初中几何三角形基础证明题(2020级)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中几何三角形基础证明题(2020级)

1.如图,AD ∥BC ,∠B=∠D ,求证:AB ∥CD 。

2.如图CD ⊥AB ,EF ⊥AB ,∠1=∠2,求证:∠AGD=∠ACB 。

3. 已知∠1=∠2,∠1=∠3,求证:CD ∥OB 。

4. 如图,已知∠1=∠2,∠C=∠CDO ,求证:CD ∥OP 。

B D E

/

F C

A 2

G

3

B

D

C

A

B D

/

P

C A O 2

3B D

/P C O

2

5. 已知∠1=∠2,∠2=∠3,求证:CD∥EB。

6. 如图∠1=∠2,求证:∠3=∠4。

7. 已知∠A=∠E,FG∥DE,求证:∠CFG=∠B。

8.已知,如图,∠1=∠2,∠2+∠3=1800,求证:a∥b,c∥d。

B D

E

/

C

O

2

3

B

D /

C A

2

3

4

B

D

E F

C

A

G

21

3

a c d

b

9.如图,AC ∥DE ,DC ∥EF ,CD 平分∠BCA ,求证:EF 平分∠BED 。

10、已知,如图,∠1=450,∠2=1450,∠3=450,∠4=1350,求证:l 1∥l 2,l 3∥l 5,l 2∥l 4。

11、如图,∠1=∠2,∠3=∠4,∠E=900,求证:AB ∥CD 。

12、如图,∠A=2∠B ,∠D=2∠C ,求证:AB ∥CD 。

A B C D F E 21l l l 3

41

2345l 21A B C D 34

E

B

C D O

A

13、如图,EF ∥GH ,AB 、AD 、CB 、CD 是∠EAC 、∠FAC 、∠GCA 、∠HCA 的平分线,求证:∠BAD=∠B=∠C=∠D 。

14、已知,如图,B 、E 、C 在同一直线上,∠A=∠DEC ,∠D=∠BEA ,∠A+∠D=900,求证:AE ⊥DE ,AB ∥CD 。

15、如图,已知,BE 平分∠ABC ,∠CBF=∠CFB=650,∠EDF=500,,求证:BC ∥AE 。

16、已知,∠D=900,∠1=∠2,EF ⊥CD ,求证:∠3=∠B 。

17、如图,AB ∥CD ,∠1=∠2,∠B=∠3,AC ∥DE ,求证:AD ∥BC 。

B C

D F E

A G H

B C D E A B C D

E A 2

1

B C

D

F

3E A 2

1D 3

A

17.如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M .(1)求证:MB =MD ,ME =MF (2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.

18.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点,(1)求证:△AED ≌△EBC .(2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):

O

E

D

C

B

A

19.如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD =2CE .

F E D

C

B A

20、如图:DF=CE ,AD=BC ,∠D=∠C 。求证:△AED ≌△BFC 。

F

E

D

C

B

A

21、如图:AE 、BC 交于点M ,F 点在AM 上,BE ∥CF ,BE=CF 。求证:AM 是△ABC 的中线。

M

F

E

C

B

A

22、如图:在△ABC 中,BA=BC ,D 是AC 的中点。求证:BD ⊥AC 。

D

C

B

A

常用几何证明的定理总结

对顶角相等:

几何语言:∵∠1、∠2是对顶角 ∴∠1=∠2(对顶角相等) 垂线:

几何语言:正用反用:

∵∠AOB=90°∵AB⊥CD

∴AB⊥CD(垂直的定义)∴∠AOB=90°(垂直的定

义)

证明线平行的方法:

1、平行公理

如果两条直线都与第三条直线平行,那么,这两条直线也平行。简述为:平行于同一直线的两直线平行。

几何语言叙述:

如图:∵AB∥EF,CD∥EF

∴AB∥CD(平行于同一直线的两直线平行。)

2、同位角相等,两直线平行。

几何语言叙述:

如图:∵直线AB、CD被直线EF所截

∠1=∠2

∴AB∥CD(同位角相等,两直线平行。)

3、内错角相等,两直线平行。

几何语言叙述:

如图:∵直线AB、CD被直线EF所截,∠1=∠2

∴AB∥CD(内错角相等,两直线平行。)

4、同旁内角互补,两直线平行。

几何语言叙述:

如图:∵直线AB、CD被直线EF所截,∠1+∠2=180O ∴AB∥CD(同旁内角互补,两直线平行。)

5、垂直于同一直线的两直线平行。

几何语言叙述:

如图:∵直线a⊥c,b⊥c

∴a∥b(垂直于同一直线的两直线平行。)

平行线的性质:

相关文档
最新文档