,然后依次选择单位价值最高的物品放入背包中,直到背包的容量达到上限。
2.2 动态规划算法动态规划算法是一种基于递推关系的算法,它通过将原问题分解为多个子问题,并利用子问题的解来构建原问题的解。
在背包问题中,动态规划算法可以通过构建一个二维数组来记录每个子问题的最优解,然后逐步推导出整个问题的最优解。
2.3 遗传算法遗传算法是一种模拟生物进化的算法,它通过模拟自然选择、交叉和变异等过程来搜索问题的最优解。
在背包问题中,遗传算法可以通过表示每个解决方案的染色体,然后通过选择、交叉和变异等操作来不断优化解决方案,直到找到最优解。
3. 实验结果和分析我们使用不同算法对一组测试数据进行求解,并对比它们的结果和运行时间进行分析。
下面是我们的实验结果:对于一个容量为10的背包和以下物品:物品1:重量2,价值6物品2:重量2,价值10物品3:重量3,价值12物品4:重量4,价值14物品5:重量5,价值20贪心算法的结果是选择物品4和物品5,总重量为9,总价值为34。
算法设计与分析中的贪心算法与回溯法
算法设计与分析中的贪心算法与回溯法算法设计与分析领域中,贪心算法和回溯法是两种常用的解题方法。
本文将介绍这两种算法,并比较它们在不同场景下的优势和劣势。
一、贪心算法贪心算法是一种在每一步都选择当前最优解的策略,希望通过局部最优解的选择最终达到全局最优解。
贪心算法的实现较为简单,时间复杂度较低,适用于解决一些最优化问题。
贪心算法的基本思想是每次都选择当前状态下的最优解,并将其加入到解集中。
例如,在求解最小生成树的问题中,贪心算法会选择当前具有最小权值的边,并将其添加到最终结果中,直到生成树完成。
然而,贪心算法的局限性在于它只考虑了当前的最优解,无法保证找到全局最优解。
在某些问题中,贪心算法可能会陷入局部最优解而无法跳出。
因此,需要在具体问题中综合考虑问题的性质和约束条件来确定是否适合采用贪心算法。
二、回溯法回溯法是一种通过不断尝试可能的步骤来寻找问题解的方法。
它通常基于递归的思想,在每一步都尝试所有的可能选择,并逐步构建解空间,直到找到解或确定无解。
回溯法的核心思想是深度优先搜索,通过遍历解空间树来寻找解。
在每一步,回溯法都会考虑当前状态下的所有可能选择,并递归地进入下一步。
如果某一步的选择无法达到目标,回溯法会回退到上一步进行其他可能的选择。
回溯法常用于解决一些全排列、子集和组合等问题。
例如,在解决八皇后问题时,回溯法通过逐个放置皇后并进行合法性判断,直到找到所有解或遍历完所有可能的情况为止。
然而,回溯法的缺点在于其时间复杂度较高,其搜索过程包含了大量的重复计算。
因此,在使用回溯法解决问题时,需注意适当剪枝以减少搜索空间,提高算法效率。
三、贪心算法与回溯法的比较贪心算法和回溯法都是常用的算法设计与分析方法,但其适用场景和效果有所差异。
贪心算法在解决问题时能够快速找到局部最优解,并且具有较低的时间复杂度。
它适用于一些满足最优子结构性质的问题,例如最小生成树、单源最短路径等。
然而,贪心算法无法保证一定能找到全局最优解,因此需根据具体问题的特点来判断是否使用。
回溯法应用
bestp=cp;
}
return;
}
if(cw+w[i]<=c) //搜索左子树
{ x[i]=1;
cw+=w[i];
cp+=p[i];
Backtrack(i+1);
cw-=w[i];
cp-=p[i];
}
if(Bound(i+1)>bestp)//搜索右子树
{
x[i]=0;
}
Knap K;
K.p = new int[n+1];
K.w = new int[n+1];
K.x = new int[n+1];
K.bestx = new int[n+1];
K.x[0]=0;
K.bestx[0]=0;
for( i=1;i<=n;i++)
{
K.p[i]=p[Q[i-1].ID];
K.w[i]=w[Q[i-1].ID];
(实验提示
template<class Typew, class Typep>
Typep Knap<Typew, Typep>::Bound(int i)
{//计算上界
Typew cleft = c - cw; //剩余容量
Typep b = cp;
//以物品单位重量价值递减序装入物品
while (i <= n && w[i] <= cleft) {
for(i=1;i<=n;i++)
cin>>w[i];
cout<<"请输入背包容量:"<<endl;
《算法综合实验》实验报告
实验5、《算法综合实验》一、实验目的1. 理解和复习所学各种算法的概念2. 掌握和复习所学各种算法的基本要素3. 掌握各种算法的优点和区别4. 通过应用范例掌握选择最佳算法的设计技巧与策略二、实验内容1. 使用贪心算法、回溯法、分支限界法解决0-1背包问题;2. 通过上机实验进行算法实现;3. 保存和打印出程序的运行结果,并结合程序进行分析,上交实验报告。
三、算法思想分析1.贪心算法理论上只能解决满足贪心选择性质的问题,而0-1背包并不满足该性质,所以并不能保证能够找到最优解法,只能找到最接近的解,当然如果运气好,也是可以找到最优解的。
利用按重量从小到大、按价值从大到小、按价值/重量从大到小三种方式通过贪心算法求得每种方式的最终结果,并比较三种方式的最大价值取最大的那个,即为贪心算法获得的最优解。
2.回溯法解决0-1背包问题的解空间为子集树,利用回溯法的基本代码模版即可,其中左子树为约束条件,即背包能否装下该物品,右子树为限界条件,即当前物品不放入背包,剩余物品是否有可能创造比当前最大价值更大的价值,如果可以则进入右子树,反之,则直接剪去右子树。
3.0-1背包的解空间为子集树,分支界限法是采用广度优先搜索,每次选取队列的最前面的结点为活结点。
1)算法从根结点A即标记结点开始,初始时活结点队列为空,A入队列。
2)A为活结点,A的儿子结点B、C为可行结点。
将B、C加入队列,舍弃A。
此时队列元素为C-B;3)B为活结点,B的儿子结点D、E,而D为不可行结点。
将E入队列,舍弃B。
此时队列元素为E-C;4)循环以上步骤按照以上方式扩展到叶节点。
四、实验过程分析1.贪心算法的思路很简单即为一直循环下去,直至不满足指定条件。
用于解决0-1背包问题时需要考虑多种放入方式,因为不管哪种方式都不能百分百会得到最优解,只能取多种放入方式中的最优解作为问题的最优解。
这道题目的收获在于贪心算法对于不能保证获得最优解的情况下,如何获得最接近的解,比如0-1背包问题则是采用多种放入方式再进行比较取最优解。
贪心算法 实验报告
贪心算法实验报告贪心算法实验报告引言:贪心算法是一种常用的算法设计策略,它通常用于求解最优化问题。
贪心算法的核心思想是在每一步选择中都选择当前最优的解,从而希望最终能够得到全局最优解。
本实验旨在通过实际案例的研究,探索贪心算法的应用和效果。
一、贪心算法的基本原理贪心算法的基本原理是每一步都选择当前最优解,而不考虑整体的最优解。
这种贪婪的选择策略通常是基于局部最优性的假设,即当前的选择对于后续步骤的选择没有影响。
贪心算法的优点是简单高效,但也存在一定的局限性。
二、实验案例:零钱兑换问题在本实验中,我们以零钱兑换问题为例,来说明贪心算法的应用。
问题描述:假设有不同面值的硬币,如1元、5元、10元、50元和100元,现在需要支付给客户x元,如何用最少的硬币数完成支付?解决思路:贪心算法可以通过每次选择当前面值最大的硬币来求解。
具体步骤如下:1. 初始化一个空的硬币集合,用于存放选出的硬币。
2. 从面值最大的硬币开始,如果当前硬币的面值小于等于待支付金额,则将该硬币放入集合中,并将待支付金额减去该硬币的面值。
3. 重复步骤2,直到待支付金额为0。
实验过程:以支付金额为36元为例,我们可以通过贪心算法求解最少硬币数。
首先,面值最大的硬币为100元,但36元不足以支付100元硬币,因此我们选择50元硬币。
此时,剩余待支付金额为36-50=-14元。
接下来,面值最大的硬币为50元,但待支付金额为负数,因此我们选择下一个面值最大的硬币,即10元硬币。
此时,剩余待支付金额为-14-10=-24元。
继续选择10元硬币,剩余待支付金额为-24-10=-34元。
再次选择10元硬币,剩余待支付金额为-34-10=-44元。
最后,选择5元硬币,剩余待支付金额为-44-5=-49元。
由于待支付金额已经为负数,我们无法继续选择硬币。
此时,集合中的硬币数为1个50元和3个10元,总共4个硬币。
实验结果:通过贪心算法,我们得到了36元支付所需的最少硬币数为4个。
算法分析与设计实验报告
算法分析与设计实验报告算法分析与设计实验报告一、引言算法是计算机科学的核心,它们是解决问题的有效工具。
算法分析与设计是计算机科学中的重要课题,通过对算法的分析与设计,我们可以优化计算机程序的效率,提高计算机系统的性能。
本实验报告旨在介绍算法分析与设计的基本概念和方法,并通过实验验证这些方法的有效性。
二、算法分析算法分析是评估算法性能的过程。
在实际应用中,我们常常需要比较不同算法的效率和资源消耗,以选择最适合的算法。
常用的算法分析方法包括时间复杂度和空间复杂度。
1. 时间复杂度时间复杂度衡量了算法执行所需的时间。
通常用大O表示法表示时间复杂度,表示算法的最坏情况下的运行时间。
常见的时间复杂度有O(1)、O(log n)、O(n)、O(n log n)和O(n^2)等。
其中,O(1)表示常数时间复杂度,O(log n)表示对数时间复杂度,O(n)表示线性时间复杂度,O(n log n)表示线性对数时间复杂度,O(n^2)表示平方时间复杂度。
2. 空间复杂度空间复杂度衡量了算法执行所需的存储空间。
通常用大O表示法表示空间复杂度,表示算法所需的额外存储空间。
常见的空间复杂度有O(1)、O(n)和O(n^2)等。
其中,O(1)表示常数空间复杂度,O(n)表示线性空间复杂度,O(n^2)表示平方空间复杂度。
三、算法设计算法设计是构思和实现算法的过程。
好的算法设计能够提高算法的效率和可靠性。
常用的算法设计方法包括贪心算法、动态规划、分治法和回溯法等。
1. 贪心算法贪心算法是一种简单而高效的算法设计方法。
它通过每一步选择局部最优解,最终得到全局最优解。
贪心算法的时间复杂度通常较低,但不能保证得到最优解。
2. 动态规划动态规划是一种将问题分解为子问题并以自底向上的方式求解的算法设计方法。
它通过保存子问题的解,避免重复计算,提高算法的效率。
动态规划适用于具有重叠子问题和最优子结构的问题。
3. 分治法分治法是一种将问题分解为更小规模的子问题并以递归的方式求解的算法设计方法。
算法设计与分析实验报告
算法设计与分析实验报告实验一全排列、快速排序【实验目的】1. 掌握全排列的递归算法。
2. 了解快速排序的分治算法思想。
【实验原理】一、全排列全排列的生成算法就是对于给定的字符集,用有效的方法将所有可能的全排列无重复无遗漏地枚举出来。
任何n个字符集的排列都可以与1~n的n个数字的排列一一对应,因此在此就以n 个数字的排列为例说明排列的生成法。
n个字符的全体排列之间存在一个确定的线性顺序关系。
所有的排列中除最后一个排列外,都有一个后继;除第一个排列外,都有一个前驱。
每个排列的后继都可以从它的前驱经过最少的变化而得到,全排列的生成算法就是从第一个排列开始逐个生成所有的排列的方法。
二、快速排序快速排序(Quicksort)是对冒泡排序的一种改进。
它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
【实验内容】1.全排列递归算法的实现。
2.快速排序分治算法的实现。
【实验结果】1. 全排列:2. 快速排序:实验二最长公共子序列、活动安排问题【实验目的】1. 了解动态规划算法设计思想,运用动态规划算法实现最长公共子序列问题。
2. 了解贪心算法思想,运用贪心算法设计思想实现活动安排问题。
【实验原理】一、动态规划法解最长公共子序列设序列X=和Y=的一个最长公共子序列Z=,则:i. 若xm=yn,则zk=xm=yn且Zk-1是Xm-1和Yn-1的最长公共子序列;ii. 若xm≠yn且zk≠xm ,则Z是Xm-1和Y的最长公共子序列;iii. 若xm≠yn且z k≠yn ,则Z是X和Yn-1的最长公共子序列。
其中Xm-1=,Yn-1=,Zk-1=。
最长公共子序列问题具有最优子结构性质。
由最长公共子序列问题的最优子结构性质可知,要找出X=和Y=的最长公共子序列,可按以下方式递归地进行:当xm=yn时,找出Xm-1和Yn-1的最长公共子序列,然后在其尾部加上xm(=yn)即可得X和Y的一个最长公共子序列。
算法实验报告贪心
一、实验背景贪心算法是一种在每一步选择中都采取当前状态下最好或最优的选择,从而希望导致结果是全局最好或最优的算法策略。
贪心算法并不保证能获得最优解,但往往能获得较好的近似解。
在许多实际应用中,贪心算法因其简单、高效的特点而被广泛应用。
本实验旨在通过编写贪心算法程序,解决经典的最小生成树问题,并分析贪心算法的优缺点。
二、实验目的1. 理解贪心算法的基本原理和应用场景;2. 掌握贪心算法的编程实现方法;3. 分析贪心算法的优缺点,并尝试改进;4. 比较贪心算法与其他算法在解决最小生成树问题上的性能。
三、实验内容1. 最小生成树问题最小生成树问题是指:给定一个加权无向图,找到一棵树,使得这棵树包含所有顶点,且树的总权值最小。
2. 贪心算法求解最小生成树贪心算法求解最小生成树的方法是:从任意一个顶点开始,每次选择与当前已选顶点距离最近的顶点,将其加入生成树中,直到所有顶点都被包含在生成树中。
3. 算法实现(1)数据结构- 图的表示:邻接矩阵- 顶点集合:V- 边集合:E- 已选顶点集合:selected- 最小生成树集合:mst(2)贪心算法实现```def greedy_mst(graph):V = set(graph.keys()) # 顶点集合selected = set() # 已选顶点集合mst = set() # 最小生成树集合for i in V:selected.add(i)mst.add((i, graph[i]))while len(selected) < len(V):min_edge = Nonefor edge in mst:u, v = edgeif v not in selected and (min_edge is None or graph[u][v] < graph[min_edge[0]][min_edge[1]]):min_edge = edgeselected.add(min_edge[1])mst.add(min_edge)return mst```4. 性能分析为了比较贪心算法与其他算法在解决最小生成树问题上的性能,我们可以采用以下两种算法:(1)Prim算法:从任意一个顶点开始,逐步添加边,直到所有顶点都被包含在生成树中。
贪 心 算 法
贪心算法及几个常用的例题贪心算法:一、基本概念:所谓贪心算法是指,在对问题求解时,总是做出在当前看来是最好的选择。
也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。
贪心算法没有固定的算法框架,算法设计的关键是贪心策略的选择。
必须注意的是,贪心算法不是对所有问题都能得到整体最优解,选择的贪心策略必须具备无后效性,即某个状态以后的过程不会影响以前的状态,只与当前状态有关。
所以对所采用的贪心策略一定要仔细分析其是否满足无后效性。
二、贪心算法的基本思路:1.建立数学模型来描述问题。
2.把求解的问题分成若干个子问题。
3.对每一子问题求解,得到子问题的局部最优解。
4.把子问题的解局部最优解合成原来解问题的一个解。
三、贪心算法适用的问题贪心策略适用的前提是:局部最优策略能导致产生全局最优解。
实际上,贪心算法适用的情况很少。
一般,对一个问题分析是否适用于贪心算法,可以先选择该问题下的几个实际数据进行分析,就可做出判断。
四、贪心算法的实现框架从问题的某一初始解出发;while (能朝给定总目标前进一步)利用可行的决策,求出可行解的一个解元素;由所有解元素组合成问题的一个可行解;五、贪心策略的选择因为用贪心算法只能通过解局部最优解的策略来达到全局最优解,因此,一定要注意判断问题是否适合采用贪心算法策略,找到的解是否一定是问题的最优解。
几个经典的例子:一、定义什么是贪心算法呢?所谓贪心算法是指,在对问题求解时,总是做出在当前看来最好的选择。
也就是说,不从整体最优解出发来考虑,它所做出的仅是在某种意义上的局部最优解。
贪心算法不是对所有问题都能得到整体最优解,但对范围相当广泛的许多问题都能产生整体最优解或整体最优解的近似解。
贪心算法的基本思路如下:1. .建立数学模型来描述问题。
2. 把求解的问题分成若干个子问题。
3. 对每个子问题求解,得到每个子问题的局部最优解。
4. 把每个子问题的局部最优解合成为原来问题的一个解。
算法分析与设计实验三贪心算法
实验三贪心算法实验目的1. 掌握贪心法的基本思想方法;2. 了解适用于用贪心法求解的问题类型,并能设计相应贪心法算法;3. 掌握贪心算法复杂性分析方法分析问题复杂性。
预习与实验要求1. 预习实验指导书及教材的有关内容,掌握贪心法的基本思想;2. 严格按照实验内容进行实验,培养良好的算法设计和编程的习惯;3. 认真听讲,服从安排,独立思考并完成实验。
实验设备与器材硬件:PC机软件:C++或Java等编程环境实验原理有一类问题是要从所有的允许解中求出最优解,其策略之一是“贪心法”,即逐次实施“贪心选择”:在每个选择步骤上做出的选择都是当前状态下最优的。
贪心选择依赖于在此之前所做出的选择,但不依赖于后续步骤所需要的选择,即不依赖于后续待求解子问题。
显然,这种选择方法是局部最优的,但不是从问题求解的整体考虑进行选择,因此不能保证最后所得一定是最优解。
贪心法是求解问题的一种有效方法,所得到的结果如果不是最优的,通常也是近似最优的。
实验内容以下几个问题选做一项:1. 用贪心法实现带有期限作业排序的快速算法应用贪心设计策略来解决操作系统中单机、无资源约束且每个作业可在等量时间内完成的作业调度问题。
假定只能在一台机器上处理N个作业,每个作业均可在单位时间内完成;又假定每个作业i都有一个截止期限di>0(它是整数),当且仅当作业i在它的期限截止以前被完成时,则获得pi的效益。
这个问题的一个可行解是这N个作业的一个子集合J,J中的每个作业都能在各自的截止期限之前完成。
可行解的效益值是J中这些作业的效益之和,即Σp。
具有最大效益值的可行解就是最优解。
2. 实现K元归并树贪心算法两个分别包含n个和m个记录的已分类文件可以在O(n+m)时间内归并在一起而得到一个分类文件。
当要把两个以上的已分类文件归并在一起时,可以通过成对地重复归并已分类的文件来完成。
例如:假定X1,X2,X3,X4是要归并的文件,则可以首先把X1和X2归并成文件Y1,然后将Y1和X3归并成Y2,最后将Y2和X4归并,从而得到想要的分类文件;也可以先把X1和X2归并成Y1,然后将X3和X4归并成Y2,最后归并Y1和Y2而得到想要的分类文件。
著名算法matlab编程 贪心算法 背包问题 递归算法 Hanoi塔问题 回溯算法 n皇后问题
10/22
在命令窗口输入:>> [n,s]=hanoi(3,1,2,3) n= 7 s= 1 2 1 3 1 2 1 1 1 3 1 2 2 1 3 2 2 3 1 3 3
1
1 2 3
2 3 3 3 1
2
3
1
2 1 2
1
1 2
2
3
3
1
2 3
1 2 3
11/22
5/22
A
B
C
1
2
n
6/22
问题分析: 把柱C作为目标柱子,设an为n块金片从其中一柱移 到另一柱的搬运次数,则把n块金片从A移到C,可 以先把前n-1片移到B,需搬an-1次;接着把第n片从 A称到C,再从B把剩下的n-1片搬到C,又需搬an-1 次。所以从A到n块金片称到柱C,共需次数为: 2an-1+1次。 显然,当n=1时,a1=1,所以Hanoi塔的移动次数相 当于一个带初值的递归关系:
有 旅 行 者 要 从 n 种 物 品 中 选 取 不 超 过 b公 斤 的 物 品 放 入 背 包 , 要 求 总 价 值 最 大 。 设 第 i 种 物 品 的 重 量 为 a i, 价 值 为 c i,i 1, 2 , n )。 定 义 向 量 [ x 1 , x 2 , , x n ], 当 选 第 i ( 种 物 品 往 背 包 放 时 取 x i 1, 否 则 取 x i 0。 于 是 所 有 选 取 的 物 品 的 总 价 值 为 : c 1 x 1 c 2 x 2 c n x n, 总 的 重 量 为 : a 1 x 1 a 2 x 2 a n x n。 问 题 可 描 述 为
贪心算法定义
递推法递推是序列计算机中的一种常用算法。
它是按照一定的规律来计算序列中的每个项,通常是通过计算机前面的一些项来得出序列中的指定项的值。
其思想是把一个复杂的庞大的计算过程转化为简单过程的多次重复,该算法利用了计算机速度快和不知疲倦的机器特点。
递归法程序调用自身的编程技巧称为递归(recursion)。
一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。
递归的能力在于用有限的语句来定义对象的无限集合。
一般来说,递归需要有边界条件、递归前进段和递归返回段。
当边界条件不满足时,递归前进;当边界条件满足时,递归返回。
注意:(1) 递归就是在过程或函数里调用自身;(2) 在使用递归策略时,必须有一个明确的递归结束条件,称为递归出口。
穷举法穷举法,或称为暴力破解法,其基本思路是:对于要解决的问题,列举出它的所有可能的情况,逐个判断有哪些是符合问题所要求的条件,从而得到问题的解。
它也常用于对于密码的破译,即将密码进行逐个推算直到找出真正的密码为止。
例如一个已知是四位并且全部由数字组成的密码,其可能共有10000种组合,因此最多尝试10000次就能找到正确的密码。
理论上利用这种方法可以破解任何一种密码,问题只在于如何缩短试误时间。
因此有些人运用计算机来增加效率,有些人辅以字典来缩小密码组合的范围。
贪心算法贪心算法是一种对某些求最优解问题的更简单、更迅速的设计技术。
用贪心法设计算法的特点是一步一步地进行,常以当前情况为基础根据某个优化测度作最优选择,而不考虑各种可能的整体情况,它省去了为找最优解要穷尽所有可能而必须耗费的大量时间,它采用自顶向下,以迭代的方法做出相继的贪心选择,每做一次贪心选择就将所求问题简化为一个规模更小的子问题, 通过每一步贪心选择,可得到问题的一个最优解,虽然每一步上都要保证能获得局部最优解,但由此产生的全局解有时不一定是最优的,所以贪婪法不要回溯。
关于算法的实验报告(3篇)
第1篇一、实验目的1. 理解快速排序算法的基本原理和实现方法。
2. 掌握快速排序算法的时间复杂度和空间复杂度分析。
3. 通过实验验证快速排序算法的效率。
4. 提高编程能力和算法设计能力。
二、实验环境1. 操作系统:Windows 102. 编程语言:C++3. 开发工具:Visual Studio 2019三、实验原理快速排序算法是一种分而治之的排序算法,其基本思想是:选取一个基准元素,将待排序序列分为两个子序列,其中一个子序列的所有元素均小于基准元素,另一个子序列的所有元素均大于基准元素,然后递归地对这两个子序列进行快速排序。
快速排序算法的时间复杂度主要取决于基准元素的选取和划分过程。
在平均情况下,快速排序的时间复杂度为O(nlogn),但在最坏情况下,时间复杂度会退化到O(n^2)。
四、实验内容1. 快速排序算法的代码实现2. 快速排序算法的时间复杂度分析3. 快速排序算法的效率验证五、实验步骤1. 设计快速排序算法的C++代码实现,包括以下功能:- 选取基准元素- 划分序列- 递归排序2. 编写主函数,用于生成随机数组和测试快速排序算法。
3. 分析快速排序算法的时间复杂度。
4. 对不同规模的数据集进行测试,验证快速排序算法的效率。
六、实验结果与分析1. 快速排序算法的代码实现```cppinclude <iostream>include <vector>include <cstdlib>include <ctime>using namespace std;// 生成随机数组void generateRandomArray(vector<int>& arr, int n) {srand((unsigned)time(0));for (int i = 0; i < n; ++i) {arr.push_back(rand() % 1000);}}// 快速排序void quickSort(vector<int>& arr, int left, int right) { if (left >= right) {return;}int i = left;int j = right;int pivot = arr[(left + right) / 2]; // 选取中间元素作为基准 while (i <= j) {while (arr[i] < pivot) {i++;}while (arr[j] > pivot) {j--;}if (i <= j) {swap(arr[i], arr[j]);i++;j--;}}quickSort(arr, left, j);quickSort(arr, i, right);}int main() {int n = 10000; // 测试数据规模vector<int> arr;generateRandomArray(arr, n);clock_t start = clock();quickSort(arr, 0, n - 1);clock_t end = clock();cout << "排序用时:" << double(end - start) / CLOCKS_PER_SEC << "秒" << endl;return 0;}```2. 快速排序算法的时间复杂度分析根据实验结果,快速排序算法在平均情况下的时间复杂度为O(nlogn),在最坏情况下的时间复杂度为O(n^2)。
实验3 贪心算法
淮海工学院计算机工程学院实验报告书课程名:《算法分析与设计》题目:实验3 贪心算法班级:学号:姓名:实验3 贪心算法实验目的和要求(1)了解前缀编码的概念,理解数据压缩的基本方法;(2)掌握最优子结构性质的证明方法;(3)掌握贪心法的设计思想并能熟练运用(4)证明哈夫曼树满足最优子结构性质;(5)设计贪心算法求解哈夫曼编码方案;(6)设计测试数据,写出程序文档。
实验内容设需要编码的字符集为{d 1, d 2, …, dn },它们出现的频率为{w 1, w 2, …, wn },应用哈夫曼树构造最短的不等长编码方案。
实验环境Turbo C 或VC++实验学时2学时,必做实验数据结构与算法//构造哈夫曼结构体struct huffman{double weight; //用来存放各个结点的权值int lchild,rchild,parent; //指向双亲、孩子结点的指针 };核心源代码#include<iostream>#include <string>using namespace std;#include <stdio.h>//构造哈夫曼结构体struct huffman{double weight;∑=j i k k aint lchild,rchild,parent;};static int i1=0,i2=0;//选择权值较小的节点int Select(huffman huff[],int i){int min=11000;int min1;for(int k=0;k<i;k++){if(huff[k].weight<min && huff[k].parent==-1){min=huff[k].weight;min1=k;}}huff[min1].parent=1;return min1;}//定义哈夫曼树,并对各个节点进行赋权值void HuffmanTree(huffman huff[],int weight[],int n) {for(int i=0;i<2*n-1;i++){huff[i].lchild=-1;huff[i].parent=-1;huff[i].rchild=-1;}for(int l=0;l<n;l++){huff[l].weight=weight[l];}for(int k=n;k<2*n-1;k++){int i1=Select(huff,k);int i2=Select(huff,k);huff[i1].parent=k;huff[i2].parent=k;huff[k].weight= huff[i1].weight+huff[i2].weight;huff[k].lchild=i1;huff[k].rchild=i2;}}//哈夫曼编码,左0右1void huffmancode(huffman huff[],int n){string s;int j;for(int i=0;i<n;i++){s="";j=i;while(huff[j].parent!=-1){if(huff[huff[j].parent].lchild==j)s=s+"0";else s=s+"1";j=huff[j].parent;}cout<<"第"<<i+1<<"个节点的哈夫曼编码为:";for(int j=s.length();j>=0;j--){cout<<s[j];}cout<<endl;}}void main(){huffman huff[20];int n,w[20];printf("请输入节点的个数:");scanf("%d",&n);for(int i=0;i<n;i++){printf("请输入第%d个节点的权值:",i+1);scanf("%d",&w[i]);}printf("\n");HuffmanTree(huff,w,n);huffmancode(huff,n);}实验结果实验体会本次实验是用贪心法求解哈夫曼编码,其实贪心法和哈夫曼树的原理是一样的,每次将集合中两个权值最小的二叉树合并成一棵新二叉树,每次选择两个权值最小的二叉树时,规定了较小的为左子树。
算法设计与分析实验报告
算法设计与分析报告学生姓名学号专业班级指导教师完成时间目录一、课程内容 (3)二、算法分析 (3)1、分治法 (3)(1)分治法核心思想 (3)(2)MaxMin算法分析 (3)2、动态规划 (4)(1)动态规划核心思想 (4)(2)矩阵连乘算法分析 (5)3、贪心法 (5)(1)贪心法核心思想 (5)(2)背包问题算法分析 (6)(3)装载问题算法分析 (7)4、回溯法 (7)(1)回溯法核心思想 (7)(2)N皇后问题非递归算法分析 (7)(3)N皇后问题递归算法分析 (8)三、例子说明 (9)1、MaxMin问题 (9)2、矩阵连乘 (10)3、背包问题 (10)4、最优装载 (10)5、N皇后问题(非递归) (11)6、N皇后问题(递归) (11)四、心得体会 (12)五、算法对应的例子代码 (12)1、求最大值最小值 (12)2、矩阵连乘问题 (13)3、背包问题 (15)4、装载问题 (17)5、N皇后问题(非递归) (19)6、N皇后问题(递归) (20)一、课程内容1、分治法,求最大值最小值,maxmin算法;2、动态规划,矩阵连乘,求最少连乘次数;3、贪心法,1)背包问题,2)装载问题;4、回溯法,N皇后问题的循环结构算法和递归结构算法。
二、算法分析1、分治法(1)分治法核心思想当要求解一个输入规模为n,且n的取值相当大的问题时,直接求解往往是非常困难的。
如果问题可以将n个输入分成k个不同子集合,得到k个不同的可独立求解的子问题,其中1<k≤n, 而且子问题与原问题性质相同,原问题的解可由这些子问题的解合并得出。
那末,这类问题可以用分治法求解。
分治法的核心技术1)子问题的划分技术.2)递归技术。
反复使用分治策略将这些子问题分成更小的同类型子问题,直至产生出不用进一步细分就可求解的子问题。
3)合并技术.(2)MaxMin算法分析问题:在含有n个不同元素的集合中同时找出它的最大和最小元素。
贪心算法实验报告
一、实验目的通过本次实验,使学生对贪心算法的概念、基本要素、设计步骤和策略有更深入的理解,掌握贪心算法的原理和应用,并能够运用贪心算法解决实际问题。
二、实验内容本次实验主要涉及以下两个问题:1. 使用贪心算法解决单起点最短路径问题;2. 使用贪心算法解决小船过河问题。
三、实验原理1. 贪心算法贪心算法(又称贪婪算法)是一种在每一步选择中都采取当前最优的选择,从而希望导致结果是全局最优的算法。
贪心算法在每一步只考虑当前的最优解,不保证最终结果是最优的,但很多情况下可以得到最优解。
2. 单起点最短路径问题单起点最短路径问题是指在一个有向无环图中,从某个顶点出发,找到到达其他所有顶点的最短路径。
3. 小船过河问题小船过河问题是指一群人需要划船过河,船只能容纳两个人,过河后需要一人将船开回,问最少需要多久让所有人过河。
四、实验步骤及说明1. 创建图结构,包括顶点数组和边信息。
2. 使用Dijkstra算法求解单起点最短路径问题,得到最短路径和前驱顶点。
3. 使用贪心算法找到两点之间的最短距离,并更新距离和前驱顶点信息。
4. 遍历所有顶点,找到未纳入已找到点集合的距离最小的顶点,并更新其距离和前驱顶点。
5. 最终输出从源顶点到达其余所有点的最短路径。
6. 使用贪心算法解决小船过河问题,按照以下步骤进行:(1)计算所有人过河所需的总时间;(2)计算每次划船往返所需时间;(3)计算剩余人数;(4)重复(2)和(3)步骤,直到所有人过河。
五、实验结果与分析1. 单起点最短路径问题实验中,我们选取了有向无环图G,其中包含6个顶点和8条边。
使用贪心算法和Dijkstra算法求解单起点最短路径问题,得到的实验结果如下:- 贪心算法求解单起点最短路径问题的时间复杂度为O(V^2),其中V为顶点数;- Dijkstra算法求解单起点最短路径问题的时间复杂度为O(V^2),其中V为顶点数。
2. 小船过河问题实验中,我们选取了一群人数为10的人过河,船每次只能容纳2人。
贪心算法实验报告(C语言)
实验2、《贪心算法实验》一、实验目的1. 了解贪心算法思想2. 掌握贪心法典型问题,如背包问题、作业调度问题等。
二、实验内容1. 编写一个简单的程序,实现单源最短路径问题。
2. 编写一段程序,实现找零。
【问题描述】当前有面值分别为2角5分,1角,5分,1分的硬币,请给出找n分钱的最佳方案(要求找出的硬币数目最少)。
3. 编写程序实现多机调度问题【问题描述】要求给出一种作业调度方案,使所给的n个作业在尽可能短的时间内由m 台机器加工处理完成。
约定,每个作业均可在任何一台机器上加工处理,但未完工前不允许中断处理。
作业不能拆分成更小的子作业。
三、算法思想分析1.初始化将源点设计为红点集,其余点设计为蓝点,重复选择蓝点集中与源点路径最短的点加入红点集,更新剩余的蓝点集路径,直至蓝点集为空或者只剩下没有连通的点,那么源点到其余所有点的最短路径就出来了。
2.找零问题是典型的贪心问题,但是并不代表所有的找零都能用贪心算法找到最优解。
只有满足贪心选择性质的找零才能找到最优解,本题满足贪心选择性质,直接先一直选面值最大的硬币,再一次减小即可。
3.先对作业按时长进行重排序,再依次找目前用时最短的机器安排工作并加上对应时长,最后总时长为机器中用时最长的那个时长。
四、实验过程分析1.单源最短路径的算法思想并不难,但是在实际编码过程中还是有很多小问题需要注意,首先,一定要新建数组存储路径变化,因为后面计算路径时会用到原数组,如果直接在原数组上更改后面就找不到原数据了,那么就会出现偏差。
其次就是建议先写个伪代码,判断的if-else语句比较多,容易搞混,在代码中一定要及时备注,某些代码的功能是什么,不然再次看代码时需要思考很久甚至忘记。
2.找零问题直接用while循环或者不断取余取模即可解决。
3.作业调度问题大致分为三步,一是排序,二是不断找最短时长的机器安排作业,三是找最长时间为作业完成时间。
五、算法源代码及用户屏幕1.(1)算法源码/**********************单源最短路径问题。
实验三贪心算法
实验三:贪心算法一、实验目的(1)理解贪心算法的基本思想;(2)熟悉多机调度问题的算法;(3)初步掌握贪心算法的应用。
二、实验环境微型计算机,WindowXP , Visual C++6.0三、实验内容要求给出一种作业调度方案,使所给的n个作业在尽可能短的时间内由m台机器加工处理完成。
约定每个作业均可在任何一台机器上加工处理,但未完工前不允许中断处理。
作业不能拆分成更小的子作业。
四、实验结果五、源代码#include <stdio.h>#define M 100void main(){int i,j,k,temp,m,n;int t[M]={2,14,4,16,6,5,3},p[M]={1,2,3,4,5,6,7},s[M],d[M]={0};m=3;n=7;for(i=0;i<7;i++)for(j=0;j<7-i;j++)if(t[j]<t[j+1]) //排序使t[]由大到小{temp=t[j];t[j]=t[j+1];t[j+1]=temp;temp=p[j]; //p[]始终和t[]一一对应p[j]=p[j+1];p[j+1]=temp;}for(i=0;i<m;i++) //求时间。
{s[i]=p[i];d[i]=t[i];}for(k=0;k<m;k++)printf(" %d",d[k]);printf("\n");for(i=m;i<n;i++){for(k=0;k<m-1;k++) //求最小。
{temp=d[k];if(temp>d[k+1]){temp=d[k+1];j=k+1;}}printf("这是最小下标的:%d\n",j);printf("最小的值:%d\n",temp);for(k=0;k<m;k++)printf(" %d",d[k]);printf("\n");//j=temp;s[j]=s[j]+p[i];d[j]=d[j]+t[i];}printf("\n");for(k=0;k<7;k++)printf(" %d",t[k]);printf("\n");for(k=0;k<7;k++)printf(" %d",p[k]);printf("\n");for(k=0;k<m;k++)printf(" %d",s[k]);printf("\n");for(k=0;k<m;k++)printf(" %d",d[k]);printf("\n");}。
3汽车加油问题实验报告
#include<iostream.h>int add_station(int n,int k,int a[],int A[]) //到达目的站时所需的最少加油站次数{int i,s = 0;for(i=0;i<=k;i++){ if(a[i+1]>n) {cout<<"No Solution"<<endl;return 0;break;}else{s+=a[i];if(s+a[i+1] < n) A[i] = 0;else {A[i] = 1;s =0;}}}return 1;}int main(){int i,k,n,t,s=0;cout<<"请输入汽车一次加油可行驶的最大距离:";cin>>n;cout<<"请输入旅途中的加油站数目:";cin>>k;int *a = new int [k+1+1];int *A = new int [k+1+1];a[0] = 0;cout<<"请输入各个站点的距离(以空格分隔)共"<<k+1<<"段:/n";for (i=1;i<=k+1;i++)cin>>a[i];for(i=0;i<k+1;i++)A[i] = 0;cout<<"输出最少的加油次数:/n";t = add_station( n, k, a, A);if(t ==0) return 0;else{for(i=0;i<k+1;i++)s+= A[i] ;cout<<s<<endl;}}一、实验名称:用贪心算法、回溯算法、动态规划等解决汽车加油次数最少问题。
二、实验目的:课程设计是《计算机算法与设计》课程不可缺少的重要实践性环节。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验3 贪心算法和回溯法
一、实验目的
1. 理解最小生成树算法——Prim算法和Kruskal算法的基本思想,学会编程实现这两种算法;
2. 理解并查集的特点与适用环境,学会使用并查集解决常见的问题;
3. 理解单源最短路径算法——Dijkstra算法的基本思想,学会编程实现Dijkstra算法;
4. 理解回溯法的基本思想,学会使用回溯法解决常见的问题。
二、实验内容
1. 编程实现Prim算法。
输入:顶点编号及边权重。
例:
0 1 10
0 2 15
1 2 50
输出:最小生成树。
例:
0 1 10
0 2 15
2. 在某个城市里住着n个人,现在给定关于这n个人的m条信息(即某2个人认识)。
假设所有认识的人一定属于同一个单位,请计算该城市最多有多少
单位?
输入:第1行的第1个值表示总人数,第2个值表示总信息数;第2行开始为具体的认识关系信息。
例:
10 4
2 3
4 5
4 8
5 8
输出:单位个数。
例:
7
3. 编程实现Kruskal算法。
输入:顶点编号及边权重。
例:0 1 10
0 2 15
1 2 50
输出:最小生成树。
例:
0 1 10
0 2 15
4. 编程实现Dijkstra算法。
输入:第1行第1个值表示顶点个数,第2个值表示边个数;第2行开始为边权重。
例:
5 7
0 1 10
0 3 30
0 4 100
1 2 50
2 4 10
3 2 20
3 4 60
输出:顶点0到每一个顶点的最短路径长度。
例:
0 10 50 30 60
5. 使用回溯法求解N皇后问题。
输入:皇后的个数。
例:
4
输出:每一个方案及总方案数。
例:0 1 0 0
0 0 0 2
3 0 0 0
0 0 4 0
----------------
0 0 1 0
2 0 0 0
0 0 0 3
0 4 0 0
----------------
总方案数为2。
6. 使用回溯法求解0-1背包问题。
输入:两个一维数组分别存储每一种物品的价值和重量,以及一个整数表示背包的总重量。
例:价值数组v[] = {6,3,6,5,4},重量数组w[] = {2,2,4,6,5},背包重量C=10。
输出:背包的最大总价值。
例:
最大总价值=15.。