利用导数求几类数列题

合集下载

导数中的数列问题

导数中的数列问题

高考数学押题系列——数列与导数最值的完美结合
领军教育高三数学 朱腾飞老师
导数解题题目,有一种题型是和数列相结合进行考查的,这类题目在求解时,往往要利用导数研究函数的最值,在根据自变量与通项公式之间的关系进行转化,这类题目的难点在于如何寻找函数中的自变量和数列通项公式的关系,这个考点在近些年的考题中略有体现,所以今天我们(微信公众号:高中数学题型研究)针对这个考点进行了整理,将我们相关的题目进行分析和整理,对考点和难点进行归纳,方便大家参考学习!
【题目一】(2017年新课标卷3理科21题)已知函数()1f x x alnx =−−.
(1)若()0f x ,求a 的值;
(2)设m 为整数,且对于任意正整数n ,2111(1)(1)(1)222
n m ++⋯+<,求m 的最小值.
【题目二】(2021年宝鸡市高考数学三模文科21题)已知函数2()2ln 1f x x x =−+.
(1)求函数()f x 的最大值;
(2)证明:*222572132ln(1),(23n n n N n
+++++>+∈).
【题目三】(2021年宝鸡市高考数学三模理科20题)已知函数1()2ln .f x x x x
=−
− 求证:
(1)函数()f x 有且仅有一个零点; (2)
*35212ln(1),().1223(1)
n n n N n n ++++>+∈⋅⋅+ 【题目四】(2021年安徽宣城市高考数学模拟最后一卷文科21题)
已知函数f (x )=ae x ﹣x ﹣1.
(1)若f (x )≥0对于任意的x 恒成立,求a 的取值范围;
(2)证明:1111ln(1)23n n
++++≥+对任意的*n N ∈恒成立.。

利用导数证明数列不等式(含解析)

利用导数证明数列不等式(含解析)

利用导数证明数列不等式利用导数证明数列不等式,在高考题中能较好的考查学生灵活运用知识的能力,一方面以函数为背景让学生探寻函数的性质,另一方面体现数列是特殊的函数,进而利用恒成立的不等式将没有规律的数列放缩为为有具体特征的数列,可谓一题多考,巧妙地将函数、导数、数列、不等式结合在一起,也是近年来高考的热门题型. 1、常见类型:(1)利用放缩通项公式解决数列求和中的不等问题 (2)利用递推公式处理通项公式中的不等问题 2、恒成立不等式的来源:(1)函数的最值:在前面的章节中我们提到过最值的一个作用就是提供恒成立的不等式.(2)恒成立问题的求解:此类题目往往会在前几问中进行铺垫,暗示数列放缩的方向.其中,有关恒成立问题的求解,参数范围内的值均可提供恒成立不等式. 3、常见恒成立不等式:(1) 对数→多项式 (2) 指数→多项式4、关于前项和的放缩问题:求数列前项公式往往要通过数列的通项公式来解决,高中阶段求和的方法有以下几种:(1)倒序相加:通项公式具备第项与第项的和为常数的特点.(2)错位相减:通项公式为“等差等比”的形式(例如,求和可用错位相减).(3)等比数列求和公式(4)裂项相消:通项公式可裂为两项作差的形式,且裂开的某项能够与后面项裂开的某项进行相消. 注:在放缩法处理数列求和不等式时,放缩为等比数列和能够裂项相消的数列的情况比较多见,故优先考虑.5、大体思路:对于数列求和不等式,要谨记“求和看通项”,从通项公式入手,结合不等号方向考虑放缩成可求和的通项公式.6、在放缩时要注意前几问的铺垫与提示,尤其是关于恒成立问题与最值问题所带来的恒成立不等式,往往提供了放缩数列的方向.7、放缩通项公式有可能会进行多次,要注意放缩的方向:朝着可求和的通项公式进行靠拢(等比数列,裂项相消等).ln 1x x <-1x e x >+n n k 1n k -+⨯2nn a n =⋅n a8、数列不等式也可考虑利用数学归纳法进行证明(有时更容易发现所证不等式与题目条件的联系).【经典例题】1.(2020·江苏省如皋中学高三三模)已知函数()ln f x kx x x =-,k ∈R . (1)当2k =时,求函数()f x 的单调区间;(2)当01x <≤时,()f x k ≤恒成立,求k 的取值范围; (3)设n N *∈,求证:ln1ln 2ln (1)2314n n n n -+++≤+. 2.(2020·四川省内江市第六中学高三三模)已知函数2()ln(1)(0,0),()2x f x ax x a g x x -=+≥>=+. (1)讨论函数()()y f x g x =-的单调性;(2)若不等式()()1f x g x ≥+在[0,)x ∈+∞时恒成立,求实数a 的取值范围; (3)当1a =时,证明:1111+35721n +++<+…*1()(N )2f n n ∈. 3.(2020·安徽合肥·三模)已知函数()x xf x e e ax -=--(e 为自然对数的底数),其中a ∈R.(1)试讨论函数f (x )的单调性;(2)证明:22132ln 2(1)ni n n i i n n =-->+∑. 4.(2020·安徽相山·淮北一中高三三模)已知函数()||ln (0)f x x a x a =-->. (∈)讨论()f x 的单调性;(∈)比较222222ln 2ln 3ln 23n n++⋯+ 与(1)(21)2(1)n n n -++的大小(n N +∈且)2n >,并证明你的结论.5.(2020·云南高三三模)已知函数()1ln f x x a x =-- (1)讨论()f x 的单调性; (2)证明:()*333ln 2ln3ln 1,222332n n N n n n +++<∈≥---.【精选精练】1.(2020·榆林市第二中学高三三模)已知(),()1(xf x eg x x e ==+为自然对数的底数).(1)求证()()f x g x ≥恒成立;(2)设m 是正整数,对任意正整数n ,2111(1)(1)(1)333n m ++⋅⋅⋅+<,求m 的最小值. 2.(2020·广东广州高三三模·)已知函数()()()3214613x f x x ex x g x a x lnx -⎛⎫=-+-=--- ⎪⎝⎭,.(1)求函数()f x 在()0+∞,上的单调区间; (2)用{}max m n ,表示m n ,中的最大值,()f x '为()f x 的导函数,设函数()()(){}h x max f x g x '=,,若()0h x ≥在()0+∞,上恒成立,求实数a 的取值范围; (3)证明:()*11111ln 312313n N n n n n n+++++>∈++-. 3.(2020·安徽蚌埠·高三三模)已知函数()()ln 1x f x x+=.(1)分析函数()f x 的单调性;(2)证明:2111ln 3ln 212n n n ⎛⎫+⎛⎫+++≤ ⎪ ⎪-⎝⎭⎝⎭,2n ≥. 4.(2020·全国高三三模)已知函数2()2ln 1()f x ax x x a =--∈R . (1) 若1x e=时,函数()f x 取得极值,求函数()f x 的单调区间; (2) 证明:()*11111ln(21)3521221nn n n n +++⋯+>++∈-+N . 5.(2020·辽宁沙河口·辽师大附中高三三模)已知函数()()2ln 11f x p x p x =+-+.(1)讨论函数()f x 的单调性;(2)当1p =时,()f x kx ≤恒成立,求实数k 的取值范围; (3)证明:()()*111ln 1123n n N n+<+++⋯+∈.6.(2020·浙江省宁波市鄞州中学高三三模)已知函数()()2f x ax a a R =+∈. (1)讨论函数()f x 的单调性;(2)若()0f x ≤对任意的1x ≥-恒成立,求a 的取值范围;(32600⋅⋅⋅+<.7.(2020·广东广州·高三三模)已知函数()2ln f x a x x =+,其中a R ∈.(1)讨论()f x 的单调性;(2)当1a =时,证明:()21f x x x ≤+-;(3)试比较22222222ln2ln3ln4ln 234n n++++与()()()12121n n n -++ ()*2n N n ∈≥且的大小,并证明你的结论. 8.(2020·黑龙江南岗·哈师大附中三模)已知函数()()2ln 1f x ax bx x =+-+.(∈)当0a =时,函数()f x 存在极值,求实数b 的取值范围;(∈)当1b =时,函数()f x 在()0,∞+上单调递减,求实数a 的取值范围;(∈)求证:()()1*113ln 2122N 14nk n n k =-+<∈-∑. 9.(2020·黑龙江哈尔滨·三模)已知函数()()()()ln 111f x x k x k R =---+∈ (1)求函数()f x 的单调区间;(2)若()0f x ≤恒成立,试确定实数k 的取值范围;(3)证明:()()*1ln 2ln 3ln ,13414n n n n n n -++⋅⋅⋅+<∈>+N . 10.(2020·浙江三模)已知数列{}n a ,112a =,1ln 1n n a a +=-. (1)求证:11n n a a +<<; (2)求证:123201912020a a a a ⋅⋅⋅⋅⋅⋅<.【经典例题】1.(2020·江苏省如皋中学高三三模)已知函数()ln f x kx x x =-,k ∈R . (1)当2k =时,求函数()f x 的单调区间;(2)当01x <≤时,()f x k ≤恒成立,求k 的取值范围; (3)设n N *∈,求证:ln1ln 2ln (1)2314n n n n -+++≤+. 【答案】(1)单调递增区间为(0,)e ,单调递减区间为(,)e +∞;(2)[1,)+∞;(3)证明见解析.【解析】(1)当2k =时,()2ln f x x x x =-,'()1ln f x x =-,由'()0f x >,解得0x e <<;由'()0f x <,解得x e >,因此函数()f x 单调递增区间为(0,)e ,单调递减区间为(,)e +∞.(2)()ln f x kx x x =-,故'()1ln f x k x --=.当1k时,因为01x <≤,所以10ln k x -≥≥,因此'()0f x ≥恒成立,即()f x 在(]0,1上单调递增,所以()(1)f x f k ≤=恒成立.当1k <时,令'()0f x =,解得1(0,1)k x e -=∈.当1(0,)k x e -∈,'()0f x >,()f x 单调递增;当1(,1)k x e -∈,'()0f x <,()f x 单调递减; 于是1(1))(k f ef k -=>,与()f x k ≤恒成立相矛盾.综上,k 的取值范围为[1,)+∞.(3)由(2)知,当01x <≤时,ln 1x x x -≤. 令x =21n *()n N ∈,则21n +22nln 1n ≤,即22ln 1n n -≤, 因此ln 1n n +≤12n -. 所以ln1ln 2ln 011(1) (2312224)n n n n n --+++≤+++=+. 2.(2020·四川省内江市第六中学高三三模)已知函数2()ln(1)(0,0),()2x f x ax x a g x x -=+≥>=+. (1)讨论函数()()y f x g x =-的单调性;(2)若不等式()()1f x g x ≥+在[0,)x ∈+∞时恒成立,求实数a 的取值范围; (3)当1a =时,证明:1111+35721n +++<+…*1()(N )2f n n ∈.【答案】(1)见解析;(2)[1,+∞);(3)证明见解析. 【解析】(1)求导数可得2224441(2)(1)(2)a ax a y ax x ax x +-'=-=++++, 当1a 时,0y ',∴函数()()y f x g x =-在[)0+∞,上单调递增; 当01a <<时,由0y '>可得x > ∴函数在⎡⎫∞⎪⎢⎪⎣⎭上单调递增,在0⎡⎢⎣上单调递减; (2)由(1)知当1a 时,函数()()y f x g x =-在[)0+∞,上单调递增, ()()(0)(0)1f x g x f g ∴--=,即不等式()()1f x g x +在[)0x ∈+∞,时恒成立, 当01a <<时,函数在0⎡⎢⎣上单调递减,存在00x ⎡∈⎢⎣使得00()()(0)(0)1f x g x f g -<-=, 即不等式00()()1f x g x +不成立, 综上可知实数a 的取值范围为[1,)+∞;(3)由(2)得当1a 时,不等式()()1f x g x >+在(0,)x ∈+∞时恒成立, 即2(1)2x ln x x +>+,12(1)12ln k k∴+>+,*()k N ∈. 即11[(1)]122ln k lnk k <+-+, ∴11(21)32ln ln <-,11(32)52ln ln <-,11(43)72ln ln <-,11[(1)]212ln n lnn n ⋯<+-+, 将上述式子相加可得11111111(1)(1)()357212222lnn ln lnn ln n f n n +++⋯+<-=<+=+ 原不等式得证.3.(2020·安徽合肥·三模)已知函数()x xf x e e ax -=--(e 为自然对数的底数),其中a ∈R.(1)试讨论函数f (x )的单调性;(2)证明:22132ln 2(1)ni n n i i n n =-->+∑. 【答案】(1)答案见解析(2)证明见解析.【解析】(1)因为()x xf x e ea -'=+-,且2x x e e -+≥,所以当2a ≤时,()0f x '≥,所以()f x 在R 上为增函数,当2a >时,由()0f x '>,得0x x e e a -+->,所以2()10x xe ae -+>,所以22()124x a a e ->-,所以2x ae ->或2xa e -<,所以2xa e +>2xa e -<,所以24ln2aa x 或24ln2aa x ,由()0f x '<,得0x x e e a -+-<,解得2244ln22aa aax ,所以()f x 在ln 22a a ⎛⎫⎪ ⎪⎝⎭上递减,在,ln2a ⎛--∞ ⎪⎝⎭和ln 2a ⎛⎫++∞ ⎪ ⎪⎝⎭上递增.(2)由(1)知,当2a =时,()2xxf x e e x -=--在R 上为增函数,所以1()(ln )2ln g x f x x x x==--在(0,)+∞上为增函数, 所以当*n N ∈且2n ≥时,13()(2)22ln 2ln 422g n g ≥=--=-=32ln 04e >, 即12ln 0n n n-->,所以212211ln 1(1)(1)11n n n n n n n >==---+-+, 所以211111ln 2ln 23ln 34ln 4ln ni i i n n==++++∑ 1111111121213131414111n n >-+-+-++--+-+-+-+ 111121n n =+--+2322(1)n n n n --=+, 所以22132ln 2(1)ni n n i i n n =-->+∑.4.(2020·安徽相山·淮北一中高三三模)已知函数()||ln (0)f x x a x a =-->. (∈)讨论()f x 的单调性;(∈)比较222222ln 2ln 3ln 23n n++⋯+ 与(1)(21)2(1)n n n -++的大小(n N +∈且)2n >,并证明你的结论.【答案】(I )见解析;(II )见解析 【解析】(∈)函数()f x 可化为ln ,()ln ,0x x a x af x a x x x a --≥⎧=⎨--<<⎩,当0x a <<时,1()10f x x '=--<,从而()f x 在(0,)a 上总是递减的, 当x a ≥时,11()1x f x x x'-=-=,此时要考虑a 与1的大小.若1a ≥,则()0f x '≥,故()f x 在[,)a +∞上递增,若01a <<,则当1a x ≤<时,()0f x '<,当1x >时,()0f x '>,故()f x 在[,1)a 上递减, 在(1,)+∞上递增,而()f x 在x a =处连续,所以 当1a ≥时,()f x 在(0,)a 上递减,在[,)a +∞上递增; 当01a <<时,()f x 在(0,1)上递减,在[1,)+∞上递增.(∈)由(∈)可知当1a =,1x >时,1ln 0x x -->,即ln 1x x >-,所以ln 11x x x <-.所以 222222ln 2ln 3ln 23n n+++22211111123n <-+-+-222111123n n ⎛⎫=--+++⎪⎝⎭11112334(1)n n n ⎛⎫<--+++⎪⨯⨯+⎝⎭11121n n ⎛⎫=--- ⎪+⎝⎭1(1)2(1)n n n -=--+ 2221(1)(21)2(1)2(1)n n n n n n --+-+==++.5.(2020·云南高三三模)已知函数()1ln f x x a x =-- (1)讨论()f x 的单调性;(2)证明:()*333ln 2ln3ln 1,222332n n N n n n +++<∈≥---. 【答案】(1)当0a 时,()f x 在(0,)+∞内单调递增;当0a >时,()f x 在(0,)a 内单调递减,在(,)a +∞内单调递增.(2)证明见解析 【解析】(1)解:()1ln (0)f x x a x x =-->,()1af x x'∴=-.∈若0a ,则()0f x '>,()f x ∴在(0,)+∞内单调递增;∈若0a >,则()f x '在(0,)+∞内单调递增,且()0f a '=,∴当(0,)x a ∈时,()0f x '<;当(,)x a ∈+∞时,()0f x '>,()f x ∴在(0,)a 内单调递减,在(,)a +∞内单调递增.综上所述,当0a 时,()f x 在(0,)+∞内单调递增;当0a >时,()f x 在(0,)a 内单调递减,在(,)a +∞内单调递增.(2)证明:当1a =时,()1ln =--f x x x .由(1)知()(1)0f x f =,ln 1x x ∴-,当且仅当1x =时,等号成立, 令()*,2x n n N n =∈,ln 1n n ∴<-,33ln 1111(1)1n n n n n n n n n n -∴<==---++. 从而3ln 2112223<--, 3ln 3113334<-- …3ln 111n n n n n <--+, 累加可得333ln 2ln3ln 11223321n n n n ++⋯+<----+, 111212n -<+, 333ln 2ln3ln 122332n n n ∴++⋯+<---,证毕.【精选精练】1.(2020·榆林市第二中学高三三模)已知(),()1(x f x e g x x e ==+为自然对数的底数).(1)求证()()f x g x ≥恒成立;(2)设m 是正整数,对任意正整数n ,2111(1)(1)(1)333n m ++⋅⋅⋅+<,求m 的最小值. 【答案】(1)证明见解析;(2) 2.【解析】(1)令()()()1xF x f x g x e x =-=--,则()1xF x e '=-∴当(),0x ∈-∞时,()0F x '<;当()0,x ∈+∞时,()0F x '>()F x ∴在(),0-∞上单调递减;在()0,∞+上单调递增()()0min 0010F x F e ∴==--=,即()()()0F x f x g x =-≥恒成立 ()()f x g x ∴≥恒成立(2)由(1)知:13113n n e +≤221111113333332111111333n n n e e e e++⋅⋅⋅+⎛⎫⎛⎫⎛⎫∴++⋅⋅⋅+≤⋅⋅⋅⋅= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭又211111111133********13nn n⎛⎫⨯- ⎪⎛⎫⎝⎭++⋅⋅⋅+==⨯-<⎪⎝⎭- 11112322111111333n n e e ⎛⎫⨯- ⎪⎝⎭⎛⎫⎛⎫⎛⎫∴++⋅⋅⋅+≤< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭又2111111333n m ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭恒成立 12m e ∴≥ m 为正整数 m ∴的最小值为:22.(2020·广东广州高三三模·)已知函数()()()3214613x f x x ex x g x a x lnx -⎛⎫=-+-=--- ⎪⎝⎭,.(1)求函数()f x 在()0+∞,上的单调区间; (2)用{}max m n ,表示m n ,中的最大值,()f x '为()f x 的导函数,设函数()()(){}h x max f x g x '=,,若()0h x ≥在()0+∞,上恒成立,求实数a 的取值范围; (3)证明:()*11111ln 312313n N n n n n n+++++>∈++-. 【答案】(1)()f x 单调递增区间为()3+∞,;() f x 单调递减区间为()03,;(2)43a ≥;(3)详见解析. 【解析】(1)因为()()3246x f x x ex x -=-+-,所以()()()()3332632x x f x x ex x e --=-+-='-+,令()0f x '=得3x =,当3x >时,()0f x '>,()f x 单调递增; 当03x <<时,()0f x '<,()f x 单调递减;所以函数()f x 在()0+∞,上的单调递增区间为()3+∞,,单调递减区间为()03,; (2)由(1)知()()()332x f x x e-'=-+,当3x ≥时,()0f x '≥恒成立,故()0h x ≥恒成立;当3x <时,()0f x '<,又因为()()(){}0h x max f x g x '=≥,恒成立,所以()0g x ≥在()03,上恒成立, 所以11ln 03a x x ⎛⎫---≥ ⎪⎝⎭,即11ln 3xa x+-≥在()03,上恒成立, 令()()1ln 03x F x x x +=<<,则()13max a F x -≥, 由()()221ln 1ln x xF x x x-+-'==, 令()0F x '=得1x =,易得()F x 在()01,上单调递增,在[)13,上单调递减,所以()()11max F x F ==,所以113a -≥,即43a ≥, 综上可得43a ≥.(3)证明:设()()10xm x e x x =-->,则()10xm x e '=->,所以()m x 在()0+∞,上单调递增,所以()()00m x m >=,即1x e x >+, 所以1111111111312312333112313n n n nn n n nn n n n n ee eeen n n n n++++++++++++=⋅⋅⋅⋅⋅⋅⋅>⋅⋅⋅⋅⋅⋅⋅⋅++- 123331231n n n nn n n n +++>⋅⋅⋅⋅⋅⋅⋅=++-,所以11111ln 312313n n n n n+++++>++-. 3.(2020·安徽蚌埠·高三三模)已知函数()()ln 1x f x x+=.(1)分析函数()f x 的单调性;(2)证明:2111ln 3ln 212n n n ⎛⎫+⎛⎫+++≤ ⎪ ⎪-⎝⎭⎝⎭,2n ≥. 【答案】(1)()f x 在区间()–1,0和()0,∞+上单调递减;(2)证明见解析. 【解析】(1)由题意得:()f x 的定义域为()()–1,00,+∞,且()()2ln 11xx x f x x -++'=,令()()ln 11x g x x x=-++则()()21x g x x -'=+,()–1,0x ∈时,()0g x '>; ()0,x ∈+∞时,()0g x '<.即()g x 在()–1,0上单调递增,在()0,∞+上单调递减.因为()00g =,则在()–1,0和()0,∞+上()0g x <. 因为20x >,所以在()–1,0和()0,∞+上()0f x '<, 即函数()f x 在区间()–1,0和()0,∞+上单调递减. (2)由(1)可知,当02x <≤时,()()ln 322x f f =≥,即()ln 3ln 12x x +≥, 当2n ≥时,2021n <≤-,则2ln 3ln 111n n ⎛⎫+≥⎪--⎝⎭, 即()()2ln 3ln 1ln 1ln 111n n n n ⎛⎫+=+--≥ ⎪--⎝⎭, 所以()()()ln 1ln 1ln ln 2ln 4ln 2ln3ln1n n n n +--+--++-+-111ln 31122n n ⎛⎫≥++++ ⎪--⎝⎭整理得:()111ln 1ln ln 2ln1ln 31122n n n n ⎛⎫++--≥++++⎪--⎝⎭, 即2111ln 3ln 212n n n ⎛⎫+⎛⎫+++≤ ⎪ ⎪-⎝⎭⎝⎭,2n ≥,不等式得证.4.(2020·全国高三三模)已知函数2()2ln 1()f x ax x x a =--∈R . (1) 若1x e=时,函数()f x 取得极值,求函数()f x 的单调区间; (2) 证明:()*11111ln(21)3521221nn n n n +++⋯+>++∈-+N . 【答案】(1)见解析;(2)见解析【解析】(1)由题意可得,()'222(0,)f x ax lnx x a R =-->∈,由1x e =时,函数()f x 取得极值知12'220af e e ⎛⎫=+-= ⎪⎝⎭,所以0a =. 所以()()21,'22(0)f x xlnx f x lnx x =--=-->, 所以10x e <<时,()'0f x >;1x e>时,()'0f x <; 所以()f x 的单调增区间10e ⎛⎫ ⎪⎝⎭,,单调减区间为1e⎛⎫+∞ ⎪⎝⎭,. (2)当1a =时,()221f x x xlnx =--,所以()()'22221f x x lnx x lnx =--=--,令()ln 1g x x x =--,则()11'1x g x x x-=-=,当01x <<时,()'0g x <;当1x >时,()'0g x >,()g x 的单调减区间为()01,,单调增区间为()1+∞,, 所以()()10g x g ≥=,所以()'0f x ≥,()f x 是增函数,所以1x >时,()()22ln 110f x x x x f =-->=,所以1x >时,12ln x x x->, 令*211,21n x n N n +=>∈-,得2121212ln 212121n n n n n n +-+->-+- 即2221112ln 212121n n n n +⎛⎫+--> ⎪-+-⎝⎭ 所以1121111ln 2122122121n n n n n +⎛⎫>+- ⎪---+⎝⎭上式中123n =,,,…,n ,然后n 个不等式相加, 得到()11111...ln 213521221nn n n ++++>++-+ 5.(2020·辽宁沙河口·辽师大附中高三三模)已知函数()()2ln 11f x p x p x =+-+.(2)当1p =时,()f x kx ≤恒成立,求实数k 的取值范围; (3)证明:()()*111ln 1123n n N n+<+++⋯+∈. 【答案】(1) 见详解;(2)1k;(3)证明见解析.【解析】(1)()f x 的定义域为()0 +∞,,()()()221'21p x p p f x p x x x-+=+-=,当1p >时,()'0f x >,故()f x 在()0,∞+单调递增; 当0p ≤时,()'0f x <,故()f x 在()0,∞+单调递减;当10p -<<时,令()'0f x =,解得x =则当x ⎛∈ ⎝时,()'0f x >; x ⎫∈+∞⎪⎪⎭,时,()'0f x <.故()f x 在⎛ ⎝单调递增,在 ⎫+∞⎪⎪⎭,单调递减. (2)因为0x >,所以:当1p =时,()f x kx ≤恒成立11ln ln kx xx k x+⇔+≤⇔≥, 令()1ln xh x x +=,则()max k x h ≥, 因为()2ln 'xh x x-=,由()'0h x =得x =1, 且当()0,1x ∈时,()'0h x >;当()1,x ∈+∞时,()'0h x <.所以()h x 在()0,1上递增,在()1,+∞上递减,所以()()max 11h x h ==, 故1k .(3)取,则代入由题设可得,取,并将上述各不等式两边加起来可得()()*111ln 1123n n N n+<+++⋯+∈.6.(2020·浙江省宁波市鄞州中学高三三模)已知函数()()2f x ax a a R =+∈.(2)若()0f x ≤对任意的1x ≥-恒成立,求a 的取值范围;(32600⋅⋅⋅+<. 【答案】(1)()f x 在211,14a ⎛⎫-- ⎪⎝⎭上单增;在211,4a ⎛⎫-+∞ ⎪⎝⎭上单减;(2)1,2⎛⎤-∞- ⎥⎝⎦;(3)证明见解析. 【解析】()'f x a =+.(1)当0a ≥时,()'0f x ≥,所以()f x 在()1,-+∞上单调递增; 当0a <时,由()'0f x >解得21114x a -<<-, 所以()f x 在211,14a ⎛⎫-- ⎪⎝⎭上单调递增;在211,4a ⎛⎫-+∞ ⎪⎝⎭上单调递减.(2)当0a ≥时,()()2000f x a x =+≥+=,故不合题意;当0a <时,由(∈)知()max 21104x f f a ⎛⎫=-≤ ⎪⎝⎭,211(21)(21)20141244a a f a a a a a a +-⎛⎫=-+- ⎪⎝-+=≤⎭102a a <∴≤-,综上,a 的取值范围为1,2⎛⎤-∞- ⎥⎝⎦.(3)由(2)知,取12a =-112x ≤+成立.当()1,2,3,,20482020kx k ==时,1111220204040k k =≤⨯+=⨯+,⋅⋅⋅+()11234204820484040++++++<20491024204826004040⨯=+<.7.(2020·广东广州·高三三模)已知函数()2ln f x a x x =+,其中a R ∈. (1)讨论()f x 的单调性;(2)当1a =时,证明:()21f x x x ≤+-;(3)试比较22222222ln2ln3ln4ln 234n n++++与()()()12121n n n -++ ()*2n N n ∈≥且的大小,并证明你的结论. 【答案】(1)见解析;(2)见解析;(3)见解析【解析】(1)函数()f x 的定义域为:()0,∞+,()'f x = 222a a x x x x++=∈当0a ≥时,()'0f x >,所以()f x 在()0,∞+上单调递增∈当0a <时,令()'0f x =,解得x =当0x <<时,220a x +<,所以()'0f x <, 所以()f x 在⎛ ⎝上单调递减;当x >220a x +>,所以()'0f x >,所以()f x 在⎫+∞⎪⎪⎭上单调递增. 综上,当0a ≥时,函数()f x 在()0,∞+上单调递增;当0a <时,函数()f x 在⎛ ⎝上单调递减,在⎫+∞⎪⎪⎭上单调递增. (2)当a 1=时,()2ln f x x x =+,要证明()21f x x x ≤+-,即证ln 1x x ≤-,即证:ln 10x x -+≤. 设()g ln 1x x x =-+,则()g'x =1xx-,令()0g x '=得,1x =. 当()0,1x ∈时,()0g x '>,当()1,x ∈+∞时,()0g x '<. 所以1x =为极大值点,且()g x 在1x =处取得最大值.所以()()10g x g ≤=,即ln 10x x -+≤.故()21f x x x ≤+-.(3)证明:ln 1x x ≤-(当且仅当1x =时等号成立),即11lnx x x≤-, 则有2222ln +22222222223111111111n 132323ln lnn n n n ⎛⎫+⋯+<-+-+⋯+-=--++⋯+ ⎪⎝⎭()111n 123341n n ⎛⎫<--++⋯+ ⎪ ⎪⨯⨯+⎝⎭ ()()()12111111111n 1n 1233412121n n n n n n -+⎛⎫⎛⎫=---+-+⋯+-=---=⎪ ⎪+++⎝⎭⎝⎭, 故:2222ln +()()()22221213321n n ln lnn n n -++⋯+<+ 8.(2020·黑龙江南岗·哈师大附中三模)已知函数()()2ln 1f x ax bx x =+-+.(∈)当0a =时,函数()f x 存在极值,求实数b 的取值范围;(∈)当1b =时,函数()f x 在()0,∞+上单调递减,求实数a 的取值范围;(∈)求证:()()1*113ln 2122N 14nk n n k =-+<∈-∑. 【答案】(∈)0b >;(∈)12a ≤-;(∈)证明见解析. 【解析】(∈)当0a =时,()()()ln 11f x bx x x =-+>-,()()1111bx b f x b x x --'=-=++, ∈当0b ≤时,()0f x '<,则()f x 在()1,-+∞递减,无极值; ∈当0b >时,令()1'0,11f x x b==->-, 1()0,(1,1),()f x x f x b '<∈--单调递减,1()0,(1,),()f x x f x b '>∈-+∞单调递增,所以11,()x f x b=-取得极小值.综上可知:0b >.(∈)当1b =时,()()()2ln 10f x ax x x x =+-+>,()1212011x f x ax ax x x '=+-=+≤++恒成立 121a x ⇔-≥+对一切()0,x ∈+∞恒成立, ∈11x +>,∈1011x <<+,∈21a -≥,∈12a ≤-.(∈)由(∈)知:当12a =-时,()()21ln 12f x x x x =-+-+在()0,∞+递减,∈()()00f x f ≤=,即:()2ln 12x x x -+<,令221x n =-,则()22212ln 212121n n n n +-<---, 当2n ≥时,()2222122ln 212144121n n n n n n +-<=---+- ()21114121n n n n ⎛⎫<=- ⎪--⎝⎭,∈23ln 2ln 311-=- 2511ln 13322⎛⎫-<- ⎪⎝⎭ 27111ln 55223⎛⎫-<- ⎪⎝⎭……221111ln 212121n n n n n +⎛⎫-<- ⎪---⎝⎭累加得,()11112ln 212ln 31212nk n k n =⎛⎫⋅-+<-+- ⎪-⎝⎭∑ 5153ln3ln32222n =--<-<, 当1n =时,131ln 324-<,即:1ln 32>,综上,()1113ln 212124nk n k =-+<-∑. 9.(2020·黑龙江哈尔滨·三模)已知函数()()()()ln 111f x x k x k R =---+∈ (1)求函数()f x 的单调区间;(2)若()0f x ≤恒成立,试确定实数k 的取值范围;(3)证明:()()*1ln 2ln 3ln ,13414n n n n n n -++⋅⋅⋅+<∈>+N . 【答案】(1)答案不唯一,具体见解析;(2)[)1,+∞;(3)证明见解析. 【解析】(1)函数()()()ln 111f x x k x =---+的定义域为()1,+∞,且()11f x k x '=--. ∈当0k ≤时,()0f x '>恒成立,故函数()y f x =在()1,+∞上为增函数; ∈当0k >时,令()0f x '<,得1k x k +>时,即函数()y f x =在1,k k +⎛⎫+∞⎪⎝⎭上单调递减, 令()0f x '>,得11k x k +<<时,即函数()y f x =在11,k k +⎛⎫⎪⎝⎭上单调递增.综上:当0k ≤时,函数()y f x =在()1,+∞上为增函数; 当0k >时,函数()y f x =在11,k k +⎛⎫ ⎪⎝⎭上为增函数,在1,k k +⎛⎫+∞⎪⎝⎭上为减函数; (2)当0k ≤时,()211f k =-+≥,显然()0f x ≤不恒成立; 当0k >时,()max 11ln 0k f x f k k +⎛⎫==≤⎪⎝⎭,即1k .综上:实数k 的取值范围是[)1,+∞;(3)由(2)可知,当1k =时()0f x ≤恒成立,即()ln 12x x -<-,()ln 121x x x-∴<-, ()()22ln ln 11121212n n n n n n n --=<=+++,可得出ln 2132<,ln 3242<,,ln 112n n n -<+, ()()*1ln 2ln 3ln 121,23412224n n n n n N n n --∴+++<+++=∈≥+. 10.(2020·浙江三模)已知数列{}n a ,112a =,1ln 1n n a a +=-. (1)求证:11n n a a +<<; (2)求证:123201912020a a a a ⋅⋅⋅⋅⋅⋅<. 【答案】(1)证明见解析;(2)证明见解析. 【解析】(1)∈先利用数学归纳法证明1n a <. (∈)当1n =时,1112a =<成立; (∈)假设n k =时1k a <成立,则1ln 10k k a a +=-<,11k a +∴<. 综上所述,对任意的n *∈N ,1n a <; ∈利用导数证明1x e x -≥,设()1x f x ex -=-,则()1e 1x f x -'=-,当1x <时,()0f x '<,此时函数()y f x =单调递减; 当1x >时,()0f x '>,此时函数()y f x =单调递增.所以,()()0110f x f e ≥=-=,即1x e x -≥,当且仅当1x =时,等号成立.1n a <,()()10n f a f ∴>=,即1n a n e a ->,1ln 1n n a a +=-,11n a n n a e a -+∴=>,综合∈∈可知11n n a a +<<;(2)利用数学归纳法证明1n n a n ≤+. ∈当1n =时,112a =满足1n n a n ≤+;∈假设n k =时成立,即1k ka k ≤+,则由1ln 1n n a a +=-,得111111k k a k k k a eee---+++==≤,要证1112k k ek -++<+,令11,012t k ⎛⎫-=∈- ⎪+⎝⎭,则要证11012t e t t ⎛⎫<-<< ⎪-⎝⎭,21 / 21 构造()11x f x e x =+-,1,02x ⎛⎫∈- ⎪⎝⎭,()()()()22211111x x e x f x e x x --'=-=--,令()()211x h x e x =--,1,02x ⎛⎫∈- ⎪⎝⎭,则()()()()2212110x x x h x e x e x e x '=-+⋅-=-<, 所以,函数()y f x '=在1,02⎛⎫- ⎪⎝⎭上单调递减,()()00f x f ''∴>=,所以,函数()y f x =在1,02⎛⎫- ⎪⎝⎭上单调递增,()()00f x f ∴<=,即11x e x <-成立,即1112k k e k -++<+,112k k a k ++∴<+, 综上1n na n ≤+,当且仅当1n =时等号成立,由于1ln 1n n a a +=-,可知0n a >, 所以,1102a <≤,2203a <<,,2019201902020a <<,1220191232019123420202020a a a ⋅⋅⋅⋅<⨯⨯⨯⋅⋅⨯=.。

导数与数列结合题目

导数与数列结合题目

导数与数列结合题目一、背景介绍数列是数学中一个重要的概念,它由一系列按特定规则排列的数构成。

数列的性质和规律对于数学的发展和应用有着重要的影响。

而导数是微积分中的一个重要概念,它描述了函数在某一点的变化率。

导数的计算和性质对于函数的研究和应用有着重要的意义。

在数学学习中,我们常常会遇到一些题目涉及到导数和数列的结合。

这些题目既考察了对导数和数列的理解,也考察了学生的解题能力和思维灵活性。

本文将介绍一些常见的导数与数列结合题目,并通过具体的例子进行说明和解答。

二、题目示例题目1:数列的导数已知数列 {an} 满足 an = 2n + 1,求数列的导数{a’n}。

解答:首先,我们需要知道数列的导数的定义。

对于数列 {an},其导数{a’n} 的定义为:a’n = limh→0 (an+h - an) / h代入题目给定的数列 {an} = 2n + 1,得到:a’n = limh→0 ((2(n+h)+1) - (2n+1)) / h化简上式得:a’n = limh→0 (2h) / h由此可知,数列的导数{a’n} = 2。

题目2:数列的极限与导数已知数列 {an} 满足 a1 = 2,an+1 = an + 3 / an,求数列的极限。

解答:首先,我们先对数列 {an} 进行求导。

令 f(x) = x + 3 / x,根据导数的定义,有:f’(x) = limh→0 (f(x+h) - f(x)) / h代入 f(x) = x + 3 / x,得到:f’(x) = limh→0 ((x+h + 3 / (x+h)) - (x + 3 / x)) / h化简上式得:f’(x) = limh→0 (3h / (x(x+h))) / h通过化简,得到f’(x) = 3 / x^2。

接下来,我们考察数列 {an} 的极限。

根据题目中给定的递推关系式,我们可以得到数列 {an} 的通项公式:an = an-1 + 3 / an-1化简上式得:an^2 = an-1^2 + 3进一步推导,可得:an^2 - an-1^2 = 3再次化简,可得:(an + an-1) * (an - an-1) = 3由此可知,数列 {an} 是一个有界数列,其极限存在。

高中数学:利用导数证明不等式的常见题型

高中数学:利用导数证明不等式的常见题型

利用导数证明不等式的常见题型题型一构造函数法把不等式的证明转化为利用导数研究函数的单调性或求最值的问题,从而证明不等式,而如何根据不等式的结构特征构造一个可导函数是利用导数证明不等式的关键.这四道题比较简单,证明过程略.概括而言,这四道题证明的过程分三个步骤:一是构造函数;二是对函数求导,判断函数的单调性;三是求此函数的最值,得出结论.【启示】证明分三个步骤:一是构造函数;二是对函数求导,判断函数的单调性;三是求此函数的最值,得出结论。

题型二通过对函数的变形,利用分析法,证明不等式【启示】解答第一问用的是分离参数法,解答第二问用的是分析法、构造函数,对函数的变形能力要求较高,大家应记住下面的变形:题型三求最值解决任意、存在性变量问题解决此类问题,关键是将问题转化为求函数的最值问题,常见的有下面四种形式:题型四分拆成两个函数研究【注意】(2)如果按题型一的方法构造函数求导,会发现做不下去,只好半途而废,所以我们在做题时需要及时调整思路,改变思考方向.【启示】掌握下列八个函数的图像和性质,对我们解决不等式的证明问题很有帮助,这八个函数分别为要求会画它们的图像,以后见到这种类型的函数,就能想到它们的性质题型五设而不求当函数的极值点(最值点)不确定时,可以先设出来,只设不解,把极值点代入,求出最值的表达式而证明.【启示】设而不求,整体代换是一种常用的方法,在解析几何中体现很多.在本例第(2)问中,只设出了零点而没有求出零点,这是一种非常好的方法,同学们一定要认真体会,灵活应用.题型六估值法题型七利用图象的特点,证明不等式题型八证明数列不等式题型九利用放缩法证明不等式【注意】在解决第(2)问时,用构造函数法证不出来,又试着分开两个函数仍然不行,正当我一筹莫展时,忽然想到与第一问题的切线联系,如果左边的函数的图像在切线的上方,右边函数的图像在切线的下方,这样问题不就得证了吗?心里非常高兴,马上付诸行动。

高三数学利用导数求最值和极值试题答案及解析

高三数学利用导数求最值和极值试题答案及解析

高三数学利用导数求最值和极值试题答案及解析1.已知函数 (R).(1)当时,求函数的极值;(2)若函数的图象与轴有且只有一个交点,求的取值范围.【答案】(1)当时, 取得极大值为;当时, 取得极小值为.(2)a的取值范围是.【解析】(1)遵循“求导数,求驻点,讨论驻点两侧导数值符号,确定极值”.(2)根据= ,得到△= = .据此讨论:①若a≥1,则△≤0,此时≥0在R上恒成立,f(x)在R上单调递增 .计算f(0),,得到结论.②若a<1,则△>0,= 0有两个不相等的实数根,不妨设为.有.给出当变化时,的取值情况表.根据f(x1)·f(x2)>0, 解得a>.作出结论.试题解析:(1)当时,,∴.令="0," 得. 2分当时,, 则在上单调递增;当时,, 则在上单调递减;当时,, 在上单调递增. 4分∴当时, 取得极大值为;当时, 取得极小值为. 6分(2)∵= ,∴△= = .①若a≥1,则△≤0, 7分∴≥0在R上恒成立,∴ f(x)在R上单调递增 .∵f(0),,∴当a≥1时,函数f(x)的图象与x轴有且只有一个交点. 9分②若a<1,则△>0,∴= 0有两个不相等的实数根,不妨设为.∴.当变化时,的取值情况如下表:x x(x,x)x++11分∵,∴.∴=.同理. ∴.令f(x1)·f(x2)>0, 解得a>.而当时,, 13分故当时, 函数f(x)的图象与x轴有且只有一个交点.综上所述,a的取值范围是. 14分【考点】应用导数研究函数的极值、单调性及函数的图象,分类讨论思想.2.函数的极小值是 .【答案】.【解析】,令,解得,列表如下:极大值极小值故函数在处取得极小值,即.【考点】函数的极值3.已知a≤+lnx对任意的x∈[,2]恒成立,则a的最大值为________.【解析】令f(x)=+lnx,f′(x)=,当x∈[,1)时,f′(x)<0,当x∈(1,2]时,f′(x)>0,∴f(x)min=f(1)=0,∴a≤0,故a最大值为0.4.已知函数,是函数的导函数,且有两个零点和(),则的最小值为()A.B.C.D.以上都不对【答案】B【解析】,由题意,当或时,,当时,,因此的最小值是,选B.【考点】函数的极值与最值.5.已知e为自然对数的底数,设函数f(x)=(e x-1)(x-1)k(k=1,2),则 ().A.当k=1时,f(x)在x=1处取到极小值B.当k=1时,f(x)在x=1处取到极大值C.当k=2时,f(x)在x=1处取到极小值D.当k=2时,f(x)在x=1处取到极大值【答案】C【解析】当k=1时,f′(x)=e x·x-1,f′(1)≠0,∴x=1不是函数f(x)的极值点.当k=2时,f′(x)=(x-1)(xe x+e x-2),显然f′(1)=0,且x在1的左边附近f′(x)<0,x在1的右边附近f′(x)>0,∴f(x)在x=1处取到极小值.6.已知函数f(x)=x3+ax2+x+2(a>0)的极大值点和极小值点都在区间(-1,1)内,则实数a的取值范围是______.【答案】(,2)【解析】由题意可知f′(x)=0的两个不同解都在区间(-1,1)内.因为f′(x)=3x2+2ax+1,所以根据导函数图象可得又a>0,解得<a<2.7.设函数f(x)=x e x,则().A.x=1为f(x)的极大值点B.x=1为f(x)的极小值点C.x=-1为f(x)的极大值点D.x=-1为f(x)的极小值点【答案】D【解析】∵f(x)=x e x,∴f′(x)=e x+x e x=e x(1+x).∴当f′(x)>0时,则x>-1,函数y=f(x)是增函数,同理可求,x<-1时函数f(x)为减函数.∴x=-1时,函数f(x)取得极小值.8.已知函数f(x)=x3+ax2+x+2(a>0)的极大值点和极小值点都在区间(-1,1)内,则实数a的取值范围是().A.(0,2]B.(0,2)C.[,2)D.(,2)【答案】D【解析】由题意可知f′(x)=0的两个不同解都在区间(-1,1)内.因为f′(x)=3x2+2ax+1,所以根据导函数图象可得又a>0,解得<a<2,故选D.9.若函数在区间内有极值,则实数的取值范围是 .【答案】【解析】因为函数在区间内有极值,所以导数在区间内必有零点,于是.【考点】1.导数的公式与法则;2.函数的零点.10.某人进行了如下的“三段论”推理:如果,则是函数的极值点,因为函数在处的导数值,所以是函数的极值点.你认为以上推理的 ( ) A.大前提错误B.小前提错误C.推理形式错误D.结论正确【答案】A【解析】本题中,如果,则是函数的极值点是错误的.若是函数的极值点,则函数在的左右两侧异号,而否则尽管有,都不能说明是函数的极值点.如,其导数,函数在上是增函数.所以不是函数的极值点.因此本题是大前提错误.【考点】推理与证明、导数、函数的极值11.在处有极小值,则实数为 .【答案】1【解析】由得,又在处有极小值,故,解得或,当时,有,函数在单调递增,在单调递减,故在处有极小值;当时,有,函数在单调递增,在单调递减,故在处有极大值.综上可知.【考点】利用导数处理函数的极值12.已知函数.(1)当时,求函数的极值;(2)求函数的单调区间.【答案】(1),无极大值;(2)见解析.【解析】(1)先找到函数的定义域,在定义域内进行作答,在条件下求出函数的导函数,根据函数的单调性与导数的关系,判断函数的极值;(2)先求出函数的导函数,其导函数中含有参数,所以要进行分类讨论,对分三种情况,,进行讨论,分别求出每种情况下的函数的单调增区间和单调减区间.试题解析:(1)函数的定义域是, 1分当时,,所以在上递减,在上递增,所以函数的极小值为,无极大值; 4分(2)定义域, 5分①当,即时,由,得的增区间为;由,得的减区间为; 7分②当,即时,由,得的增区间为和;由,得的减区间为; 9分③当,即时,由,得的增区间为和;由,得的减区间为; 11分综上,时,的增区间为,减区间为;时,的增区间为和,减区间为;时,的增区间为和,减区间为. 13分【考点】1、对数函数的定义域;2、含参数的分类讨论思想;3、函数的单调性与导数的关系;4、解不等式;5、求函数的极值.13.已知函数(,,且)的图象在处的切线与轴平行. (1)确定实数、的正、负号;(2)若函数在区间上有最大值为,求的值.【答案】(1),;(2).【解析】(1)先求导数,因为切线与轴平行,所以导数为0,列出等式,判断出的符号;(2)求导数,令导数为0,解出方程的根,利用导数的正负判断出函数的单调性,通过分类讨论的方法找到最大值,让最大值等于,解出的值.试题解析:(1) 1分由图象在处的切线与轴平行,知,∴. 2分又,故,. 3分(2) 令,得或. 4分∵,令,得或令,得.于是在区间内为增函数,在内为减函数,在内为增函数.∴是的极大值点,是极小值点. 5分令,得或. 6分分类:①当时,,∴ .由解得, 8分②当时,, 9分∴.由得 . 10分记,∵, 11分∴在上是增函数,又,∴, 12分∴在上无实数根. 13分综上,的值为. 14分【考点】1.用导数求切线的斜率;2.用导数求函数最值.14.已知函数,当时取得极小值,则等于()A.B.C.D.【答案】D【解析】由,解得,当;当;当,故在处取得最小值,即,则,所以,故选D.【考点】导数的极值点求法,导数的极值求解.15.对于三次函数,给出定义:设是函数的导数,是函数的导数,若方程有实数解,则称点为函数的“拐点”。

导数在求极限中的应用

导数在求极限中的应用

引言极限是研究变量的变化趋势的基本工具。

在高等数学中许多基本概念和研究问题的方法都和极限密切相关,如函数的连续、导数、定积分和无穷级数等都是建立在极限的基本之上的。

极限的思想和方法产生某些实际问题的精确解,并且对数学在实际中的应用也有着重要的作用。

因此研究生考试往往把求极限问题作为考核的一个重点,而在不同的函数类型条件下所采用的求极限的技巧是各不相同的,因此大家要学会判断极限的类型,熟练和灵活的掌握各种技巧的应用。

本文主要介绍了导数在求极限中的基本应用,包括导数定义法,L ’Hospital 法则,Taylor 展式法及微分中值定理在求极限中的应用。

旨在让大家掌握各种导数方法适用的函数类型,要注意的事项及它的一些推广结论。

达到能灵活运用导数方法去求解一些极限问题以使问题简单化的目的。

第1章导数在求极限中的基本应用1.1导数定义法这种极限求法主要针对所给的极限不易求,但是函数满足导数定义的形式且能够确定的变化趋向的极限易求出时,可以用此法比较方便的求出极限.定义若函数()y f x =在其定义域中的一点0x 处极限存在,则称在0x 处可导,称此极限值为()f x 在0x 处的导数,记为0()f x '.显然,()f x 在0x 处的导数还有如下的等价定义形式:000()()()limx x f x f x f x x x →-'=-.下面通过两个例子让大家逐步领悟导数定义法的内涵例1求极限tan sin 0limsin b x b xx xαα+-→-.解由于tan sin tan sin tan sin tan sin sin b x b xb x b b b xx xxxxαααααα+-+----=+.所以,tan sin tan sin 0tan limlimlimsin tan sin sin b x b xb x b b b xx x x xxxxxαααααα+-+-→→→---=+ln ln 2ln b b b αααααα=+=.例2(本题选自《数学分析中的典型问题与方法》裴礼文.第二版.)设(0)f k '=,试证00()()lim a b f b f a k b a-+→→-=-.证明(希望把极限式写成导数定义中的形式)(拟合法思想:把要证的极限值k 写成与此式相似的形式) 两式相减,可得因0a -→,0b +→,所以有0b a >>,1a bb a b a<--又因(0)f k '=,故当0a -→,0b +→时右端极限为零,原极限获证.1.2L ’Hospital 法则本节主要总结了L ’Hospital 法则在求未定式极限中的应用,需要注意的问题,并深入分析了使用L ’Hospital 法则时实质是对无穷小或无穷大进行降阶.另外还指出L ’Hospital 法则与其他极限方法如无穷小的替换的结合.1. L ’Hospital 法则L ’Hospital 法则作为Cauchy 中值定理的重要应用,在计算未定式极限中扮演了十分重要的角色,这是因为对于未定式极限来讲极限是否存在,等于多少是不能用极限的四则运算法则解得的,而通过对分子分母求导再求极限能够很有效的计算出未定式的极限. 关于未定式:在计算一个分式函数的极限时,常常会遇到分子分母都趋于零或都趋于无穷大的情况,由于这是无法使用“商的极限等于极限的商”的法则,运算将遇到很大的困难.事实上,这是极限可能存在也可能不存在.当极限存在时极限值也会有各种各样的可能.我们称这种类型的极限为0未定型或∞∞未定型.事实上,未定型除以上两种类型外还有0⋅∞,∞-∞,1∞,00,0∞等类型. L ’Hospital 法则: 定理[]4若函数f 和g 满足:①0lim ()lim ()0x x x x f x g x →→==;②在点0x 的某空心邻域00()U x 内可导,且()0g x '≠; ③0()lim()x x f x A g x →'='(A 可为有限数或∞); 则00()()limlim ()()x x x x f x f x A g x g x →→'=='. 注:以上结论在0x x ±→,或是x →∞(包括+∞和-∞)时也是成立的.2. L ’Hospital 法则的应用a) L ’Hospital 法则能处理的基本未定型极限是00型或∞∞型例1求lim n x x x e λ→∞(n 为正整数,0λ>).(∞∞型)解连续使用L ’Hospital 法则n 次122(1)!lim lim lim lim 0n n n x x xn x x x x x x nx n n x n e e e e λλλλλλλ--→∞→∞→∞→∞-===⋅⋅⋅==. 从以上例中可看出L ’Hospital 法则的实质是对无穷小或无穷大进行降阶. 下面再看两个L ’Hospital 法则在解含有变限积分问题中的应用.例2求03(1cos )limxx t dt x→-⎰.分析:因为0(1cos )x t dt -⎰可导从而连续,所以此问题属于0型,可用L ’Hospital 法则求解.解032(1cos )(1cos )limlim03xx x t dt t dt x x →→--==⎰⎰.例3求极限110()lim x x f t x dt t αα++→⎰,其中0α>,()f x 为闭区间[]0,1上的连续函数. 解111100()()lim lim 1x x x x f t dt f t t x dt t x αααα++++→→=⎰⎰因0x →时,1x α单调递减趋于+∞, 使用L ’Hospital 法则,则111110001()()()()(0)lim lim lim lim 11xxx x x x f t f x dt f t f x f t x x dt tx xααααααααα+++++++→→→→+-====-⎰⎰. (2)在使用L ’Hospital 法则时,必须验证条件是否满足①所求的极限是否未定型极限;②求完导数后极限是否存在.其中第二条容易忽略.例4设()f x 为可导函数,(0)(0)1f f '==,求极限0(sin )1limsin x f x x→-.解0(sin )1limsin x f x x →-00cos (sin )lim lim (sin )(0)1cos x x x f x f x f x→→'⋅''====. (此题不能用L ’Hospital 法则求解,错误出在题目中没有给出在处连续的条件,所以不知道的极限是否存在,即不满足条件②,题目中只是说在处可导,而定理中要求在的某个邻域中可导) 当求导后的极限不存在时,原极限仍可能有极限,所以求导后极限不存在只能说明此时L ’Hospital 法则失效,不能说原式无极限.(3)对于其他未定型或极限0⋅∞、∞-∞、1∞、00、0∞等类型,可分别通过做商、通分、取对数转化成00型或∞∞型的极限,再使用L ’Hospital 法则.例5求极限1lim(1)tan2x x x π→-.解2111121122lim(1)tanlimlimlim sin 22cotcsc222x x x x xx x x x xπππππππ→→→→---====-.注:这是将0⋅∞型转化成了00型,如果选择不当把它化成∞∞型,则解题过程将会比较复杂.转化时一般规律是选择求导后式子简单的那种类型.例6求极限01limcot x x x→-.解将它改写成1cos sin cot sin x x x x x x x--=就化成了∞∞型,于是有01limcot x x x →-2000cos sin sin cos sin cos lim lim lim 0sin 2x x x x x x x x x x x xx x x x→→→---====. “1∞、00、0∞”可以通过如下转化化成型或型:例7 求极限2lim (arctan )x x x π→+∞.(1∞型)解因为2lim ln(arctan )2lim (arctan )x x x xx x eππ→+∞→+∞=而2lnarctan 2lim ln(arctan )lim1x x x x x xππ→+∞→+∞=所以22lim ln(arctan )2lim (arctan )x x x xx x eeπππ→+∞-→+∞==.例8 求极限1ln 0lim(cot )xx x +→.(0∞型)解因为当0x +→时tan x x :,所以0ln 111lim 1ln ln ln ln 00011lim (cot )lim ()lim ()tan x xxxx xx x x x e e x x+→+++--→→→====.(4)利用L ’Hospital 法则求数列极限——Stolz 公式Stolz 公式可以说是数列的L ’Hospital 法则,它对求数列的极限很有用. 定理1[4](∞∞型的Stolz 公式) 设{}n x 严格递增(即n N ∀∈有1n n x x +<)且lim n n x →∞=+∞,若①11limn n n n n y y a x x -→∞--=-(有限数),则lim n n nya x →∞=;②a 为+∞或-∞,结论仍然成立.定理2[4](0型的Stolz 公式)设n →∞时0n y →,{}n x 严格单调下降趋于零,若11limn n n n n y y a x x -→∞--=-,则limnn ny a x →∞=(其中a 为有限数,+∞或-∞). 例9 求极限limln n n n →∞.解由于1lim lim 1ln x x x x x→+∞→+∞==+∞,所以limln n nn→∞=+∞. 例10证明1121lim 1p p p p n n n p +→∞++⋅⋅⋅+=+(p 为自然数).证11112(1)lim lim (1)p p p pp p p n n n n nn n +++→∞→∞++⋅⋅⋅++=+- 1(1)1lim (1)1(1)12p n pp n p p p p n n →∞-+==+++++⋅⋅⋅+. 下面说明Stolz 公式必要时可以重复使用例11 02ln nk nk n CS n ==∑(其中(1)(1)12kn n n n k C k-⋅⋅⋅-+=⋅⋅⋅⋅),求lim n n S →∞.解因2n 单调递增趋于+∞,可应用Stolz 公式(再次使用Stolz 公式)1ln()(1)ln(1)ln ln(1)1limlim(21)(21)22nn n n n n n n n n n n →∞→∞+++--+===+--.例12 求极限121112122223222lim()()()212121n n n n n ---→∞⋅⋅⋅---.解先取对数,再取极限.令121112122223222lim()()()212121n n n n n n x ---→∞=⋅⋅⋅---应用Stolz 公式故,原式1lim 2n n x →∞==.(5)L ’Hospital 法则与其他方法相结合使用,如与无穷小相结合.例13求极限22201cos lim sin x x x x →-.解422240011cos 12lim lim sin 2x x xx x x x →→-==. 有个别题目在使用L ’Hospital 法则时会出现循环现象,此时不能用L ’Hospital 法则求解,如下面一例.例14求极限lim x xx x x e e e e --→+∞-+.解221lim lim11x x xx x xx x e e e e e e ----→+∞→+∞--==++. 第2章Taylor 展式在求极限问题中的应用本节介绍运用Taylor 公式求解一些较复杂的未定型的函数极限及中值点的极限、无穷远处的极限.定理1[4](带Peano 余项的Taylor 公式)设()f x 在0x 处有n 阶导数,则存在0x 的一个邻域,对于该邻域中的任一点x ,成立 其中余项()()n r x 满足()0()(())n n r x o x x =- 定理2[4](带Lagrange 余项的Taylor 公式)设()f x 在[],a b 上有n 阶连续导数,且在(,)a b 上有1n +阶导数.设[]0,x a b ∈为一定点,则对于任意[],x a b ∈,成立其中余项()()n r x 满足(1)()10()()()(1)!n n n f r x x x n ξ++=-+,ξ在x 和0x 之间. 注:函数()f x 在0x =处的Taylor 公式又称为函数()f x 的Maclaurin 公式. 几个常用函数的Maclaurin 公式:(为了便于书写,我们写出带Peano 余项的Taylor 公式)①231()2!3!!nxn x x x e x o x n =++++⋅⋅⋅++;②352122sin (1)()3!5!(21)!n nn x x x x x o x n ++=-+-⋅⋅⋅+-++; ③24221cos 1(1)()2!4!(2)!n n n x x x x o x n +=-+-⋅⋅⋅+-+; ④230123(1)()()()()()()n n nx x x x x o x αααααα+=++++⋅⋅⋅++ 其中α为任意实数,(1)(1)()!k k k αααα-⋅⋅⋅-+=,并规定0()1α=;⑤2341ln(1)(1)()234nn n x x x x x x o x n -+=-+-⋅⋅⋅+-+; ⑥3521122arctan (1)()3521n n n x x x x x o x n +-+=-+-⋅⋅⋅+-++. 1.用Taylor 公式巧解未定型极限由于L ’Hospital 法则的实质是对分子分母进行降阶,这意味着当遇到分子分母都是较高阶的情况时,必须多次应用L ’Hospital 法则,遇到分子分母有带根号项时,会越微分形式会越复杂.而用公式则可进一步到位,所以在求解未定型极限时,应该灵活使用公式法解决.从而避免应用法则出现的解题困难. 例1求极限2240cos limx x x e x -→-.解这是个0未定型极限问题,如果使用L ’Hospital 法则,则分子分母需求导四次,但若使用Taylor公式,则44401()112lim 12x x o x x →-+==-. 例2求极限0x →解这也是个0未定型的极限问题,因2441()624x x o x =-+,4224sin ln(1sin )sin (sin )2x x x o x +=-+用324sin [()]6x x x o x =-+代入,即有42245ln(1sin )()6x x x o x +=-+于是240ln(1sin )1)lim x x x→+- 424244405[()]6[()]76624lim 12x x x x x o x o x x →-+--+==-. 2.用Taylor 公式求中值点的极限例3(《本题选自数学分析中的典型问题与方法》裴礼文.第2版.第251页) 设(1)()f x 在00(,)x x δδ-+内是n 阶连续可微函数,此处0δ>; (2)当2,3,(1)k n =⋅⋅⋅-时,有()0()0n f x =但是(1)0()0n f x +≠; (3)当0h δ≠<时有000()()(())f x h f x f x h h hθ+-'=+①其中0()1h θ<<证明:lim ()h h θ→∞=证我们要设法从①式中解出()h θ,为此我们将①式左边的0()f x h +及右边的0(())f x h h θ'+在0x 处展开.由条件(2)知12,(0,1)θθ∃∈使得于是①式变成从而()h θ=因12,()(0,1)h θθθ∈,利用()()n f x的连续性,可得lim ()h h θ→∞=注:此题若用L ’Hospital 法则做将不胜其烦.例4设()()()()(),(01)!n n h f x h f x hf x f x h n θθ'+=++⋅⋅⋅++<<, 且(1)()0n f x +≠,证明:01lim 1h n θ→=+. 提示:1()(1)1()()()()()()!(1)!n n n n n h h f x h f x hf x f x f x o h n n +++'+=++⋅⋅⋅++++ 从而有()()(1)()()()()1n n n f x h f x h hf x o h h n θθθ++-=++. 证明2()11()()()()()2!!n n f x h f x hf x f x h f x h h n θ'''+=+++⋅⋅⋅++ 另0,h →得到(1)(1)01lim ()()1n n h f x f x n θ++→⋅=+,再由(1)()0n f x +≠,两边消去(1)()n f x +,即得到01lim 1h n θ→=+.3.用Taylor 公式求无穷远处的极限例5(《本题选自数学分析中的典型问题与方法》裴礼文.第2版.第249页)设函数()x ϕ在[)0,+∞上二次连续可微,如果lim ()x x ϕ→+∞存在,且()x ϕ''在[)0,+∞上有界,试证:lim ()0x x ϕ→+∞'=.证明要证明lim ()0x x ϕ→+∞'=,即要证明:0,0ε∀>∃∆>当0∆>时()x ϕε'<利用Taylor 公式,210,()()()()2h x h x x h h ϕϕϕϕξ'''∀>+=++即11()[()()]()2x x h x h h ϕϕϕϕξ'''=+--①记lim ()x A x ϕ→+∞=因ϕ''有界,所以,0M ∃>使得()x M ϕ''≤,(对x a ∀≥)故由①知211()(()())2x x h A A x Mh h ϕϕϕ'≤+-+-+②对0ε∀>,首先可取0h >充分小,使得2122Mh ε<,然后将h 固定,因lim ()x x A ϕ→+∞=,所以0∃∆>,当0x >时,从而由②式,即得()22x εεϕε'<+=.第3章微分中值定理在求极限问题中的应用微分中值定理是Role 定理,Lagrange 中值定理,Cauchy 中值定理和Taylor 中值定理的统称。

高二数学利用导数求最值和极值试题

高二数学利用导数求最值和极值试题

高二数学利用导数求最值和极值试题1.函数在(0,1)内有最小值,则的取值范围为()A.B.C.D.【答案】B.【解析】首先对函数进行求导,即,然后根据函数在(0,1)内有最小值,讨论参数与0的大小关系,进而找到符合条件的的取值范围,即(1)若,此时,这表明在(0,1)上单调递增的,所以在处取得最小值,显然不可能;(2)若,令,解得,当时,为增函数,为减函数,所以在处取得最小值,也是最小值,故极小值点在(0,1)内,符合条件要求.综上所述,的取值范围为(0,1).故答案应选B.【考点】利用导数求闭区间上函数的最值.2.已知函数.(1)若函数在区间上存在极值点,求实数a的取值范围;(2)如果当时,不等式恒成立,求实数k的取值范围;【答案】(1)(2)【解析】(1)对函数求导,求出极值点,范围在内,得到不等式关系,解不等式即可;(2)要对恒成立问题转化,转化为求最值问题,令,求出在的最小值.试题解析:(1)当x>0时,,有;所以在(0,1)上单调递增,在上单调递减,函数在处取得唯一的极值.由题意,且,解得所求实数的取值范围为.(2)当时,令,由题意,在上恒成立令,则,当且仅当时取等号.所以在上单调递增,.因此,在上单调递增,.所以.【考点】导数运算,化归思想.3.设函数,则的极小值点为()A.B.C.D.【答案】D【解析】因为,令得解得,又因为函数的定义域为,当时,,所以时为减函数;当时,,所以时为增函数;所以当时函数取得极小值;【考点】导数在求函数极值中的应用;4.已知函数.(1)求曲线在点(1,0)处的切线方程;(2)设函数,其中,求函数在上的最小值.(其中为自然对数的底数)【答案】(1)(2)当时,的最小值为0;当时,的最小值为;当时,的最小值为.【解析】利用导数的几何意义求曲线在点处的切线方程,注意这个点的切点.(2)解决类似的问题时,注意区分函数的最值和极值.求函数的最值时,要先求函数在区间内使的点,再计算函数在区间内所有使的点和区间端点处的函数值,最后比较即得.(3)分类讨论是学生在学习过程中的难点,要找好临界条件进行讨论.试题解析:(1)由,得切线的斜率为.又切线过点,所以直线的方程为 4分(2),则令,得;令,得,所以在上单调递减,在上单调递增①当,即时,在上单调递增,所以在上的最小值为②当,即时,在上单调递减,在上单调递增.在上的最小值为③当,即时,在上单调递减,所以在上的最小值为.综上:当时,的最小值为0;当时,的最小值为;当时,的最小值为. 12分【考点】(1)利用导数求切线方程;(2)利用导数求函数的最值.5.已知函数在与处都取得极值.(1)求函数的解析式;(2)求函数在区间[-2,2]的最大值与最小值.【答案】(1);(2).【解析】(1)由已知函数在与处都取得极值,得到,求出得到:关于a,b的两个方程,联立解方程组可得到a,b的值,从而可写出函数的解析式;(2)由(1)已求出的解析式,要求函数在区间[-2,2]的最大值与最小值,只需先求出函数在区间[-2,2]的极大值与极小值,再求出两个端点的函数值,然后比较这四个数值的大小,得其中的最大者就是该函数的最大值,最小者就是该函数的最小值.试题解析:(1)f(x)=x3+ax2+bx,f¢(x)=3x2+2ax+b 1分由f¢()=,f¢(1)=3+2a+b=0 3分得a=,b=-2 5分经检验,a=,b=-2符合题意所以,所求的函数解析式为: 6分(2)由(1)得f¢(x)=3x2-x-2=(3x+2)(x-1), 7分列表如下:(-2,-)-(-,1)9分11分所以当时, 12分【考点】1.函数导数;2.函数极值;3.函数最值.6.函数在[0,3]上的最大值和最小值分别是( ).A.5,-15B.5,-14C.5,-16D.5,15【答案】A【解析】,;令得;令得;函数在递减,在递增;又,.【考点】利用导数求闭区间上的最值.7.函数在[0,3]上的最大值和最小值分别是A.5,15B.5,-14C.5,-15D.5,-16【答案】C【解析】,;令得;令得;函数在递减,在递增;又,.【考点】利用导数求闭区间上的最值.8.函数.(1)求函数的极值;(2)设函数,对,都有,求实数m的取值范围.【答案】(1);(2).【解析】解题思路:(1)求导,令得,列表即可极值;(2)因为,都有,所以只需即可,即求的最值.规律总结:(1)利用导数求函数的极值的步骤:①求导;②解,得分界点;③列表求极值点及极值;(2)恒成立问题要转化为求函数的最值问题.注意点:因为,都有,所以只需即可.试题解析:(1)因为,所以,令,解得,或,则+-+故当时,有极大值,极大值为;当时,有极小值,极小值为.(2)因为,都有,所以只需即可.由(1)知:函数在区间上的最小值,又,则函数在区间上的最大值,由,即,解得,故实数m的取值范围是.【考点】1.函数的极值;2.不等式恒成立问题.9.若函数在[-1,1]上有最大值3,则该函数在[-1,1]上的最小值是__________【答案】【解析】求导得=,当-1<<0时,,当时,<0,所以该函数在(-1,0)上是增函数,在(0,1)是减函数,故当=0时,=,所以=3,所以当=-1时,y=,当=1时,=,所以该函数在[-1,1]上的最小值为.【考点】利用导数求函数在某个闭区间上的最值10.设函数在上的导函数为,在上的导函数为,若在上,恒成立,则称函数在上为“凸函数”.已知当时,在上是“凸函数”.则在上 ( )A.既有极大值,也有极小值B.既有极大值,也有最小值C.有极大值,没有极小值D.没有极大值,也没有极小值【答案】C【解析】由题设可知:在(-1,2)上恒成立,由于从而,所以有在(-1,2)上恒成立,故知,又因为,所以;从而,得;且当时,当时,所以在上在处取得极大值,没有极小值.【考点】新定义,函数的极值.11.若函数在(0,1)内有极小值,则 ( )A.<1B.0<<1C.b>0D.b<【答案】B【解析】由得:,若函数在(0,1)内有极小值,则必在区间内有解,即关于的方程区间内有解,所以有,故选B.【考点】导数与函数的极值.12.若函数在[-1,1]上有最大值3,则该函数在[-1,1]上的最小值是__________【答案】【解析】由函数得,令0得x=0或x=1,<0得,>0得x>1或x<0,所以函数在(0,1)上是减函数,在上是增函数,故最大值为f(0)=a=3,f(1)=,f(-1)=,故最小值为,【考点】导数与函数的极值.13.已知函数既有极大值又有极小值,则实数的取值范围是。

专题13 利用导数解决函数的极值、最值

专题13 利用导数解决函数的极值、最值

专题13利用导数解决函数的极值、最值【高考地位】导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试题难度考查较大.类型一利用导数研究函数的极值万能模板内容使用场景一般函数类型解题模板第一步计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ;第二步求方程'()0f x =的根;第三步判断'()f x 在方程的根的左、右两侧值的符号;第四步利用结论写出极值.例1已知函数x xx f ln 1)(+=,求函数()f x 的极值.【答案】极小值为1,无极大值.试题解析:第一步,计算函数()f x 的定义域并求出函数()f x 的导函数'()f x :因为x xx f ln 1)(+=,所以()f x 的定义域为()0+∞,,所以()22111'x f x x x x -=-+=;第二步,求方程'()0f x =的根:令()'0f x =得,1x =;第三步,判断'()f x 在方程的根的左、右两侧值的符号:当01x <<时()'0f x <,当1x >时,()'0f x >;第四步,利用结论写出极值:所以1x =时,()f x 有极小值为1,无极大值.【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值.【变式演练1】(极值概念)下列说法正确的是()A .当0'()0f x =时,则0()f x 为()f x 的极大值B .当0'()0f x =时,则0()f x 为()f x 的极小值C .当0'()0f x =时,则0()f x 为()f x 的极值D .当0()f x 为()f x 的极值且0'()f x 存在时,则有0'()0f x =【答案】D 【解析】【分析】由导函数及极值定义得解.【详解】不妨设函数3()f x x =则可排除ABC由导数求极值的方法知当0()f x 为()f x 的极值且0'()f x 存在时,则有0'()0f x =故选:D【变式演练2】(图像与极值)已知函数()3()ln (,,)f x ax bx c a b c =++∈R 的定义域为(3,)-+∞,其图象大致如图所示,则()A .b a c <<B .b c a <<C .a b c <<D .a c b<<【答案】A 【分析】设3()g x ax bx c =++,利用导数求得函数的单调性,以及结合图象中的函数单调性,即可求得,,a b c 的大小关系,得到答案.【详解】设3()g x ax bx c =++,可得2()3g x ax b '=+,由图象可知,函数()f x 先递增,再递减,最后递增,且当1x =时,()g x 取得极小值,所以函数()g x 既有极大值,也有极小值,所以2()30g x ax b '=+=有两个根,即3a x b=-31ab=-,可得0,0a b ><且3a b =-,又由()0ln 0f c =>,可得1c >,由()1ln()0ln1f a b c =++>=,可得1a b c ++>,所以11312c a b a a a a >--=-+=+>,所以c a b >>.故选:A.【变式演练3】(解析式中不含参的极值)已知函数()ln xf x x x=-,则()A .()f x 的单调递减区间为()0,1B .()f x 的极小值点为1C .()f x 的极大值为1-D .()f x 的最小值为1-【答案】C【分析】先对函数求导()221ln x x f x x --'=,令()21ln x x x ϕ=--,再利用导数判断其单调性,而()1=0ϕ,从而可求出()f x 的单调区间和极值【详解】()2221ln 1ln 1x f x x x x x ---=='-.令()21ln x x x ϕ=--,则()120x x x ϕ'=--<,所以()21ln x x x ϕ=--在()0,∞+上单调递减.因为()1=0ϕ,所以当01x <<时,()0x ϕ>;当1x >时,()0x ϕ<.所以()f x 的单调递增区间为()0,1,单调递减区间为()1,+∞,故()f x 的极大值点为1,()f x 的极大值为()11f =-故选:C【变式演练4】(解析式中含参数的极值)已知函数()2ln 2f x ax x =--,()4xg x axe x =-.(1)求函数()f x 的极值;(2)当0a >时,证明:()()()2ln 12ln ln 2g x x x a --+≥-.【答案】(1)答案见解析;(2)证明见解析.【解析】【分析】(1)对函数进行求导,分为0a ≤和0a >两种情形讨论单调性即可得极值;(2)令()()()2ln 1h x g x x x =--+,根据导数判断函数的单调性证明即可.【详解】(1)∵()2ln 2f x ax x =--,()0x >,∴()22ax f x a x x-'=-=,当0a ≤时,()0f x '<恒成立,函数()f x 单调递减,函数()f x 无极值;当0a >时,20,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<,函数()f x 单调递减;2,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,函数()f x 单调递增;故函数()f x 的极小值为2222=2ln 22ln f a a a a a ⎛⎫⨯--=-⎪⎝⎭,无极大值.(2)证明:令()()42ln 2222ln 20,0xxh x axe x x x axe x x a x =--+-=--->>,()()()211=22x x x x h x a e xe ae x x x +'+--=+-,故()()=21xh x x ae x '+-⎛⎫ ⎪⎝⎭,令()0h x '=的根为0x ,即02=x ae x ,两边求对数得:00ln ln 2ln a x x +=-,即00ln ln 2ln x x a +=-,∴当()0x x ∈+∞,时,()0h x '>,()h x 单调递增;当()00,x x ∈时,()0h x '<,()h x 单调递减;∴()()()0000000min 22ln 222ln 2ln 2ln xh x h x ax e x x x x a =---=-=--=-,∴()2ln 2ln 2h x a ≥-,即原不等式成立.【变式演练5】(由极值求参数范围)若函数()221e e 22x x f m x x m=--有两个极值点,则实数m 的取值范围是()A .1,2⎛⎫+∞ ⎪⎝⎭B .()1,+∞C .e ,2⎛⎫+∞ ⎪⎝⎭D .()e,+∞【答案】B 【分析】依题意,()2e e xxm f m x x =--'有两个变号零点,由()0f x '=,可得21e e xx x m +=,设()2e ex x g x x +=,求出函数()g x 的单调性及取值情况即可得解.【详解】解:依题意,()2e e x xm f m x x =--'有两个变号零点,令()0f x '=,即2e e 0x x m mx --=,则()2e e x xm x =+,显然0m ≠,则21e ex x xm +=,设()2e e x x g x x+=,则()()22421212()x x x x x x x e e e x e e x g x e e+⋅-+⋅--='=,设()1e 2x x h x =--,则()e 20xh x -'=-<,∴()h x 在R 上单调递减,又()00h =,∴当(),0x ∈-∞时,()0h x >,()0g x '>,()g x 单调递增,当()0,x ∈+∞时,()0h x <,()0g x '<,()g x 单调递减,∴()()max 01g x g ==,且x →-∞时,()g x →-∞,x →+∞时,()0g x →,∴101m<<,解得1m >.故选:B .【点睛】方法点睛:函数零点问题的求解常用的方法有:(1)方程法(直接解方程求解);(2)图象法(画出函数()f x 的图象分析得解);(3)方程+图象法(令()=0f x 得()()g x h x =,分析函数(),()g x h x 的图象得解).要根据已知条件灵活选择方法求解.【变式演练6】(由极值求其他)已知函数321()(,)3f x x ax bx a b R =++∈在3x =-处取得极大值为9.(1)求a ,b 的值;(2)求函数()f x 在区间[4,4]-上的最大值与最小值.【答案】(1)13a b =⎧⎨=-⎩;(2)最大值为763,最小值为53-.【解析】【分析】(1)先对函数求导()22f x x ax b '=++,根据题意,列出方程组求解,即可得出结果;(2)根据(1)的结果,确定函数极大值与极小值,再计算出端点值,比较大小,即可得出结果.【详解】(1)由题意得:()22f x x ax b '=++,()()396039939f a b f a b ⎧-=-+=⎪∴⎨-=-+='-⎪⎩,解得:13a b =⎧⎨=-⎩.当13a b =⎧⎨=-⎩时,()32133f x x x x =+-,()()()22331f x x x x x '=+-=+-,∴当(),3x ∈-∞-和()1,+∞时,()0f x '>;当()3,1x ∈-时,()0f x '<,()f x ∴在(),3-∞-,()1,+∞上单调递增,在()3,1-上单调递减,()f x ∴的极大值为()39f -=,满足题意.(2)由(1)得:()f x 的极大值为()39f -=,极小值为()1511333f =+-=-,又()2043f -=,()7643f =,()f x ∴在区间[]4,4-上的最大值为763,最小值为53-.类型二求函数在闭区间上的最值例2已知函数()ln f x x x =-,()22g x ax x =+()0a <.(1)求函数()f x 在1,e e ⎡⎤⎢⎥⎣⎦上的最值;(2)求函数()()()h x f x g x =+的极值点.【答案】(1)最大值为1-,最小值为1e -;(2)见解析.【解析】试题分析:(1)对函数()f x 进行求导可得()11f x x'=-,求出极值,比较端点值和极值即可得函数的最大值和最小值;(2)对()h x 进行求导可得()h x '=221ax x x++,利用求根公式求出导函数的零点,得到导数与0的关系,判断单调性得其极值.试题解析:第一步,求出函数()f x 在开区间(,)a b 内所有极值点:依题意,()11f x x '=-,令110x-=,解得1x =;第二步,计算函数()f x 在极值点和端点的函数值:()11f =-,111e e f ⎛⎫=-- ⎪⎝⎭,()e 1ef =-;第三步,比较其大小关系,其中最大的一个为最大值,最小的一个为最小值:因为11e 11e -<--<-,故函数()f x 在1,e e ⎡⎤⎢⎥⎣⎦上的最大值为1-,最小值为1e -.(2)第一步,计算函数()f x 的定义域并求出函数()f x 的导函数'()f x :依题意,()()()h x f x g x =+=2ln x ax x ++,()121h x ax x =++'=221ax x x++,第二步,求方程'()0f x =的根:当0a <时,令()0h x '=,则2210ax x ++=.因为180a ∆=->,所以()221ax x h x x'++==()()122a x x x x x--,其中11184x a =-,21184x a+=-第三步,判断'()f x 在方程的根的左、右两侧值的符号:.因为0a <,所以10x <,20x >,所以当20x x <<时,()0h x '>,当2x x >时,()0h x '<,所以函数()h x 在()20,x 上是增函数,在()2,x +∞上是减函数,第四步,利用结论写出极值:故214x a+=-为函数()h x 的极大值点,函数()h x 无极小值点.【变式演练7】(极值与最值关系)已知函数()f x 在区间(),a b 上可导,则“函数()f x 在区间(),a b 上有最小值”是“存在()0,x a b ∈,满足()00f x '=”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】【分析】由开区间最小值点必为极小值点可知极小值点导数值为0,充分性成立;利用()3f x x =可验证出必要性不成立,由此得到结论.【详解】(),a b 为开区间∴最小值点一定是极小值点∴极小值点处的导数值为0∴充分性成立当()3f x x =,00x =时,()00f x '=,结合幂函数图象知()f x 无最小值,必要性不成立∴“函数()f x 在区间(),a b 上有最小值”是“存在()0,x a b ∈,满足()00f x '=”的充分不必要条件故选:A【变式演练8】(由最值求参数范围)若函数()()()2ln 2010a x x x f x x a x x ⎧-->⎪=⎨++<⎪⎩的最大值为()1f -,则实数a 的取值范围为()A .20,2e ⎡⎤⎣⎦B .30,2e ⎡⎤⎣⎦C .(20,2e ⎤⎦D .(30,2e ⎤⎦【答案】B 【解析】由12f a -=-+(),可得222alnx x a --≤-+在0x >恒成立,即为a (1-lnx )≥-x 2,当x e =时,0e->2显然成立;当0x e <<时,有10lnx ->,可得21x a lnx ≥-,设201x g x x e lnx =-(),<<,222(1)(23)(1)(1)x lnx x x lnx g x lnx lnx (),---'==--由0x e <<时,223lnx <<,则0g x g x ()<,()'在0e (,)递减,且0g x ()<,可得0a ≥;当x e >时,有10lnx -<,可得21x a lnx ≤-,设22(23)1(1)x x lnx g x x e g x lnx lnx -='=--(),>,(),由32e x e <<时,0gx g x ()<,()'在32e e (,)递减,由32x e >时,0g x g x '()>,()在32 ,x e ⎛⎫+∞ ⎪⎝⎭递增,即有)g x (在32x e =处取得极小值,且为最小值32e ,可得32a e ≤,综上可得302a e ≤≤.故选B .【变式演练9】(不含参数最值)已知函数2()cos sin 2f x x x =,若存在实数M ,对任意12,R x x ∈都有()()12f x f x M -≤成立.则M 的最小值为()A .338B .32C .334D .233【答案】C 【解析】【分析】令2sin t x =,则[]0,1t ∈,设()()31h t t t =-,则()2()f x h t =,利用导数可求()max 27256h t =,从而得到()f x 的最值,故可得M 的取值范围,从而得到正确的选项.【详解】3()2cos sin f x x x =,故622()4cos sin f x x x =,令2sin t x =,则[]0,1t ∈,设()()31h t t t =-,则()2()4f x h t =,又()()()()()322131114h t t t t t t '=---=--,若10,4t ⎛⎫∈ ⎪⎝⎭,则()0h t '>,故()h t '在10,4⎡⎤⎢⎥⎣⎦为增函数;若1,14t ⎛⎫∈ ⎪⎝⎭,则()0h t '<,故()h t '在1,14⎛⎤ ⎥⎝⎦为减函数;故()max 27256h t =,故2max 27()64f x =,所以max ()8f x =,min ()8f x =-,当且仅当1sin 415cos 4x x ⎧=⎪⎪⎨⎪=⎪⎩时取最大值,当且仅当1sin 415cos 4x x ⎧=-⎪⎪⎨⎪=-⎪⎩时取最小值,故4M ≥即M的最小值4.故选:C.【变式演练10】(含参最值)已知函数121()(1),02x f x x a ex ax x -=---+>(1)若()f x 为单调增函数,求实数a 的值;(2)若函数()f x 无最小值,求整数a 的最小值与最大值之和.【答案】(1)1a =.(2)3【解析】【分析】(1)求出()f x ',再令()0f x '=,求出两个根,函数()f x 为单调函数,所以()f x 有两个相同的根,得到1a =,再进行检验即可;(2)由()0f x '=得11x =,或2x a =和a Z ∈,分别当0a ≤、1a =和1a >三种情况进行讨论;0a ≤时不成立,1a =时成立,1a >时,利用函数单调性,当()f x 无最小值时,(0)()f f a <,构造关于a 的函数,求出a 的范围,即可得到答案.【详解】(1)由题意,11()()()(1)x x f x x a e x a x a e --'=--+=--,()0f x '=,解得11x =,或2x a =,因为函数()f x 为单调函数,所以()f x 有两个相同的根,即1a =,1a =时,()0f x '≥,()f x 为增函数,故1a =适合题意;(2)由(1)知,()0f x '=,解得11x =,或2x a =,①当0a ≤时,则(0,1)()0x f x '∈⇒<⇒()f x 在(0,1]上为减函数,(1,)()0x f x '∈+∞⇒>⇒()f x 在[1,)+∞上为增函数,当1x =时,()f x 有最小值1(1)2f =-,故0a ≤不适合题意;②当1a =时,则(0,1)()0x f x '∈⇒>⇒()f x 在(0,1]上为增函数,(1,)()0x f x '∈+∞⇒>⇒()f x 在[1,)+∞上为增函数,∴()f x 在(0,)+∞上为增函数,()f x 无最小值,故1a =适合题意;③当1a >时,则(0,1)()0x f x '∈⇒>⇒()f x 在(0,1]上为增函数,(1,)()0x a f x '∈⇒<⇒()f x 在[1,]a 上为减函数,(,)()0x a f x '∈+∞⇒>⇒()f x 在[,)a +∞上为增函数,因为()f x 无最小值,所以(0)()f f a <21121111(1)022a a a a e e a e a e -----⇒<-⇒--+<,()()()121111112a a g a e a a e a g a e a e ----'=--+>⇒=--,,由()110a g a e -''=->在()1+∞,上恒成立,()11a g a e a e --'=--在()1+∞,上单调递增,且110g e -'=-<(),()()12200g e e g a ->''=--⇒=存在唯一的实根()112a ∈,() g a ⇒在()11a ,上单调递减;() g a 在()1a +∞,上单调递增增,且()()()2e 439410220302e 2g g e g e e e-=<=--<=-->,,()0g a ⇒=存在唯一的实根()223a ∈,,由()12121102a e a a e a a ----+<⇒<,()f x 无最小值,则21a a <<,()223a ∈,,综上,21a a ≤<,()223a ∈,,a Z ∈ ,123min max a a +=+=.【变式演练11】(恒成立转求最值)已知函数32()ln x f x e x x x ax -=+--满足()0f x ≥恒成立,则实数a 的取值范围是()A .(,e]-∞B .(,2]-∞-C .[2,e]D .[2,2]-【答案】B【分析】由()0f x ≥转化为3ln x e a x x x -≤+-,设33ln ()ln ln x x x e g x x x e x x x---=+-=+-,利用3ln ln (3ln 1)ln x x e x x x x x x --+-≥--++-,即可求解.【详解】由题意,函数32()ln x f x e x x x ax -=+--满足()0f x ≥恒成立,可得32ln x ax e x x x -≤+-恒成立,即3ln x e a x x x -≤+-,设33ln ()ln ln x x x e g x x x e x x x---=+-=+-,又由函数()(1)1x x h x e x e x =-+=--,可得()1x h x e '=-,当0x >时,可得()10x h x e '=->,所以()h x 为单调递增函数,且(0)0h =,所以0x >时,可得()(0)0h x h >=,即1x e x >+,则3ln ()ln (3ln 1)ln 2x x g x e x x x x x x --=+-≥--++-=-,当且仅当3ln 0x x --=,即3ln x x =+时取“=”号,所以2a ≤-,即实数a 的取值范围是(,2]-∞-.故选:B.【点睛】对于利用导数研究不等式的恒成立与有解问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立或有解求解参数的取值时,一般涉及分类参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.【变式演练12】(构造函数求最值)函数()22(0)f x x x =-+<,()ln x g x x x =+.若()()12f x g x =,则212x x -的最小值为()A .1-B .24e -C .2D .1【答案】C【分析】让()()12f x g x =,得到212222ln x x x x -+=+,再构造22122222ln x x x x x -=+-,然后令()22ln x u x x x =+-,研究()u x 的最小值即可.【详解】由题120x x <<,且()()12f x g x =,2120x x ->.有212222ln x x x x -+=+,则22122222ln x x x x x -=+-,令()22ln x u x x x=+-(0x >且1x ≠,()0u x >).(1)当01x <<时,易知()0u x <,不满足条件.(2)当1x >时,知()0u x >,由222ln ln 1(2ln 1)(ln 1)()ln ln 2x x x x u x x +--+'==,令()0u x '=,则1 x =,212x =(舍去),若1x <<()0u x '<;若x >()0u x '>,则 x =时取得极小值2u=-,也为最小值,则()u x u ≥,即21242x x -≥-,所以212x x -的最小值为2.故选:C.【点睛】关键点睛:解决本题的关键一是构造出212x x 的表达式并要统一变量,二是对构造的函数求最小值.。

高三数学导数的实际应用试题

高三数学导数的实际应用试题

高三数学导数的实际应用试题1.已知函数 ().(1)若,求函数的极值;(2)设.①当时,对任意,都有成立,求的最大值;②设的导函数.若存在,使成立,求的取值范围.【答案】(1)极大值是e-1,极小值(2)①-1-e-1②(-1,+∞)【解析】(1)当a=2,b=1时,f (x)=(2+)e x,定义域为(-∞,0)∪(0,+∞).所以f ′(x)=e x令f ′(x)=0,得x1=-1,x2=,列表x(-∞,-1)-1(-1,0)(0, )(,+∞)-↗极大值极小值↗由表知f (x)的极大值是f (-1)=e-1,f (x)的极小值是f ()=(2)①因为g (x)=(ax-a)e x-f (x)=(ax--2a)e x,当a=1时,g (x)=(x--2)e x.因为g (x)≥1在x∈(0,+∞)上恒成立,所以b≤x2-2x-在x∈(0,+∞)上恒成立.记h(x)=x2-2x- (x>0),则h′(x)=.当0<x<1时,h′(x)<0,h(x)在(0,1)上是减函数;当x>1时,h′(x)>0,h(x)在(1,+∞)上是增函数;所以h(x)min=h(1)=-1-e-1;所以b的最大值为-1-e-1. ②因为g (x)=(ax--2a)e x,所以g ′(x)=(+ax--a)e x.由g (x)+g′(x)=0,得(ax--2a)e x+(+ax--a)e x=0,整理得2ax3-3ax2-2bx+b=0.存在x>1,使g (x)+g ′(x)=0成立.等价于存在x>1,2ax3-3ax2-2bx+b=0成立.因为a>0,所以=.设u(x)= (x>1),则u′(x)=.因为x>1,u′(x)>0恒成立,所以u(x)在(1,+∞)是增函数,所以u(x)>u(1)=-1,所以>-1,即的取值范围为(-1,+∞)2.据环保部门测定,某处的污染指数与附近污染源的强度成正比,与到污染源距离的平方成反比,比例常数为.现已知相距18的A,B两家化工厂(污染源)的污染强度分别为,它们连线上任意一点C处的污染指数等于两化工厂对该处的污染指数之和.设().(1)试将表示为的函数;(2)若,且时,取得最小值,试求的值.【答案】(1) , (2) 8.【解析】(1)解实际问题应用题,关键要正确理解题意,正确列出等量关系,注意考虑函数定义域.设点C受A污染源污染程度为,点C受B污染源污染程度为,其中为比例系数,且.从而点C处受污染程度.定义域为 (2) 因为,所以,,求复杂分式函数最值,通常考虑利用导数求解. ,令,得,因此函数在单调减,在单调增,即在时函数取极小值,也是最小值. 又此时,解得,经验证符合题意.解:(1)设点C受A污染源污染程度为,点C受B污染源污染程度为,其中为比例系数,且. 4分从而点C处受污染程度. 6分(2)因为,所以,, 8分,令,得, 12分又此时,解得,经验证符合题意.所以,污染源B的污染强度的值为8. 14分【考点】利用导数求函数值域3.已知函数(1)若函数的图象切x轴于点(2,0),求a、b的值;(2)设函数的图象上任意一点的切线斜率为k,试求的充要条件;(3)若函数的图象上任意不同的两点的连线的斜率小于l,求证.【答案】(1),;(2);(3)【解析】(1)由函数的图象切x轴于点(2,0),得且,解方程组可得的值.(2)由于,根据导数的几何意义,任意不同的两点的连线的斜率小于l,对任意的恒成立,利用分离变量法,转化为对任意的恒成立,进一步转化为函数的最值问题;(3)设,则对恒成立将上不等式看成是关于的一元二次不等式即可.解:(1)由,得,又,得(2)对任意的,即对任意的恒成立等价于对任意的恒成立令则,当且仅当时“=”成立,在上为增函数,(3)设,则即,对恒成立,对恒成立即,对恒成立解得【考点】1、导数的几何意义;2、等价转化的思想;3、二次函数与一元二次一不等式问题.4.若实数a,b,c,d满足︱b+a2-3l n a︱+(c-d+2)2=0,则(a-c)2+(b-d)2的最小值为 .【答案】8【解析】∵实数a、b、c、d满足:(b+a2-3l n a)2+(c-d+2)2=0,∴b+a2-3l n a=0,c-d+2=0,设b=y,a=x,则y=3l n x-x2,设c=x,d=y,则y=x+2,∴(a-c)2+(b-d)2就是曲线y=3l n x-x2与直线y=x+2之间的最小距离的平方值.对曲线y=3l n x-x2求导:y'(x)=,与y=x+2平行的切线斜率k=1=,解得x=1或x=-(舍)把x=1代入y=3l n x-x2,得y=-1,即切点为(1,-1)切点到直线y=x+2的距离:∴(a-c)2+(b-d)2的最小值就是8.【考点】导数在最大值、最小值问题中的应用.5.将一个边长分别为a、b(0<a<b)的长方形的四个角切去四个相同的正方形,然后折成一个无盖的长方体形的盒子.若这个长方体的外接球的体积存在最小值,则的取值范围是________.【答案】【解析】设减去的正方形边长为x,其外接球直径的平方R2=(a-2x)2+(b-2x)2+x2,由R′=0,∴x=(a+b).∵a<b,∴x∈,∴0<(a+b)< ,∴1<<.6.一个物体的运动方程为s=1-t+t2,其中s的单位是m,t的单位是s,那么物体在3s末的瞬时速度是_______m/s.【答案】5【解析】s′(t)=2t-1,s′(3)=2×3-1=5.7.已知函数f(x)=m(x-1)2-2x+3+ln x,m≥1.(1)当m=时,求函数f(x)在区间[1,3]上的极小值;(2)求证:函数f(x)存在单调递减区间[a,b];(3)是否存在实数m,使曲线C:y=f(x)在点P(1,1)处的切线l与曲线C有且只有一个公共点?若存在,求出实数m的值;若不存在,请说明理由.【答案】(1) 极小值为f(2)=ln 2- (2)见解析 (3) 存在实数m=1使得曲线C:y=f(x)在点P(1,1)处的切线l与曲线C有且只有一个公共点【解析】(1)f′(x)=m(x-1)-2+ (x>0).当m=时,f′(x)=,令f′(x)=0,得x1=2,x2=.f (x),f′(x)在x∈(0,+∞)上的变化情况如下表:+0-所以当x=2时,函数f(x)在x∈[1,3]上取到极小值,且极小值为f(2)=ln 2-.(2)证明:令f′(x)=0,得mx2-(m+2)x+1=0.(*)因为Δ= (m+2)2-4m=m2+4>0,所以方程(*)存在两个不等实根,记为a,b(a<b).因为m≥1,所以,所以a>0,b>0,即方程(*)有两个不等的正根,因此f′(x)<0的解为(a,b).故函数f(x)存在单调递减区间[a,b].(3)因为f′(1)=-1,所以曲线C:y=f(x)在点P(1,1)处的切线l的方程为y=-x+2.若切线l与曲线C有且只有一个公共点,则方程m(x-1)2-2x+3+ln x=-x+2有且只有一个实根.显然x=1是该方程的一个根.令g(x)=m(x-1)2-x+1+ln x,则g′(x)=m(x-1)-1+=.当m=1时,有g′(x)≥0恒成立,所以g(x)在(0,+∞)上单调递增,所以x=1是方程的唯一解,m=1符合题意.当m>1时,由g′(x)=0,得x1=1,x2=,则x2∈(0,1),易得g (x)在x1处取到极小值,在x2处取到极大值.所以g(x2)>g(x1)=0,又当x趋近0时,g(x)趋近-∞,所以函数g(x)在内也有一个解,m>1不符合题意.综上,存在实数m=1使得曲线C:y=f(x)在点P(1,1)处的切线l与曲线C有且只有一个公共点.8.已知函数f(x)=ln x+2x-6.(1)证明:函数f(x)有且只有一个零点;(2)求该零点所在的一个区间,使这个区间的长度不超过【答案】(1)见解析(2)【解析】(1)f(x)的定义域为(0,+∞),且f(x)是增函数.∵f(2)=ln 2-2<0,f(3)=ln 3>0,∴f(2)·f(3)<0.∴f(x)在(2,3)上至少有一个零点.又因f(x)在(0,+∞)上是增函数,从而f(x)在(0,+∞)上有且只有一个零点.(2)由(1)知f(2)<0,f(3)>0.∴f(x)的零点x∈(2,3).取x1=,∵f=ln -1=ln-ln e<0,∴f·f(3)<0,∴x∈.取x2=,∵f=ln -=ln -ln e >0,∴f·f<0.∴x∈且=≤,∴即为符合条件的区间.9.某校内有一块以为圆心,(为常数,单位为米)为半径的半圆形(如图)荒地,该校总务处计划对其开发利用,其中弓形区域(阴影部分)用于种植学校观赏植物,区域用于种植花卉出售,其余区域用于种植草皮出售.已知种植学校观赏植物的成本是每平方米20元,种植花卉的利润是每平方米80元,种植草皮的利润是每平方米30元.(1)设(单位:弧度),用表示弓形的面积;(2)如果该校总务处邀请你规划这块土地,如何设计的大小才能使总利润最大?并求出该最大值.(参考公式:扇形面积公式,表示扇形的弧长)【答案】(1);(2)当园林公司把扇形的圆心角设计成时,总利润取最大值.【解析】本题考查函数与导数及运用导数求单调区间、最值等数学知识和方法,考查思维能力、运算能力、分析问题与解决问题的能力.第一问,;第二问,先列出总利润的表达式,构造函数,利用导数判断单调区间求函数最值.试题解析:(1),, .(2)设总利润为元,种植草皮利润为元,种植花卉利润为,种植学校观赏植物成本为,,,.设.上为减函数;上为增函数.当时,取到最小值,此时总利润最大:.答:所以当园林公司把扇形的圆心角设计成时,总利润取最大值。

运用导数巧求数列和

运用导数巧求数列和

运用导数巧求数列和数列是数学中的基础概念,是一系列按特定顺序排列的数的集合。

数列求和是指对数列中的所有数进行求和运算。

在数学中,比较常见的数列有等差数列和等比数列。

在一些情况下,为了方便计算数列的和,可以运用导数的巧妙方法,通过对数列进行求导和积分等运算,将求和问题转化为其他数学运算问题。

一、等差数列求和等差数列是指数列中相邻两项之间的差值是一个常数的数列。

在等差数列中,如果已知首项a1、末项aN和项数n,我们需要求解的就是数列的和Sn,即1+2+3+…+n的和。

对于等差数列,我们可以运用导数的巧妙方法进行求和。

步骤:1. 首先,假设原等差数列的首项为a1,公差为d,那么原数列的通项公式为an = a1 + (n-1)d。

2. 对于数列的和Sn = a1+a2+a3+…+an,我们将其视为n的函数Sn,即Sn = Sn(n)。

3.接下来,我们对数列的和Sn进行求导,得到导数Sn’(n)。

4.然后,我们对Sn’(n)进行积分,得到Sn(n),即数列的和。

举例:以等差数列1 + 2 + 3 + … + n为例,首项a1为1,公差d为1,通项公式为an = 1 + (n-1)1 = n。

1.对数列的和Sn进行求导,得到导数Sn’(n):Sn’(n) = d/dn(1 + 2 + 3 + … + n) = d/dn(n(n+1)/2) = (2n +1)/22.对Sn’(n)进行积分,得到Sn(n):Sn(n) = ∫[(2n + 1)/2]dn = (n^2 + n)/2所以,数列1+2+3+…+n的和为Sn(n)=(n^2+n)/2、通过运用导数的巧妙方法,我们成功地求解了等差数列1+2+3+…+n的和。

二、等比数列求和等比数列是指数列中相邻两项之间的比值是一个常数的数列。

在等比数列中,如果已知首项a1、末项aN和公比q,我们需要求解的就是数列的和Sn,即a1 + a2 + a3 + … + an的和。

例谈导数的几个简单的应用

例谈导数的几个简单的应用

例谈导数的几个简单的应用王耀辉高中阶段学习导数以后,常常把导数作为研究函数单调性、极大(小)值、最大(小)值和解决生活中优化问题等来运用.实际上,它还有其他方面更多的应用.本文就根据高中学过的一些内容,列举了导数的几个简单的应用,供读者学习时参考.1.利用导数的定义求极限 在一些教辅资料、高考题中,出现了一类特殊极限求值问题,最常见的是00型,感觉不好求.若能灵活运用导数的定义,问题便会迎刃而解.例1.求值:(1)0sin lim x x x →,(2)0ln(1)lim x x x→+. 解:(1)根据导数的定义,该式实际上为求函数()sin f x x =在点0x =处的导数. 所以00sin sin sin 0lim =lim x x x x x x→→-00(sin )|cos |cos 01x x x x =='====. (2)根据导数的定义,该式实际上为求函数()ln(1)f x x =+在点0x =处的导数. 所以000ln(1)1lim=[ln(1)]||11x x x x x x x ==→+'+==+. 例2.(2010年全国卷文科21题)设函数2()(1)x f x x e ax =--.若当0x ≥时()0f x ≥,求实数a 的取值范围.解:由已知得()(1)x f x x e ax =--≥0(x ≥0),即1x e ax --≥0(x ≥0), 当0x =时,a R ∈;当0x >时,分离参数得1x e a x -≤(0x >),令1()x e g x x-=(0x >),求导得21()x x xe e g x x-+'=(0x >),再令()1x x h x xe e =-+(0x >),则()0x h x xe '=>(0x >),∴()1x x h x xe e =-+在(0,)+∞上递增,∴()(0)0h x h >=,∴()0g x '>,∴1()x e g x x-=在(0,)+∞上递增.∴0()lim ()x g x g x →>,所以0lim ()x a g x →≤.因为00001lim ()=lim =lim 0x x x x x e e e g x xx →→→---00()||1x x x x e e =='===,所以1a ≤. 综上所述,实数a 的取值范围为1a ≤.2.利用函数极值点导数为零的性质,在三角函数中求值例3.已知()sin 2cos 2()f x a x x a R =+∈图像的一条对称轴方程为2x π=,则a 的值为( )A .12B C .3 D .2 解析:由于三角函数的对称轴与其曲线的交点为极值点,所以由()2cos 22sin 2f x a x x '=-,得()2cos 2sin =0266f a πππ'=-,故3a =. 例4.已知函数()cos f x x x =的图像向左平移ϕ(0)ϕ>个单位所得图像对应的函数为偶函数,则ϕ的最小值是( )A .6πB .3πC .23πD .56π解析:设函数()f x 图像向左平移ϕ(0)ϕ>个单位后的函数解析式为:()cos())g x x x ϕϕ=++,由于()g x 为偶函数,所以(0)0g '=.又()sin())g x x x ϕϕ'=-+-+,所以sin 0ϕϕ-=,tan ϕ=ϕ的最小值为23π.例5.已知2cos sin x x -=,求tan x 的值.解析:设()2cos sin f x x x =-,则曲线()2cos sin f x x x =-过点(,t .由于2cos sin )x x x x -=+cos cos sin )x x ϕϕ=+)x ϕ=+,其中cos ϕϕ==所以函数()2cos sin f x x x =-在点(,t 处取极小值,导数为零.即()2sin cos 0f t t t '=--=,所以1tan 2t =-,从而1tan 2x =-.3.导数在数列求和中的应用例6.已知数列{}n a 的通项为12n n a n -=⋅,求数列{}n a 前n 项的和n S .解析:令2x =,则11ni i i x -=⋅∑1()n i i x ='=∑12(1)1(1)=1(1)nn n x x n x n x x x +'⎡⎤--++⋅=⎢⎥--⎣⎦所以n S 121(1)22=(12)n n n n +-+⋅+⋅-1=1(1)22n nn n +-+⋅+⋅4.导数在二项式中的应用例7.证明:1231232n n n n n n C C C nC n -+++⋯+=⋅.证明:令012233(1)n n nn n n n n x C C x C x C x C x +=+++++…,对等式两边求导,得:1121321(1)23n n n n n n n n x C C x C x nC x --+=++++…, 令1x =,代入上式即得1123223n n n n n n n C C C nC -⋅=+++⋯+,即1231232n n n n n n C C C nC n -+++⋯+=⋅.5.导数在三角恒等变换公式中的应用在三角恒等变换公式中,公式多,不易记,应用导数可以将这些恒等式进行沟通.(1)两角和、差的三角函数公式cos cos cos sin sin αβαβαβ-=+(),①视α为变量,β为常量,对等式①两边求导,得sin()sin cos cos sin αβαβαβ--=-+即sin()sin cos cos sin αβαβαβ-=-,②反过来,视α为变量,β为常量,对等式②两边求导,得cos cos cos sin sin αβαβαβ-=+()故利用上述求导方法有:cos cos cos sin sin αβαβαβ±=()αα对求导对求导sin()sin cos cos sin αβαβαβ±=±(2)二倍角公式 22cos 2cos sin ααα=-αα对求导对求导sin 22sin cos ααα=(3)积化和差公式 1sin cos [sin()sin()]2αβαβαβ⋅=++- αα对求导对求导1cos cos [cos()cos()]2αβαβαβ⋅=++-, 1cos sin [sin()sin()]2αβαβαβ⋅=+-- αα对求导对求导1sin sin [cos()cos()]2αβαβαβ⋅=-+--. 当然,导数的应用不只这些,本文只是抛砖引玉,有兴趣的读者还可以继续探索.。

近年高考试题导数圆锥曲线及数列精选

近年高考试题导数圆锥曲线及数列精选

1. (2014湖南) 设常数a>0,函数2()ln(1).2xf x ax x =+-+ (1)讨论f (x)在区间(0,+∞)上的单调性;(2)若f (x)存在两个极值点x 1,x 2,且f (x 1)+ f (x 2)>0,求a 的取值范围.112212P(x ,f(x )),Q(x ,g(x )),x 0,x 0,⇒≥>x 已知f(x)=e +sinx,g(x)=x-2,设PQ x P Q 若直线与轴平行,求、的最短距离。

x ax(a 0).(1)e ⇒>已知f(x)=x-e判断曲线f(x)在x=0处的切线能否与曲线y=相切,并说明理由;12x e 2.x a1212()若f(x )=f(x )=0(x <x ),求证:<⇒已知f(x)=ax ,g(x)=lnx ,若存在两个不等实数x 1,x 2,使f(x 1)=g(x 1),f(x 2)=g(x 2),求证x 1x 2>e 2⇒ (2013 四川)已知函数22,0()ln ,0x x a x f x x x ⎧++<=⎨>⎩其中a 为常数,设A(x 1,f (x 1)),B(x 2,f (x 2))为函数 像上的两点,且x 1<x2(1)指出函数f (x)的单调区间;(2)若函数f (x)的图像在A 、B 处的切线互相垂直,且x2<0,求x 2-x 1的最小值; (3) 若函数f (x) 的图像在A 、B 处的切线重合,求a 的取值范围。

⇒ (2014天津) 设f(x)=x -ae x(a ∈R), 已知y=f(x)有两个零点x 1,x 2,且x 1<x 2.(1) 求a 的取值范围;(2) 证明:21x a x 随着的减小而增大;(3) 证明x 1+x 2随着a 的减小而增大。

3. (2014全国新课标)设函数1()ln x xbe f x ae x x-=+,曲线f (x)在点(1,f(1))处的切线方程为y=e(x -1)+2.(1) 求a ,b; (2)证明:f (x)>1()ln ,(1)()f x x x f x ⇒=求在[t,t+2](t>0)上的最小值;12(2)ln x x e ex∈∞>-求证对一切实数x (0,+),都有2013 ⇒(全国)已知函数f (x)=e x -ln(x +m)(1) 设x=0 是f (x)的极值点,求m ,并讨论f (x)的单调性;(2) 当m≤2时,证明f (x)>04.(2014浙江)已知函数f (x)=x 3+3|x -a|(a ∈R).(1) 若f (x)在[-1,1]上的最大值和最小值分别记为M(a)和N(a),求M(a )-N(a); (2) 设b ∈R,若[f (x)+b]2≤4对x ∈[-1,1]恒成立,求3a +b 的范围. 5.(2014陕西)设函数f (x)=ln(1+x),g(x)=x f’(x),其中x≥0, f’(x)是, f (x)的导函数. (1) 令g 1(x)=g(x),g n+1(x)=g(g n (x)),n ∈N +,求g n (x)的表达式;(2) 若f (x )≥ag(x)恒成立,求实数a 的取值范围;(3) 设n ∈N +,比较g(1)+g(2)+……+g(n)与n -f (n)的大小,并加以证明.6. (2014全国大纲) 函数()ln(1)(1)axf x x a x a=+->+. (1) 讨论f (x)的单调性;(2) 设a 1=1,a n+1=ln(a n +1),证明 2322na n n <≤++7. (2014山东)设函数22()(ln )()x e f x k x k e x x=-+为常数,是自然对数的底(1)当k≤0时,求函数f(x)的单调区间;(2)若函数f(x)在(0,2)内存在两个极值点,求k 的取值范围。

巧妙利用函数的导数_解数列问题_颜复尊

巧妙利用函数的导数_解数列问题_颜复尊

{
[
)
(
)
(
)
[(
(
) (
)
)]
巧与方法
JIETI JIQIAO YU FANGFA
数列中来, 从而问题得到解决. 四、 精心构造, 巧妙运用 ( 1 ) 对任意的正实数 例 4 已知函数 f ( x ) = x - xlnx, x1 , x2 , 且 x1 < x2 . ( 1) 证明: ( x2 - x1 ) f'( x2 ) < f( x2 ) - f( x1 ) < ( x2 - x1 ) f'( x1 ) ; 1 1 + +…+ ( 2 ) 对任意的 n ∈ N + , 且 n ≥2 , 证明: ln2 ln3 1 1 - f( n + 1 ) < . lnn ln2 ·lnn 1 ) 时, 解 ( 1 ) 因 为 f' ( x ) = - lnx, 所 以, 当 x ∈ ( 0, f' ( x) > 0 ; + ∞ ) 时, f' ( x) < 0 . 故 f( x) 在 x ∈ ( 0 , 1 ) 上单 当 x∈( 1 , + ∞ ) 上单调递减. 调递增, 在 x∈( 1 , x1 x2 , < 所以, 对任 意 的 正 实 数 x1 , 且 x1 < x2 , 有f x2 x f( 1 ) , f 2 < f( 1 ) . x1 x1 x1 x1 x1 < f( 1) , - ln < 1, 由f 得 即 x2 - x1 - x2 x2 x2 x2 x2 ( lnx2 - lnx1 ) < 0 , 所以 f( x2 ) - f( x1 ) - ( x2 - x1 ) f' ( x1 ) = x2 - x1 - x2 ( lnx2 - lnx1 ) < 0 , 故: f( x2 ) - f( x1 ) < ( x2 - x1 ) f' ( x1 ) , ①. x2 ) < f( 1 ) , 由 f( 同理可证( x2 - x1 ) f' ( x2 ) < f ( x2 ) - x1 f ( x1 ) , ②. 综合 ①②, 得( x2 - x1 ) f' ( x2 ) < f ( x2 ) - f ( x1 ) < ( x2 - x1 ) f' ( x1 ) . ln( x + k) ( 2) 对 k = 1, 2, …, n - 2, ( x > 令 gk ( x ) = lnx 1) , 则 lnx ln( x + k) - x+k x xlnx - ( x + k) ln( x + k) g k ' ( x) = = , ln2 x x( x + k) ln2 x 0 < lnx < ln ( x + k ) , 显然 1 < x < x + k, 所以 xlnx < ( x + k) ln ( x + k ) , g k ( x ) 在 ( 1 ,+ ∞ ) 上 单 调 所 以 gk ' ( x ) < 0,

函数与导数经典常考压轴大题

函数与导数经典常考压轴大题

函数与导数经典常考压轴大题命题预测本节内容在高考中通常以压轴题形式出现,常见的有函数零点个数问题、不等式证明问题、不等式存在性问题等,综合性较强,难度较大.在求解导数综合问题时,通常要综合利用分类讨论、构造函数、等价转化、设而不求等思想方法,同时联系不等式、方程等知识,思维难度大,运算量不低.可以说,只要考生啃下本节这个硬骨头,就具有了强大的逻辑推理、数学运算、数据分析、直观想象等核心素养.预计预测2024年高考,函数与导数是高中数学的重要考查内容,同时也是高等数学的基础,其试题的难度呈逐年上升趋势,通过对近十年的高考数学试题,分析并归纳出五大考点:(1)含参函数的单调性、极值与最值;(2)函数的零点问题;(3)不等式恒成立与存在性问题;(4)函数不等式的证明.(5)导数中含三角函数形式的问题其中,对于函数不等式证明中极值点偏移、隐零点问题、含三角函数形式的问题探究和不等式的放缩应用这四类问题是目前高考函数与导数压轴题的热点.高频考法(1)双变量问题(2)证明不等式(3)不等式恒成立与有解问题(4)零点问题(5)导数与三角函数结合问题01双变量问题破解双参数不等式的方法:一是转化,即由已知条件入手,寻找双参数满足的关系式,并把含双参数的不等式转化为含单参数的不等式;二是巧构函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果.1(2024·广东·二模)已知f x =12ax 2+1-2a x -2ln x ,a >0.(1)求f x 的单调区间;(2)函数f x 的图象上是否存在两点A x 1,y 1 ,B x 2,y 2 (其中x 1≠x 2),使得直线AB 与函数f x 的图象在x 0=x 1+x 22处的切线平行?若存在,请求出直线AB ;若不存在,请说明理由.2(2024·四川·模拟预测)已知函数f x =a +1 e x -12x 2+1a ∈R .(1)当a =1时,求曲线y =f x 在点0,f 0 处的切线方程;(2)设x 1,x 2x 1<x 2 是函数y =f x 的两个零点,求证:x 1+x 2>2.3(2024·四川德阳·二模)已知函数f x =ln x +x 2-2ax ,a ∈R ,(1)当a >0时,讨论f x 的单调性;(2)若函数f x 有两个极值点x 1,x 2x 1<x 2 ,求2f x 1 -f x 2 的最小值.02证明不等式利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式f x >g x (或f x <g x )转化为证明f x -g x >0(或f x -g x <0),进而构造辅助函数h x =f x -g x ;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.(4)对数单身狗,指数找基友(5)凹凸反转,转化为最值问题(6)同构变形1(2024·青海·模拟预测)已知质数f x =me x -x 2+mx -m ,且曲线y =f x 在点2,f 2 处的切线方程为4e 2x -y -4e 2=0.(1)求m 的值;(2)证明:对一切x ≥0,都有f x ≥e 2x 2.2(2024·山西晋城·二模)已知函数f (x )=(x -a )e x +x +a (a ∈R ).(1)若a =4,求f (x )的图象在x =0处的切线方程;(2)若f x ≥0对于任意的x ∈0,+∞ 恒成立,求a 的取值范围;(3)若数列a n 满足a 1=1且a n +1=2a n a n +2(n ∈N *),记数列a n 的前n 项和为S n ,求证:S n +13<ln (n +1)(n +2) .3(2024·上海松江·二模)已知函数y =x ⋅ln x +a (a 为常数),记y =f (x )=x ⋅g (x ).(1)若函数y =g (x )在x =1处的切线过原点,求实数a 的值;(2)对于正实数t ,求证:f (x )+f (t -x )≥f (t )-t ln2+a ;(3)当a =1时,求证:g (x )+cos x <e x x.03不等式恒成立与有解问题1、利用导数研究不等式恒成立问题的求解策略:(1)通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;(2)利用可分离变量,构造新函数,直接把问题转化为函数的最值问题;(3)根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.2、利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解:(1)∀x ∈D ,m ≤f x ⇔m ≤f x min ;(2)∀x ∈D ,m ≥f x ⇔m ≥f x max ;(3)∃x ∈D ,m ≤f x ⇔m ≤f x max ;(4)∃x ∈D ,m ≥f x ⇔m ≥f x min .3、不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数y =f x ,x ∈a ,b ,y =g x ,x ∈c ,d .(1)若∀x 1∈a ,b ,∀x 2∈c ,d ,有f x 1 <g x 2 成立,则f x max <g x min ;(2)若∀x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,则f x max <g x max ;(3)若∃x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,则f x min <g x max ;(4)若∀x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 =g x 2 成立,则f x 的值域是g x 的值域的子集.1(2024·北京朝阳·一模)已知函数f x =1-axe x a∈R.(1)讨论f x 的单调性;(2)若关于x的不等式f x >a1-x无整数解,求a的取值范围.2(2024·黑龙江哈尔滨·一模)已知函数f x =xe x-ae x,a∈R.(1)当a=0时,求f x 在x=1处的切线方程;(2)当a=1时,求f x 的单调区间和极值;(3)若对任意x∈R,有f x ≤e x-1恒成立,求a的取值范围.3(2024·陕西安康·模拟预测)已知函数f x =ln x+1,g x =e x-1.(1)求曲线y=f x 与y=g x 的公切线的条数;(2)若a>0,∀x∈-1,+∞,f x+1≤a2g x +a2-a+1,求a的取值范围.04零点问题函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围.求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与x轴(或直线y=k)在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像;第三步:结合图像判断零点或根据零点分析参数.1(2024·四川泸州·三模)设函数f x =e x-1,g x =ln x+b.(1)求函数F x =x-1f x 的单调区间;(2)若总存在两条直线和曲线y=f x 与y=g x 都相切,求b的取值范围.2(2024·北京房山·一模)已知函数f(x)=e ax+1 x.(1)当a=0时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)设g(x)=f (x)⋅x2,求函数g(x)的极大值;(3)若a<-e,求函数f(x)的零点个数.3(2024·浙江·二模)定义max a,b=a,a≥bb,a<b,已知函数f x =max ln x,-4x3+mx-1,其中m∈R.(1)当m=5时,求过原点的切线方程;(2)若函数f x 只有一个零点,求实数m的取值范围.05导数与三角函数结合问题分段分析法1(2024·全国·模拟预测)已知函数f x =13x3-12a x2+2cos x+x cos x-sin x.(1)讨论f x 的单调性(2)若a>0,求证:①函数f x 在0,+∞上只有1个零点;②f x >1-16a3-12a2-2sin a+π4.2(2024·河北沧州·一模)已知函数f x =x a e2x ,a >0.(1)当a =2时,求函数f x 的单调区间和极值;(2)当x >0时,不等式f x -cos ln f x ≥a ln x 2-4x 恒成立,求a 的取值范围.3(2024·全国·模拟预测)已知函数f (x )=e x -sin x .(1)若f (x )≥ax 2+1对于任意x ∈[0,+∞)恒成立,求a 的取值范围;(2)若函数f (x )的零点按照从大到小的顺序构成数列x n ,n ∈N *,证明:2ni =1x i <-2n 2+n π;(3)对于任意正实数x 1,x 2,证明:e x 2-x 2-1 e x 1>sin x 1+x 2 -sin x 1-x 2cos x 1.1已知函数f x =ax -ln x x ,a >0.(1)若f x 存在零点,求a 的取值范围;(2)若x 1,x 2为f x 的零点,且x 1<x 2,证明:a x 1+x 2 2>2.2已知函数f x =3ln x -ax .(1)讨论f x 的单调性.(2)已知x 1,x 2是函数f x 的两个零点x 1<x 2 .(ⅰ)求实数a 的取值范围.(ⅱ)λ∈0,12 ,f x 是f x 的导函数.证明:f λx 1+1-λ x 2 <0.3如图,对于曲线Γ,存在圆C 满足如下条件:①圆C 与曲线Γ有公共点A ,且圆心在曲线Γ凹的一侧;②圆C 与曲线Γ在点A 处有相同的切线;③曲线Γ的导函数在点A 处的导数(即曲线Γ的二阶导数)等于圆C 在点A 处的二阶导数(已知圆x -a 2+y -b 2=r 2在点A x 0,y 0 处的二阶导数等于r 2b -y 0 3);则称圆C 为曲线Γ在A 点处的曲率圆,其半径r 称为曲率半径.(1)求抛物线y =x 2在原点的曲率圆的方程;(2)求曲线y =1x的曲率半径的最小值;(3)若曲线y =e x 在x 1,e x 1 和x 2,e x 2x 1≠x 2 处有相同的曲率半径,求证:x 1+x 2<-ln2.4已知函数f x =ax2+x-ln x-a.(1)若a=1,求f x 的最小值;(2)若f x 有2个零点x1,x2,证明:a x1+x22+x1+x2>2.5已知函数f x =12e2x+a-2e x-2ax.(1)若曲线y=f x 在0,a-32处的切线方程为4ax+2y+1=0,求a的值及f x 的单调区间.(2)若f x 的极大值为f ln2,求a的取值范围.(3)当a=0时,求证:f x +5e x-52>32x2+x ln x.6已知函数f x =12x2+x+a ln x+1,a∈R.(1)讨论f x 的单调性;(2)证明:当a<-1时,a2+f x >1.7已知函数f x =x ln x+ax+1a∈R.(1)若f x ≥0恒成立,求a的取值范围;(2)当x>1时,证明:e x ln x>e(x-1).(1)判断函数f(x)的单调性(2)证明:①当a≥0时,f(x)≤0;②sin1n+1+sin1n+2+⋯+sin12n<ln2,n∈N*.9牛顿迭代法是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法.比如,我们可以先猜想某个方程f x =0的其中一个根r在x=x0的附近,如图6所示,然后在点x0,f x0处作f x 的切线,切线与x轴交点的横坐标就是x1,用x1代替x0重复上面的过程得到x2;一直继续下去,得到x0,x1,x2,⋯,x n.从图形上我们可以看到x1较x0接近r,x2较x1接近r,等等.显然,它们会越来越逼近r.于是,求r近似解的过程转化为求x n,若设精度为ε,则把首次满足x n-x n-1<ε的x n称为r的近似解.已知函数f x =x3-x+1,a∈R.(1)试用牛顿迭代法求方程f x =0满足精度ε=0.5的近似解(取x0=-1,且结果保留小数点后第二位);(2)若f x +3x2+6x+5+ae x≤0对任意x∈R都成立,求整数a的最大值.(计算参考数值:e≈2.72,e1.35≈3.86,e1.5≈4.48,1.353≈2.46,1.352≈1.82)(1)讨论f x 的单调性;(2)若∀x>0,f x ≤xe2x-2ax恒成立,求实数a的取值范围.11已知函数f x =x2-2a ln x-2(a∈R).(1)讨论f x 的单调性;(2)若不等式f x ≤2ln x2+x2-2x在区间(1,+∞)上有解,求实数a的取值范围.12已知函数f x =xe x,其中e=2.71828⋯为自然对数的底数.(1)求函数f x 的单调区间;(2)证明:f x ≤e x-1;(3)设g x =f x -e2x+2ae x-4a2+1a∈R,若存在实数x0使得g x0≥0,求a的最大值.13已知函数f x =e x-1-ax a∈R.(1)若函数f x 在点1,f1处的切线与直线x+2ey+1=0垂直,求a的值;(2)当x∈0,2时,讨论函数F x =f x -x ln x零点的个数.14已知函数f(x)=e2x-(2a-1)e x-ax.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.15已知函数f x =e x-x2+a,x∈R,φx =f x +x2-x.(1)若φx 的最小值为0,求a的值;(2)当a<0.25时,证明:方程f x =2x在0,+∞上有解.16已知f (x )=x ex,g (x )=ln x x .(1)求函数y =f (x )、y =g (x )的单调区间和极值;(2)请严格证明曲线y =f (x )、y =g (x )有唯一交点;(3)对于常数a ∈0,1e,若直线y =a 和曲线y =f (x )、y =g (x )共有三个不同交点x 1,a 、x 2,a 、x 3,a ,其中x 1<x 2<x 3,求证:x 1、x 2、x 3成等比数列.17已知函数f x =sin x -ax ⋅cos x ,a ∈R .(1)当a =1时,求函数f x 在x =π2处的切线方程;(2)x ∈0,π2时;(ⅰ)若f x +sin2x >0,求a 的取值范围;(ⅱ)证明:sin 2x ⋅tan x >x 3.18f(x)=2sin(x+φ)-a+e-x,φ∈0,π2,已知f(x)的图象在(0,f(0))处的切线与x轴平行或重合.(1)求φ的值;(2)若对∀x≥0,f(x)≤0恒成立,求a的取值范围;(3)利用如表数据证明:157k=1sinkπ314<106.eπ314e-π314e78π314e-78π314e79π314e-79π314 1.0100.990 2.1820.458 2.2040.45419数值线性代数又称矩阵计算,是计算数学的一个重要分支,其主要研究对象包括向量和矩阵.对于平面向量a =(x ,y ),其模定义为|a |=x 2+y 2.类似地,对于n 行n 列的矩阵A nn =a 11a 12a 13⋯a 1n a 21a 22a 23⋯a 2n a 31a 32a 33⋯a 3n ⋮⋮⋮⋮,其模可由向量模拓展为A =∑ni =1∑nj =1a 2ij12(其中a ij为矩阵中第i 行第j 列的数,∑为求和符号),记作A F,我们称这样的矩阵模为弗罗贝尼乌斯范数,例如对于矩阵A 22=a 11a 12a21a 22=2435,其矩阵模A F =∑n i =1∑nj =1a 2ij12=22+42+32+52=3 6.弗罗贝尼乌斯范数在机器学习等前沿领域有重要的应用.(1)∀n ∈N *,n ≥3,矩阵B nn =100⋯0020⋯0003⋯0⋮⋮⋮⋮00⋯n,求使B F >35的n 的最小值.(2)∀n ∈N *,n ≥3,,矩阵C nn =1cos θcos θcos θ⋯cos θcos θ0-sin θ-sin θcos θ-sin θcos θ⋯-sin θcos θ-sin θcos θ00sin 2θsin 2θcos θ⋯sin 2θcos θsin 2θcos θ⋮⋮⋮⋮⋮⋮0000⋯(-1)n -2sin n -2θ(-1)n -2sin n -2θcos θ0000⋯0(-1)n -1sin n -1θ求C F.(3)矩阵D mn =ln n +2n +100⋅⋅⋅0ln n +1n 22ln n +1n 220⋅⋅⋅0⋮ln 43n -1n -1ln 43 n -1n -1ln 43 n -1n -1⋅⋅⋅0ln 32 n n ln 32 n n ln 32 nn ⋅⋅⋅ln 32nn,证明:∀n ∈N *,n ≥3,D F >n 3n +9.20已知函数f x =sin x -ln 1+ax .(1)若x ∈0,π2时,f x ≥0,求实数a 的取值范围;(2)设n ∈N *,证明:sin 13+ln 32-ln n +2n +1<nk =1sin 1k k +2 <34.1函数与导数经典常考压轴大题命题预测本节内容在高考中通常以压轴题形式出现,常见的有函数零点个数问题、不等式证明问题、不等式存在性问题等,综合性较强,难度较大.在求解导数综合问题时,通常要综合利用分类讨论、构造函数、等价转化、设而不求等思想方法,同时联系不等式、方程等知识,思维难度大,运算量不低.可以说,只要考生啃下本节这个硬骨头,就具有了强大的逻辑推理、数学运算、数据分析、直观想象等核心素养.预计预测2024年高考,函数与导数是高中数学的重要考查内容,同时也是高等数学的基础,其试题的难度呈逐年上升趋势,通过对近十年的高考数学试题,分析并归纳出五大考点:(1)含参函数的单调性、极值与最值;(2)函数的零点问题;(3)不等式恒成立与存在性问题;(4)函数不等式的证明.(5)导数中含三角函数形式的问题其中,对于函数不等式证明中极值点偏移、隐零点问题、含三角函数形式的问题探究和不等式的放缩应用这四类问题是目前高考函数与导数压轴题的热点.高频考法(1)双变量问题(2)证明不等式(3)不等式恒成立与有解问题(4)零点问题(5)导数与三角函数结合问题01双变量问题破解双参数不等式的方法:一是转化,即由已知条件入手,寻找双参数满足的关系式,并把含双参数的不等式转化为含单参数的不等式;二是巧构函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果.1(2024·广东·二模)已知f x =12ax 2+1-2a x -2ln x ,a >0.(1)求f x 的单调区间;2(2)函数f x 的图象上是否存在两点A x 1,y 1 ,B x 2,y 2 (其中x 1≠x 2),使得直线AB 与函数f x 的图象在x 0=x 1+x22处的切线平行?若存在,请求出直线AB ;若不存在,请说明理由.【解析】(1)由题可得f(x )=ax +1-2a -2x =ax 2+(1-2a )x -2x =(ax +1)(x -2)x(x >0)因为a >0,所以ax +1>0,所以当x ∈(0,2)时,f (x )<0,f (x )在(0,2)上单调递减,当x ∈(2,+∞)时,f (x )>0,f (x )在(2,+∞)上单调递增.综上,f (x )在(0,2)上单调递减,在(2,+∞)上单调递增.(2)由题意得,斜率k =y 2-y 1x 2-x 1=12ax 22+(1-2a )x 2-2ln x 2 -12ax 21+(1-2a )x 1-2ln x 1 x 2-x 1=12a (x 22-x 21)+(1-2a )(x 2-x 1)-2ln x 2x 1x 2-x 1=a 2(x 1+x 2)+1-2a -2ln x2x 1x 2-x 1,f x 1+x 22 =a (x 1+x 2)2+1-2a -4x 1+x 2,由k =f x 1+x22 得,ln x2x 1x 2-x 1=2x 1+x 2,即ln x 2x 1=2(x 2-x 1)x 1+x 2,即ln x 2x 1-2x2x 1-1 x 2x1+1=0令t =x 2x 1,不妨设x 2>x 1,则t >1,记g (t )=ln t -2(t -1)t +1=ln t +4t +1-2(t >1)所以g(t )=1t -4(t +1)2=(t -1)2t (t +1)>0,所以g (t )在(1,+∞)上是增函数,所以g (t )>g (1)=0,所以方程g (t )=0无解,则满足条件的两点A ,B 不存在.2(2024·四川·模拟预测)已知函数f x =a +1 e x -12x 2+1a ∈R .(1)当a =1时,求曲线y =f x 在点0,f 0 处的切线方程;(2)设x 1,x 2x 1<x 2 是函数y =f x 的两个零点,求证:x 1+x 2>2.【解析】(1)当a =1时,f x =2e x -12x 2+1,f x =2e x -x ,则f 0 =3,f 0 =2,则切线方程为y -3=2x ,因此曲线y =f x 在点0,f 0 处的切线方程为2x -y +3=0.(2)证明:函数f x =a +1 e x -x ,x 1,x 2是y =f x 的两个零点,所以x 1=a +1 e x 1,x 2=a +1 e x 2,则有x 1+x 2=a +1 e x 1+e x 2,且x 2-x 1=a +1 e x 2-e x1,由x 1<x 2,得a +1=x 2-x 1e x 2-ex 1.要证x 1+x 2>2,只要证明a +1 e x 1+e x 2>2,即证x 2-x 1 e x 2+ex1e x 2-ex 1>2.记t =x 2-x 1,则t >0,e t >1,因此只要证明t ⋅e t +1e t -1>2,即t -2 e t +t +2>0.记h t =t -2 e t +t +2(t >0),则h t =t -1 e t +1,令φt =t -1 e t +1,则φ t =te t ,当t >0时,φ t =te t >0,3所以函数φt =t -1 e t +1在0,+∞ 上递增,则φt >φ0 =0,即h t >h 0 =0,则h t 在0,+∞ 上单调递增,∴h t >h 0 =0,即t -2 e t +t +2>0成立.3(2024·四川德阳·二模)已知函数f x =ln x +x 2-2ax ,a ∈R ,(1)当a >0时,讨论f x 的单调性;(2)若函数f x 有两个极值点x 1,x 2x 1<x 2 ,求2f x 1 -f x 2 的最小值.【解析】(1)因为f x =ln x +x 2-2ax ,x >0,所以f(x )=1x +2x -2a =2x 2-2ax +1x,令g (x )=2x 2-2ax +1,则Δ=4a 2-8=4a 2-2 ,因为a >0,当0<a ≤2时,Δ≤0,则g (x )≥0,即f (x )≥0,此时f (x )在(0,+∞)上单调递增,当a >2时,Δ>0,由g (x )=0,得x 3=a -a 2-22,x 4=a +a 2-22,且x 3<x 4,当0<x <x 3或x >x 4时,g (x )>0,即f (x )>0;当x 3<x <x 4时,g (x )<0,即f (x )<0,所以f (x )在0,x 3 ,x 4,+∞ 上单调递增,在x 3,x 4 上单调递减;综上,当0<a ≤2时,f (x )在(0,+∞)上单调递增,当a >2时,f (x )在0,x 3 ,x 4,+∞ 上单调递增,在x 3,x 4 上单调递减,其中x 3=a -a 2-22,x 4=a +a 2-22.(2)由(1)可知,x 3,x 4为f (x )的两个极值点,且x 3<x 4,所以x 1=x 3,x 2=x 4,且x 1,x 2是方程2x 2-2ax +1=0的两不等正根,此时a >2,x 1+x 2=a >0,x 1⋅x 2=12,所以x 1∈0,22 ,x 2∈22,+∞ ,且有2ax 1=2x 21+1,2ax 2=2x 22+1,则2f x 1 -f x 2 =2ln x 1+x 21-2ax 1 -ln x 2+x 22-2ax 2=2ln x 1+x 21-2x 21-1 -ln x 2+x 22-2x 22-1 =-2x 21+2ln x 1-ln x 2+x 22-1=x 22-212x 22+2ln12x 2-ln x 2-1=x 22-12x 22-32ln x 22-2ln2-1令t =x 22,则t ∈12,+∞ ,令g t =t -12t -32ln t -2ln2-1,则g t =1+12t 2-32t =2t -1 t -1 2t 2,当t ∈12,1 时,g t <0,则g t 单调递减,当t ∈1,+∞ 时,g t >0,则g t 单调递增,所以g t min =g 1 =-1+4ln22,所以2f x 1 -f x 2 的最小值为-1+4ln22.402证明不等式利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式f x >g x (或f x <g x )转化为证明f x -g x >0(或f x -g x <0),进而构造辅助函数h x =f x -g x ;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.(4)对数单身狗,指数找基友(5)凹凸反转,转化为最值问题(6)同构变形1(2024·青海·模拟预测)已知质数f x =me x -x 2+mx -m ,且曲线y =f x 在点2,f 2 处的切线方程为4e 2x -y -4e 2=0.(1)求m 的值;(2)证明:对一切x ≥0,都有f x ≥e 2x 2.【解析】(1)f x =me x -2x +m ,f 2 =me 2-4+m ,f 2 =me 2-4+m ,则有4e 2=me 2-4+m ,4e 2×2-me 2-4+m -4e 2=0,解得m =4;(2)由m =4,故f x =4e x -x 2+4x -4,要证对一切x ≥0,都有f x ≥e 2x 2,即证4e x ≥e 2+1 x 2-4x +4对一切x ≥0恒成立,即证e 2+1 x 2-4x +4e x ≤4对一切x ≥0恒成立,令g x =e 2+1 x 2-4x +4e x,gx =2e 2+1 x -4-e 2+1 x 2+4x -4e x =-e 2+1 x 2+2e 2+3 x -8e x=-e 2+1 x -4 x -2 e x ,则当x ∈0,4e 2+1 ∪2,+∞ 时,g x <0,则当x ∈4e 2+1,2时,g x >0,即g x 在0,4e 2+1 、2,+∞ 上单调递减,在4e 2+1,2上单调递增,又g 0 =4e 0=4,g 2 =4e 2+1 -4×2+4e 2=4e 2+4-8+4e 2=4,故g x ≤4对一切x ≥0恒成立,即得证.2(2024·山西晋城·二模)已知函数f (x )=(x -a )e x +x +a (a ∈R ).(1)若a =4,求f (x )的图象在x =0处的切线方程;(2)若f x ≥0对于任意的x ∈0,+∞ 恒成立,求a 的取值范围;(3)若数列a n 满足a 1=1且a n +1=2a n a n +2(n ∈N *),记数列a n 的前n 项和为S n ,求证:S n +13<ln (n +1)(n +2) .【解析】(1)当a =4时,f (x )=(x -4)e x +x +4,则f (x)=(x-3)e x+1,得f (0)=-2,又f(0)=0,所以f(x)在x=0处的切线为y=-2x;(2)f(x)=(x-a)e x+x+a≥0对∀x∈[0,+∞)恒成立,f (x)=(x+1-a)e x+1,设g(x)=(x+1-a)e x+1(x≥0),则g (x)=(x+2-a)e x,当2-a≥0即a≤2时,g (x)≥0,g(x)在[0,+∞)上单调递增,且g(0)=2-a≥0,所以g(x)≥0,即f (x)≥0,此时f(x)在[0,+∞)上单调递增,且f(0)=0,所以f(x)≥0对∀x∈[0,+∞)恒成立.当2-a<0即a>2时,令g (x)<0⇒0<x<a-2,g (x)>0⇒x>a-2,所以函数g(x)在(0,a-2)上单调递减,在(a-2,+∞)上单调递增,则g(x)min=g(a-2)=1-e a-2<0,又g(0)=2-a<0,所以在(0,a-2)上恒有g(x)<0,即f (x)<0,函数f(x)在(0,a-2)上单调递减,且f(0)=0,则在(0,a-2)上有f(x)<0,不符合题意.综上,a≤2,即实数a的取值范围为(-∞,2](3)由a n+1=2a na n+2,得1a n+1-1a n=12,又1a1=1,所以数列1a n是以1为首项,以12为公差的等差数列,故1a n=1+12(n-1)=n+12,所以a n=2n+1.当n=1时,S1+13=a1+13=43<ln6恒成立;当n≥2时,先证:2n+1<ln n+2n,即证2n+1<ln n+1+1n+1-1=ln1+1n+11-1n+1,设x=1n+1,则0<x<1,即证2x<ln1+x1-x(0<x<1),令h(x)=2x-ln 1+x1-x(0<x<1),则h (x)=2-1x+1-11-x=-2x21-x2<0,所以h(x)在(0,1)上单调递减,故h(x)<h(0)=0,即2x<ln 1+x1-x,即2n+1<ln n+2n.所以当n≥2时,S n+13=13+23+24+⋯+2n+1<ln6+ln42+ln53+⋯+ln n+2n=ln6×4×5×⋯×n(n+1)(n+2)2×3×4×5×⋯×n=ln[(n+1)(n+2)].综上,S n+13<ln[(n+1)(n+2)].3(2024·上海松江·二模)已知函数y=x⋅ln x+a(a为常数),记y=f(x)=x⋅g(x).(1)若函数y=g(x)在x=1处的切线过原点,求实数a的值;(2)对于正实数t,求证:f(x)+f(t-x)≥f(t)-t ln2+a;(3)当a=1时,求证:g(x)+cos x<e xx.【解析】(1)由题意,函数y=x⋅ln x+a,且y=f(x)=x⋅g(x),可得g(x)=f(x)x=ln x+ax,x>0,则g (x)=1x-ax2=x-ax2,5所以g (1)=1-a,又因为g(1)=ln1+a=a,所以g x 在x=1处的切线方程为y=(1-a)(x-1)+a,又因为函数y=g(x)在x=1处的切线过原点,可得0=(1-a)⋅(0-1)+a,解得a=1 2 .(2)设函数h x =f x +f t-x,t>0,可得h x =x ln x+(t-x)ln(t-x)+2a,其中0<x<t,则h x =ln x+1-ln(t-x)-1=lnxt-x,令h x >0,可得xt-x>1,即2x-tt-x>0,即2x-tx-t<0,解得t2<x<t,令h x <0,可得0<xt-x<1,解得0<x<t2,所以h x 在t2,t上单调递增,在0,t2上单调递减,可得h x 的最小值为ht2,所以h x ≥h t2 ,又由ht2=f t2 +f t-t2=t ln t2+2a=f t -t ln2+a,所以f x +f t-x≥f t -t ln2+a.(3)当a=1时,即证ln x+1x <e xx-cos x,由于cos x∈[-1,1],所以e xx-cos x≥e xx-1,只需证ln x+1x<e xx-1,令k x =ln x+1x-e xx+1,x>0,只需证明k x <0,又由k x =1x-1x2-e x(x-1)x2=(1-e x)(x-1)x2,因为x>0,可得1-e x<0,令k x >0,解得0<x<1;令k x <0,解得x>1,所以k x 在(0,1)上单调递增,在(1,+∞)上单调递减,所以k x 在x=1处取得极大值,也时最大值,所以k x max=k1 =2-e<0,即k x <0,即a=1时,不等式g(x)+cos x<e xx恒成立.03不等式恒成立与有解问题1、利用导数研究不等式恒成立问题的求解策略:(1)通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;(2)利用可分离变量,构造新函数,直接把问题转化为函数的最值问题;(3)根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.2、利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解:(1)∀x∈D,m≤f x ⇔m≤f x min;(2)∀x∈D,m≥f x ⇔m≥f x max;(3)∃x∈D,m≤f x ⇔m≤f x max;(4)∃x∈D,m≥f x ⇔m≥f x min.673、不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数y =f x ,x ∈a ,b ,y =g x ,x ∈c ,d .(1)若∀x 1∈a ,b ,∀x 2∈c ,d ,有f x 1 <g x 2 成立,则f x max <g x min ;(2)若∀x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,则f x max <g x max ;(3)若∃x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,则f x min <g x max ;(4)若∀x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 =g x 2 成立,则f x 的值域是g x 的值域的子集.1(2024·北京朝阳·一模)已知函数f x =1-ax e x a ∈R .(1)讨论f x 的单调性;(2)若关于x 的不等式f x >a 1-x 无整数解,求a 的取值范围.【解析】(1)f x =1-a -ax e x ,当f x =0,得x =1-aa ,当a >0时,x ∈-∞,1-a a时,fx >0,f x 单调递增,x ∈1-a a,+∞ 时,f x <0,f x 单调递减,当a <0时,x ∈-∞,1-aa时,f x <0,f x 单调递减,x ∈1-a a,+∞ 时,f x >0,f x 单调递增,当a =0时,f x =e x ,函数f x 在R 上单调递增,综上可知,a >0时,函数f x 的单调递增区间是-∞,1-a a,单调递减区间是1-aa ,+∞ ,a <0时,函数f x 的单调递减区间是-∞,1-a a ,单调递增区间是1-aa ,+∞ ,a =0时,函数f x 的增区间是-∞,+∞ ,无减区间.(2)不等式1-ax e x >a 1-x ,即a x -x -1e x<1,设h x =x -x -1e x ,h x =1-2-x e x =e x +x -2e x,设t x =e x +x -2,t x =e x +1>0,所以t x 单调递增,且t 0 =-1,t 1 =e -2>0,所以存在x 0∈0,1 ,使t x 0 =0,即h x 0 =0,当x ∈-∞,x 0 时,h x <0,h x 单调递减,当x ∈x 0,+∞ 时,h x >0,h x 单调递增,所以h x ≥h x 0 =x 0e x-x 0+1ex,因为e x≥x +1,所以h x ≥h x 0 =x 0e x-x 0+1e x 0≥x 0x 0+1 -x 0+1e x 0=x 20+1ex>0,当x ≤0时,h x ≥h 0 =1,当x ≥1时,h x ≥h 1 =1,不等式1-ax e x >a 1-x 无整数解,即a x -x -1e x<1无整数解,若a ≤0时,不等式恒成立,有无穷多个整数解,不符合题意,若a ≥1时,即1a≤1,因为函数h x 在-∞,0 上单调递减,在1,+∞ 上单调递增,所以x ∈Z 时,h x ≥min h 0 ,h 1 =1≥1a ,所以h x <1a 无整数解,符合题意,当0<a <1时,因为h 0 =h 1 =1<1a ,显然0,1是a ⋅h x <1的两个整数解,不符合题意,8综上可知,a ≥1.2(2024·黑龙江哈尔滨·一模)已知函数f x =xex -ae x ,a ∈R .(1)当a =0时,求f x 在x =1处的切线方程;(2)当a =1时,求f x 的单调区间和极值;(3)若对任意x ∈R ,有f x ≤e x -1恒成立,求a 的取值范围.【解析】(1)当a =0时,f x =xex ,则f x =1-x ex,f 1 =0,f 1 =1e ,所以切线方程为y =1e.(2)当a =1时,f x =xe -x -e x ,f x =1-x e -x -e x =1-x -e 2xex.令g x =1-x -e 2x ,g x =-1-2e 2x<0,故g x 在R 上单调递减,而g 0 =0,因此0是g x 在R 上的唯一零点即:0是f x 在R 上的唯一零点当x 变化时,f x ,f x 的变化情况如下表:x-∞,0 00,+∞f x +0-f x↗极大值↘f x 的单调递减区间为:0,+∞ ;递增区间为:-∞,0 f x 的极大值为f 0 =-1,无极小值(3)由题意知xe -x-ae x≤e x -1,即a ≥xe -x -e x -1e x,即a ≥x e2x -1e ,设m x =x e 2x -1e ,则mx =e 2x -2xe 2x e 2x2=1-2x e 2x ,令m x =0,解得x =12,当x ∈-∞,12 ,m x >0,m x 单调递增,当x ∈12,+∞ ,m x <0,m x 单调递减,所以m x max =m 12 =12e -1e =-12e,所以a ≥-12e3(2024·陕西安康·模拟预测)已知函数f x =ln x +1,g x =e x -1.(1)求曲线y =f x 与y =g x 的公切线的条数;(2)若a >0,∀x ∈-1,+∞ ,f x +1 ≤a 2g x +a 2-a +1,求a 的取值范围.【解析】(1)设f x =ln x +1,g x =e x -1的切点分别为x 1,f x 1 ,x 2,g x 2 ,则f x =1x,g (x )=e x ,故f x =ln x +1,g x =e x -1在切点处的切线方程分别为y =1x 1x -x 1 +ln x 1+1⇒y =1x 1x +ln x 1,y =e x 2x -x 2 +e x 2-1⇒y =e x 2x -x 2e x 2+e x2-1则需满足;91x 1=ex 2ln x 1=-x 2ex 2+e x 2-1,故ln1ex 2=-x 2e x 2+e x 2-1⇒e x 2-1 x 2-1 =0,解得x 2=0或x 2=1,因此曲线y =f x 与y =g x 有两条不同的公切线,(2)由f x +1 ≤a 2g x +a 2-a +1可得ln x +1 +1≤a 2e x -1 +a 2-a +1,即ln x +1 ≤a 2e x -a 对于∀x ∈-1,+∞ 恒成立,ln 0+1 ≤a 2e 0-a ,结合a >0,解得a ≥1设m (x )=ln x -x +1,,则当x >1时m (x )=1x-1<0,m x 单调递减,当0<x <1时,m (x )>0,m x 单调递增,故当m (x )≤m 1 =0,故ln x ≤x -1,因此ln x +1 ≤x ,x >-1 ,令F x =x -a 2e x +a ,x >-1 ,则F x =1-a 2e x ,令F x =1-a 2e x =0,得x =-2ln a ,当-2ln a ≤-1时,此时a ≥e ,F x =1-a 2e x <0,故F x 在x >-1上单调递减,所以F x <F -1 =-1-a 2e +a =-a 2+ea -e e =-a -e 2 2+e 24-e e≤-e -e 22+e 24+ee=e -2<0,所以F x =x -a 2e x +a <0,由于ln x +1 ≤x 进而ln (x +1)-a 2e x +a <0,满足题意,当-2ln a >-1时,此时1<a <e ,令F x =1-a 2e x >0,解得-1<x <-2ln a ,F x 单调递增,令F x =1-a 2e x <0,解得x >-2ln a ,F x 单调递减,故F x ≤F x max =F -2ln a =-2ln a -1+a ,令p a =-2ln a -1+a ,则p a =-2a +1=a -2a ,由于1<a <e ,所以p a =-2a +1=a -2a<0,故p a 在1<a <e 单调递减,故p a <p 1 ,即可p a <0,因此F x ≤F x max =F -2ln a =-2ln a -1+a <0⇒F x <0所以F x =x -a 2e x +a <0,由于ln x +1 ≤x 进而ln (x +1)-a 2e x +a <0,满足题意,综上可得a ≥104零点问题函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围.求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与x 轴(或直线y =k )在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像;第三步:结合图像判断零点或根据零点分析参数.1(2024·四川泸州·三模)设函数f x =e x -1,g x =ln x +b .(1)求函数F x =x -1 f x 的单调区间;10(2)若总存在两条直线和曲线y =f x 与y =g x 都相切,求b 的取值范围.【解析】(1)F x =x -1 f x =x -1 e x -1,F x =xe x -1,令F x >0,得x >0,令F x <0,得x <0,所以函数F x 的单调递增区间为0,+∞ ,单调递减区间为-∞,0 ;(2)∵f x =e x -1∴f x =e x -1在m ,e m -1 处的切线方程为y =e m -1x +1-m e m -1,∵g x =1x,∴g x =ln x +b 在点n ,ln n +b 处的切线方程为y =1nx +ln n +b -1,由题意得e m -1=1n(1-m )e m -1=ln n +b -1,则m -1 e m -1-m +b =0,令h m =m -1 e m -1-m +b ,则h (x )=me m -1-1,令φm =me m -1-1,则φ m =m +1 e m -1,当m <-1时,φ m <0,当m >-1时,φ m >0,所以函数φm 在-∞,-1 上单调递减,在-1,+∞ 上单调递增,即函数h m 在-∞,-1 上单调递减,在-1,+∞ 上单调递增,又h 1 =0,且当m ≤0时,h m <0,所以m <1时,h m <0,h (m )单调递减;当m >1时,h (m )>0,h (m )单调递增,所以h m min =h 1 =b -1,若总存在两条直线和曲线y =f x 与y =g x 都相切,则曲线y =h m 与x 轴有两个不同的交点,则h 1 =b -1<0,所以b <1,此时h b -1 =b -2 e b -2+1>-1e+1>0,h 3-b =2-b e 2-b +2b -3>2-b 3-b =b -322+34>0,所以b 的取值范围为-∞,1 .2(2024·北京房山·一模)已知函数f (x )=e ax +1x.(1)当a =0时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)设g (x )=f (x )⋅x 2,求函数g (x )的极大值;(3)若a <-e ,求函数f (x )的零点个数.【解析】(1)当a =0时,f (x )=1+1x ,f x =-1x 2,则f 1 =-1,f 1 =2,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -2=-x -1 ,即y =-x +3;(2)f (x )=ae ax -1x2,则g (x )=f (x )⋅x 2=ax 2e ax -1x ≠0 ,则g x =2axe ax +a 2x 2e ax =ax ax +2 e ax x ≠0 ,当a =0时,g x =-1,此时函数g x 无极值;当a >0时,令g x <0,则x >0或x <-2a ,令g x <0,则-2a<x <0,所以函数g x 在-∞,-2a ,0,+∞ 上单调递增,在-2a ,0 上单调递减,所以g x 的极大值为g -2a =4ae2-1;当a<0时,令g x <0,则x<0或x>-2a,令gx <0,则0<x<-2a,所以函数g x 在-∞,0,-2a,+∞上单调递增,在0,-2a上单调递减,而函数g x 的定义域为-∞,0∪0,+∞,所以此时函数g x 无极值.综上所述,当a≤0时,函数g x 无极大值;当a>0时,g x 的极大值为4ae2-1;(3)令f(x)=e ax+1x =0,则e ax=-1x,当x>0时,e ax>0,-1x<0,所以x>0时,函数f x 无零点;当x<0时,由e ax=-1x,得ax=ln-1x,所以a=-ln-xx,则x<0时,函数f x 零点的个数即为函数y=a,y=-ln-xx图象交点的个数,令h x =-ln-xxx<0,则h x =ln-x-1x2,当x<-e时,h x >0,当-e<x<0时,h x <0,所以函数h x 在-∞,-e上单调递增,在-e,0上单调递减,所以h x max=h-e=1 e,又当x→-∞时,h x >0且h x →0,当x→0时,h x →-∞,如图,作出函数h x 的大致图象,又a<-e,由图可知,所以函数y=a,h x =-ln-xx的图象只有1个交点,即当x<0时,函数f x 只有1个零点;综上所述,若a<-e,函数f(x)有1个零点.3(2024·浙江·二模)定义max a,b=a,a≥bb,a<b,已知函数f x =max ln x,-4x3+mx-1,其中m∈R.(1)当m=5时,求过原点的切线方程;(2)若函数f x 只有一个零点,求实数m的取值范围.【解析】(1)由题意知f x 定义域0,+∞,当m=5时,f x =-4x3+5x-1,-4x3+5x-1≥ln xln x,-4x3+5x-1<ln x ,令g x =-4x3+5x-1,g x =-12x 2+5>0⇒0<x <6012,⇒g x 在0,6012 单调递增,6012,+∞ 单调递减,且g 1 =0,令h x =ln x ,则在0,+∞ 单调递增,而f 1 =0=h 1 ,又g 14 =316,h 14 =ln 14<-1,而g 0 =-1,所以当0<x <14时,g x >h x ,当14≤x <1时,g x >0>h x ,所以当0<x <1时,f x =g x ,当x ≥1时,f x =h x ,所以f x =-4x 3+5x -1,0<x <1ln x ,x ≥1,所以f x 在0,6012和1,+∞ 单调递增,在6012,1 单调递减.(ⅰ)当0<x <1时,f x =-12x 2+5,设切点M x 0,-4x 30+5x 0-1 ,则此切线方程为y =-12x 20+5 x -x 0 -4x 30+5x 0-1,又此切线过原点,所以0=-12x 20+5 0-x 0 -4x 30+5x 0-1,解得x 0=12,即此时切线方程是2x -y =0;(ⅱ)当x ≥1时,f x =ln x ,所以f x =1x,设切点为x 0,ln x 0 ,此时切线方程y =1x 0x -x 0 +ln x 0,又此切线过原点,所以0=1x 00-x 0 +ln x 0,解得x 0=e ,所以此时切线方程x -ey =0,综上所述,所求切线方程是:x -ey =0或2x -y =0;(2)(ⅰ)当m =5时,由(1)知,f x 在0,6012 和1,+∞ 单调递增,6012,1单调递减,且f 0 =1,f 14 =316>0,f 1 =0,此时f x 有两个零点;(ⅱ)当m >5时,当0<x <1时,-4x 3+5x -1<-4x 3+mx -1,由(1)知:g x =-4x 3+5x -1在0,6012 递增,6012,1递减,且g 1 =0,所以x ∈6012,+∞ 时,f x >0,而f 0 =-1,所以f x 在0,6012 只有一个零点,6012,+∞ 没有零点;(ⅲ)当0<m <5时,y =-4x 3+mx -1,此时y =-12x 2+m >0得0<x <m 12<6012,由(1)知,当x ≥1时,f x =ln x 只有一个零点x =1,要保证f x 只有一个零点,只需要当0<x <1时,f x =-4x 3+mx -1没有零点,f m12=-4m123+m m 12-1=m 3m 9-1<00<m<1 ,得0<m <3;(ⅳ)当m≤0时,当x∈0,+∞时,g x =-4x3+mx-1<0,此时f x 只有一个零点x=1,综上,f x 只有一个零点时,m<3或m>5 .05导数与三角函数结合问题分段分析法1(2024·全国·模拟预测)已知函数f x =13x3-12a x2+2cos x+x cos x-sin x.(1)讨论f x 的单调性(2)若a>0,求证:①函数f x 在0,+∞上只有1个零点;②f x >1-16a3-12a2-2sin a+π4.【解析】(1)因为f x =13x3-12a x2+2cos x+x cos x-sin x,所以f x =x2-ax+a sin x-x sin x=x-ax-sin x.设g x =x-sin x,则g x =1-cos x≥0,所以g x 在R上单调递增,且g0 =0,所以当x>0时,x-sin x>0;当x<0时,x-sin x<0.当a=0时,f x =x x-sin x≥0,所以f x 在R上单调递增.当a>0时,若x∈0,a,则f x <0,所以f x 单调递减;若x∈-∞,0或x∈a,+∞,则f x >0,所以f x 单调递增.当a<0时,若x∈a,0,则f x <0,所以f x 单调递减;若x∈-∞,a或x∈0,+∞,则f x >0,所以f x 单调递增.综上所述,当a=0时,f x 在R上单调递增;当a>0时,f x 在0,a上单调递减,在-∞,0,a,+∞上单调递增;当a<0时,f x 在a,0上单调递减,在-∞,a,0,+∞上单调递增. (2)①由(1)知,当a>0时,f x 在0,a上单调递减,在a,+∞上单调递增,又f0 =-a<0,所以f a <f0 <0,所以f x 在0,a上没有零点.因为x>0,所以f(x)=13x3-12a x2+2cos x+x cos x-sin x>13x3-12a x2+2-x-1=19x2x-92a+19x x2-9+19x3-a+1所以当x>92ax>3x>39a+9时,f x >0,此时f x 在a,+∞上只有1个零点.综上可得,f x 在0,+∞上只有1个零点.②由a>0,知f x 在0,a上单调递减,在a,+∞上单调递增,所以f x ≥f a =-16a3-sin a,所以f a +16a 3+12a 2+2sin a +π4 -1=12a 2+cos a -1.设h a =12a 2+cos a -1,则h a =a -sin a .由(1)知,当a >0时,a -sin a >0,所以当a >0时,h a >0,所以h a >0在0,+∞ 上单调递增,所以h a >h 0 =0,即f a >1-16a 3-12a 2-2sin a +π4 ,所以f x >1-16a 3-12a 2-2sin a +π4.2(2024·河北沧州·一模)已知函数f x =x ae2x ,a >0.(1)当a =2时,求函数f x 的单调区间和极值;(2)当x >0时,不等式f x -cos ln f x ≥a ln x 2-4x 恒成立,求a 的取值范围.【解析】(1)当a =2时,f x =x 2e 2xfx =2x ⋅e 2x -x 2⋅e 2x ⋅2e 2x 2=-2x (x -1)e 2x 令f x =0,解得x =0或x =1,所以x 、f (x )、f (x )的关系如下表:x (-∞,0)0(0,1)1(1,+∞)f (x )-0+-f (x )单调递减单调递增1e 2单调递减所以函数f x 的单调递增区间为:(0,1),单调递减区间为:(-∞,0)和(1,+∞);极大值f (1)=1e2,极小值f (0)=0;(2)f (x )-cos ln f (x ) ≥a ln x 2-4x ⇔x a e 2x -cos ln x a e2x≥2a ln x -4x⇔e a ln x -2x -2(a ln x -2x )-cos (a ln x -2x )≥0令g (t )=e t -2t -cos t ,其中t =a ln x -2x ,设F (x )=a ln x -2x ,a >0F (x )=a x -2=a -2xx 令F (x )>0,解得:0<x <a2,所以函数F (x )在0,a 2上单调递增,在a2,+∞ 上单调递减,F (x )max =F a 2 =a ln a2-a ,且当x →0+时,F (x )→-∞,所以函数F (x )的值域为-∞,a ln a2-a ;又g (t )=e t -2+sin t ,设h (t )=e t -2+sin t ,t ∈-∞,a ln a2-a ,则h (t )=e t +cos t ,当t ≤0时,e t ≤1,sin t ≤1,且等号不同时成立,即g (t )<0恒成立;t。

利用导数证明数列不等式(含解析)

利用导数证明数列不等式(含解析)

利用导数证明数列不等式(含解析)利用导数证明数列不等式是高考中常见的题型,可以考查学生灵活运用知识的能力。

这种题型一方面以函数为背景,让学生探究函数的性质;另一方面,体现数列是特殊的函数,进而利用恒成立的不等式将没有规律的数列放缩为有具体特征的数列。

可以说,这种题型涉及到函数、导数、数列和不等式,是一题多考的巧妙结合,也是近年来高考的热门题型。

常见的题型有两种类型:一种是利用放缩通项公式解决数列求和中的不等问题,另一种是利用递推公式处理通项公式中的不等问题。

恒成立不等式的来源主要有两种:一是函数的最值,最值可以提供XXX成立的不等式;二是恒成立问题的求解,参数范围内的值均可提供恒成立不等式。

常见的恒成立不等式有lnxx+1.关于前n项和的放缩问题,求数列前n项公式往往要通过数列的通项公式来解决。

高中阶段求和的方法有倒序相加、错位相减、等比数列求和公式和裂项相消。

在处理数列求和不等式时,放缩为等比数列和能够裂项相消的数列的情况比较多见,应优先考虑。

对于数列求和不等式,要从通项公式入手,结合不等号方向考虑放缩成可求和的通项公式。

在放缩时要注意前几问的铺垫与提示,尤其是关于恒成立问题与最值问题所带来的恒成立不等式,往往提供了放缩数列的方向。

放缩通项公式有可能会进行多次,要注意放缩的方向,朝着可求和的通项公式进行靠拢(等比数列,裂项相消等)。

数列不等式也可考虑利用数学归纳法进行证明。

经典例题是已知函数f(x)=kx-xlnx,求函数f(x)的单调区间、当<x≤1时,f(x)≤k恒成立的k的取值范围,以及证明ln1ln2+23+lnnn(n-1)≤n+14.1.已知函数$f(x)=\ln(ax+1)(x\geq0,a>0)$,$g(x)=x-\frac{x^3}{3}$。

1)讨论函数$y=f(x)-g(x)$的单调性;2)若不等式$f(x)\geq g(x)+1$在$x\in[0,+\infty)$时恒成立,求实数$a$的取值范围;3)当$a=1$时,证明:frac{1}{1\cdot3\cdot5\cdots(3572n+1)}+\frac{1}{2\cdot4\cd ot6\cdots(3572n+2)}+\cdots+\frac{1}{(2n-1)(2n+1)}<f^{(n)}(n)(n\in N^*),$$其中$f^{(n)}(n)$表示$f(x)$的$n$阶导数在$x=n$处的值。

高三数学导数的实际应用试题答案及解析

高三数学导数的实际应用试题答案及解析

高三数学导数的实际应用试题答案及解析1.已知函数,.(Ⅰ)若曲线在点处的切线与直线垂直,求的值;(Ⅱ)求函数的单调区间;(Ⅲ)设,当时,都有成立,求实数的取值范围.【答案】(Ⅰ),(Ⅱ)当时,的单调增区间为;当时,的单调增区间是,的单调减区间是.(Ⅲ).【解析】(Ⅰ)利用导数的几何意义,曲线在点处的切线斜率为在点处的导数值. 由已知得.所以.,(Ⅱ)利用导数求函数单调区间,需明确定义域,再导数值的符号确定单调区间. 当时,,所以的单调增区间为.当时,令,得,所以的单调增区间是;令,得,所以的单调减区间是.(Ⅲ)不等式恒成立问题,一般利用变量分离转化为最值问题. “当时,恒成立”等价于“当时,恒成立.”设,只要“当时,成立.”易得函数在处取得最小值,所以实数的取值范围.(Ⅰ)由已知得.因为曲线在点处的切线与直线垂直,所以.所以.所以. 3分(Ⅱ)函数的定义域是,.(1)当时,成立,所以的单调增区间为.(2)当时,令,得,所以的单调增区间是;令,得,所以的单调减区间是.综上所述,当时,的单调增区间为;当时,的单调增区间是,的单调减区间是. 8分(Ⅲ)当时,成立,.“当时,恒成立”等价于“当时,恒成立.”设,只要“当时,成立.”.令得,且,又因为,所以函数在上为减函数;令得,,又因为,所以函数在上为增函数.所以函数在处取得最小值,且.所以.又因为,所以实数的取值范围. 13分(Ⅲ)另解:(1)当时,由(Ⅱ)可知,在上单调递增,所以.所以当时,有成立.(2)当时,可得.由(Ⅱ)可知当时,的单调增区间是,所以在上单调递增,又,所以总有成立.(3)当时,可得.由(Ⅱ)可知,函数在上为减函数,在为增函数,所以函数在处取最小值,且.当时,要使成立,只需,解得.所以.综上所述,实数的取值范围.【考点】利用导数求切线,利用导数求单调区间,利用导数求最值2.已知y=f(x)与y=g(x)都为R上的可导函数,且f′(x)>g′(x),则下面不等式正确的是()A.f(2)+g(1)>f(1)+g(2)B.f(1)+f(2)>g(1)+g(2)C.f(1)﹣f(2)>g(1)﹣g(2)D.f(2)﹣g(1)>f(1)﹣g(2)【答案】A【解析】∵f'(x)>g'(x),∴f'(x)﹣g'(x)>0,∴[f(x)﹣g(x)]′>0,∴函数f(x)﹣g(x)在R上为增函数.∵1<2,∴f(1)﹣g(1)<f(2)﹣g(2),移向即得f(2)+g(1)>f(1)+g(2)故选A3.某公司生产一种产品,固定成本为20000元,每生产一单位的产品,成本增加100元,若总收入R与年产量x的关系是,则当总利润最大时,每年生产产品的单位数是()A.150B.200C.250D.300【答案】D【解析】∵总利润由P′(x)=0,得x=300,故选D.4.一个圆柱形圆木的底面半径为1m,长为10m,将此圆木沿轴所在的平面剖成两个部分.现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形(如图所示,其中O为圆心,在半圆上),设,木梁的体积为V(单位:m3),表面积为S(单位:m2).(1)求V关于θ的函数表达式;(2)求的值,使体积V最大;(3)问当木梁的体积V最大时,其表面积S是否也最大?请说明理由.【答案】(1);(2);(3)是.【解析】(1)本题求直四棱柱的体积,关键是求底面面积,我们要用底面半径1和表示出等腰梯形的上底和高,从图形中可知高为,而,因此面积易求,体积也可得出;(2)我们在(1)中求出,这里的最大值可利用导数知识求解,求出,解出方程在上的解,然后考察在解的两边的正负性,确定是最大值点,实质上对应用题来讲,导数值为0的那个唯一点就是要求的极值点);(3),上(2)我们可能把木梁的表面积用表示出来,,由于在体积中出现,因此我们可求的最大值,这里可不用导数来求,因为,可借助二次函数知识求得最大值,如果这里取最大值时的和取最大值的取值相同,则结论就是肯定的.试题解析:(1)梯形的面积=,. 2分体积. 3分(2).令,得,或(舍).∵,∴. 5分当时,,为增函数;当时,,为减函数. 7分∴当时,体积V最大. 8分(3)木梁的侧面积=,.=,. 10分设,.∵,∴当,即时,最大. 12分又由(2)知时,取得最大值,所以时,木梁的表面积S最大. 13分综上,当木梁的体积V最大时,其表面积S也最大. 14分【考点】(1)函数解析式;(2)用导数求最值;(3)四棱柱的表面积及其最值.5.一火车锅炉每小时煤的消耗费用与火车行驶速度的立方成正比,已知当速度为20 km/h时,每小时消耗的煤价值40元,其他费用每小时需400元,火车的最高速度为100 km/h,火车以何速度行驶才能使从甲城开往乙城的总费用最少?【答案】速度为20 km/h时,总费用最少【解析】设火车的速度为x km/h,甲、乙两城距离为a km.由题意,令40=k·203,∴k=,则总费用f(x)=(kx3+400)·=a.∴f(x)=a (0<x≤100).由f′(x)==0,得x=20.当0<x<20时,f′(x)<0;当20<x<100时,f′(x)>0.∴当x=20时,f(x)取最小值,即速度为20 km/h时,总费用最少.6.已知函数(Ⅰ)若对任意,使得恒成立,求实数的取值范围;(Ⅱ)证明:对,不等式成立.【答案】(Ⅰ)(Ⅱ)详见解析.【解析】(Ⅰ) 利用导数分析单调性,进而求最值;(Ⅱ)利用不等式的放缩和数列的裂项求和试题解析:(I)化为易知,,设,设,,,上是增函数,(Ⅱ)由(I)知:恒成立,令,取相加得:即证明完毕【考点】查导数,函数的单调性,数列求和,不等式证明7.设等差数列{an }的前n项和为Sn,已知(a5-1)3+2 011·(a5-1)=1,(a2 007-1)3+2 011(a2 007-1)=-1,则下列结论正确的是()A.S2 011=2 011,a2 007<a5B.S2 011=2 011,a2 007>a5C.S2 011=-2 011,a2 007≤a5D.S2 011=-2 011,a2 007≥a5【答案】A 【解析】令,在R上单调递增且连续的函数所以函数只有唯一的零点,从而可得,同理∵(a5-1)3+2 011·(a5-1)=1,(a2 007-1)3+2 011(a2 007-1)=-1两式相加整理可得,由,可得>0,由等差数列的性质可得【考点】函数性质与等差数列及性质点评:本题的入手点在于通过已知条件的两数列关系式构造两函数,借助于函数单调性得到数列中某些特定项的范围,再结合等差数列中的相关性质即可求解,本题难度很大8.已知定义在上的函数满足,且,,若数列的前项和等于,则=A.7B.6C.5D.4【答案】B【解析】由得,即为R上的减函数,所以,由,得,即,解得或,又,所以,故,数列即,其前项和为,整理得,解得,故选B.【考点】本题考查了导数与数列的综合运用点评:此类问题常常利用导数法研究函数的单调性,然后再利用数列的知识求解9.已知f(x)=x-(a>0),g(x)=2lnx+bx且直线y=2x-2与曲线y=g(x)相切.(1)若对[1,+)内的一切实数x,小等式f(x)≥g(x)恒成立,求实数a的取值范围;(2)当a=l时,求最大的正整数k,使得对[e,3](e=2.71828是自然对数的底数)内的任意k个实数x1,x2,,xk都有成立;(3)求证:.【答案】(1);(2)的最大值为.(3)当时,根据(1)的推导有,时,,即.令,得,化简得,。

第三章 一元函数的导数及其应用-专题突破7 导数的综合应用

第三章 一元函数的导数及其应用-专题突破7 导数的综合应用
当 < 0时,′ > 0;当 > 0时,′ < 0.
所以函数 在 −∞, 0 上单调递增,在 0, +∞ 上单调递减.所以当 = 0时, 有最
大值 0 = − 1.
当 < 1时, 0 = − 1 < 0,函数 无零点.
返回至目录
当 = 1时, 0 = − 1 = 0,函数 有1个零点.
式的值的方法,称为洛必达法则.需要说明的是,洛必达法则在解答题中直接使用一
般至少会扣步骤分,属于考场中时间紧迫时的一种抢分技巧.
返回至目录
1.设函数 = e − 1 − − 2 .当 ≥ 0时, ≥ 0恒成立,求实数的取值范围.
解:当 = 0时, = 0.
当 > 0时, ≥ 0等价于 ≤
恒成立,即ln >
1
3
− 2 − − 4 恒成立,
4

即− < 3ln + + 在 0, +∞ 上恒成立.
令ℎ = 3ln + +
4
,则ℎ′

=
+4 −1
2

令ℎ′ < 0,得0 < < 1,令ℎ′ > 0,得 > 1.
则ℎ 在 0,1 上单调递减,在 1, +∞ 上单调递增.

则′
令ℎ
e −−1
=
>0 ,
2
e −2e ++2
=
.
3
= e − 2e + + 2
e −−1
.
2
> 0 ,则ℎ′ = e − e + 1.

导数和数列结合的大题

导数和数列结合的大题

导数和数列结合的大题好嘞,今天咱们就聊聊导数和数列这对“老冤家”,听起来有点复杂,但其实咱们可以轻松搞定它。

想象一下,导数就像一辆飞驰的车,而数列呢,就像那条蜿蜒的公路。

这车在这条路上,时不时得停下看看风景,顺便计算一下它的速度,明白了吧?数列就像一颗颗珍珠,串在一起。

每一个数都是一个珍珠,大家手拉手,排成一行。

可别小看这些数列哦,搞得好的话,可以为我们揭开很多数学的秘密。

就拿等差数列来说,想象一下你在走路,每一步都是固定的长度,那就是等差。

每次前进都一样,简单又明了,像是每天都要吃的泡面,一碗接一碗,没啥新花样。

但这也好,稳稳的,不容易出错。

然后,咱们再来看看导数。

导数可不简单,速度、变化,它就像是人生的节奏。

有时候慢悠悠地走,有时候拼命狂奔。

你想,生活中许多事情都是在变化的,导数就帮我们把这些变化给捋顺了。

比如,你开车的时候,车速一会快一会慢,想知道什么时候加油,什么时候刹车,导数给你个明确的答案。

这个时候,你会发现,原来数学和生活是息息相关的,不是说只有在教室里才有用。

大家可能会想,导数和数列能有什么关系呢?嘿嘿,这可就有意思了。

数列中的每个数,其实都可以看作是一个瞬间,而导数呢,就负责告诉我们这些瞬间之间的变化。

举个例子,一个数列是:1, 3, 5, 7, 9,大家都知道它是等差数列,后一个数比前一个数大2。

想象一下,这就像你在跟朋友聊天,话题在不断变化,而导数就是你的语气,偶尔高昂,偶尔低沉,传递着每个瞬间的感受。

我们再深入点,考虑一下数列的极限。

极限就像是人生的终点,每个数列都在追求某个目标,想要达到某个状态。

就像小孩子长大一样,逐渐成熟,走向自己的目标。

这时候,导数就像是助推器,帮你加速,推动你更快地达到那个目标。

设想一下,你在山坡上爬,慢慢地,越来越接近山顶。

导数告诉你,这一路的高度变化,给你提个醒:要坚持啊,快到了!大家应该也听说过“微分”的概念,这其实和导数是好朋友。

微分就像是把导数放大了,细细地观察每一个细节。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用导数求几类数列题
导数作为高考的新增内容,犹如一阵清新的春风,给传统的数学教学带来了新的生机和活力,为中学数学问题的研究提供了新的平台,同时也拓宽了高考数学命题的空间。

目前对导数的研究大多停留在函数、解析几何、不等式等方面,本文则另辟蹊径介绍了导数在几类数列题上的应用,给繁琐的数列题提供了一种更为便捷的解题途径。

例1:求以下数列之和:
(1)sn=1+2x+3x2+……+nxn-1(x≠1,x≠0)
(2)sn=1+3x2+5x3+……+(2n-1)x2n-2
分析:利用数列求和f(x)=x+x2+x3+……+xn=x-xn+11-x(x
≠1,x≠0)
两边求导f’(x)=1+2x+3x2+……+nxn+1
=1-(n+1)xn+nxn+1(1-x)2(*)
(1)由(*)可以求得sn=1-(n+1)xn+nxn+1(1-x)2
(2)法一:不妨令cn=(2n-1)x2n-2
则cn=2[n(x2)n-1]-x2n-2,分组求和,利用(*)可求得
sn=2[1-(n+1)x2n+nx2n+2(1-x2)2-1-x2n1-x2=(2n-1)x2n+2-(2n+1)x2n+x2+1(1-x2)2(**)
法二:若g(x)=x+x3+x5+……+x2n-1=x2n-1-xx2-1
对上式两边求导可得
g’(x)=1+3x2+5x4+……+(2n-1)x2n-2=(2n-1)x2n+2-(2n+1)
x2n+x2+1(x2-1)2
【点评】一般形如cn=an*bn(其中{an}为等差数列,{bn}为等比数列)的数列{cn},即原来可用错位相减求前n项和的数列,都可将通项适当变形后,利用(*)或(**)的结论求解,上述两式中的x赋予具体数值便可求得一系列数列之和,例如:1+2×3+3×32+……+n×3n-1=1+(2n-1)3n4
例2:求下列数列之和
(1)1+22x2+32x2+……+n2xn-1
(2)c22+c23x+c24x2+……+c2nxn-2
分析:观察(1)可发现将(*)乘以x后求导可得
(x+2x2+3x3+……+nxn)’=1+22x+32x2+……+n2xn-1
=1+x-(n+1)2xn+(2n2+2n-1)xn+1-n2xn-1(1-x)2
(2)因为c2nxn-2=n(n-1)2xn-2=12(nxn-1)’
对(*)两端继续求导可得
=c22+c23x+c24x2+……+c2nxn-2=2-(n2+n)xn-1+2(n2-1)xn-(n2-n)xn+12(1-x)3
【点评】以上两题都是利用(*)再次求导后求得,当数列中出现n(n-1)形式都可考虑将原式适当变形后,由f(x)经两次求导而得。

例3:求和:sn=cosx+2cos2x+3cos3x+……+ncosnx
分析:令f(x)=sinx+sin2x+sin3x+……+sinnx
求导得f(x)’=cosx+2cos2x+3cos3x+……+ncosnx
当x≠2kπ时,2f(x)sinx2=2sinx2(sinx+sin2x+sin3x+……+sinnx)
=cosx2-cos3x2+cos5x2+……+cos(2n-1)x2-cos(2n+1)x2 =cosx2-cos(2n+1)x2
所以f(x)=cosx2-cos(2n+1)x22sinx2,两边求导即可得结果。

借助导数求数列和,关键在于通项的变形,联想求导公式,构造恰当的函数模型。

在解题过程中若我们能用好、用实导数这个工具,不仅能使数列的计算更为简单快捷,同时学生对变量数学的思想方法也会有新的感悟,并能进一步发展学生的思维,为后继的学习打好基础。

相关文档
最新文档