浅谈高中阶段变力做功的几种求法
求解变力做功的六种常见方法剖析
ʏ李鹏飞公式W =F l c o s α只适用于恒力做功的计算,若遇到的是变力做功问题该怎样计算呢?下面我们就结合例题来剖析求解变力做功的六种常见方法,供同学们参考㊂方法一:等效替代法若通过转换研究对象能找到一个与待求变力做的功相同的恒力,则可以利用公式W =F l c o s α计算出该恒力做的功,间接求得变力做的功㊂这种将变力做功转换成恒力做功的求解方法叫等效替代法㊂例1 如图1所示,某人用跨过定滑轮的细绳以恒力F 拉着放在水平面上的滑块,使其沿着水平面由A 点前进距离l 后到达B 点㊂已知滑块在A ㊁B 两点时,细绳与水平方向间的夹角分别为α和β,滑轮到滑块的高度为h ,不计细绳与滑轮之间的摩擦和细绳的重力㊂求在这一过程中细绳的拉力对滑块所做的功㊂图1细绳对滑块的拉力大小始终等于F ,但方向在时刻改变,属于变力做功问题,不能直接利用W =F l c o s α进行计算㊂实际上,恒力F 对细绳末端所做的功等效于细绳的拉力对滑块所做的功㊂在细绳与水平面间的夹角由α变到β的过程中,恒力F 作用的细绳末端移动的位移Δl =h s i n α-h s i n β=h 1s i n α-1s i n β(),因此恒力F 对细绳末端所做的功W F =F ㊃Δl =F h 1s i n α-1s i n β(),即细绳的拉力对滑块所做的功W =W F =F h1s i n α-1s i n β()㊂方法二:平均力法若物体受到的力方向不变,而大小随着位移呈线性变化,则可以先求出力的平均值F =F 1+F 22(F 1和F 2分别为物体在研究过程初㊁末状态下所受的力),认为物体受到的是一个大小为 F 的恒力作用,再利用公式W = F l c o s α求解变力做的功㊂例2 如图2所示,轻弹簧的一端与竖直墙壁连接,另一端与一质量为m 的物块相连,物块位于光滑水平面上,已知弹簧的劲度系数为k ,开始时弹簧处于自然状态㊂用水平向右的拉力F 缓慢拉物块,使物块在弹性限度范围内前进距离x 0,求在这一过程中拉力F 对物块所做的功㊂图2在物块缓慢运动的过程中,拉力F 的方向不变,大小始终与弹簧的弹力等大反向,与位移x 满足关系式F =k x ,即从零开始随位移均匀增大,因此在物块前进距离x 0的过程中,拉力F 的平均值 F =0+k x 02=12k x 0,拉力F 对物块所做的功W = F x 0=12k x 20㊂方法三:F -x 图像法当力F 与位移x 同向时,计算功的公式可表示为W =F x ,因此在F -x 图像中,图像与x 轴所围成的 面积 就表示力F 在位移x 上所做的功㊂ 面积 位于x 轴上方,说明力F 做正功; 面积 位于x 轴下方,说明力F 做负功㊂53物理部分㊃经典题突破方法高一使用 2022年4月Copyright ©博看网. All Rights Reserved.例3 如图3所示,一个正方形木块漂浮在一个面积很大的水池中,水深为H ,木块边长为a ,质量为m ,密度为水的一半㊂开始时木块静止,有一半没入水中㊂现用力F 将木块压到池底,不计摩擦㊂求力F 在将木块从初始状态刚好压到池底的过程中,力F 对木块所做的功㊂图3将木块从初始状态缓慢地压到刚好完全没入水中的过程中,力F 与木块下降的位移x 成正比,木块下降位移x =a2时,力F 最大,且F m a x =m g ,之后力F 始终等于F m a x ㊂作出F -x 图像如图4所示,则图中阴影部分的面积在数值上等于力F 对木块所做的功,即W =m g (H -a )+H -a2()2=m gH -3m g a4㊂图4方法四:微元法若物体在运动过程中所受的变力始终与速度方向在同一条直线上或成某一固定角度,则可以将运动过程分成无数个小段,在每一个小段上都可以认为物体受到的力是恒力,物体在整个运动过程中的位移等于运动轨迹的长度,则力在各个小段上所做功的代数和即为变力在整个运动过程中所做的功㊂图5例4 以前的人们经常采用如图5所示的 驴拉磨 方式把粮食加工成粗面来食用㊂假设某次采用 驴拉磨 方式进行粮食加工的过程中,驴对磨的拉力大小始终为500N ,驴做圆周运动的半径为1.5m ,则在驴拉磨转动一周的过程中,拉力所做的功为( )㊂A .0 B .500JC .750JD .1500πJ在驴拉磨转动一周的过程中,拉力F 的大小不变,方向时刻改变,但总与速度的方向相同㊂将转动的一周分割成无数个小段,则每一个小段对应的位移Δs 1㊁Δs 2㊁Δs 3㊁ ㊁Δs n 都可认为与拉力F 同向,因此在驴拉磨转动一周的过程中,力F 所做的功等于恒力F 在各个小段上所做功的代数和,即W F =F ㊃Δs 1+F ㊃Δs 2+F ㊃Δs 3+ +F ㊃Δs n =F (Δs 1+Δs 2+Δs 3+ +Δs n )=F ㊃2πR =1500πJ ㊂答案:D方法五:动能定理法若物体的运动情况较为复杂,但是物体在初㊁末状态下的动能,以及除待求变力所做的功外其他力所做的功都可以比较容易地求出,则可以利用动能定理来求解这个变力所做的功㊂图6例5 如图6所示,一个半径为R 的半圆形轨道固定在竖直平面内,轨道两端等高;质量为m 的质点自轨道左端P 点由静止开始下滑,滑到最低点Q 时,对轨道的压力大小为2m g ,重力加速度为g ㊂在质点自P 点滑到Q 点的过程中,克服摩擦力所做的功为( )㊂A .14m g R B .13m g R C .12m g R D .π4m gR 在质点自P 点滑到Q 点的过程中,质点受到的滑动摩擦力的大小和方向都在变化,属于变力做功问题㊂设此过程中质点克服摩擦力所做的功为W f ,根据动能定理得m gR -W f =12m v 2Q -0;根据牛顿第三定律可知,质点在Q 点受到轨道63 物理部分㊃经典题突破方法 高一使用 2022年4月Copyright ©博看网. All Rights Reserved.的支持力大小N =2m g ;质点运动到Q 点时,根据牛顿第二定律得N -m g =m v 2QR㊂联立以上三式解得W f =12m g R ㊂答案:C方法六:机械能守恒定律法若物体只受重力和弹力作用或只有重力和弹力做功,且重力和弹力中有一个力是变力,则可以利用机械能守恒定律来求解这个变力所做的功㊂图7例6 如图7所示,一根金属链条的总长为l ,置于足够高的光滑水平桌面上,链条下垂部分的长度为a ㊂某时刻链条受到微小扰动由静止开始下滑,在链条由静止开始下滑到整根链条刚好离开桌面的过程中,重力所做的功为多少?链条在下滑的过程中,下垂部分不断增长,质量不断增大,即这部分链条的重力是变力,整根链条的运动是在该变力作用下的运动,属于变力做功问题㊂取桌面为零重力势能参考平面,设整根链条的质量为m ,初始状态下链条下垂部分的质量为m 0,则m 0=al m ㊂初始状态下,整根链条的机械能E 1=0-m 0g ㊃a 2=-m g a22l;整根链条刚好离开桌面时,整根链条的机械能E 2=W 重-m g ㊃l2㊂根据机械能守恒定律得E 1=E 2,解得W 重=m g (l 2-a 2)2l㊂ 图81.如图8所示,摆球质量为m ,悬绳的长度为L ,把悬绳拉到与悬点O 处于同一水平线上的A 点后放手㊂在摆球从A 点运动到最低点B 的过程中,设空气阻力F 阻的大小保持不变,则下列说法中正确的是( )㊂A .重力做功为m g L B .悬绳的拉力做功为12m g πL C .空气阻力F 阻做功为-m g L D .空气阻力F 阻做功为-12πF 阻L 2.用大锤将一木桩打入泥土里,木桩长为L ,大锤第一次击桩时使木桩从地面钻入泥土的深度为L5,如果木桩受到泥土的阻力远大于木桩的重力,且与木桩钻入泥土的深度成正比,那么大锤打击木桩多少次后木桩全部钻入泥土中图93.如图9所示,质量为m 的小球用长度为L 的轻质细线悬于O 点,与O 点处于同一水平线上的P 点处有一个光滑的细钉,已知O ㊁P 两点间的水平距离为L2㊂在A 点给小球一个水平向左的初速度v 0,发现小球恰能到达与P 点在同一竖直线上的最高点B ㊂(1)小球到达B 点时的速率为多大(2)若初速度v 0=3g L ,则在小球从A 点运动到B 点的过程中克服空气阻力做了多少功图104.如图10所示,质量m =2k g 的物体,从光滑斜面的顶端A 点以初速度v 0=5m /s 滑下,在D 点与弹簧接触并将弹簧压缩到B点时的速度为零㊂已知A ㊁B 两点间的竖直高度h =5m ,取重力加速度g =10m /s2,在物体从A 点运动到B 点的过程中,弹簧的弹力对物体所做的功为多少参考答案:1.A D 2.25次㊂3.(1)v B =g L 2;(2)W 克=114m g L ㊂4.W 弹=-125J㊂作者单位:山东省惠民县第一中学(责任编辑 张 巧)73物理部分㊃经典题突破方法高一使用 2022年4月Copyright ©博看网. All Rights Reserved.。
有关变力做功问题的求解
有关变力做功问题的求解在整个高中物理教学和学习中,力学问题是高中物理学习的基础,是重点,也是难点。
而在高中阶段求变力做功问题,既是学生学习和掌握的难点,也是教师教学的难点。
那么变力做功的情况有那些?又如何来求解呢?下面就根据本人在高中物理教学中一点所得进行简单的总结。
1,运用等值法求变力做功求某个过程中的变力做功,可以通过等效法把求该变力做功转换成求与该变力做功相同的恒力的功,即该变力的功和某一恒力的功相等,则可以同过计算该恒力的功,求出该变力的功。
等效转换的关键是分析清楚该变力做功到底与哪个恒力的功是相同的。
一般在某一恒力F 通过轻绳或轻杆在不受任何摩擦的情况下给某一物体的变力做功就等于该恒力做的功。
此时可用功定义式W = cos Fs 求恒力的功,从而可知该变力的功。
这里要特别提醒的是,这种方法一般只用于求解大小恒定方向变化的变力做功问题。
例1、如图1所示,定滑轮至滑块的高度为h ,已知细绳的拉力为恒定F ,滑块沿水平面由A 点前进s 米至B 点,滑块在初、末位置时细绳与水平方向夹角分别为α和β。
求滑块由A 点运动到B 点过程中,绳的拉力对滑块所做的功。
分析:设绳对物体的拉力为T ,显然人对绳的拉力F 大小也等于T 。
T 在对物体做功的过程中大小不变,但其方向在时刻改变,因此该问题是变力做功的问题。
但是在滑轮的质量以及滑轮与绳间的摩擦不计的情况下,人对绳做的功就等于绳的拉力对物体做的功。
而拉力F 的大小和方向都不变,所以F 做的功可以用公式W=FScosa 直接计算。
解:由图可知,在绳与水平面的夹角由α变到β的过程中拉力F 的作用点位移大小为:△S=S 1-S 2=h/sin α-h/sin β所以:W T =W F =F △S=Fh(1/ sin α-1/ sin β)2,运用微元法求解变力做功当物体在变力的作用下作曲线运动时,若力的方向与物体运动的切线方向之间的夹角或者说力的方向与速度方向的夹角不变,且力与速度的方向同步变化,可用微元法将曲线分成无限个小元段,每一小元段可以认为恒力做功,总功即为各个小元段做功的代数和。
如何求变力做功
F 图1如何求变力做功在高中阶段求变力做功的问题是很常见的。
既可以运用公式W=FScos α来求解,又可以运用动能定理、功能原理等来求解。
对于具体问题要具体分析。
为此笔者在教学中总结了以下几种方法。
一、运用公式W=FScos α求解在不知物体初、末位置的速度时,就无法运用动能定理或功能原理求解,只有将变力转化为恒力,依据功的定义式W=FScos α求解。
例1 如图1所示,某个力F 作用于半径为R 的圆盘, 力F 的大小不变,但方向始终与过力的作用点的圆盘的切线 一致,则转动圆盘一周该力做多少功。
分析与解 在转动转盘一周过程中,力F 的方向时刻变化,但每一瞬时力F 总是与该瞬时的速度同向(切线方向),既F 在每瞬时与转盘转过的极小位移∆s 同向。
这样,无数瞬时的极小位移∆s 1,∆s 2,∆s 3…∆s n 都与当时的F 方向同向。
因而在转动一周过程中,力F 做的功应等于在各极小位移段所做功的代数和。
即W=F ∆s 1+F ∆s 2+…F ∆s n= F(∆s 1+∆s 2+∆s 3+…∆s n )=F 2πR当变力始终与速度在同一直线上或成某一固定角度时可把曲线运动或往复运动的路线拉直考虑,在各小段位移上将变力转化为恒力用W=FScos α计算功,而且变力所做功等于变力在各小段所做功之和。
再者,若问题中的变力与位移成线形关系,即F=ks+b ,其F-s 图象如图2所示。
则图中阴影部分的面积大小在数值上等于变力所做功的大小,即W=)(21221s s F F -+。
也就是说,变力F 由F 1线形地变化到F 2的过程中所做的功等于该过程的平均力221F F F +=-所做的功。
二、用动能定理求解动能定理告诉我们,外力对物体所做的功等于物体动能的变化,即W 外 =∆E K ,W 外系指物体受到的所有外力对物体所做功的代数和,∆E K 是物体动能的变化量。
例2 如图3所示,质量为m 的物块在半径为R 的半球形容器中从上部边缘A 由静止起下滑,滑到最底点B时对容器底部的压力为2mg 。
变力做功的解题方法
变力做功的解题方法在中学阶段,功的计算公式只适用于恒力做功的情况,对于一些变力做功的情形,往往是不能直接应用此公式来直接计算。
如何来求解变力所做的功呢?通常有以下几种方法。
一、力的平均值法通过求力的平均值,然后求变力的平均力做功的方法,一般是用于力的大小与位移成一次函数关系的直线运动中。
1.如图所示,劲度系数为的轻质弹簧一端固定在墙上,另一端连接一质量为的滑块,静止在光滑水平面上O点处,现将滑块从位置O拉到最大位移处由静止释放,滑块向左运动了s米().求释放滑块后弹簧弹力所做的功。
二、将变力处理成恒力将变力处理成恒力的方法,一般只在力的大小一直不变,而力的方向遵循某种规律的时候才用。
2.如图所示,有一台小型石磨,某人用大小恒为F,方向始终与磨杆垂直的力推磨。
假设施力点到固定转轴的距离为L,在使磨转动一周的过程中,推力做了多少功?3.如图所示,固定的光滑竖直杆上套着一个滑块,用轻绳系着滑块绕过光滑的定滑轮,以大小恒定的拉力F拉绳,使滑块从A点起由静止开始上升。
若从A点上升至B点和从B点上升至C点的过程中拉力F做的功分别为W1和W2,滑块在BC两上点的动能分别为E kB和E kC,图中AB=BC,则一定有()A.W1>W2 B.W1<W2C.E kB>E kC D.E kB<E kC三、图像法表示力随位移变化规律的图象叫做示功图。
其纵坐标轴表示作用在物体上的力F,横坐标轴表示力的作用点在力的方向上的位移s。
图象、力轴、位移和由位移决定的与力轴平行的直线所围成的面积在数值上等于变力所做的功。
4.如图所示,一个劲度系数为的轻弹簧,一端固定在墙壁上,在另一端沿弹簧的轴线施一水平力将弹簧拉长,求在弹簧由原长开始到伸长量为x1过程中拉力所做的功。
如果继续拉弹簧,在弹簧的伸长量由x1增大到x2的过程中,拉力又做了多少功?5.用铁锤将一枚铁钉钉入木块中,设木块对铁钉的阻力与铁钉进入木块内的深度成正比,在铁锤钉第一次时,能把铁钉钉入木块内的深度为1cm,问钉第二次时,能钉入的深度为多少?(设铁锤每次做功相等)四、功率法当机车以恒定功率工作时,在时间内,牵引力做的功。
变力做功的六种常见计算方法
变力做功的六种常见计算方法s,但是学生在应用在高中阶段,力做功的计算公式是W=FScoα时,只会计算恒力的功,对于变力的功,高中学生是不会用的。
下面介绍六种常用的计算变力做功的方法,希望对同学们有所启发。
方法一:用动能定理求若物体的运动过程很复杂,但是如果它的初、末动能很容易得出,而且,除了所求的力的功以外,其他的力的功很好求,可选用此法。
例题1:如图所示。
质量为m的物体,用细绳经过光滑的小孔牵引在光滑水平面上做匀速圆周运动,拉力为某个数值F时,转动半径为R;拉力逐渐减小到0.25F时,物体仍然做匀速圆周运动,半径为2R,求外力对物体所做的功的大小。
解析:当拉力为F时,小球做匀速圆周运动,F提供向心力,则F=mv12/2R。
此题中,当半径由R2/R;当拉力为0.25F时,0.25F=mv2变为2R的过程中,拉力F为变力,由F变为2F,我们可以由动能定2=0.25RF。
理,求2—0.5mv2得外力对物体所做的功的大小W=0.5mv1方法二:用功率的定义式求若变力做功的功率和做功时间是已知的,则可以由W=Pt来求解变力的功。
例题2:质量为m=500吨的机车,以恒定的功率从静止出发,经过时间t=5min在水平路面上行使了s=2.25km,速度达到最大值v=54km/h。
假设机车受到的阻力为恒力。
求机车在运动中受到的阻力大小。
解析:机车先做加速度减小的变加速直线运动,再做匀速直线运动。
所以牵引力F先减小,最后,F恒定,而且跟阻力f平衡,此时有功率P=Fv=fv。
在变加速直线运动阶段,牵引力是变力,它在此阶段所作的功可以由w=Pt来求。
由动能定理,Pt—fs=0.5mv2—0,把P=Fv=fv代入得,阻力f=25000N。
方法三:平均力法如果变力的变化是均匀的(力随位移线性变化),而且方向不变时,可以把变力的平均值求出后,将其当作恒力代入定义式即可。
例题3:如图所示。
轻弹簧一端与竖直墙壁连接,另一端与一质量为m的木块相连,放在光滑的水平面上,弹簧的劲度系数为k,开始时弹簧处于自然状态。
求变力做功的8种思路
求变力做功的8种思路张家港市塘桥高级中学施 坚功是中学物理中的重要概念,它体现了力对物体的作用在空间上的累积过程.物体受到力的作用,并且在力的方向上发生一段位移,就叫做力对物体做了功. αcos Fs W =,式中F 应是恒力.但实际问题中经常遇到变力,那变力做功如何求解呢?下面结合典型问题,指明求变力做功的八种思路.思路1、微元法:若参与做功的变力,其仅力的大小不变,而方向改变,且力与位移的夹角确定不变,则可通过微分累积W N W ∆⋅=求解.【例1】 在一粗糙的水平面上,动摩擦因素为μ,一小滑块质量为m 在某小孩手的水平拉力的作用下做匀速圆周运动,则一小滑块转动一周的过程中,水平拉力、摩擦力分别做功多少?[解析]:手的水平拉力始终在圆周的切线方向上,故可以把圆周均匀分割成N 段(N 足够大),每段位移为s ∆,则每一小段s ∆上都可以认为水平拉力(滑动摩擦力)方向不变且与位移s ∆方向一致(相反),且mg f F μ==.每一小段上拉力做功s F W∆⋅=∆,所以,Rmg R F s N F W N W W f F πμπ22⋅=⋅=∆⋅⋅=∆⋅==,即:水平拉力、摩擦力分别做功:R mg πμ2,R mg πμ2-.点评:手的拉力和摩擦力是变力,但经微分后将变力转化为恒力,再用公式求解.思路2、均值法:若参与做功的变力,其仅力的大小改变,而方向不变,且大小随位移线性变化,则可通过求出变力的平均值等效代入公式θscos F W =求解.【例2】 用铁锤将一铁钉击入木块,设木块对铁钉的阻力与铁钉进入木块内的深度成正比.在铁锤击第一次时,能把铁钉击入木块内1cm .问击第二次时,能击入多少深度?(设铁锤每次做功相等)[解析]:此题可根据阻力与深度成正比这一特点,将变力求功转化为求平均阻力的功,进行等效替代.铁锤每次做功都用来克服铁钉阻力做的功,但摩擦阻力不是恒力,其大小与深度成正比,kx f F =-=,可用平均阻力来代替. 如图1-1,第一次击入深度为1x ,平均阻力1121kx F =,做功为2111121kx x F W ==.第二次击入深度为1x 到2x ,平均阻力)(21212x x k F +=,位移为12x x -,做功为)(21)(21221222x x k x x F W -=-=.两次做功相等:21W W =.得:cm x x 41.1212==,即:cm x x x 41.012=-=∆.点评:对于线形变化的变力,可以取其平均值,将变力转化为恒力,进而求该力的功. 思路3、图象法(示功图求解):若参与做功的变力,方向与位移方向始终一致而大小随时变化,我们可作出该力随位移变化的图象.如图1-2,那么所示的阴影面积,即为变力做的功.【例3】图所示,做直线运动的物体所受的合外力与物体运动距离的对应关系.已知物体的质量为kg 4.10.开始处于静止状态,求s 12末物体的速度多大?[解析]:物体所受的合外力是变力.根据s F -图中曲线下所围的“面积”表示力的功的物理意义,可求得)()()(总J W 52612426622=-⨯+-⨯+⨯=,再由动能定理求得102==mW v 总)/(s m点评:根据示功图中曲线所围的“面积”表示功的物理意义,直接求变力的功.例2也可以利用图象法,类似匀变速直线运动的t v -图象而作出x F -图象.[解析]:因为阻力kx F =,以F 为纵坐标,F 方向上的位移x 为横坐标,作出x F -图象(图1-4),曲线上面积的值等于F 对铁钉做的功.由于两次做功相等,故有:21S S =(面积),即:))((2121121221x x x x k kx -+=,即:cm x x x 41.012=-=∆.思路4、t P Pt W==公式法:已知恒定功率或平均功率的条件下,机车等的变力做功转化为功率求解,化难为易.【例4】 质量为M 的汽车,沿平直的公路加速行驶,当汽车的速度为1v 时,立即以不变的功率行驶,经过距离s ,速度达到最大值2v .设汽车行驶过程中受到的阻力f 始终不变.求汽车的速度由1v 增至2v 的过程中所经历的时间及牵引力做的功.[解析]:汽车以恒定功率运动,此过程中的牵引力是变力.当加速度减小到0时,即牵引力等于阻力时,速度达到最大值.由于汽车的功率恒定,故变力(牵引力)的功可用Pt W=计算.对汽车加速过程中由动能定理有22122Mv Mv fs Pt -=-又2P f = 联立得:221222)(v s P v v M t +-=22122)(v Ps v v M Pt W +-==点评:运用Pt W =,将恒定功率作用下的机械做功转化为易确定的因素,另辟蹊径. 思路5、动能定理法:若参与做功的变力,方向与大小都变化,导致无法直接由αcos Fs W =求变力F 做的功.这时可利用动能定理:αscos F W 合总合=∆==k E W ;但此法只能求合力做的功.【例5】 如图所示,质量为m 的物体被细绳牵引着在光滑水平面上做匀速圆周运动,O 为一光滑孔,当拉力为F 时,转动半径为R ;当拉力为8F 时,物体仍做匀速圆周运动,其转动半径为2R ,在此过程中,外力对物体做的功为: A .27FRB 、47FR C 、23FR D 、FR 4 解析:该题显然是一个变力问题,但通常有学生利用平均力法求解,即θscos F W =.此题中绳上拉力需提供向心力,方向时刻改变,不能利用平均力法求解.则可以从功能关系入手,而且绳上拉力是合外力,则动能定理:20212121mv mv W -=合,又圆周运动:Rv mF 02=;2821R v m F =,结合以上三式,得:FR FR FR mv mv W 2321221212021=-=-=合.故选C .点评:对于物体的始末状态的动能是已知的,则在这种情境下的变力做功用动能定理显得方便简捷.思路6、功能关系法:能是物体做功的本领,功是能量转化的量度.因此,对于大小、方向都随时变化的变力F 所做的功,可以通过对物理过程的分析,从能量转化多少的角度来求解.【例6】 一质量为m 的小球,用长为L 的轻绳悬挂于O 点,小球在水平力F 作用下,从平衡位置P 点很缓慢地移到Q 点,如图所示,此时悬线与竖直方向夹角为θ,则拉力F 所做的功为:A .θcos mgLB .()θcos 1-mgLC .θsin FLD .[解析]:解物理题必须注意把握题中的关键词,比如此题中“很缓慢”三字,表明拉力F 所做的功并未增加物体的动能,根据题意恰恰是提高了势能,即:)cos 1(θ-=∆=mgl E W P F (或理解成据功能原理:F 的功增加了小球的机械能),B 正确.C 选项则是利用了恒力做功公式W=Fscos θ,但事实上F 不是恒力.如图,三球受T mg F 、、,且θmgtg F =,则在上拉过程中,↑↑F ,θ.C 选项不正确.故选B .点评:如果系统所受的外力和内力(除重力、弹力外)所做的功的代数和等于系统的机械能的增量,且这些力中有变力做功,机械能的增量易求,用功能关系(或功能原理)求解简便. 思路7、等效替代法:等效思想是物理教学中一种重要思维方法.当恒力与变力大小相等且在做功数值上相等情况下,可以用恒力替代变力求功.【例7】 如图所示,某人用大小不变的力F 拉着放在光滑水平面上的物体,开始时与物体相连接的绳与水平面间的夹角为α,经一段时间后,绳与水平面间的夹角为β,已知图中的高度为h ,求绳的拉力T 对物体做的功.(绳的质量、滑轮质量及绳与滑轮间的摩擦不计)[解析]:物体由初态运动到终点,所受的绳子拉力是变力(变方向),但在题设条件下,人的拉力F 对绳的端点做的功就等于绳的拉力T 对物体做的功.故可用恒力F 的功替代变力T 的功.绳端的位移大小为)sin 1sin 1(21βα-=-=∆h s s s 则:)sin 1sin 1(βα-=∆⋅==Fh s F W W F T点评:当恒力与变力大小相等且在做功数值上相等情况下,可以用恒力替代变力求功. 思路8、借助守恒定律求解:能量守恒定律、机械能守恒定律是物理学中极为重要的规律,为求功提供了另一条重要思路,尤其是变力做功问题.【例8】 如图所示,一根轻的刚性杆长为l 2,中点和右端各固定一个质量为m 的小球,左端O 为水平转轴.开始时杆静止在水平位置,释放后将向下摆动,求从开始释放到摆到竖直位置的过程中,杆对B 球做了多少功?[解析]:如果没有A 球,杆上只有B 球,摆到最低点B 球的速度为1v ,根据机械能守恒定律有.21212mv l mg =所以gl v 21= 现在杆上有A 、B 两球,设摆到最低点时B 球速度为2v ,则A 球速度为22v ,系统仍满足机械能守恒的条件,有22.22)2(21212v m mv mgl l mg +=+ 解出gl v 5242=B 球两次末动能之差就是轻杆对B 球做的功,即mgl mv mv W B 5221212122=-=杆对 点评:系统内只有重力和弹力做功,当弹力是变力时,求这个变力功可借助能量守恒定律(尤其是机械能守恒定律).小结:变力做功的求解对学生的思维鉴别力、跳跃性提出了较高的要求,采用平均力法、图象法、动能定理还是功能关系,必须对物理情景分析透彻,而后决定取舍.当然.有时方法不是单一的,如例2,而且适当地一题多解可以提高学生的思维深度和开阔性.图8。
求变力做功的六种方法
求变力做功的六种方法都匀市民族中学:王方喜在高中阶段求变力做功问题,既是学生学习和掌握的难点,也是教师教学的难点。
本文举例说明了在高中阶段求变力做功的常用方法,比如微元累积(求和)法、平均力等效法、功率的表达式PtW=、F-x图像、用动能定理、等效代换法等来求变力做功。
一、运用微元积累(求和)法求变力做功求変力做功还可以用微元累积法,把整个过程分成极短的很多段,在极短的每一段里,力可以看成是恒力,则可用功的公式求每一段元功,再求每一小段上做的元功的代数和。
由此可知,求摩擦力和阻力做功,我们可以用力乘以路程来计算。
用微元累积法的关键是如何选择恰当的微元,如何对微元作恰当的物理和数学处理,微元累积法对数学知识的要求比较高。
例1如图1-1所示,某人用力F转动半径为R的转盘,力F的大小不变,但方向始终与过力的作用点的转盘的切线一致,则转动转盘一周该力做多少功.图1-1【分析与解答】在转动转盘一周过程中,力F的方向时刻变化,但每一瞬时力F总是与该瞬时的速度同向(切线方向),即F在每瞬时与转盘转过的极小位移Δs同向.这样,无数瞬时的极小位移Δs1,Δs2,Δs3…Δsn都与当时的F方向同向.因而在转动一周过程中,力F做的功应等于在各极小位移段所做功的代数和.即W=FΔs1+FΔs2+…FΔsn=F(Δs1+Δs2+Δs3+…Δsn)=F2πR【总结】变力始终与速度在同一直线上或成某一固定角度时,可把曲线运动或往复运动的路线拉直考虑,在各小段位移上将变力转化为恒力用W=FLcosθ计算功,而且变力所做功应等于变力在各小段所做功之和。
【检测题1-1】如图1-2所示,有一台小型石磨,某人用大小恒为F、方向始终与磨杆垂直的力推磨,设施力点到固定转轴的距离为L,在使磨转动一周的过程中,推力做了多少功?图1-2 【检测题1-2】小明将篮球以10 m/s的初速度,与水平方向成30°角斜向上抛出,被篮球场内对面的小虎接到,小明的抛球点和小虎的接球点离地面的高度都为1.8 m.由于空气阻力的存在,篮球被小虎接到时的速度是6 m/s.已知篮球的质量m=0.6 kg,g取10 m/s2.求:(1)全过程中篮球克服空气阻力做的功;(2)如果空气阻力恒为5 N,篮球在空中飞行的路程.二、运用平均力等效法求变力做功当力的方向不变,而大小随位移线性..变化时(即F=kx+b),可先求出力的算术平均值221FFF+=,再把平均值当成恒力,用功的计算式求解。
关于变力做功的详细说明
变力做功的探讨功的计算,在高中物理中占有十分重要的地位,在高中物理中占有十分重要的地位,而高考中又经常涉及到此类问题,而高考中又经常涉及到此类问题,而高考中又经常涉及到此类问题,但由于高中阶段所学的功的计但由于高中阶段所学的功的计算公式a cos Fs W =只能用于恒力做功情况,对于变力做功或物体运动轨迹是曲线时,不能用a cos Fs W =来计算功的大小。
常见的方法有以下几种:微元法、平均力法、图象法、等值法和能量转化的办法。
一:微元法 一些变力一些变力((指大小不变指大小不变,,方向改变方向改变,,如滑动摩擦阻力如滑动摩擦阻力,,空气阻力空气阻力),),),在物体做曲线运动或往复运动过程中在物体做曲线运动或往复运动过程中在物体做曲线运动或往复运动过程中,,这些力虽然方向变这些力虽然方向变,,但每时每刻与速度反向但每时每刻与速度反向,,此时可化成恒力做功此时可化成恒力做功,,方法是分段考虑方法是分段考虑,,然后求和然后求和..老驴拉磨时拉力做功跟圆周运动时向心力做功是否一样?“微分”的方法,将运动轨迹细分为若干段,就可以将每一段可以看作直线,在这一过程中的变力当作恒力,以“恒定”代“变化”,以“直”代“曲”,再根据nnn s F s F s F Waaacos cos cos 222111+¼¼++=来求变力的功。
例题1:如图1,某人用大小不变的力F 转动半径为R 的圆盘,但力的方向始终与过力的作用点的转盘的切线一致,则转动转盘一周该力做的功。
解:在转动的过程中,力F 的方向上课变化,但每一瞬时力F 总是与该时刻的速度同向,那么F 在每一瞬时就与转盘转过的极小位移s D 同向,因此无数的瞬时的极小位移n ss s s D ¼¼D D D ,321,,,都与F 同向。
在转动的过程中,力F 做的功应等于在各极小位移段所做的功的代数和,有:FRs s s s F s F s F s F s F W nnp 2)(321321=D +¼¼+D +D +D =D +¼¼+D +D +D = 二等值法等值法是若某一变力的功和某一恒力的功相等,则可以通过计算该恒力的功,求出该变力的功。
几种求变力做功的常用方法
几种求变力做功的常用方法摘要:在高中阶段求变力做功问题,既是学生学习和掌握的难点,也是教师教学的难点。
本文举例说明在高中阶段求变力做功的常用方法,比如用等效转换、平均值及F-s图像、动能定理及功能关系、功率的表达式W=Pt、微元法、转换参考系等方法来求解变力做功。
关键词:変力功等效平均值图像动能定理功能关系功率微元法参考系对于功的定义式W=Fscosα,其中的F是恒力,适用于求恒力做功,其中的s是力F的作用点发生的位移,α是力F与位移s的夹角。
在高中阶段求变力做功问题,既是学生学习和掌握的难点,也是教师教学的难点。
求变力做功的方法很多,比如用等效转换、平均值及F-s图像、动能定理及功能关系、功率的表达式W=Pt、微元法、转换参考系等方法来求解变力做功。
一、等效转换法求某个过程中变力做的功,可以通过等效转换法把求该变力做功转换成求与该变力做功相同的恒力功,此时可用功定义式W=Fscosα求恒力的功,从而可知该变力的功。
等效转换的关键是分析清楚该变力做功到底与哪个恒力的功是相同的。
例1:如图所示,某人用恒定的力F拉动放在光滑水平面上的物体。
开始时与物体相连的轻绳和水平面间的夹角为α,当拉力F作用一段时间后,绳与水平面间的夹角为β。
已知图中的高度是h,绳与滑轮间的摩擦不计,求绳的拉力FT对物体所做的功。
解析:拉力FT在对物体做功的过程中大小不变,但方向时刻改变,所以这是个变力做功问题。
由题意可知,人对绳做的功等于拉力FT对物体做的功,且人对绳的拉力F是恒力,于是问题转化为求恒力做功。
由图可知,在绳与水平面的夹角由α变到β的过程中,拉力F的作用点的位移为:,所以绳对物体做功:。
二、平均力法及图像法1.如果一个过程中,若F是位移s的线性函数时,即F=ks+b时,可以用F的平均值F=(F1+F2)/2来代替F的作用效果来计算。
关键是先判断变力F与位移s是否成线性关系,然后求出该过程初状态的力F1和末状态的力F2,再求出平均力和位移,然后由W=Fscosα求其功。
高考物理:变力做功的求解方法!
高考物理:变力做功的求解方法!一、变力做功的计算方法1、用动能定理动能定理表达式为,其中是所有外力做功的代数和,△E k是物体动能的增量。
如果物体受到的除某个变力以外的其他力所做的功均能求出,那么用动能定理表达式就可以求出这个变力所做的功。
2、用功能原理系统内除重力和弹力以外的其他力对系统所做功的代数和等于该系统机械能的增量。
若在只有重力和弹力做功的系统内,则机械能守恒(即为机械能守恒定律)。
3、利用W=Pt求变力做功这是一种等效代换的思想,用W=Pt计算功时,必须满足变力的功率是一定的。
4、转化为恒力做功在某些情况下,通过等效变换可将变力做功转换成恒力做功,继而可以用求解。
5、用平均值当力的方向不变,而大小随位移做线性变化时,可先求出力的算术平均值,再把平均值当成恒力,用功的计算式求解。
6、微元法对于变力做功,我们不能直接用公式进行计算,但是可以把运动过程分成很多小段,每一小段内可认为F是恒力,用求出每一小段内力F所做的功,然后累加起来就得到整个过程中变力所做的功。
这种处理问题的方法称为微元法,其具有普遍的适用性。
在高中阶段主要用这种方法来解决大小不变、方向总与运动方向相同或相反的变力做功的问题。
二、摩擦力做功的特点1、静摩擦力做功的特点:A、静摩擦力可以做正功,也可以做负功,还可以不做功。
B、在静摩擦力做功的过程中,只有机械能的相互转移(静摩擦力起着传递机械能的作用),而没有机械能转化为其他形式的能。
C、相互摩擦的系统内,一对静摩擦力所做功的代数和总是等于零。
2、滑动摩擦力做功的特点:如图所示,顶端粗糙的小车,放在光滑的水平地面上,具有一定速度的小木块由小车左端滑上小车,当木块与小车相对静止时木块相对小车的位移为d,小车相对地面的位移为s,则滑动摩擦力F对木块做的功为W木=-F(d+s)①由动能定理得木块的动能增量为ΔE k木=-F(d+s)②滑动摩擦力对小车做的功为W车=Fs ③同理,小车动能增量为ΔE k车=Fs ④②④两式相加得ΔE k木+ΔE k车=-Fd ⑤⑤式表明木块和小车所组成系统的机械能的减少量等于滑动摩擦力与木块相对于小车位移的乘积,这部分能量转化为内能。
高中物理求变力做功几种常见的方法
教学信息新教师教学功的计算在中学物理中占有十分重要的地位,中学阶段所学的功的计算公式W=FScosa 只能用于恒力做功情况,对于变力做功的计算则没有一个固定公式可用,下面对变力做功问题进行归纳总结如下:1.等效法等效法即若某一变力的功和某一恒力的功相等,则可以通过计算该恒力的功,求出该变力的功。
而恒力做功又可以用W=FScosa 计算,从而使问题变得简单。
例:如图,定滑轮至滑块的高度为h ,已知细绳的拉力为F (恒定),滑块沿水平面由A 点前进S 至B 点,滑块在初、末位置时细绳与水平方向夹角分别为α和β。
求滑块由A点运动到B 点过程中,绳的拉力对滑块所做的功。
分析与解:设绳对物体的拉力为T ,显然人对绳的拉力F 等于T 。
T 在对物体做功的过程中大小虽然不变,但其方向时刻在改变,因此该问题是变力做功的问题。
但是在滑轮的质量以及滑轮与绳间的摩擦不计的情况下,人对绳做的功就等于绳的拉力对物体做的功。
而拉力F 的大小和方向都不变,所以F 做的功可以用公式W=FScosa 直接计算。
由图可知,在绳与水平面的夹角由α变到β的过程中,拉力F 的作用点的位移大小为:2.微元法当物体在变力的作用下作曲线运动时,若力的方向与物体运动的切线方向之间的夹角不变,且力与位移的方向同步变化,可用微元法将曲线分成无限个小元段,每一小元段可认为恒力做功,总功即为各个小元段做功的代数和。
例:如图所示,某力F=10N 作用于半径R=1m 的转盘的边缘上,力F 的大小保持不变,但方向始终保持与作用点的切线方向一致,则转动一周这个力F 做的总功应为:A 、0JB 、20πJC 、10JD 、20J 分析与解:把圆周分成无限个小元段,每个小元段可认为与力在同一直线上,故ΔW=F ΔS ,则转一周中各个小元段做功的代数和为W=F ×2πR=10×2πJ=20πJ ,故B 正确。
3.平均力法若参与做功的变力,其仅力的大小改变,而方向不变,且大小随位移线性变化,则可通过求出变力的平均值等效代入公式W 求解。
(完整)求解变力做功的十种方法
求解变力做功的十种方法功是高中物理的重要概念,对力做功的求解也是高考物理的重要考点,恒力的功可以用公式直接求解,但变力做功就不能直接求解了,需要通过一些特殊的方法,本文结合具体的例题,介绍十种解决变力做功的方法.一. 动能定理法例1. 一质量为m 的小球,用长为L 的轻绳悬挂于O 点,小球在水平力F 作用下,从平衡位置P 点很缓慢地移到Q 点,如图1所示,此时悬线与竖直方向夹角为θ,则拉力F 所做的功为:( )A :θcos mgLB :)cos 1(θ-mgL C.:θsi n FL D:θcos FL分析:在这一过程中,小球受到重力、拉力F 、和绳的弹力作用,只有重力和拉力做功,由于从平衡位置P 点很缓慢地移到Q 点.,小球的动能的增量为零。
那么就可以用重力做的功替代拉力做的功。
解:由动能定理可知:0=-G F W W )cos 1(θ-==mgL W W G F故B 答案正确。
小结:如果所研究的物体同时受几个力的作用,而这几个力中只有一个力是变力,其余均为恒力,且这些恒力所做的功和物体动能的变化量容易计算时,利用动能定理可以求变力做功是行之有效的。
二。
微元求和法例2. 如图2所示,某人用力F 转动半径为R 的转盘,力F 的大小不变,但方向始终与过力的作用点的转盘的切线一致,则转动转盘一周该力做多少功。
解:在转动转盘一周过程中,力F 的方向时刻变化,但每一瞬时力F 总是与该瞬时的速度同向(切线方向),即F 在每瞬时与转盘转过的极小位移∆∆∆s s s 123、、……∆s n 都与当时的F 方向同向,因而在转动一周过程中,力F做的功应等于在各极小位移段所做功的代数和,即:W F s F s F s F s F s s s s F Rn n =++++=++++=()()∆∆∆∆∆∆∆∆1231232……·π小结:变力始终与速度在同一直线上或成某一固定角度时,可化曲为直,把曲线运动或往复运动的路线拉直考虑,在各小段位移上将变力转化为恒力用W Fs =cos θ计算功,而且变力所做功应等于变力在各小段所做功之和。
7.2求变力做功的几种
解:
W=2fs
二,等效替代法:用恒力作功取代变力作功: 例3:如图所示,一物体(可视为质点)在通过滑 轮的绳子作用下沿水平面从A处运动到B处过程中 绳对物体做的功为多少?已知:绳的自由端施加 的力恒为F,在A处绳与水平面夹角为α,在B处绳 与水平面的夹角为β,滑轮与地面间距离为H
H
F
A B
解:由于绳对物体的拉力在水平方向为 变力,故不能用W=FS求解,但绳的自 由端拉力所做的功等于绳对物体做的 功,物体从A移到B时绳的自由端下降 的位移为: H H S= sin - sin 绳对物体做的功为: H H W=FS=F( - sin )
例8:如图所示,原来质量为m的小球用 长L的细线悬挂而静止在竖直位置.用 水平拉力F将小球缓慢地拉到细线与竖 直方向成θ角的位置的过程中,拉力F 做功为( )
A. FL cos B. FL sin
ቤተ መጻሕፍቲ ባይዱ
C.FL1 cos
D.mgL1 cos
图2
七,用功和能的关系求变力作功:
关闭油门后,汽车的运动,由动量定理得:
- Ff t2 0 mvm
2 mvm mvm 5000 242 t2 s 48s Ff P 601000
则汽车运动的时间为:t=t1+t2=50s+48s=98s
六、运用动能定理求变力做功 动能定理:合外力对物体做功等于物 体的动能的改变,或外力对物体做功 的代数和等于物体动能的改变。 已知一个物体在某个过程中的初动能 和末动能,且可以求出该过程其它力 做功,则可以用动能定理求该过程中 変力做功。
F
解:W=
( F1 F2 ) 0 KS S= 2 2
S= 1 KS
高中物理:变力做功怎么求?
高中物理:变力做功怎么求?功的求法是高中物理教学的重点和难点之一,教材上的公式:,只适用于恒力做功的情况,对于某些变力做功的问题,在高中阶段也要求学生掌握,而学生遇到变力做功的问题时,常常感到无处着手。
下面,对变力做功求解方法的问题进行总结:方法一:微元累积法将物体的位移分割成许多小段,因小段很小,每一小段上作用在物体上的力可以视为恒力,这样就将变力做功转化为在无数多个无穷小的位移上的恒力所做元功的代数和。
此法在中学阶段,常应用于求解力的大小不变、方向改变或者方向不变、大小改变的变力做功问题。
例1、如图1所示,半径为R,孔径均匀的圆形弯管水平放置,小球在管内以足够大的初速度在水平面内做圆周运动,设开始运动的一周内,小球与管壁间的摩擦力大小恒为,求小球在运动的这一周内,克服摩擦力所做的功。
解析:将小球运动的轨迹分割成无数个小段,设每一小段的长度为,它们可以近似看成直线,且与摩擦力方向共线反向,如图2所示,元功,而在小球运动的一周内小球克服摩擦力所做的功等于各个元功的和,即方法二:力的平均值法当某个力的方向不变,但其大小随位移均匀变化时,可以用力的初始值F1和末状态值F2的平均值来计算变力所做的功。
例2、如图3所示,在光滑的水平面上,劲度系数为k的弹簧左端固定在竖直墙上,右端系着一小球,弹簧处于自然状态时,小球位于O点,今用外力压缩弹簧,使其形变量为x,当撤去外力后,求小球到达O点时弹簧的弹力所做的功。
解析:弹簧的弹力为变力,与弹簧的形变量成正比,在题设条件下,弹力的初始值为,终值为,故弹力的平均值为,则弹力所做的功。
方法三:图像法在题设情况下,如果能找出力F与位移s的函数关系,则在F-s 的平面直角坐标系中,作出F随s变化的图像,那么,图像与横坐标轴所围成的图形的面积即是F对物体在某一段位移上所做功的数值。
例3、用质量为5kg的均匀铁索从10m深的井中吊起质量为20kg 的重物,在这个过程中至少要做多少功(取g=10m/s2)解析:在吊起重物的过程中,作用在重物和铁索上的力至少应等于重物和铁索的重力,但在吊起过程中铁索的长度逐渐缩短,故拉力也逐渐减少,即拉力是一个随距离变化的变力,拉力随深度s的变化关系为所以力随距离是均匀变化,作出拉力的F-s图线,则拉力所做的功可以用图4中梯形的面积来表示显然,此题亦可以用方法二求解。
求变力做功的十种方法
变力做功的十种方法河南省信阳高级中学 陈庆威功是高中物理的重要概念,对力做功的求解也是高考物理的重要考点,恒力的功可以用公式θcos FS W =直接求解,但变力做功就不能直接用公式了,这里总结了一些求变力做功的方法,希望能对读者有帮助。
一. 动能定理法例1. 如图所示,质量为m 的物体从A 点沿半径为R 的粗糙半球内表面以的速度开始下滑,到达B 点时的速度变为,求物体从A 运动到B 的过程中,摩擦力所做的功是多少?【解析】物体由A 滑到B 的过程中,受重力G 、弹力和摩擦力三个力的作用,因而有,即,式中为动摩擦因数,v 为物体在某点的速度,为物块与球心的连线与竖直方向的夹角。
分析上式可知,物体由A 运动到B 的过程中,摩擦力是变力,是变力做功问题,根据动能定理有,在物体由A 运动到B 的过程中,弹力不做功;重力在物体由A 运动到C 的过程中对物体所做的正功与物体从C 运动到B 的过程中对物体所做的负功相等,其代数和为零。
因此,物体所受的三个力中摩擦力在物体由A 运动到B 的过程中对物体所做的功,就等于物体动能的变化量,则有:即 可见,如果所研究的物体同时受几个力的作用,而这几个力中只有一个力是变力,其余均为恒力,且这些恒力所做的功和物体动能的变化量容易计算时,此类方法解决问题是行之有效的。
【点评】利用动能定理可以求变力做功,但不能用功的定义式直接求变力功,并且用动能定理只要求始末状态,不要求中间过程。
这也是动能定理比牛顿运动定律优越的一个方面。
二. 微元法对于变力做功,不能直接用θcos FS W =进行计算,但是我们可以把运动过程分成很多小段,每一小段内可认为F 是恒力,用θcos FS W =求出每一小段内力F 所做的功,然后累加起来就得到整个过程中变力所做的功。
这种处理问题的方法称为微元法,具有普遍的适用性。
例2. 用水平拉力,拉着滑块沿半径为R 的水平圆轨道运动一周,如图所示,已知物块的质量为m ,物块与轨道间的动摩擦因数为μ。
求解变力做功的八种方法
求解变力做功的八种方法在物理学中,做功是指力对物体施加作用力并使其产生位移的过程中所做的功。
而当作用力是变化的时候,求解变力做功就变得相对复杂。
本文将介绍八种常用的方法来求解变力做功问题,帮助读者更好地理解这一物理概念。
一、分割法分割法是将变力分割成多个小的力,然后分别计算每个小力在相应的位移上所做的功,再将它们累加起来。
通过将变力离散化,我们可以近似所需求解的变力做功。
二、辅助函数法辅助函数法是将变力关于位移进行积分,得到一个辅助函数,再通过求导的方法求解变力做功。
这个方法需要对变力进行积分和求导,适用于一些特殊的变力情况。
三、力的分解法力的分解法是将变力分解成两个简化的力,一般是平行和垂直于位移的力,然后分别计算每个简化力在相应的位移上所做的功,再将它们相加。
通过将变力进行分解,我们可以将复杂的问题简化为分别求解两个力的功的问题。
四、动能定理法动能定理法利用了动能的变化与外力做功的关系,即外力做功等于物体动能的变化。
通过对物体的动能变化进行分析,我们可以求解变力做功的问题。
五、引入势函数法引入势函数法是将变力与势函数建立联系,通过势函数的导函数来求解变力做功。
这个方法需要找到一个合适的势函数,适用于一些具有简单势函数形式的变力情况。
六、平均值法平均值法是将变力近似为一个平均力,然后计算该平均力在整体位移上所做的功。
虽然这种方法只是对变力做功的近似,但在一些情况下可以提供一个比较准确的结果。
七、图形法图形法是通过绘制力与位移之间的图形来求解变力做功。
通过图形分析,我们可以计算图形下的面积或曲线的积分,进而得到变力做功的值。
八、牛顿第二定律法牛顿第二定律法利用了牛顿第二定律与功的关系,即力乘以位移等于质量乘以加速度乘以位移。
通过将力进行分解,我们可以将变力做功的问题转化为求解加速度和位移的问题。
综上所述,以上八种方法是常用的求解变力做功的方法。
在实际问题中,根据具体情况选择合适的方法求解变力做功问题,可以帮助我们更好地理解力学中的变力概念,并解决具体的物理问题综合上述八种方法,我们可以看出,求解变力做功问题的方法有多种多样,每种方法在不同情况下都有其适用性和限制性。
求解变力做功问题的五种方法
求解变力做功问题的五种方法在高中阶段,应用做功公式W=FScosα来解题时,公式中F只能是恒力。
如果F是变力,就不能直接应用公式W=FScosα来求变力做功问题。
但是题目中又经常出现变力做功问题,下面介绍五种求解变力做功问题的方法。
一:将变力做功转化为恒力做功来求解我们知道变力做功不可以直接用公式W=FScosα来计算,但有些情况下,将变力转化成恒力做功,就可以用公式直接求解。
例题1:如图1所示,人用大小不变的力F拉着放在光滑平面上的物体,开始时与物体相连的绳子和水平面间的夹角是α,当拉力F作用一段时间后,绳子与水平面的夹角是β,图中的高度是h,求绳子拉力T对物体所做的功,(绳的质量,滑轮的质量和绳与滑轮之间的摩擦均不计)。
分析与解答:在物体向右运动过程中,绳子拉力T是一个变力,是变力做功问题。
但是拉力T大小等于力F的大小,且力F是恒力。
因此,求绳子拉力T对物体所做的功就等于力F所做的功。
由图可知,力F的作用点移动的位移大小为:ΔS=S1-S2。
则:W T=W F=FΔS=F(S1-S2)=Fh(1/sinα-1/sinβ).二:用动能定理来求解我们知道,动能定理的内容:外力对物体所做的功等于物体动能的增量。
如果我们研究物体所受的外力中只有一个是变力,其他力都是恒力,而且这些力做功比较容易求,就可以用动能定理来求变力做功。
例题2:如图2所示,质量为2kg的物体从A点沿半径为R的粗糙半球内表面以10m/s 的速度开始下滑,到达B点时的速度变为2m/s,求物体从A点运动到B点的过程中,摩擦力所做的功是多少?分析及解答:物体从A点运动到B点的过程中,受到重力G、弹力N和摩擦力f三个力作用,在运动过程中,摩擦力f的方向和大小都发生改变,因此摩擦力f是变力,是变力做功问题。
物体从A点运动到B点的过程中,弹力N不做功,重力G做功为零。
物体所受的三个力中摩擦力在物体从A点运动到B点的过程中对物体所做的功,就等于物体动能的变化量,则W外=W f=ΔE k=1/2mV B2-1/2mV A2=-96(J).三:用机械能守恒定律来求解我们知道,物体只受重力和弹力作用或只有重力和弹力做功时,系统的机械能守恒。
求变力做功的方法
求变力做功的方法大全河南省信阳高级中学陈庆威高中物理求功的公式,适用于恒力功的计算。
对于变力做功的计算,常用方法有以下几种。
一、微元法对于变力做功,不能直接用进行计算,但是我们可以把运动过程分成很多小段,每一小段内可认为F是恒力,用求出每一小段内力F所做的功,然后累加起来就得到整个过程中变力所做的功。
这种处理问题的方法称为微元法,这种方法具有普遍的适用性。
但在高中阶段主要用于解决大小不变、方向总与运动方向相同或相反的变例1. 用水平拉力,拉着滑块沿半径为R的水平圆轨道运动一周,如图1所示,已知物块的质量为m,物块与轨道间的动摩擦因数为。
求此过程中摩擦力所做的功。
图1思路点拨:由题可知,物块受的摩擦力在整个运动过程中大小不变,方向时刻变化,是变力,不能直接用求解;但是我们可以把圆周分成无数小微元段,如图2所示,每一小段可近似成直线,从而摩擦力在每一小段上的方向可认为不变,求出每一小段上摩擦力做的功,然后再累加起来,便可求得结果。
图2正确解答:把圆轨道分成无穷多个微元段,摩擦力在每一段上可认为是恒力,则每一段上摩擦力做的功分别为,,…,,摩擦力在一周内所做的功。
误点警示:对于此题,若不加分析死套功的公式,误认为位移s=0,得到W=0,这是错误的。
必须注意本题中的F是变力。
小结点评:对于变力做功,一般不能用功的公式直接进行计算,但有时可以根据变力的特点变通使用功的公式。
如力的大小不变而方向总与运动方向相同或相反时,可用计算该力的功,但式子中的s不是物体运动的位移,而是物体运动的路程。
[发散演习]如图3所示,某个力F=10N作用于半径R=1m的转盘的边缘上,力F的大小保持不变,但方向任何时刻与作用点处的切线方向保持一致。
则转动半圆,这个力F做功多少?图3答案:31.4J。
二、图象法在直角坐标系中,用纵坐标表示作用在物体上的力F,横坐标表示物体在力的方向上的位移s。
如果作用在物体上的力是恒力,则其F-s图象如图4所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈高中阶段变力做功的几种求法杨付玖 云南省威信县第二中学 657900摘要:功的计算在中学物理中占有十分重要的地位,公式W =αcos Fl 只适用于恒力做功,对于变力做功的计算则没有一个固定公式可用,但高考中变力做功问题也是经常考察的一类题目。
在高中阶段求变力做功问题,是学生学习和掌握的难点,因此教师要注重对学生进行方法指导。
文中从化变为恒的思想、动能定理、s F -图像、Pt W =等方法举例说明,归纳高中阶段求变力做功的方法。
关键词:变力做功 研究对象 转化 动能定理一.化变力为恒力求解1.用转换研究对象法化变力为恒力变力做功求解时,通常都比较复杂,但若通过转换研究的对象,有时可化为恒力做功求解,即可以通过等效法把求该变力做功转换成求与该变力做功相同的恒力的功,再用功的定义式W =αcos Fl 求恒力的功,从而可知该变力的功。
等效转换的关键是分析清楚该变力做功到底与哪个恒力的功是相同的。
此法常常应用于轻绳通过定滑轮拉物体的问题中。
例证1:如图所示,固定的光滑竖直杆上套着一个滑块,用轻绳系着滑块绕过光滑的定滑轮,以大小恒定的拉力F 拉绳,使滑块从A 点起由静止开始上升.若从A 点上升至B 点和从B 点上升至C点的过程中绳子拉力做的功分别为W 1、W 2,图中AB=BC ,则比较W 1与W 2的大小关系。
分析:绳子对滑块做的功为变力做功,求解比较复杂,但只要注意绳子对滑块做的功等于拉力F 对绳子所做的功,因此,求绳子对滑块做的功时,可改为求拉力F 对绳子所做的功,这样就将变力做功转化为恒力做功。
解:设滑轮的位置为O 点,则W 1=F(OA-OB), W 2=F(OB-OC),以OA,OB 为邻边作平行四边形,发现OA+OC>2OB,即OA-OB>OB-OC,所以W 1>W 2。
2.利用微元累积法化变力为恒力如果求解力的大小不变、方向改变的变力做功时,将物体的位移分割成许多小段,因小段很小,毎一小段上作用在物体上的力可以视为恒力(即力的大小、方向均不变),这样就将变力做功转换成恒力做功。
再将各小段所做的功求代数和,即为该变力所做的功。
解题方法简单总结为:无限细分,分段计算功,再求和。
例证2:如图所示,用一大小不变的力F 拉着小车在水平面内沿半径为R 的圆周运动一周,则拉力F 对小车做的功是多少?分析:因为虽然拉力的大小不变,但拉力的方向时刻在改变,因此该问题是变力做功问题。
解:将小车运动的轨迹划分为无数个小段,设每一小段的长度为s ,它们可以近似看成直线,且力的方向与位移方向相同,则每一小段都可以看作是恒力做功,所以每一小段的元功W=Fs ,而在小车运动的一周内,拉力对小车做的功等于各个元功之和,即W 总=∑W=Fs 总=F 2πR=2πRF.3.利用平均力代替变力(即将变力化为恒力)如果求解力的方向不变,而大小随位移线性变化时的变力做功时,可先求出力的算术平均值,然后把平均值当成恒力,再用功的计算式W =αcos Fl 求解。
常常见到的有:(1)题目中明确指出某力用平均力,求这个力所做的功。
(2)力的方向不变,而大小随位移线性变化,求此变力所做的功。
(例弹簧类弹力所做的功,弹力就与位移成正比,力与位移是线性变化)例证3:质量为1kg 的物体在变力作用下由静止起做加速直线运动,已知作用力F 随位移变化的规律是:F=(10+3s)N,式中s 为物体发生的位移,则该物体经4m 位移后力F 对物体所做的功为多少焦?分析:因为力F=(10+3s),说明力F 是变力,不能直接用公式W =αcos Fl 求解。
此时我们可用平均力F 代替公式W =αcos Fl 中的F ,即可求出此变力做的功。
解:因为F=(10+3s),满足力与位移是线性变化,且力的方向不变。
又因为物体由静止出发,即物体初速度为0。
当s=0时,F 1=10N ;当s=4时,F 2=22N.则平均力F 为: F = (F 1+ F 2)/2=(10+22)/2 N=16N因此,力F 对物体做的功为:W=F s=16×4 J=64 J二.利用x F -图像求解变力做功在高中物理学习中,常遇到图像问题,搞懂图像的物理意义是解题的关键。
高考试题中也常常用图像解题,将复杂的问题简单化,因此我们必须学会、掌握用图像解题。
此处讲解用x F -图像求解变力做功。
若题目中给出了F-x 图像或给出了F 与x 的函数关系(也可做出F-x 图像),则变力做的功可以通过图像求出,利用图线与x 轴包围的面积数值上等于变力F 所做的功(这也就是x F -图像的物理意义之一),由此将该类问题化难为易。
例证4:用铁锤将一铁钉击入木块,设阻力F 与钉子进入木板的深度x 成正比,每次击钉时锤子对钉子做的功相同,已知第一次击打后钉子进入木板1cm ,则第二次击钉子进入木板的深度为多少?分析:铁锤每次做功都是用来克服铁钉阻力做的功,但摩擦阻力F 不是恒力,其大小与深度x 成正比,即F=kx ,以F 为纵坐标,F 方向上的位移x 为横坐标,作出F -x 图象,如图,x F -图线与x 轴所夹阴影部分的面积值等于F 对铁钉做的功。
解:由于锤子对钉子每次做的功相等因此S 1=S 2(图线与x 轴包围的面积等于变力F 所做的功) 即: 21kx 1* x 1=21(kx 1+kx 2)(x 2-x 1解得 cm x 22= 所以第二次击钉子进入木板的深度为:cm x x x )12(12-=-=∆三.运用能量转化思想求变力做功做功是能量转化的原因,功是能量转化的量度,已知外力做功的情况可计算能量的转化,同样已知能量的转化情况,则可求外力所做功的多少。
这也就给求变力做功提供了一条简便的途径。
由此可运用动能定理、机械能守恒定律、功能关系等从能量改变的角度求变力做的功。
从能量改变的角度求变力做的功,关键是分清研究过程中有多少种形式的能转化,即有什么能增加或减少,有多少个力做了功,找出这些量之间的关系,再运用相应的能量转化思想即可求变力做的功。
1.用动能定理求变力做功:动能定理的内容是:合外力对物体所做的功等于物体动能的增量。
它的表达式是W 外=△E K ,W 外可以理解成所有外力做功的代数和,如果我们所研究的多个力中,只有一个力是变力,其余的力都是恒力,而且这些恒力所做的功都比较容易计算出来,研究对象本身的动能增量也比较容易计算时,用动能定理就可以求出这个变力所做的功。
图4 12kx2.用机械能守恒定律求变力做功:如果物体只受重力和弹力作用,或只有重力或弹力做功时,满足机械能守恒定律。
如果求弹力这个变力做的功,可用机械能守恒定律来求解。
3.用功能原理求变力做功:系统所受的外力和内力(不包括重力和弹力)所做的功的代数和等于系统的机械能的增量,如果这些力中只有一个变力做功,且其它力所做的功及系统的机械能的增量都比较容易求解时,就可用功能原理求解变力所做的功。
以上三种方法求变力做功原理上是相似的,解题的主要思路是掌握动能定理。
例证5:如图所示,AB为1/4圆弧轨道,半径为R=0.8m,BC是水平轨道,长S=3m,BC 处的摩擦系数为μ=1/15,今有质量m=1kg的物体,自A点从静止起下滑到C点刚好停止。
求物体在轨道AB段所受的阻力对物体做的功。
分析:AB段物体受的力有重力、弹力、阻力,阻力是变力,而要求的就是AB段阻力对物体做的功,即求变力做功。
AB段弹力的方向始终与速度方向垂直,弹力不做功,AB段还有重力做功且可求,但AB段动能的变化不知道,所以AB段不能用动能定理。
BC段物体受的力有重力、支持力、摩擦力,重力、支持力不做功,只有摩擦力做功且可求,但BC段动能的变化不知道,并且BC段不包含要求的问题(求AB段所受的阻力对物体做的功),因此BC段也不用动能定理。
但对AC整段来说,A位置初动能为0,C位置末动能为0,即动能的变化已知,△E K= 0,且整段过程中其它力做的功可求,只有变力做的功未知,因此可用动能定理求解此变力做的功。
解:设AB段所受的阻力对物体做的功为对W AB,则AC段全过程用动能定理,得W总=△E K=0,即mgR+W AB-μmgs=0所以W AB=μmgs- mgR,带入数据解得W AB=-6J即物体在轨道AB段所受的阻力对物体做的功为-6J.W=求变力做功四.运用Pt涉及到机车的启动、吊车吊物体等问题,如果在某个过程中保持功率P恒定,随着机车或物体速度的改变,机车的牵引力也改变,要求该过程中牵引力的功,即变力做的功,可以W=求出该变力做的功。
通过Pt例证6:质量为5000千克的汽车以恒定的输出功率60kW在一条平直的公路上由静止开始行使,在10s内行使了100m,求汽车牵引力做的功?分析:由P=Fv知,汽车由静止启动,汽车的速度v在增大,且P不变,因此牵引力F必减小,所以牵引力F是变力,即本题是求变力做功。
解:由W=Pt=60×103×10J=6.0×105J求变力做功的方法很多,上述不同方法各有优点,同一道题目可用的方法不只一种,比如用平均值法求变力做功的问题,也可用图像法求解,用动能定理求解变力做功的问题亦可用功能关系求解等等。
总之,关于求变力做功问题,除了在力学中经常碰到外,在热学、静电学、电磁学等领域也会遇到,这就需要在学习力学阶段时,教师要注重对学生进行方法指导,让学生将这些方法融会贯通,举一反三,触类旁通,为以后解答变力做功问题打下良好的基础。
参考文献:[1]张泉.世纪金榜高中全程复习方略[M].吉林:延安大学出版社,2012.[2]厉守清.高中阶段求变力做功[D].浙江:浙江省湖州中学,2013.。