全国各地中考平面几何题目汇编
几何图形初步含解析-中考各地试题分类汇编
专题4.1 几何图形初步一、单选题1.【湖南省长沙市2018年中考数学试题】将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是()A. B. C. D.【答案】 D点睛:本题考查立体图形的判断,关键是根据面动成体以及圆台的特点解答.2.【河北省2018年中考数学试卷】如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A.北偏东30° B.北偏东80° C.北偏西30° D.北偏西50°【答案】 A【解析】【分析】根据平行线的性质,可得∠2,根据角的和差,可得答案.【详解】如图,AP∥BC,∴∠2=∠1=50°,∵∠EBF=80°=∠2+∠3,∴∠3=∠EBF﹣∠2=80°﹣50°=30°,∴此时的航行方向为北偏东30°,故选A.【点睛】本题考查了方向角,利用平行线的性质得出∠2是解题关键.3.【江苏省徐州巿2018年中考数学试卷】下列平面展开图是由5个大小相同的正方形组成,其中沿正方形的边不能折成无盖小方盒的是()A. B. C. D.【答案】 B【点睛】本题考查了正方体的展开图,熟记正方体的特征以及正方体展开图的各种情形是解题的关键. 4.【浙江省湖州市2018年中考数学试题】如图所示的几何体的左视图是()A. B. C. D.【答案】 D【解析】从左边看是一个正方形,正方形的左上角是一个小正方形,故选C.5.【湖南省怀化市2018年中考数学试题】如图,直线a∥b,∠1=60°,则∠2=()A.30° B.60° C.45° D.120°【答案】 B点睛:本题考查了平行线的性质,掌握两直线平行,同位角相等是解题的关键.6.【吉林省长春市2018年中考数学试卷】如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC 交AC于点E.若∠A=54°,∠B=48°,则∠CDE的大小为()A.44° B.40° C.39° D.38°【答案】 C【解析】【分析】根据三角形内角和得出∠ACB,利用角平分线得出∠DCB,再利用平行线的性质解答即可.【详解】∵∠A=54°,∠B=48°,∴∠ACB=180°﹣54°﹣48°=78°,∵CD平分∠ACB交AB于点D,∴∠DCB=×78°=39°,∵DE∥BC,∴∠CDE=∠DCB=39°,故选C.【点睛】本题考查了三角形内角和定理、角平分线的定义、平行线的性质等,解题的关键是熟练掌握和灵活运用根据三角形内角和定理、角平分线的定义和平行线的性质.7.【湖南省郴州市2018年中考数学试卷】如图,直线a,b被直线c所截,下列条件中,不能判定a∥b()A.∠2=∠4 B.∠1+∠4=180° C.∠5=∠4 D.∠1=∠3【答案】 D【点睛】本题主要考查了平行线的判定,熟记平行线的判定方法是解题的关键. 解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放型题目,能有效地培养“执果索因”的思维方式与能力.8.【湖北省荆门市2018年中考数学试卷】已知直线a∥b,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为()A.80° B.70° C.85°D.75°【答案】 A【解析】【分析】如图,先根据三角形外角的性质求出∠4的度数,再根据平行线的性质求出∠5的度数,最后根据邻补角的定义进行求解即可得.【详解】如图,【点睛】本题考查了平行线的性质,三角形内角和定理,三角形的外角的性质等知识,结合图形灵活运用相关的知识解决问题是关键.9.【湖南省邵阳市2018年中考数学试卷】如图所示,直线AB,CD相交于点O,已知∠AOD=160°,则∠BOC 的大小为()A.20° B.60° C.70° D.160°【答案】 D【点睛】本题考查对顶角、邻补角,熟知对顶角、邻补角的图形特征以及对顶角相等的性质是解题的关键. 10.【江苏省淮安市2018年中考数学试题】如图,三角板的直角顶点落在矩形纸片的一边上.若∠1=35°,则∠2的度数是()A.35° B.45° C.55° D.65°【答案】 C【解析】分析:求出∠3即可解决问题;详解:如图,∵∠1+∠3=90°,∠1=35°,∴∠3=55°,∴∠2=∠3=55°,故选:C.点睛:此题考查了平行线的性质.两直线平行,同位角相等的应用是解此题的关键.11.【台湾省2018年中考数学试卷】如图,锐角三角形ABC中,BC>AB>AC,甲、乙两人想找一点P,使得∠BPC与∠A互补,其作法分别如下:(甲)以A为圆心,AC长为半径画弧交AB于P点,则P即为所求;(乙)作过B点且与AB垂直的直线l,作过C点且与AC垂直的直线,交l于P点,则P即为所求.对于甲、乙两人的作法,下列叙述何者正确?()A.两人皆正确 B.两人皆错误C.甲正确,乙错误 D.甲错误,乙正确【答案】 D【解析】分析:甲:根据作图可得AC=AP,利用等边对等角得:∠APC=∠ACP,由平角的定义可知:∠BPC+∠APC=180°,根据等量代换可作判断;乙:根据四边形的内角和可得:∠BPC+∠A=180°.详解:甲:如图1,乙:如图2,∵AB⊥PB,AC⊥PC,∴∠ABP=∠ACP=90°,∴∠BPC+∠A=180°,∴乙正确,故选:D.点睛:本题考查了垂线的定义、四边形的内角和定理、等腰三角形的性质,正确地理解题意是解题的关键.12.【湖北省恩施州2018年中考数学试题】如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125° B.135° C.145° D.155°【答案】 A【解析】分析:如图求出∠5即可解决问题.详解:点睛:本题考查平行线的性质、三角形内角和定理,邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题.13.【山东省聊城市2018年中考数学试卷】如图,直线,点是直线上一点,点是直线外一点,若,,则的度数是()A. B. C. D.【答案】 C详解: 延长FE交DC于点N,∵直线AB∥EF,∴∠BCD=∠DNF=95°,∵∠CDE=25°,∴∠DEF=95°+25°=120°.故选:C.点睛:此题主要考查了平行线的性质以及三角形的外角,正确掌握平行线的性质是解题关键.14.【山东省菏泽市2018年中考数学试题】如图,直线,等腰直角三角形的两个顶点分别落在直线、上,若,则的度数是()A. B. C. D.【答案】 C【解析】分析:根据平行线的性质和等腰直角三角形的性质进行计算即可.详解:即根据等腰直角三角形的性质可知:故选 C.点睛:考查平行线的性质和等腰直角三角形的性质,掌握两直线平行,同旁内角互补是解题的关键. 15.【湖北省孝感市2018年中考数学试题】如图,直线,若,,则的度数为()A. B. C. D.【答案】 C点睛:本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.16.【湖北省随州市2018年中考数学试卷】如图,在平行线l1、l2之间放置一块直角三角板,三角板的锐角顶点A,B分别在直线l1、l2上,若∠l=65°,则∠2的度数是()A.25° B.35° C.45° D.65°【答案】 A【点睛】本题考查了平行线的性质与判定,根据题意作出辅助线,构造出平行线是解答此题的关键.17.【湖北省襄阳市2018年中考数学试卷】如图,把一块三角板的直角顶点放在一直尺的一边上,若∠1=50°,则∠2的度数为()A.55° B.50° C.45° D.40°【答案】 D【解析】【分析】如图,根据平行线的性质求出∠3的度数即可解决问题.【详解】如图,∵AB//CD,∴∠3=∠1=50°,∵∠2+∠3=180°-90°=90°,∴∠2=90°-∠3=40°,故选D.【点睛】本题考查了平行线的性质,三角板的性质等知识,解题的关键是灵活运用所学知识解决问题.18.【新疆自治区2018年中考数学试题】如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D 为()A.85° B.75°C.60° D.30°【答案】 B点睛:此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.二、填空题19.【黑龙江省大庆市2018年中考数学试卷】已知圆柱的底面积为60cm2,高为4cm,则这个圆柱体积为【答案】240【解析】【分析】根据圆柱体积=底面积×高,即可求出结论.【详解】V=S?h=60×4=240(cm3),故答案为:240.【点睛】本题考查了圆柱体的体积,熟练掌握圆柱体的体积公式是解题的关键.20.【云南省昆明市2018年中考数学试题】如图,过直线AB上一点O作射线OC,∠BOC=29°18′,则∠AOC 的度数为_____.【答案】150°42′点睛:此题主要考查了角的计算,正确理解互为邻补角的和等于180°是解题关键.21.【贵州省(黔东南,黔南,黔西南)2018年中考数学试题】∠α=35°,则∠α的补角为_____度.【答案】145【解析】分析:根据两个角的和等于180°,则这两个角互补计算即可.详解:180°﹣35°=145°,则∠α的补角为145°,故答案为:145.点睛:本题考查的是补角,若两个角的和等于180°,则这两个角互补.22.【湖南省湘西州2018年中考数学试卷】如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=_____.【点睛】本题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,内错角相等.23.【山东省淄博市2018年中考数学试题】如图,直线a∥b,若∠1=140°,则∠2=__________°.【答案】40【解析】分析:由两直线平行同旁内角互补得出∠1+∠2=180°,根据∠1的度数可得答案.详解:∵a∥b,∴∠1+∠2=180°,∵∠1=140°,∴∠2=180°﹣∠1=40°,故答案为:40.点睛:本题主要考查平行线的性质,解题的关键是掌握两直线平行同旁内角互补.24.【2018年湖南省湘潭市中考数学试卷】如图,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为__________.(任意添加一个符合题意的条件即可)【答案】∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE点睛:本题主要考查了平行线的判定,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.三、解答题25.【湖北省宜昌市2018年中考数学试卷】如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD 的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.【答案】(1) 65°;(2) 25°.【解析】分析:(1)先根据直角三角形两锐角互余求出∠ABC=90°﹣∠A=50°,由邻补角定义得出∠CBD=130°.再根据角平分线定义即可求出∠CBE=∠CBD=65°;(2)先根据三角形外角的性质得出∠CEB=90°﹣65°=25°,再根据平行线的性质即可求出∠F=∠CEB=25°.点睛:本题考查了三角形内角和定理,三角形外角的性质,平行线的性质,邻补角定义,角平分线定义.掌握各定义与性质是解题的关键.。
中考数学几何图形专题训练50题含答案
中考数学几何图形专题训练50题含答案(单选、填空、解答题)一、单选题1.下列各图经过折叠后不能围成一个正方体的是()A.B.C.D.【答案】C【分析】根据平面图形的折叠、正方体的展开图的特点即可得出答案.【详解】解:A.是正方体的展开图,经过折叠后能围成一个正方体,故A不符合题意;B.是正方体的展开图,经过折叠后能围成一个正方体,故B不符合题意;C.不是正方体的展开图,经过折叠后不能围成一个正方体,故C符合题意;D.是正方体的展开图,经过折叠后能围成一个正方体,故D不符合题意.故选:C.【点睛】本题主要考查了展开图折叠成几何体,属于基础题,要充分展开想象,注意培养自己的立体感.2.一副三角板按如图所示的方式摆放,则∠1补角的度数为()A.45︒B.135︒C.75︒D.165︒【答案】D【分析】根据题意得出∠1=15°,再求∠1补角即可.∠=︒-︒=︒【详解】由图形可得1453015∠∠1补角的度数为18015165︒-︒=︒故选:D.【点睛】本题考查利用三角板求度数和补角的定义,熟记各个三角板的角的度数是解题的关键.3.用一个放大10倍的放大镜看一个10°的角,这个角是()A .100°B .10°C .110°D .170° 【答案】B 【分析】根据放大镜看一个角只会改变边的长度,不会改变角本身的度数即可求解.【详解】解:用放大镜看一个角,不会改变角本身的度数,故选:B .【点睛】本题考查角的大小比较,放大镜看到的角不会改变角本身的度数. 4.如果点C 在线段AB 所在直线上,则下列各式中AC AB =,AC CB =,2AB AC =,AC CB AB +=,能说明C 是线段AB 中点的有( )A .1个B .2个C .3个D .4个 【答案】A【分析】根据线段中点的定义,能判断AC=CB 的条件都能说明C 是线段AB 中点.【详解】根据分析得:若AC=AB ,则不能判断C 是线段AB 中点;若AC=CB ,则可判断C 是线段AB 中点;若AB=2AC ,则不能判断C 是线段AB 中点;若AC+CB=AB ,则不能判断C 是线段AB 中点;综上可得共有1个正确.故选A.【点睛】本题考查线段中点的定义,解题的关键是掌握线段中点的定义.5.如图,已知BD CF =,B F ∠=∠,//AC DE 下列结论不正确的是( )A .FD BC =B .EF CB =C .//EF ABD .AE ∠=∠【答案】B 【分析】根据全等三角形的判定和性质、平行线的判定和性质以及线段的和差进行判断即可得解.【详解】解:∠//AC DE∠ACB EDF ∠=∠∠BD CF =∠BD CD CF CD +=+∠BC DF =∠在ABC 和EFD △中B F BC FDACB EDF ∠=∠⎧⎪=⎨⎪∠=∠⎩∠()ABC EFD ASA ≌∠A E ∠=∠故说法D 正确;∠B F ∠=∠∠//EF AB故说法C 正确;∠BD CF =∠BD CD CF CD +=+∠BC DF =故说A 正确,说法B 错误.故选:B【点睛】本题考查了全等三角形的判定和性质、平行线的判定和性质以及线段的和差,熟悉各知识点是解题的关键.6.如图,OC 平分AOD ∠,30DOC AOB ∠-∠=︒,有下列结论:∠30BOC ∠=︒;∠BOC ∠的度数无法确定;∠若20AOB ∠=︒,则100AOD ∠=︒;∠若60AOB ∠=︒,则A ,O ,D 三点在同一条直线上.其中,正确的有( )A .1个B .2个C .3个D .4个【答案】C 【分析】根据角平分线定义得出DOC AOC ∠=∠,根据30DOC AOB ∠-∠=︒,即可求出30BOC ∠=︒,判断出∠正确,∠错误;根据30BOC ∠=︒,20AOB ∠=︒,求出50AOC AOB BOC ∠=∠+∠=︒,根据角平分线定义求出100AOD ∠=︒,即可判断∠正确;求出180AOD ∠=︒,即可判断∠正确.【详解】解:∠OC 平分AOD ∠,∠DOC AOC ∠=∠,∠30DOC AOB AOC AOB BOC ∠-∠=∠-∠=∠=︒,故∠正确,∠错误.由∠知,30BOC ∠=︒,∠50AOC AOB BOC ∠=∠+∠=︒,∠2100AOD AOC ∠=∠=︒,故∠正确.∠30BOC ∠=︒,60AOB ∠=︒,∠90AOC BOC AOB ∠=∠+∠=︒,∠2180AOD AOC ∠=∠=︒,∠A 、O 、D 三点在一条直线上,故∠正确.综上,正确的为∠∠∠,共3个,故C 正确.故选:C .【点睛】本题主要考查了角平分线的定义,几何图形中角的计算,解题的关键是根据角平分线的定义和已知条件,求出30BOC ∠=︒.7.如图,120AOB ∠=︒,13AOC BOC ∠=∠,OM 平分BOC ∠,则AOM ∠的度数为( )A .45︒B .65︒C .75︒D .80︒故选C.【点睛】本题考查了角平分线定义,角的有关计算的应用,解此题的关键是求出∠AOC和∠COM的大小.8.如图,这是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的表面上,与汉字“爱”相对的面上的汉字是()A.西B.电C.附D.中【答案】C【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“电”是相对面,“爱”与“附”是相对面,“西”与“中”是相对面.故选:C.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9.如果A、B、C三点在同一直线上,线段AB=3cm,BC=2cm,那么A、C两点之间的距离为()A.1cmB.5cmC.1cm或5cmD.无法确定【答案】C【详解】试题解析:由题意可知,C点分两种情况,∠C点在线段AB延长线上,如图1,AC=AB+BC=3+2=5cm;∠C点在线段AB上,如图2,AC=AB-BC=3-2=1cm.综合∠∠A、C两点之间的距离为1cm或5cm.故选C.【点睛】由题意可知,点C分两种情况,画出线段图,结合已知数据即可求出结论.本题考查了两点间的距离,解题的关键是根据题意画出线段图,找准线段间的关系.10.如图,AD平分∠BAC,点E在AB上,EF∥AC交AD于点G,若∠DGF=40°,则∠BEF的度数为()A.20°B.40°C.50°D.80°【答案】D【分析】由EF∥AC,∠DGF=40°,得出∠DAC=∠DGF=40°,∠BEF=∠BAC,又AD 平分∠BAC,则∠BEF=∠BAC=2∠DAC=80°.【详解】解:∠EF∥AC,∠DGF=40°,∠∠DAC=∠DGF=40°,∠BEF=∠BAC,∠AD平分∠BAC,∠∠BEF=∠BAC=2∠DAC=80°.故选:D.【点睛】本题主要考查平行线的性质以及角平分线的定义,熟练掌握平行线的性质以及角平分线的定义是解决本题的关键.11.若钟表分针走30分钟,则钟表的时针转()A.5︒B.15︒C.30︒D.120︒【答案】B【分析】根据“整个钟面12小时,时针每小时转30︒”即可得..将一副直角三角尺按如图所示的不同方式摆放,则图中与不一定...相等的是( )A .B .C .D .【答案】B 【分析】A 选项由图形即直角三角形的性质即可判断;B 选项由两角互余即可的判断;C 选项由对顶角相等即可判断;D 选项由同角的余角相等即可判断.【详解】A 选项中,90,45αβα∠+∠=︒∠=︒,45βα∴∠=∠=︒,故不符合题意;B 选项中,90αβ∠+∠=︒,则α∠与∠β不一定相等,故符合题意;C 选项中,,αβ∠∠是对顶角,αβ∴∠=∠,故不符合题意;D 选项如图,190,190αβ∠+∠=︒∠+∠=︒,αβ∴∠=∠,故不符合题意;故选:B .【点睛】本题考查了对顶角相等,余角,同角的余角相等等知识点,熟练掌握这些知识是解题的关键.13.如下图的正方体,选项中哪一个图形是它的展开图( )A .B .C .D .【答案】A【分析】根据正方体相邻面及其表面展开图的特点解答即可.【详解】解:A 、展开图中,其三个相邻面上的线段位置,符合题意,B 、展开图中,其中有两个有线段的两个面相对,不符合题意;C 、展开图中,其中有两个面上的线段平行,不符合题意;D 、展开图中,其中有两个有线段的两个面相对,不符合题意,故选:A .【点睛】本题考查正方体的展开图,弄清正方体展开图中哪些面相邻,哪些面相对是解答的关键.14.把立方体的六个面分别涂上六种不同的颜色,并画出朵数不等的花,各面上的颜色与花朵的朵数情况列表如下:现将上述大小相同,颜色、花朵分布完全样的四个立方体拼成一个水平放置的长方体,如图所示,那么长方体的下底面共有花朵数是( )A .11B .13C .15D .17 【答案】D【分析】由图中显示的规律,可分别求出,右边正方体的下边为白色,左边为绿色,后面为紫色,按此规律,可依次得出右二的立方体的下侧为绿色,右三的为黄色,左一的为紫色,即可求出下底面的花朵数.【详解】解:由题意可得,右一的立方体的下侧为白色,右二的立方体的下侧为绿色,右三的为黄色,左一的为紫色,那么长方体的下底面共有花数4+6+2+5=17朵.故长方体的下底面共有17朵花.故选D .【点睛】本题考查生活中的立体图形与平面图形,同时考查了学生的空间思维能力.注意正方体的空间图形,从相对面入手,分析及解答问题.15.如图,在四边形ABCD 中,90A BCD ∠=∠=︒,BC DC =,CE AD ⊥,垂足为E ,若3AE CE ==.则四边形ABCD 的面积为( )A .9B .12C .272D .无法求出 【答案】A 【分析】过点C 作CF 垂直AB 的延长线于点F ,先证明四边形AFCE 是矩形,再证明FCB ECD △≌△,进而将四边形ABCD 的面积转化为矩形AFCE 的面积求解即可.【详解】解:如图,过点C 作CF 垂直AB 的延长线于点F ,∠90A BCD ∠=∠=︒, CE AD ⊥,CF AF ⊥,∠四边形AFCE 是矩形,90==︒CED F ∠∠,∠90FCE FCB BCE ∠=∠+∠=︒,3CF AE CE === ,∠90BCD BCE DCE ∠=∠+∠=︒,∠FCB ECD ∠=∠,在FCB 和ECD 中,CED F FCB ECD BC DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠FCB ECD △≌△,∠==339ABCD AFCE AE CE S S ⋅=⨯=四边形矩形,故选:A .【点睛】本题主要考查了全等三角形的判定及性质、同角的余角相等,垂直定义以及矩形的判定及性质,熟练掌握全等三角形的判定及性质是解题的关键.16.如图,在ABC 中,以A 为圆心,适当长为半径作弧,分别交AB 、AC 于点D 、E ,再分别以D 、E 为圆心,相同长为半径作弧,分别交DB、EC 于点F 、G ,连接EF 、DG ,交于点H ,连接AH 并延长交BC 于点I ,则线段AI 是( )A .ABC 的高B .ABC 的中线 C .ABC 的角平分线D .以上都不对【答案】C 【分析】根据题意利用SAS 可证AFE AGD △≌△,即可得EG DF =,再利用AAS 可证EHG DHF ≌△△,即可得EH DH =,用SSS 可证明AHE AHD △≌△,即可得EAH DAH ∠=∠,即可得.【详解】解:由作图可知,AE AD =,EG DF =,∠AE EG AD DF +=+,即AG AF =,在AFE △和AGD △中,AE AD EAF DAG AF AG =⎧⎪∠=∠⎨⎪=⎩,∠AFE AGD △≌△(SAS ),∠AFE AGD ∠=∠,在EHG 和DHF △中,EHG DHF EGH DFH EG DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠EHG DHF ≌△△(AAS ),∠EH DH =在AHE 和AHD 中,AE AD AH AH EH DH =⎧⎪=⎨⎪=⎩,∠AHE AHD △≌△(SSS ),∠EAH DAH ∠=∠,∠AI 是ABC 的角平分线.故选:C .【点睛】本题考查了全等三角形的判定与性质,角平分线的判定,解题的关键是掌握全等三角形的判定与性质.17.如图:∠AOB :∠BOC :∠COD =2:3:4,射线OM 、ON ,分别平分∠AOB 与∠COD ,又∠MON =84°,则∠AOB 为( )A .28°B .30°C .32°D .38°【答案】A 【分析】首先设∠AOB =2x °,则∠BOC =3x °,∠COD =4x °,然后利用角的和差关系和角平分线的定义列出方程,即可求出∠AOB 的度数.【详解】解:设∠AOB =2x °,则∠BOC =3x °,∠COD =4x °,∠射线OM 、ON 分别平分∠AOB 与∠COD ,18.如图,在ABCD 中,DAB ∠的平分线AE 交CD 于E ,6AB =,4BC =,则EC的长为( )A .2B .2.5C .3D .3.5【答案】A 【分析】根据平行四边形的性质及AE 为角平分线可知:BC=AD=DE=4,又有CD=AB=6,可求EC 的长.【详解】解:根据平行四边形的对边相等,得:CD=AB=6,AD=BC=4.根据平行四边形的对边平行,得:CD∠AB ,∠∠AED=∠BAE ,又∠DAE=∠BAE ,∠∠DAE=∠AED .∠ED=AD=4,∠EC=CD-ED=6-4=2.故选:A .【点睛】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.19.如图,直线EO∠CD ,垂足为点O ,AB 平分∠EOD ,则∠BOD 的度数为( )A.120°B.130°C.135°D.140°【答案】C【详解】试题分析:根据直线EO∠CD,可知∠EOD=90°,根据AB平分∠EOD,可知∠AOD=45°,再根据邻补角的定义即可求出∠∠BOD=180°-45°=135°考点:垂线、角平分线的性质、邻补角定义.二、填空题20.已知:∠AOC=146°,OD为∠AOC的平分线,∠AOB=90°,∠BOD的度数_____.21.2022年10月16日,党的第二十次全国代表大会在北京召开,这是一次在全党全国各族人民迈上全面建设社会主义现代化国家新征程、向第二个百年奋斗目标进军的关键时刻召开的十分重要的大会.如图是一个正方体的展开图,请你判断,正方体上与“荣”字相对的面上的汉字是_______.【答案】祖【分析】根据正方体展开图中相对的面总是隔着一个面的特征解题即可.【详解】解:根据正方体展开图中相对的面总是隔着一个面的特征可得荣字相对的面上的汉字为“祖”,故答案为:祖.【点睛】本题主要考查正方体展开图的特征,能够根据特征得出结论是解题关键.22.用一个平面截圆锥,可以得到________、________及类似拱形形状.如图:【答案】圆等腰三角形【解析】略23.如图,要用一张长方形的纸片折成一个纸袋,两条折痕的夹角为80°(即∠POQ=80°),就可以做成一个纸袋,那么粘胶水部分所构成的这个角∠A'OB'=_____.【答案】20°【分析】根据折叠性质得出∠POA=∠POA′,∠QOB=∠QOB′,根据∠AOB为平角,∠POA+∠QOB=180°-∠POQ=100°,再利用∠A′OB′=∠POA′+∠QOB′-∠POQ=20°即可.【详解】解:∠OP为折痕,OQ为折痕,∠∠POA=∠POA′,∠QOB=∠QOB′,∠∠AOB为平角∠∠POA+∠QOB=180°-∠POQ=100°,∠∠A′OB′=∠POA′+∠QOB′-∠POQ=∠POA+∠QOB-∠POQ=100°-80°=20°.故答案为:20°.【点睛】本题考查折叠性质,平角,角的和差,掌握折叠性质,平角,角的和差是解题关键.24.下午三点半时,时针与分针所夹的锐角的大小为________.【答案】75︒##75度【分析】先求出时钟上,每一个大格的度数为30︒,再根据下午三点半时,时针与分针所夹的锐角为2.5个大格即可得.︒÷=︒,【详解】解:时钟上,共有12个大格,每一个大格的度数为3601230因为下午三点半时,时针与分针所夹的锐角为2.5个大格,⨯︒=︒,所以下午三点半时,时针与分针所夹的锐角的大小为2.53075故答案为:75︒.【点睛】本题考查了钟面角,熟练掌握时钟上,每一个大格的度数为30︒是解题关键.25.点C是线段AB上的一点,2=,点M、N分别是线段AC、BC的中点,BC ACMN BC等于_________.那么:26.已知∠a=50°18′,则∠a的余角是________°________′.【答案】3942【分析】互余的概念:和为90度的两个角互为余角.用90°减去一个角的余角就等于这个角的度数.【详解】根据余角的定义,知∠A的余角是90°﹣50°18'=39°42'.故答案为39,42.【点睛】本题考查了余角和角度的计算,关键是记住互为余角的两个角的和为90度.27.在一个圆形时钟的表面,OA 表示秒针,OB 表示分针(O 为两针的旋转中心)若现在时间恰好是12点整,则经过__________秒钟后,∠OAB 的面积第一次达到最大. 【答案】151559##9005928.如图,直线AB 、CD 相交于点O ,OE 平分BOD ∠,COB ∠为100︒,则AOE ∠=___________度识是解题的关键.29.小王从家出发向南偏东30°的方向走了100米到达小军家,此时小王家在小军家的_________方向. 【答案】北偏西30︒【分析】根据方向角的定义作出示意图,根据图形即可解答.【详解】解:如图所示,由题意知∠BAC =30°,则在∠ABC 中,∠BAC +∠ACB =90°,∠∠ACB =60°.又∠∠ACB +∠ACD =90°,∠∠ACD =30°,即小王家在小军家北偏西30°方向.故答案是:北偏西30°.【点睛】本题考查了方向角的定义,理解定义作出示意图是关键.30.如图所示,已知ABC 的周长为12,5BC =,在边AC 、AB 上有两个动点P 、Q ,它们同时从点A 分别向点C 、B 运动,速度分别为m 和n ,运动时间t 后,PC CB BQ ++=__________.【答案】()12m n t -+【分析】根据PC AC AP BQ AB AQ =-=-,,可得PC BQ AC AB AP AQ +=+--,进一步得到PC CB BQ ++,依此即可求解.【详解】解:PC AC AP BQ AB AQ =-=-,,()1257PC BQ AC AB AP AQ mt nt m n t ∴+=+--=---=-+,()()7512PC CB BQ m n t m n t ∴++=-++=-+.故答案为:()12m n t -+.【点睛】本题考查了列代数式,线段的和差关系,整式的加减运算,关键是得到PC BQ +的表达式.31.已知∠α=60°,则∠α的补角等于_______. 【答案】120°【分析】利用互为补角的两个角之和为180°,解题即可【详解】因为∠α=60°,所以∠α的补角是180°-60°=120°故填120°32.将三角尺按右图所示的方式放置在一张长方形纸片上,90EGF ∠=︒,30FEG ∠=︒,1130∠=︒,则BFG ∠的度数为___________.【答案】110°【分析】由长方形AD 与BC 平行,求出∠EFB ,由直角三角形求∠EFG ,再求两角的和即可.【详解】∠AD ∠BC ,∠∠1+∠EFB =180゜∠∠1=130゜∠∠EFB =180゜-130゜=50゜,∠∠EGF =90°,∠FEG =30°,∠∠EFG =180°-∠EGF -∠FEG =60°∠∠BFG =∠EFB +∠EFG =50°+60゜=110゜.故答案为:110゜.【点睛】本题考查角的度数问题,关键抓住平行线,同旁内角互补,三角形两锐角互余.33.若船A 在灯塔B 的北偏东30°方向上,则灯塔B 在船A 的_________方向上.【答案】南偏西30°【分析】本题画出A 、B 的位置,即分别以A 、B 为为原点,分别画出A 、B 的正北、正南、正西、正东方向,标出A 与B 的关系即可求解.【详解】从图中可以看出,B 在A 的南偏西30°.故答案为南偏西30°.【点睛】本题考查一个物体相对于另一物体的位置,注意这类题中“北偏东30°”的含义,是从正北方向开始,向东方向偏,偏角为30°.34.18°33′25″×3=_________.【答案】55°40′15″【分析】将度分秒分别乘以3后进位化简即可.【详解】1833253549975'''︒'"⨯==55°40′15″,故答案为:55°40′15″.【点睛】此题考查角度的计算,根据乘法法则进行计算,计算后每个单位满60向前一单位进一.35.如图,将一副三角板()90CAB DAE ∠=∠=︒按如图放置,则下列结论:∠13∠=∠;∠如果230∠=︒,则有//AC DE ;∠如果230∠=︒,则有//BC AD ;∠如果230∠=︒,必有4C ∠=∠.其中正确的有________.(填序号)【答案】∠∠∠【分析】根据两种三角板的各角的度数,利用平行线的判定与性质结合已知条件对各个结论逐一验证,即可得出答案.【详解】解:∠∠∠CAB=∠EAD=90°,∠∠1=∠CAB-∠2,∠3=∠EAD-∠2,∠∠1=∠3.∠∠正确.∠∠∠2=30°,∠∠1=90°-30°=60°,∠∠E=60°,∠∠1=∠E,∠AC∠DE.∠∠正确.∠∠∠2=30°,∠∠3=90°-30°=60°,∠∠B=45°,∠BC不平行于A D.∠∠错误.∠由∠得AC∠DE.∠∠4=∠C.∠∠正确.故答案为:∠∠∠.【点睛】此题主要考查学生对平行线判定与性质、余角和补角的理解和掌握,解答此题时要明确两种三角板各角的度数.36.如图,OC是∠AOB的平分线,如果∠AOB=130°,∠BOD=24°48',那么∠COD=_____.【答案】40.2°【分析】由角平分线定义,求出∠BOC的度数,然后利用角的和差关系,即可得到答案.【详解】解:∠OC是∠AOB的平分线,∠AOB=130°,37.如图,,AC BD 在AB 的同侧,2,8,8AC BD AB ===,点M 为AB 的中点,若120CMD ∠=,则CD 的最大值是_____.【答案】14 【分析】如图,作点A 关于CM 的对称点A ′,点B 关于DM 的对称点B ′,证明△A ′MB ′为等边三角形,即可解决问题.【详解】解:如图,作点A 关于CM 的对称点'A ,点B 关于DM 的对称点B'. 120CMD ∠=,60AMC DMB ∴∠+∠=,∴''60CMA DMB ∠+∠=,''60A MB ∴∠=,''MA MB =,''A MB ∴∆为等边三角形''''14CD CA A B B D CA AM BD ≤++=++=,CD ∴的最大值为14,故答案为14.【点睛】本题考查等边三角形的判定和性质,两点之间线段最短,解题的关键是学会添加常用辅助线,学会利用两点之间线段最短解决最值问题38.如图,在四边形ABCD 中,DAB ∠的角平分线与ABC ∠的外角平分线相交于点P ,且240D C ∠+∠=°,则P ∠=______.【答案】30︒##30度39.如图,在边长为2的菱形ABCD 中,60ABC ∠=︒,将BCD △沿直线BD 平移得到B C D ''',连接AC '、AD ',则AC AD ''+的最小值为________.ABC∠=由对称性可得:三、解答题∠,40.按要求补全图形并证明.如图,150∠=︒,OC垂直OB,OD平分AOCAOB∠.OE平分BOC(1)利用三角板依题意补全图形(2)求DOE∠的度数75【分析】(190,根据150,得出60,根据∠∠,即可得出EOC BOC30AOC=,4575.)解:补全图形,如图所示:90,150,60,AOC ,30AOC ∠, 45, 75.【点睛】本题主要考查了角平分线的定义,垂线的定义,解题的关键是数形结合,熟练掌握角平分线的定义.41.已知,,,AE GF BC GF EF DC EF AB ∥∥∥∥,猜想A ∠与C ∠的关系如何?并说明理由.解:因为,AE GF BC GF ∥∥(已知)所以AE BC ∥(______)所以______180(______)A ∠+=︒;同理,______180C ∠+=︒;所以______(______).【答案】平行于同一条直线的两直线平行;∠B ;两直线平行,同旁内角互补;∠A =∠C ;同角的补角相等或等式性质【分析】根据平行线的判定和性质以及同角的补角相等求解即可.【详解】解:因为AE GF ∥,BC GF ∥(已知)所以AE BC ∥(平行于同一条直线的两直线平行);所以∠A+∠B=180°(两直线平行,同旁内角互补);同理,∠C+∠B=180°;∠∠A=∠C(同角的补角相等或等式的性质).故答案为:平行于同一条直线的两直线平行;∠B;两直线平行,同旁内角互补;∠A =∠C;同角的补角相等或等式的性质.【点睛】本题主要考查了平行线的性质与判定,同角的补角相等,熟知平行线的性质与判定是解题的关键.42.如图,点B在线段AC上,点E在线段DF上,EC,AF,DB∠EC,下面写出了说明“∠C=∠D”的过程.说明:∠∠A=∠F(已知),∠DF∠.根据:∠∠DEC+∠C=180°.根据:∠DB∠EC(已知),∠∠DEC+∠=180°.根据:∠∠C=∠D.根据:.【答案】AC;内错角相等,两直线平行;两直线平行,同旁内角互补;D;两直线平行,同旁内角互补;同角的补角相等.【分析】根据平行线的性质与判定进行求解即可.【详解】说明:∠∠A=∠F(已知),∠DF∥AC.根据:内错角相等,两直线平行;∠∠DEC+∠C=180°.根据:两直线平行,同旁内角互补;∠DB∥EC(已知),∠∠DEC+∠D=180°.根据:两直线平行,同旁内角互补;∠∠C=∠D.根据:同角的补角相等.故答案为:AC;内错角相等,两直线平行;两直线平行,同旁内角互补;D;两直线平行,同旁内角互补;同角的补角相等.【点睛】本题主要考查了平行线的性质与判定,同角的补角相等,解题的关键在于能够熟练掌握相关知识进行求解.43.如图,O为直线AB上一点,∠BOC=α.(1)若α=40°,OD平分∠AOC,∠DOE=90°,如图(a)所示,求∠AOE的度数;(2)若∠AOD=13∠AOC,∠DOE=60°,如图(b)所示,请用α表示∠AOE的度数;(3)若∠AOD=1n∠AOC,∠DOE=180n︒(n≥2,且n为正整数),如图(c)所示,请用α和n表示∠AOE的度数(直接写出结果).44.如图,在△ABC中,AB∠BC,BE∠AC于E,AF平分∠BAC交BE于点F,DF∠BC.(1)试说明:BF=DF;(2)延长AF交BC于点G,试说明:BG=DF.【答案】(1)说明见解析;(2)说明见解析.【分析】(1)由角平分线的性质可得FE=FH,由“ASA”可证∠DEF∠∠BHF,可得BF=DF;(2)由等角的余角相等可得∠AFE=∠AGB=∠BFG,可得BF=BG=DF.【详解】解:(1)如图,延长DF交AB于H,延长AF交BC于G,∠AB∠BC,DF∠BC,∠DH∠AB,∠AF平分∠BAC,BE∠AC,DH∠AB,∠FE=FH,又∠∠DFE=∠BFH,∠DEF=∠BHF=90°,∠∠DEF∠∠BHF(ASA),∠BF=DF;(2)∠AF平分∠BAC,∠∠EAF=∠BAG,∠∠EAF+∠AFE=90°,∠BAG+∠AGB=90°,∠∠AFE=∠AGB,∠∠BFG=∠AGB,∠BF=BG,∠BG=DF.【点睛】本题考查了全等三角形的判定和性质,角平分线的性质,直角三角形的性质,灵活运用全等三角形的性质是本题的关键.45.如图,在Rt∠ABC中,∠ACB=90°,∠A=40°,∠ABC的外角∠CBD的平分线BE 交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.(3)若把直线FD绕点F旋转,直线DF和直线BE相交于点M,当DF和三角形ABC的一边平行时,请直接写出∠FME的度数.【答案】(1)65°(2)25°(3)65°或115°.【分析】(1)根据三角形外角的性质得出∠CBD的度数,再根据角平分线定义即可求得∠CBE的度数;(2)先根据三角形外角的性质得出∠CEB的度数,再根据平行线的性质求出∠F的度数;(3)根据题意分别画出图形,再利用平行线的性质解决.(1)解:∠Rt∠ABC中,∠ACB=90°,∠A=40°,∠∠CBD=∠ACB+∠A=130°,∠BE是∠CBD的角平分线,46.已知a=﹣(﹣2)2×3,b=|﹣9|+7,c=1115 53⎛⎫-⨯⎪⎝⎭.(1)求3[a﹣(b+c)]﹣2[b﹣(a﹣2c)]的值.(2)若A=2212119272⎛⎫⎛⎫⎛⎫-÷-+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭×(1﹣3)2,B=|a|﹣b+c,试比较A和B的大小.(3)如图,已知点D是线段AC的中点,点B是线段DC上的一点,且CB:BD=2:3,若AB=ab12ccm,求BC的长.∠BC =2cm .【点睛】本题主要考查了有理数的混合运算以及与线段的中点有关的计算,熟练掌握运算法则是解答本题的关键.47.如图1,已知直线EF 与直线AB 交于点E ,直线EF 与直线CD 交于点F ,EM 平分AEF ∠交直线CD 于点M ,且FEM FME ∠=∠,点G 是射线MD 上的一个动点(不与点M F 、重合),EH 平分FEG ∠交直线CD 于点H ,过点H 作HN EM ∥交直线AB 于点N ,设EHN a ∠=,EGF β∠=.(1)求证:AB CD ∥;(2)当点G 在点F 的右侧时,∠依据题意在图1中补全图形;∠若70β=︒,则α=________°;(3)当点G 在运动过程中,α和β之间有怎样的数量关系?直接写出你的结论. AB CD ;根据题目要求画出图形即可;110︒=,再根据,再根据ME )分两种情况进行讨论:当点G 在点F2248.如图,上面的图形分别是下面哪个立体图形展开的形状,请你把有对应关系的平面图形与立体图形连接起来.【答案】见解析.【分析】根据常见的各种立体几何图形的展开图的特征即可得答案.【详解】∠三个长方形和两个三角形如图摆放是三棱柱的展开图,一个扇形和一个圆是圆锥如图摆放的展开图,六个长方形如图摆放是长方体的展开图,一个长方形和两个圆如图摆放是圆柱的展开图,∠连接如图:【点睛】本题考查常见立体几何图形的展开图,熟记各立体几何图形的展开图是解题关键.49.如图,把一个棱长8厘米的正方体的六个面都涂上红色,再将它的棱四等分,然后从等分点把正方体锯开.(1)能得到多少个棱长为2厘米的小正方体?(2)三个面有红色的小正方体有多少个?(3)两个面有红色的小正方体有多少个?(4)一个面有红色的小正方体有多少个?(5)有没有各面都没有红色的小正方体?如果有,那么有多少个?【答案】(1)64个(2)8个(3)24个(4)24个(5)有,8个【分析】(1)棱长是8cm的立方体体积512cm3,棱长为2cm的小正方体体积为8cm3,由此能求出共得到多少个棱长为2cm的小正方体;(2)三面涂色的小正方体是位于棱长是8cm的立方体的顶点处的小正方体,由此能求出三面涂色的小正方体有多少个;(3)二面涂色的小正方体是位于棱长是8cm的立方体的各边上的正方体,由此能求出二面涂色的小正方体有多少个;(4)一个面有红色的小正方体位于棱长是8cm的立方体的表面上既不是顶点又不是各边上的正方体,由此能求出二面涂色的小正方体有多少个;(5)六个面均没涂色的小正方体为棱长是8cm的立方体中心的正方体,由此能求出六个面均没有涂色的小正方体有多少个.【详解】(1)棱长是8cm的立方体体积为:8×8×8=512(cm3),棱长为2cm的小正方体体积为8cm3,∠共得到512÷8=64个小正方体.(2)三面涂色的小正方体是位于棱长是8cm的立方体的顶点处的小正方体,∠立方体共有8个顶点,∠三面涂色的小正方体有8个,(3)二面涂色的小正方体是位于棱长是8cm的立方体的各边上的正方体,∠立方体共有12条边,每边有2个正方体,∠二面涂色的小正方体有24个,(4)一面涂色的小正方体在棱长是8cm的立方体的表面上既不是顶点又不是各边上的正方体,∠立方体共有6个面,每个面有4个正方体,∠一面涂色的小正方体有24个,(5)六个面均没涂色的小正方体为棱长是8cm的立方体中心的正方体,共有64-8-24-24=8个,【点睛】本题考查大正方体分割成小正方体的计算,是中档题,解题时要认真审题,要熟练掌握正方体的结构特征.。
全国各地初中中考平面几何题目汇编.doc
欢迎阅读ABCABC2017 中考平面几何题目(北京) 28. 在等腰直角ABC 中, ACB900 , P 是线段BC 上一动点(与点、 C 不重合),连接 AP ,B延长 BC 至点 Q ,使得 CQ CP ,过点 Q 作 QH AP 于点 H ,交 AB 于点 M .( 1 )若 PAC,求 AMQ 的大小(用含的式子表示) .( 2 )用等式表示线段MB 与 PQ 之间的数量关系,并证明 .(CP 2MB )(成都) 20. 如图,在ABC 中, AB AC ,以 AB 为直径作圆 O ,分别交 BC 于点 D ,交 CA 的延长线于点E ,过点 D 作 DH AC 于点 H ,连接 DE 交线段 OA 于点F .( 1)求证: DH 是圆 O 的切线; ( 2)若 A 为 EH 的中点,求EF的值;EF 2FDFD 3( 3 )若 EA EF 1 ,求圆 O 的半径 .( EAEF 1,OD OF r ,BDBE BF ) EA 1, FD r ,BFr1, AF r 1 EAAF 1 r 1, r1 5BFFD r 1r2(安徽) 23. 已知正方形 ABCD ,点 M 为边 AB 的中点 . ( 1)如图 1,点 G 为线段 CM 上的一点,且AGB 90 ,延长 AG , BG 分别与边 BC , CD 交于点 E , F .② 证: BE CF ;②求证: BE 2BC CE .(CEG CGB ,CG FC BE )( 2)如图 2,在边 BC 上取一点 E ,满足 BE 2BC CE ,连接 AE 交 CM 于点 G ,连接 BG 延长交 CD 于点F ,求 tan CBF 的值 . ( tan5 1)CBF2H欢迎阅读欢迎阅读5 1( CH=BE,CH/AM=CG/GM=FC/MB,FC=CH=BE,设 BC=1,BE=x,得x ,)2(福州) 24.( 12 分)如图,矩形ABCD 中, AD=8 , AB=6, P, Q 分为线段 AC、BC 上一点,且四边形 PDRQ 是矩形,( 1)若PDC为等腰三角形,求AP ;(三种情况, PD=DC 时,取 PC 的中垂线较好。
中考数学平面几何经典题
1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .A P C DB A F GC EBO D D 2 C 2B 2 A 2D 1 C 1 B 1C B DA A 1 BF1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABCP 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F . 求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE . 求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .(初三)E1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5. 求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)D1、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 200,求∠BED 的度数.1.如下图做GH ⊥AB,连接EO 。
中考数学平面几何压轴(三角形与四边形)训练15题(精选无答案)
中考平面几何压轴(三角形与四边形)训练15题(精选)1.如图,四边形ABCD 是平行四边形,且对角线AC , BD 交于点O ,点M , N 分别在AD , BC 上,且AM = CN ,点E ,F 分别是BD 与AN ,CM 的交点.(1)求证:OE = OF ;(2)连接BM 交AC 于点H ,连接HE ,HF ;(i)如图2,若HE ∥AB ,求证: FH ∥AD ;(ii)如图3,若四边形ABCD 为菱形且DM = 2AM ,∠EHF=60°,求AC BD 的值.2.(1)如图①,在矩形ABCD 的AB 边上取一点E ,将ΔADE 沿DE 翻折,使点A 落在BC 上的A′处,若AB =6,BC =10,求AEEB 的值;(2)如图②,在矩形ABCD 的BC 上取一点E ,将四边形ABED 沿DE 翻折,使点B 落在DC 的延长线上B′处,若BC ·CE =24,AB =6,求BE 的值;(3)如图③,在ΔABC 中,∠BAC =45°,AD ⊥BC ,垂足为点D ,AD =10,AE =6,过点E 作EF ⊥AD 交AC 于点F ,连接DF ,且满足∠DFE =2∠DAC ,直接写出BD+53EF 的值.3. 在正方形ABCD 中,AB =10, AC 是对角线,点O 是AC 的中点,点E 在AC 上,连接DE ,点C 关于DE 的对称点是C',连接DC' ,EC'.(1) 如图1,若DC'经过点O ,求证:OC ′CE = √22. (2) 如图2,连接CC',BC',若∠ADC' = 2∠CBC',求CC'的长;(3) 当点B , C', E 三点共线时,直接写出CE 的长.4.如图,正方形ABCD中,点M在边BC上,点E是AM的中点,连接ED,EC.(1)求证:ED= EC;(2)将BE绕点E逆时针旋转,使点B的对应点B′落在AC上,连接MB′.当点M在边BC上运动时(点M不与B,C 重合),判断△CMB′的形状,并说明理由.(3)在(2)的条件下,已知AB= 1,当∠DEB′=45°时,求BM的长.5.如图,在正方形ABCD中,点M、N在直线BD上,连接AM,AN并延长交BC、CD于点E、F,连接EN.(1)如图1,若M,N都在线段BD上,且AN = NE,求∠MAN;(2)如图2.当点M在线段DB 延长线上时,AN = NE,(1)中∠MAN的度数不变,判断BM,DN,MN之间的数量关系并证明;(3)如图3,若点M在DB的延长线上,N在BD的延长线上,且∠MAN=135°(i)AB=√6,MB=√3,求DN.(ii)求证:2AM2 - MB 2= MN2 - BN2.6.如图,在RtΔABC与RtΔBDE中,∠BAC=∠BDE=90°,∠ABC=∠DBE=α.(1)如图1,当α= 60°,且点E为BC的中点时,若AB=2,连接AD.求AD的长度;(2)如图2,若α≠ 60°,且点E为BC中点时,取CE中点F,连接AF、DF。
中考平面几何精选百题
中考平面几何精选百题 1.(中考几何)如图,在直角△ABD 中,∠ADB=90°,∠ABD=45°,点F 为直线AD 上任意一点,过点A 作直线AC⊥BF,垂足为点E ,直线AC 交直线BD 于点C .过点F 作FG∥BD,交直线AB 于点G .(1)如图1,点F 在边AD 上,则线段FG ,DC ,BD 之间满足的数量关系是 ,证明你的结论;(2)如图2,点F 在边AD 的延长线上,则线段FG ,DC ,BD 之间满足的数量关系是 ,证明你的结论;(3)如图3,在(2)的条件下,若DF=6,GF=10,将一个45°角的顶点与点B 重合,并绕点B 旋转,这个角的两边分别交线段FG 于M ,N 两点,当FM=2时,求线段NG 的长.图3图2图1BAADD2.(中考几何)如图1,正方形ABCD 中,AC 是对角线,等腰Rt△CMN 中,∠CMN=90°,CM=MN ,点M 在CD 边上,连接AN ,点E 是AN 的中点,连接BE . (1)若CM=2,AB=6,求AE 的值; (2)求证:2BE=AC+CN ;(3)当等腰Rt△CMN 的点M 落在正方形ABCD 的BC 边上,如图2,连接AN ,点E 是AN 的中点,连接BE .请探究线段BE 、AC 、CN 的数量关系,并证明你的结论.图2图1BBAN3.(中考几何)已知△ABC 中,点E 为边AB 的中点,将△ABC 沿CE 所在的直线折叠得EC A '∆,AC BF //,交直线C A '于F .(1)如图1,若∠ACB=90°,∠A=30°,3=BC ,求F A '的长;(2)如图2,若∠ACB 为任意角,已知a F A =',求BF 的长(用a 表示); (3)如图3,若∠ACB 为任意角,猜想出AC 、CF 、BF 之间的数量关系: ,并说明理由;(4)如图4,若∠ACB=120°,BF=8,BC=6,则AC 的长为 .图4图3图2图1FC ABCABC4.(中考几何)如图1,在△ACB 和△AED 中,AC=BC ,AE=DE ,∠ACB=∠AED=90°,点E 在AB 上,F 是线段BD 的中点,连接CE 、FE . (1)若AD=23,BE=4,求EF 的长; (2)求证:CE=2EF ;(3)将图1中的△AED 绕点A 顺时针旋转,使AED 的一边AE 恰好与△ACB 的边AC 在同一条直线上(如图2),连接BD ,取BD 的中点F ,问(2)中的结论是否仍然成立,并说明理由.图2图1AACBBD5.(中考几何)如图,四边形ABCD 和四边形DEFG 都是正方形,连接BF 、CE ,点H 、M 分别为BF 、CE 中点(1)如图1,当正方形DEFG 的边DE 、DG 分别在正方形ABCD 的DA 、DC 边上,猜想MH 、CE 关系,并加以证明;(2)将正方形DEFG 旋转至如图2所示的位置,其它条件不变,结论是否发生变化?请证明你的结论.图2图1BADG6.(中考几何)线段OA 绕点O 逆时针旋得到'AOA ∠,点P 为直线'OA 上一点,点Q 为射线'AA 上一点,连接PQ 、PA 且PQ=PA .(1)当点P 在线段'OA 上如图1,︒=∠60'AOA 时,求证:OA QA PA =+''; (2)当点P 在A′O 的延长线上如图2,∠AOA′=120°时,线段'PA 、'QA 、OA 之间满足的数量关系为 .(3)在(2)的条件下,若OA=4,Q 为'AA 的中点时,将射线QP 绕点Q 旋转30°,并与直线PA 交于点M ,求QM 的长.图2图1QAOA7.如图1,在△ABB′和△ACC′中,∠BAB′=∠CAC′=m°,AC=AC′,AB=AB′. (1)不添加辅助线的前提下,请写出图中满足旋转变换的两个三角形分别是: ;旋转角度是 °;(2)线段BC 、B′C′的数量关系是: ;试求出BC 、B′C′所在直线的夹角: ;(3)随着△ACC′绕点A 的旋转,(2)的结论是否依然成立?请从图2、图3中任选一个证明你的结论;(4)利用解决上述问题所获得的经验探索下面的问题:如图4,等边△ABC 外一点D ,且∠BDC=60°,连接AD ,试探索线段AD 、CD 、BD 的数量关系.图4图3图2图1ACB 'AC A8.如图,在Rt△ABC 中,∠ACB=90°,AC=BC .点P 为AB 边上一点,Q 为BC 边上一点,且∠BPQ=∠APC,过点A 作AD⊥PC,交BC 于点D ,直线AD 分别交直线PC 、PQ 于E 、F .(1)求证:∠FDQ=∠FQD;(2)把△DFQ 沿DQ 边翻折,点F 刚好落在AB 边上点G ,设PC 分别交GQ 、GD 于M 、N ,试判定MN 与EN 的数量关系,并给予证明.图2图1AABC9.如图1,已知等边△ABC 中,D 为BC 中点,DE∥AC 交AB 于E ,M 是AE 上任意一点(M 不与A ,E 重合),连接DM ,作DN 平分∠MDC 交AC 于N . (1)求证:ED=DC ; (2)求证:EM+NC=DM ;(3)如图2,作DF⊥AC 于F ,若NF :FC=3:5,AM=4,连接MN 将∠DMN 沿MN 翻折,翻折后的射线MD 交AC 于P ,连接DP 交MN 于点Q . ①求△ABC 的边长;②求PQ 的长.图2图1A BA C10.在Rt△ABC 中,∠ACB=90°,tan∠BAC=,点D 在边AC 上(不与A 、C 重合),连结BD ,F 为BD 中点.(1)若过点D 作DE⊥AB 于E ,连结CF 、EF 、CE ,如图1,当D 为AC 中点时,求tan∠DBE 的值;(2)若将图1中的△ADE 绕点A 旋转,使得D 、E 、B 三点共线,点F 仍为BD 中点,如图2所示,求证:BE ﹣DE=2CF ;(3)若BC=3AD=6,将线段AD 绕点A 旋转,点F 始终为BD 的中点,则线段CF 长度的最大值为 .图2图1FFACBABDDEE11.将等腰Rt△ABC 和等腰Rt△ADE 按图1方式放置,∠A=90°, AD 边与AB 边重合, AB=2AD=4.将△ADE 绕点A 逆时针方向旋转一个角度α(0°≤α≤180°),BD 的延长线交直线CE 于点P .(1)如图1,BD 与CE 的数量关系是 ,位置关系是 ; (2)在旋转的过程中,当AD⊥BD 时,求出CP 的长; (3)在此旋转过程中,求点P 运动的路线长.图3图2图1CBBCBD12.四边形ABCD 是正方形,△BEF 是等腰直角三角形,∠BEF=90°,BE=EF ,连接DF ,G 为DF 的中点,连接EG ,CG ,EC .(1)如图1,若点E 在CB 边的延长线上,直接写出EG 与GC 的位置关系及的值;(2)将图1中的△BEF 绕点B 顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由; (3)将图1中的△BEF 绕点B 顺时针旋转α(0°<α<90°),若BE=1,AB=,当E ,F ,D 三点共线时,求DF 的长及tan∠ABF 的值.图3图2图1BAAA FFEEGG13.已知等腰Rt△ABC 和等腰Rt△AED 中,∠ACB=∠AED=90°,且AD=AC(1)发现:如图1,当点E 在AB 上且点C 和点D 重合时,若点M 、N 分别是DB 、EC 的中点,则MN 与EC 的位置关系是 ,MN 与EC 的数量关系是 (2)探究:若把(1)小题中的△AED 绕点A 旋转一定角度,如图2所示,连接BD 和EC ,并连接DB 、EC 的中点M 、N ,则MN 与EC 的位置关系和数量关系仍然能成立吗?若成立,请以逆时针旋转45°得到的图形(图3)为例给予证明位置关系成立,以顺时针旋转45°得到的图形(图4)为例给予证明数量关系成立,若不成立,请说明理由.图4图3图2图1AACA14.如图,把一块含45°直角三角板的锐角顶点与正方形ABCD 的顶点A 重合.正方形ABCD 固定不动,让三角板绕点A 旋转.(1)当三角板绕点A 旋转到如图①的位置时,含45°角的两边分别与正方形的边BC 、DC 交于点E 、F ,求证:EF=BE+DF ;(2)当三角板绕点A 旋转到如图2的位置时,含45°角的两边分别与正方形的CB 、DC 两边的延长线交于点E 、F .试写出EF 、BE 和DF 三条线段满足的数量关系,不必证明.(3)在图1中,当正方形ABCD 的边长为6,EF=5,BE 的长为 .图2图1DAD15.在△ABC 中,AB=BC=2,∠ABC=90°,BD 为斜边AC 上的中线,将△ABD 绕点D 顺时针旋转α(0°<α<180°)得到△EFD,其中点A 的对应点为点E ,点B 的对应点为点F .BE 与FC 相交于点H .(1)如图1,直接写出BE 与FC 的数量关系: ; (2)如图2,M 、N 分别为EF 、BC 的中点.求证:MN=;(3)连接BF ,CE ,如图3,直接写出在此旋转过程中,线段BF 、CE 与AC 之间的数量关系: .图3图2图1HHHDDABCEFA BC ABEMN D16.在△ABC 中,AB=AC ,∠A=60°,点D 是线段BC 的中点,∠EDF=120°,DE 与线段AB 相交于点E .DF 与线段AC (或AC 的延长线)相交于点F . (1)如图1,若DF⊥AC,垂足为F ,AB=4,求BE 的长;(2)如图2,将(1)中的∠EDF 绕点D 顺时针旋转一定的角度,DF 仍与线段AC 相交于点F .求证:BE+CF=AB ;(3)如图3,将(2)中的∠EDF 继续绕点D 顺时针旋转一定的角度,使DF 与线段AC 的延长线相交于点F ,作DN⊥AC 于点N ,若DN⊥AC 于点N ,若DN=FN ,求证:BE+CF=(BE ﹣CF ).图3图2图1BC ABD FE EFCD N E17.如图1,在△ABC 中,AB=AC ,射线BP 从BA 所在位置开始绕点B 顺时针旋转,旋转角为α(0°<α<180°) (1)当∠BAC=60°时,将BP 旋转到图2位置,点D 在射线BP 上.若∠CDP=120°,则∠ACD ∠ABD(填“>”、“=”、“<”),线段BD 、CD 与AD 之间的数量关系是 ; (2)当∠BAC=120°时,将BP 旋转到图3位置,点D 在射线BP 上,若∠CDP=60°,求证:BD ﹣CD=AD ;(3)将图3中的BP 继续旋转,当30°<α<180°时,点D 是直线BP 上一点(点P 不在线段BD 上),若∠CDP=120°,请直接写出线段BD 、CD 与AD 之间的数量关系(不必证明).图3图2图1PPACBPDD18.已知,在Rt△ABC 中,∠ABC=90°,作BD⊥AC,垂足为D ,点P 为线段DC 上一动点(不与点D 、C 重合),连接BP ,作AN⊥BP,垂足为N ,设AN 交BD 于点M .(1)当∠C=45°时(如图1),请证明:CP=BM ; (2)当∠C=30°时(如图2),请直接写出CP 与BM 的数量关系: ; (3)在(2)问的基础上(如图3),连接MC ,设MC 交BP 于点K ,当DP=PC=3时,请求MK 的长度.图3图2图1K MMM ACAPNDDPND PN19.在△ABC 中,∠ACB=90°,BE 平分∠ABC 交AC 于点E ,F 为BE 中点,连接CF ,点P 为直线CB 上一点,点Q 在直线AB 上,作∠BFQ=∠PFC (1)当点P 在BC 上时(如图1),若tan∠ABC=,求证:BQ+BP=AC ; (2)当点P 在BC 延长线上时(如图2),tan∠ABC=,直接写出线段BQ 、BP 、AC 之间的数量关系为(3)在(2)的条件下,连接PQ 、连接AP ,BE 的延长线交AP 于点G (如图3),若PQ=BC ,AB=5.求EG 的长.图3图2图1E ACBEFPQB CEFQPB PQGFC20.在菱形ABCD 中,∠A=60°,以D 为顶点作等边三角形DEF ,连接EC ,点N 、P 分别为EC 、BC 的中点,连接NP(1)如图1,若点E 在DP 上,EF 与CD 交于点M ,连接MN ,CE=3,求MN 的长; (2)如图2,若M 为EF 中点,求证:MN=PN ;(3)如图3,若四边形ABCD 为平行四边形,且∠A=∠DBC≠60°,以D 为顶点作三角形DEF ,满足DE=DF 且∠EDF=∠ABD,M 、N 、P 仍分别为EF 、EC 、BC 的中点,请探究∠ABD 与∠MNP 的和是否为一个定值,并证明你的结论.图3图2图1PPPA AC21.如图1,在等腰△ABC 中,AB=AC ,∠ABC=α,过点A 作BC 的平行线与∠ABC 的平分线交于点D ,连接CD . (1)求证:AC=AD ;(2)点G 为线段CD 延长线上一点,将GC 绕着点G 逆时针旋转β,与射线BD 交于点E .①如图1,若β=α,DG=2AD ,试判断BC 与EG 之间的数量关系,并证明你的结论;②若β=2α,DG=kAD ,请直接写出的值(用含k 的代数式表示).图2图1DDBGAABEE22.如图1,在菱形ABCD 中,∠ABC=60°,若点E 在AB 的延长线上,EF∥AD,EF=BE ,点P 是DE 的中点,连接FP 并延长交AD 于点G . (1)过D 作DH⊥AB,垂足为H ,若DH=2,BE=AB ,求DG 的长;(2)连接CP ,求证:CP⊥FP;(3)如图2,在菱形ABCD 中,∠ABC=60°,若点E 在CB 的延长线上运动,点F 在AB 的延长线上运动,且BE=BF ,连接DE ,点P 为DE 的中点,连接FP 、CP ,那么第(2)问的结论成立吗?若成立,求出的值;若不成立,请说明理由.图2图1BPGPDH EFDAFEBA23.已知:等边△ABC 中,D 是射线AB 上的点,点E 是边AC 上的点,线段DE 交BC 于F .(1)如图1,若DF=EF ,求证:2CF ﹣CE=AB ;(2)如图2,若EF=DF ,直接写出CF 、CE 、AB 之间的数量关系 ; (3)在②的条件下,连接AF 、BE ,BE 与AF 交于点N ,过点E 作EM⊥AF,垂足为M ,连接BM 、MC ,若FC=6,EC=,求线段MBN tan 的值.图3图2图1FFNFC DC ADBEBEB EM24.已知,△ABC 为等边三角形,点D 、E 分别在直线BC 、AC 上,且CD=AE ,直线AD 、BE 相交于点N ,过点B 作BM⊥AD 于点M .(1)如图1,当点D 在BC 边上,点E 在AC 边上,求证:AD ﹣2MN=EN ;(2)如图2,当点D 在CB 延长线上,点E 在AC 延长线上,请直接写出AD 、MN 、EN 的关系;(3)如图2,在(2)的条件下,若NB=ND ,MN=2,AC=43,求△BCE 的面积.图2图1ECBD25.已知在Rt△ABC 中,∠C=90°,AC=kBC ,直线l 经过点A ,过点C 、B 分别向直线l 作垂线,垂足分别为E 、F ,CE 交AB 于点M . (1)如图1,若k=1,求证:AE+BF=CE ;(2)如图2,若k=2,则AE 、BF 、CE 之间的数量关系是 ;(3)在(2)的条件下,如图3,连接CF ,过点A 作AG∥CF,交CE 延长线于点G ,若CF=3,BF=5,求MG 的长.图3图2图1ME MMBCCBCAFE EAFAF26.已知:如图,正方形ABCD ,对角线AC 、BD 相交于O ,Q 为线段DB 上的一点,∠MQN=90°,点M 、N 分别在直线BC 、DC 上,(1)如图1,当Q 为线段OD 的中点时,求证:DN+31BM=21BC ;(2)如图2,当Q 为线段OB 的中点,点N 在CD 的延长线上时,则线段DN 、BM 、BC 的数量关系为 ;(3)在(2)的条件下,连接MN ,交AD 、BD 于点E 、F ,若MB :MC=3:1,NQ=59,求EF 的长.图2图1A DMN DM27.(中考几何)已知:梯形ABCD 中,AD∥BC,∠ABC=90°,BE⊥CD 于点E .DP⊥CB 于点P ,连接AP 、AE .(1)如图1,若∠C=45°,求证:AE AP 2 .(2)如图2,若∠C=60°,直接写出线段AP 、AE 的数量关系 . (3)在(1)的条件下,将线段EA 绕点E 顺时针旋转得到线段'EA ,使∠DEA′=∠DEA,直线EA′分别与线段BA 延长线、线段BC 交于点N 、点K ,已知AD=1,EK=.求线段NE 的长.图3图2图1NA'ECAECAECBABBD28.(中考几何)已知:如图,直角梯形ABCD 中AD ∥BC,∠A=90°,CD=CB=2AD .点Q 是AB 边中点,点P 在CD 边上运动,以点P 为直角顶点作直角∠MPN,∠MPN 的两边分别与AB 边、CB 边交于点M 、N .(1)若点P 与点D 重合,点M 在线段AQ 上,如图(1).求证:BC CN MQ 413=-.(2)若点P 是CD 中点,点M 在线段BQ 上,如图(2).线段MQ 、CN 、BC 的数量关系是: ,并证明你的猜想.图2图1Q AQA BM M29.(中考几何)已知:点P 为正方形ABCD 内部一点,且∠BPC=90°,过点P 的直线分别交边AB 、边CD 于点E 、点F .(1)如图1,当PC=PB 时,则PBE S ∆、PCF S ∆、 BPC S ∆之间的数量关系为 ;(2)如图2,当PC=2PB 时,求证:BPG PCF PBE S S S ∆∆∆=+416;(3)在(2)的条件下,Q 为AD 边上一点,且∠PQF=90°,连接BD ,BD 交QF 于点N ,若80=∆BPC S ,BE=6.求线段DN 的长.图3图2图1FFFBBA A AE EE30.(中考几何)矩形ABCD ,∠ACD=30°,点E 为矩形ABCD 的边BC 上一动点,∠EAD 的平分线交CD 于点F 过点A 作EA 的垂线交CD 的延长线于点G (1)如图1,求证:AG=DF+33BE ; (2)当点E 与点C 重合时,如图2,点H 在GA 的延长线上,连接BH ,点M 为BH 中点,连接FM ,FM=21,连接HC 交AB 于点N ,若935tan =∠BCH ,求HN 的长.图2图1GBBC()E。
初三数学平面专题经典 (含答案)
初三数学平面专题经典 (含答案)
标题:初三数学平面专题经典(含答案)
本文档包含初三数学平面几何专题题目,涵盖了三角形、圆、相似等多个方面。
每个专题都配有详细的解题思路和答案解析,旨在帮助初三学生夯实数学基础,做好中考准备。
一、三角形专题
1. 已知三角形三边长度,求三角形周长和面积
2. 已知三角形的三个内角,判断其形状,并证明结论
3. 在三角形中,若两边之和大于第三边,则这两边所对的角的大小关系是什么?
4. 已知等腰三角形的底边和高,求面积
5. 已知等边三角形的高,求面积
二、圆专题
1. 已知圆的直径长度,求圆的周长和面积
2. 如何画出一个圆的内切正方形?
3. 如何用圆锥曲线画出一个正五边形?
4. 如何用圆锥曲线画出一个正三角形?
5. 已知圆的半径和圆心角的大小,求扇形面积
三、相似专题
1. 什么是相似三角形?
2. 如何判断两个三角形是否相似?
3. 如何求出两个相似三角形之间的边长比和面积比?
4. 如何利用相似三角形求解实际问题?。
2024全国各地区数学中考真题汇编《第一期》
数学几何图形的相关计算1.(2024达州10题4分)如图,△ABC是等腰直角三角形,∠ABC=90°,AB=4,点D,CE,则下列E分别在AC,BC边上运动,连接AE,BD交于点F,且始终满足AD=√=√2;②∠DFE=135°;③△ABF面积的最大值是4√2-4;④CF的最小值是结论:①2√10-2√2.其中正确的是( )A.①③B.①②④C.②③④D.①②③④第1题图【推荐地区:安徽】解图①解图②第1题解图解直角三角形及其应用2.(2024遂宁19题8分)小明的书桌上有一个L型台灯,灯柱AB高40cm,他发现当灯带BC与水平线BM夹角为9°时(图①),灯带的直射宽DE(BD⊥BC,CE⊥BC)为35cm,但此时灯的直射宽度不够,当他把灯带调整到与水平线夹角为30°时(图②),直射宽度刚好合适,求此时台灯最高点C到桌面的距离.(结果保留1位小数)(sin9°≈0.16,cos9°≈0.99,tan9°≈0.16)图①图②第2题图【推荐地区:安徽、山西、浙江】【参考答案】2.解:如题图,∵BD⊥BC,CE⊥BC,∴BD∥CE.∵BM∥DE,∴四边形BDEM为平行四边形,∴BM=DE=35cm,∴BC=BM·cos9°≈34.65cm,如解图,过点C作D’E’的垂线分别交BM与点F,交D’E’于点G.在Rt△BCF中,CF=BC·sin30°≈17.3cm,∴CH=sin30°×cos9°×BM=×0.99×35=17.3(m),∴此时台灯最高处到左面的距离CG=CF+AB=17.3+40=57.3(cm).第2题解图一次函数与反比例函数的综合应用3.(2024自贡24题10分)如图,在平面直角坐标系中,一次函数y=kx+b的图象与反比例函数myx=的图象交于A(-6,1),B(1,n)两点.第3题图(1)求反比例函数和一次函数的解析式;(2)P是直线x=-2上的一个动点,△PAB的面积为21,求点P坐标;(3)点Q在反比例函数myx=位于第四象限的图象上,△QAB的面积为21,请直接写出Q点坐标.【推荐地区:安徽、江西、浙江】第3题解图,统计与概率4.(2024重庆B卷20题10分)数学文化有利于激发学生数学兴趣.某校为了解学生数学文化知识掌握的情况,从该校七、八年级学生中各随机抽取10名学生参加了数学文化知识竞赛,并对数据(百分制)进行整理、描述和分析(成绩均不低于70分,用x表示,共分三组:A.90≤x≤100,B.80≤x<90,C.70≤x<80),下面给出了部分信息:七年级10名学生的竞赛成绩是:76,78,80,82,87,87,87,93,93,97.八年级10名学生的竞赛成绩在B组中的数据是:80,83,88,88.八年级抽取的学生竞赛成绩扇形统计图七、八年级抽取的学生竞赛成绩统计表第4题图根据以上信息,解答下列问题:(1)填空:a=________,b=________,m=________;(2)根据以上数据,你认为该校七、八年级中哪个年级学生数学文化知识较好?请说明理由(写出一条理由即可);(3)该校七年级学生有500人,八年级学生有400人.估计该校七、八年级学生中数学文化知识为“优秀”(x≥90)的总共有多少人?【推荐地区:安徽、江西、浙江、湖南】【参考答案】4.(1)88,87,40;【解法提示】∵八年级10名学生的竞赛成绩在C组的有10×20%=2名,∴将八年级10名学生的竞赛成绩按照从小到大的顺序进行排列,在中间的两个数分别是88,88,∴=88;∵七年级10名学生的竞赛成绩中87出现的次数最多,∴b=87;∵八年级a=10名学生的竞赛成绩在B组的有4名,∴在A组的有10-2-4=4名,∴A组所占百分比为40%,即m=40.(2)八年级的数学文化知识较好,理由:七、八年级10名学生的竞赛成绩平均数相同,八年级的中位数和众数均大于七年级;(3)500×+400×40%=310(人).∴估计该校七、八年级学生中数学文化知识为“优秀”(x≥90)的总共有310人.。
全国各地中考平面几何题目大全
于点 F , EF 交 BC 于点 G 。 (1)求证: CDE CBF ; (2)当 DE 1 时,求 CG 的长;
2 (3)连结 AG ,在点 E 运动过程中,四边形 CEAG 能否为平行四边形?若能, 求出此时 DE 的长;若不能,说明理由。(不能。AF=CG,DE=BG=BF,△GFB 是等腰 直角△,∠BFC=45°+45°=90°,矛盾)
DB 为邻边作矩形 BDEF.
(1)填空:点 B 的坐标为
;
(2)是否存在这样的点 D,使得△DEC 是等腰三角形?若存在,请求出 AD 的
长度;若不存在,请说明理由;(若 D 是 AC 之中点时,△DEC 是等腰△,DE=EC,
若 DC=EC,∠ABD=∠ADB=75°,∴AD=AB= 2 3 )
⑵ 证 FEB ECF ;
⑵若 BC 6,DE 4 ,求 EF 的长.(△BCE 是 3、4、5 比例,∴△EDO 也是这样的。
OD=3,ED=5,OC=3√5,EF=2√5)
(南宁)25.如图,AB 是⊙O 的直径,弦 CD⊥AB,垂足为 H,连结 AC,过 上一点 E 作 EG∥AC 交 CD 的延长线于点 G,连结 AE 交 CD 于点 F,且 EG=FG,连结 CE.
3 AD 边上任意一点,连接 PB ,将 PB 绕点 P 逆时针旋转 90 得到线段 PQ .
(1)当 DPQ 10 时,求 APB 的大小;(100°)
(2)当 tan ABP : tan A 3: 2时,求点 Q 与点 B 间的距离(结果保留根号);( 4 10 ) (3)若点 Q 恰好落在 ABCD 的边所在的直线上,直接写出 PB 旋转到 PQ 所扫过的
ABC ABC
2017 中考平面几何题目
几何图形初步认识(优选真题44道)(2021-2023年)中考数学真题(全国通用)(解析版)
三年(2021-2023)中考数学真题分项汇编(全国通用)图形初步认识(优选真题44道)一.选择题(共30小题)1.(2023•威海)如图是一正方体的表面展开图.将其折叠成正方体后,与顶点K距离最远的顶点是()A.A点B.B点C.C点D.D点【分析】把图形围成立体图形求解.【解答】解:把图形围成立方体如图所示:所以与顶点K D,故选:D.【点评】本题考查了平面图形和立体图形,掌握空间想象力是解题的关键.2.(2023•北京)如图,∠AOC=∠BOD=90°,∠AOD=126°,则∠BOC的大小为()A.36°B.44°C.54°D.63°【分析】先求出∠COD的度数,然后根据∠BOC=∠BOD﹣∠COD,即可得出答案.【解答】解:∵∠AOC=90°,∠AOD=126°,∴∠COD=∠AOD﹣∠AOC=36°,∵∠BOD=90°,∴∠BOC=∠BOD﹣∠COD=90°﹣36°=54°.故选:C.【点评】本题考查了余角和补角的知识,解答本题的关键是仔细观察图形,根据角的和差首先求出∠COD 的度数.3.(2023•长春)如图是一个多面体的表面展开图,每个面都标注了数字.若多面体的底面是面③,则多面体的上面是()A.面①B.面②C.面⑤D.面⑥【分析】由多面体的表面展开图,即可得到答案.【解答】解:多面体的底面是面③,则多面体的上面是⑤.故选:C.【点评】本题考查几何体的表面展开图,关键是由长方体的表面展开图找到相对面.4.(2023•河北)淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西70°的方向,则淇淇家位于西柏坡的()A.南偏西70°方向B.南偏东20°方向C.北偏西20°方向D.北偏东70°方向【分析】根据题意可得:∠ABC=70°,AB∥CD,然后利用平行线的性质可得∠ABC=∠DCB=70°,从而根据方向角的定义,即可解答.【解答】解:如图:由题意得:∠ABC=70°,AB∥CD,∴∠ABC=∠DCB=70°,∴淇淇家位于西柏坡的北偏东70°方向,故选:D.【点评】本题考查了方向角的定义,熟练掌握方向角的定义是解题的关键.5.(2023•扬州)下列图形是棱锥侧面展开图的是()A.B.C.D.【分析】由棱锥的侧面展开图的特征可知答案.故选:D.【点评】本题考查了几何体的展开图,熟记常见立体图形的侧面展开图和侧面的特征是解决此类问题的关键.6.(2023•乐山)下面几何体中,是圆柱的为()A.B.C.D.【分析】根据各个选项中的几何体的形体特征进行判断即可.【解答】解:A.选项中的几何体是圆锥体,因此选项A不符合题意;B.选项中的几何体是球体,因此选项B不符合题意;C.选项中的几何体是圆柱体,因此选项C符合题意;D.选项中的几何体是四棱柱,因此选项D不符合题意;故选:C.【点评】本题考查认识立体图形,掌握圆柱体,圆锥体,棱柱,球的形体特征是正确判断的前提.7.(2023•宜昌)“争创全国文明典范城市,让文明成为宜昌人民的内在气质和城市的亮丽名片”.如图,是一个正方体的平面展开图,把展开图折叠成正方体后,“城”字对面的字是()A.文B.明C.典D.范【分析】根据正方体的平面展开图的特点,相对的两个面中间一定隔着一个小正方形,且没有公共边和公共顶点,即“对面无临点”,依此来找相对面.【解答】解:∵正方体的表面展开图,相对的面之间一定隔着一个小正方形,且没有公共边和公共顶点,∴“城”字对面的字是“明”.故选:B.【点评】本题主要考查了正方体相对两个面上的文字,熟练掌握正方体的表面展开图的特点是解题的关键.8.(2023•临沂)如图中用量角器测得∠ABC的度数是()A.50°B.80°C.130°D.150°【分析】本题根据∠ABC的位置和量角器的使用方法可得出答案.【解答】解:根据∠ABC起始位置BA,另一条边BC可得:∠ABC=130°.故选:C.【点评】本题主要考查了学生量角器的使用方法,结合∠ABC的位置进行思考是解题关键.9.(2023•巴中)某同学学习了正方体的表面展开图后,在如图所示的正方体的表面展开图上写下了“传承红色文化”六个字,还原成正方体后,“红”的对面是()A.传B.承C.文D.化【分析】根据正方体的平面展开图的特点,相对的两个面中间一定隔着一个小正方形,且没有公共的顶点,结合展开图很容易找到与“红”字所在面相对的面上的汉字.【解答】解:根据图示知:“传”与“文”相对;“承”与“色”相对;“红”与“化”相对.故选:D.【点评】本题考查灵活运用正方体的相对面解答问题,解决本题的关键是根据正方体的平面展开图的特点,相对的两个面中间一定隔着一个小正方形,且没有公共的顶点.10.(2023•连云港)如图,甲是由一条直径、一条弦及一段圆弧所围成的图形;乙是由两条半径与一段圆弧所围成的图形;丙是由不过圆心O的两条线段与一段圆弧所围成的图形.下列叙述正确的是()A.只有甲是扇形B.只有乙是扇形C.只有丙是扇形D.只有乙、丙是扇形【分析】根据扇形的定义进行判断.【解答】解:由扇形的定义可知,只有乙是扇形,故选:B.【点评】本题主要考查了认识平面图形—扇形,应熟知扇形的定义:由圆心角的两条半径和圆心角所对的圆弧围成的图形叫做扇形.11.(2023•达州)下列图形中,是长方体表面展开图的是()A.B.C.D.【分析】根据长方体的展开图得出结论即可.【解答】解:由题意知,图形可以折叠成长方体,故选:C.【点评】本题主要考查长方体的展开图,熟练掌握长方体的展开图是解题的关键.12.(2023•台湾)如图,直角柱ABCDEF的底面为直角三角形,若∠ABC=∠DEF=90°,BC>AB>BE,则连接AE后,下列叙述何者正确()A.∠ACB<∠FDE,∠AEB>∠ACB B.∠ACB<∠FDE,∠AEB<∠ACBC.∠ACB>∠FDE,∠AEB>∠ACB D.∠ACB>∠FDE,∠AEB<∠ACB【分析】根据直棱柱的性质得∠BAC=∠FDE,再根据三角形的边角关系即可得出答案.【解答】解:如图,连接AE,∵∠ABC=∠DEF=90°,BC>AB,∴∠ACB<∠BAC,∵∠BAC=∠FDE,∴∠ACB<∠FDE,在△ABC和△ABE中,∠ABC=∠ABE=90°,AB=AB,BC>BE,∴∠AEB>∠ACB,故选:A.【点评】本题考查了认识立体图形,关键是掌握直棱柱的性质和三角形的边角关系.13.(2022•烟台)如图,某海域中有A,B,C三个小岛,其中A在B的南偏西40°方向,C在B的南偏东35°方向,且B,C到A的距离相等,则小岛C相对于小岛A的方向是()A.北偏东70°B.北偏东75°C.南偏西70°D.南偏西20°【分析】根据题意可得∠ABC=75°,AD∥BE,AB=AC,再根据等腰三角形的性质可得∠ABC=∠C =75°,从而求出∠BAC的度数,然后利用平行线的性质可得∠DAB=∠ABE=40°,从而求出∠DAC 的度数,即可解答.【解答】解:如图:由题意得:∠ABC=∠ABE+∠CBE=40°+35°=75°,AD∥BE,AB=AC,∴∠ABC=∠C=75°,∴∠BAC=180°﹣∠ABC﹣∠C=30°,∵AD∥BE,∴∠DAB=∠ABE=40°,∴∠DAC=∠DAB+∠BAC=40°+30°=70°,∴小岛C相对于小岛A的方向是北偏东70°,故选:A.【点评】本题考查了方向角,等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.14.(2022•柳州)如图,将矩形绕着它的一边所在的直线l旋转一周,可以得到的立体图形是()A.B.C.D.【分析】根据“面动成体”进行判断即可.【解答】解:将矩形绕着它的一边所在的直线l旋转一周,可以得到圆柱体,故选:B.【点评】本题考查认识立体图形,理解“面动成体”是正确判断的前提.15.(2022•资阳)如图是正方体的表面展开图,每个面内都分别写有一个字,则与“创”字相对面上的字是()A.文B.明C.城D.市【分析】先以“文”字为底,则左边的是“建”字,右边的是“明”字,上面的是“城”字,正面的是“市”字,后面的是“创”字,再判断与“创”字相对的字即可.【解答】解:将正方体的表面展开图还原成正方体,以“文”字为底,则左边的是“建”字,右边的是“明”字,上面的是“城”字,正面的是“市”字,后面的是“创”字,可知“创”字与“市”字相对.故选:D.【点评】本题主要考查了将正方体表面展开图还原,确定每个字在还原后的正方体的位置是解题的关键.16.(2022•贵阳)如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C.D.【分析】根据用一个平行于圆锥底面的平面截圆锥,截面的形状是圆即可得出答案.【解答】解:用一个平行于圆锥底面的平面截圆锥,截面的形状是圆,故选:B.【点评】本题考查了截一个几何体,掌握用一个平行于圆锥底面的平面截圆锥,截面的形状是圆是解题的关键.17.(2022•枣庄)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“亮”字所在面相对的面上的汉字是()A.青B.春C.梦D.想【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端是对面,判断即可.【解答】解:在原正方体中,与“亮”字所在面相对的面上的汉字是:想,故选:D.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.18.(2022•绥化)下列图形中,正方体展开图错误的是()A.B.C.D.【分析】根据正方体的展开图得出结论即可.【解答】解:由展开图的知识可知,四个小正方形绝对不可能展开成田字形,故D选项都不符合题意.故选:D.【点评】本题主要考查正方体展开图的知识,熟练掌握正方体的侧面展开图是解题的关键.19.(2022•甘肃)若∠A=40°,则∠A的余角的大小是()A.50°B.60°C.140°D.160°【分析】根据互余两角之和为90°计算即可.【解答】解:∵∠A=40°,∴∠A的余角为:90°﹣40°=50°,故选:A.【点评】本题考查的是余角的定义,如果两个角的和等于90°,就说这两个角互为余角.20.(2022•常州)下列图形中,为圆柱的侧面展开图的是()A.B.C.D.【分析】从圆柱的侧面沿它的一条母线剪开,可以得到圆柱的侧面展开图的是长方形.【解答】解:根据题意,把圆柱的侧面沿它的一条母线剪开展在一个平面上,得到其侧面展开图是对边平行且相等的四边形;又有母线垂直于上下底面,故可得是长方形.故选:D.【点评】本题考查了几何体的展开图.解题的关键是明确圆柱的侧面展开图是长方形.21.(2022•临沂)如图所示的三棱柱的展开图不可能是()A.B.C.D.【分析】根据题意和各个选项中的图形,可以判断哪个图形不可能是三棱柱的展开图.【解答】解:如图所示的三棱柱的展开图不可能是,故选:D.【点评】本题考查几何体的展开图,解答本题的关键是明确题意,利用数形结合的思想解答.22.(2022•泰州)如图为一个几何体的表面展开图,则该几何体是()A.三棱锥B.四棱锥C.四棱柱D.圆锥【分析】根据展开图直接判断即可.【解答】解:根据展开图可以得出是四棱锥的展开图,故选:B.【点评】本题主要考查几何体的展开图,熟练掌握基本几何体的展开图是解题的关键.23.(2021•湖州)将如图所示的长方体牛奶包装盒沿某些棱剪开,且使六个面连在一起,然后铺平,则得到的图形可能是()A.B.C.D.【分析】由平面图形的折叠及长方体的表面展开图的特点解题.【解答】解:该长方体表面展开图可能是选项A.故选:A.【点评】本题考查几何体的展开图,解题的关键是熟练掌握几何体的展开图的特征,属于中考常考题型.24.(2021•泰州)互不重合的A、B、C三点在同一直线上,已知AC=2a+1,BC=a+4,AB=3a,这三点的位置关系是()A.点A在B、C两点之间B.点B在A、C两点之间C.点C在A、B两点之间D.无法确定【分析】用假设法分别计算各选项中的a值,再根据a>0判断即可.【解答】解:∵AC=2a+1,BC=a+4,AB=3a,A、B、C三点互不重合∴a>0,若点A在B、C之间,则AB+AC=BC,即2a+1+3a=a+4,解得a=3 4,故A情况存在,若点B在A、C之间,则BC+AB=AC,即a+4+3a=2a+1,解得a=−3 2,故B情况不存在,若点C在A、B之间,则BC+AC=AB,即a+4+2a+1=3a,此时无解,故C情况不存在,∵互不重合的A、B、C三点在同一直线上,故选:A.【点评】本题主要考查两点间的距离及整式的加减,分类讨论和反证法的应用是解题的关键.25.(2021•台州)小光准备从A地去往B地,打开导航、显示两地距离为37.7km,但导航提供的三条可选路线长却分别为45km,50km,51km(如图).能解释这一现象的数学知识是()A.两点之间,线段最短B.垂线段最短C.三角形两边之和大于第三边D.两点确定一条直线【分析】根据线段的性质,可得答案.【解答】解:从A地去往B地,打开导航、显示两地距离为37.7km,理由是两点之间线段最短,故选:A.【点评】本题考查了线段的性质,熟记线段的性质并应用是解题的关键.26.(2021•包头)已知线段AB=4,在直线AB上作线段BC,使得BC=2,若D是线段AC的中点,则线段AD的长为()A.1B.3C.1或3D.2或3【分析】根据题意可分为两种情况,①点C在线段AB上,可计算出AC的长,再由D是线段AC的中点,即可得出答案;②BC在线段AB的延长线上,可计算出AC的长,再由D是线段AC的中点,即可得出答案.【解答】解:根据题意分两种情况,①如图1,∵AB=4,BC=2,∴AC=AB﹣BC=2,∵D是线段AC的中点,∴AD=12AC=12×2=1;②如图2,∵AB=4,BC=2,∴AC=AB+BC=6,∵D是线段AC的中点,∴AD=12AC=12×6=3.∴线段AD的长为1或3.故选:C.【点评】本题主要考查了两点之间的距离,正确理解题目并进行分情况进行计算是解决本题的关键.27.(2021•河北)如图,已知四条线段a,b,c,d中的一条与挡板另一侧的线段m在同一直线上,请借助直尺判断该线段是()A.a B.b C.c D.d【分析】利用直尺画出遮挡的部分即可得出结论.【解答】解:利用直尺画出图形如下:可以看出线段a与m在一条直线上.故选:A.【点评】本题主要考查了线段,射线,直线,利用直尺动手画出图形是解题的关键.28.(2021•河北)一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是()A.A代表B.B代表C.C代表D.B代表【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解.【解答】解:根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A与点数是1的对面,B与点数是2的对面,C与点数是4的对面,∵骰子相对两面的点数之和为7,∴A代表的点数是6,B代表的点数是5,C代表的点数是3.故选:A.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体是空间图形,从相对面入手,分析及解答问题.29.(2021•百色)已知∠α=25°30)A.25°30′B.64°30′C.74°30′D.154°30′【分析】根据余角的定义,两个锐角和为90°的角互余.【解答】解:由题意得:∠α=25°30′,故其余角为(90°﹣∠α)=64°30′.故选:B.【点评】本题考查的知识点是两个角的互余,互余的两个角的和为90°.30.(2021•黔东南州)由4个棱长均为1的小正方体组成如图所示的几何体,这个几何体的表面积为()A.18B.15C.12D.6【分析】几何体的表面积是几何体正视图,左视图,俯视图三个图形中,正方形的个数的和的2倍.【解答】解:正视图中正方形有3个;左视图中正方形有3个;俯视图中正方形有3个.则这个几何体表面正方形的个数是:2×(3+3+3)=18.则几何体的表面积为18.故选:A .【点评】本题考查的是几何体的表面积,这个几何体的表面积为露在外边的面积和底面积之和.二.填空题(共14小题)31.(2023•无锡)若直三棱柱的上下底面为正三角形,侧面展开图是边长为6的正方形,则该直三棱柱的表面积为 .【分析】由三棱柱三个侧面和上下两个底面的特征,结合侧面展开图是一个边长为6的正方形卡知,上下底面的正三角形的周长为6,即边长为2,然后根据条件公式进而求出表面积即可得出结论.【解答】解:依题意可知:直三棱柱的上下底面的正三角形的边长为2,∴其2个底面积为√34×22×2=2√3. ∵侧面展开图是边长为6的正方形,∴其侧面积为6×6=36,∴该直三棱柱的表面积为36+2√3.故答案为:36+2√3.【点评】此题主要考查了直三棱柱侧面展开图的知识,解题时注意三棱柱的特征,找到所求的量的等量关系是解决问题的关键.32.(2023•乐山)如图,点O 在直线AB 上,OD 是∠BOC 的平分线,若∠AOC =140°,则∠BOD 的度数为 .【分析】根据邻补角定义求得∠BOC 的度数,再根据角平分线定义即可求得答案.【解答】解:∵∠AOC =140°,∴∠BOC =180°﹣140°=40°,∵OD是∠BOC的平分线,∴∠BOD=12∠BOC=20°,故答案为:20°.【点评】本题主要考查角平分线的定义,此为几何中基础且重要知识点,必须熟练掌握.33.(2022•益阳)如图,P A,PB表示以P为起点的两条公路,其中公路P A的走向是南偏西34°,公路PB 的走向是南偏东56°,则这两条公路的夹角∠APB=°.【分析】根据题意可得∠APC=34°,∠BPC=56°,然后进行计算即可解答.【解答】解:如图:由题意得:∠APC=34°,∠BPC=56°,∴∠APB=∠APC+∠BPC=90°,故答案为:90.【点评】本题考查了方向角,熟练掌握方向角的定义是解题的关键.34.(2022•玉林)已知:α=60°,则α的余角是°.【分析】根据如果两个角的和等于90°,就说这两个角互为余角,即其中一个角是另一个角的余角即可得出答案.【解答】解:90°﹣60°=30°,故答案为:30.【点评】本题考查了余角和补角,掌握如果两个角的和等于90°,就说这两个角互为余角,即其中一个角是另一个角的余角是解题的关键.35.(2022•桂林)如图,点C是线段AB的中点,若AC=2cm,则AB=cm.【分析】根据中点的定义可得AB=2AC=4cm.【解答】解:根据中点的定义可得:AB=2AC=2×2=4cm,故答案为:4.【点评】本题主要考查中点的定义,熟知中点的定义是解题关键.36.(2022•湘潭)如图,一束光沿CD方向,先后经过平面镜OB、OA反射后,沿EF方向射出,已知∠AOB =120°,∠CDB=20°,则∠AEF=.【分析】根据平面镜反射的规律得到∠EDO=∠CDB=20°,∠AEF=∠OED,在△ODE中,根据三角形内角和定理求出∠OED的度数,即可得到∠AEF=∠OED的度数.【解答】解:∵一束光沿CD方向,先后经过平面镜OB、OA反射后,沿EF方向射出,∴∠EDO=∠CDB=20°,∠AEF=∠OED,在△ODE中,∠OED=180°﹣∠AOB﹣∠EDO=180°﹣120°﹣20°=40°,∴∠AEF=∠OED=40°.故答案为:40°.【点评】本题考查了角的计算,根据平面镜反射的规律得到∠EDO=∠CDB=20°,∠AEF=∠OED是解题的关键.37.(2022•常德)如图是一个正方体的展开图,将它拼成正方体后,“神”字对面的字是.【分析】根据图形,可以直接写出“神”字对面的字.【解答】解:由图可得,“神”字对面的字是“月”,故答案为:月.【点评】本题考查正方体相对两个面上的文字,解答本题的关键是明确题意,利用数形结合的思想解答.38.(2022•连云港)已知∠A的补角为60°,则∠A=°.【分析】根据补角的定义即可得出答案.【解答】解:∵∠A的补角为60°,∴∠A=180°﹣60°=120°,故答案为:120.【点评】本题考查了余角和补角,掌握如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角是解题的关键.39.(2022•百色)如图摆放一副三角板,直角顶点重合,直角边所在直线分别重合,那么∠BAC的大小为°.【解答】解:根据题意可得,∠BAC=90°+45°=135°.故答案为:135.【点评】本题主要考查了角的计算,熟练掌握角的计算方法进行求解是解决本题的关键.40.(2021•丽水)小丽在“红色研学”活动中深受革命先烈事迹的鼓舞,用正方形纸片制作成图1的七巧板,设计拼成图2的“奔跑者”形象来激励自己.已知图1正方形纸片的边长为4,图2中FM=2EM,则“奔跑者”两脚之间的跨度,即AB,CD之间的距离是.【分析】如图2中,过点E作EI⊥FK于I,过点M作MJ⊥FK于J.想办法求出BM,MJ,FK与CD 之间的距离,可得结论.【解答】解:如图2中,过点E作EI⊥FK于I,过点M作MJ⊥FK于J.由题意,△ABM,△EFK都是等腰直角三角形,AB=BM=2,EK=EF=2√2,FK=4,FK与CD之间的距离为1,∵EI⊥FK,∴KI=IF,∴EI=12FK=2,∵MJ∥EI,∴MJEI=FMEF=23,∴MJ=4 3,∵AB∥CD,∴AB与CD之间的距离=2+43+1=133,故答案为:13 3【点评】本题考查七巧板,正方形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线构造直角三角形解决问题,属于中考常考题型.41.(2021•兴安盟)74°19′30″=°.【分析】先将30″化成“分”,再将19.5′化成“度”即可.【解答】解:30×(160)′=0.5′,19′+0.5′=19.5′,19.5×(160)°=0.325°,74°+0.325°=74.325°,故答案为:74.325.【点评】本题考查度、分、秒的换算,掌握度、分、秒的换算进率和换算方法是得出正确答案的前提.42.(2021•永州)如图,A,B两点的坐标分别为A(4,3),B(0,﹣3),在x轴上找一点P,使线段P A+PB 的值最小,则点P的坐标是.【分析】连接AB交x轴于点P',求出直线AB的解析式与x轴交点坐标即可.【解答】解:如图,连接AB交x轴于点P',根据两点之间,线段最短可知:P'即为所求,设直线AB的关系式为:y=kx+b,{4k+b=3 b=−3,解得{k=32b=−3,∴y=32x−3,当y=0时,x=2,∴P'(2,0),故答案为:(2,0).【点评】本题主要考查了线段的性质,明白两点之间,线段最短是解题的关键.43.(2021•上海)70°的余角是.【分析】根据余角的定义即可求解.【解答】解:根据定义一个角是70°,则它的余角度数是90°﹣70°=20°,故答案为,20°.【点评】本题主要考查了余角的概念,掌握互为余角的两个角的和为90度是解决此题关键,44.(2021•营口)若∠A=34°,则∠A的补角为.【分析】根据互为补角的两个角的和等于180°列式计算即可得解.【解答】解:∠A的补角=180°﹣∠A=180°﹣34°=146°.故答案为:146°.【点评】本题考查了余角和补角,是基础题,熟记补角的概念是解题的关键.。
中考数学几何图形专题训练50题(含答案)
中考数学几何图形专题训练50题含答案(单选、填空、解答题)一、单选题1.下列四个图形中,不是正方体展开图的()A.B.C.D.2.小军从A地沿北偏西60°方向走10m到B地,再从B地向正南方向走20m到C 地,此时小军离A地().A.B.10m C.15m D.3.如图,在直线l上有A,B,C三点,则图中线段共有()A.4条B.3条C.2条D.1条4.如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()A.B.C.D.5.下列四个立体图形中,是棱锥的是()A.B.C .D .6.已知线段10cm AB =,点C 是直线AB 上一点,4cm BC =,点M 是线段AB 的中点,点N 是线段BC 的中点,则线段MN 的长度是( )A .3cmB .5cmC .3cm 或7cmD .5cm 或7cm7.下列说法正确的是( )A .一个平角就是一条直线B .连接两点间的线段,叫做这两点的距离C .两条射线组成的图形叫做角D .经过两点有一条直线,并且只有一条直线8.如图,OC 平分∠AOB ,若∠AOC =27°32′,则∠AOB =( )A .55°4′B .55°24′C .54°14′D .54°4′ 9.图,有一块含有30︒角的直角三角板的两个顶点放在直尺的对边上.如果242∠=︒,那么1∠的度数是( )A .18︒B .17︒C .16︒D .15︒ 10.下列各图都是由6个正方形组成的平面图形,其中不能看做是正方体表面展开图的是( )A.B.C.D.11.如图是一个正方体的表面展开图,则原正方体中与“中”字所在的面相对的面上标的字是()A.我B.的C.梦D.国12.如图所示,以O为顶点且小于180 的角有()A.6个B.7个C.8个D.9个13.下列说法中,正确的是().A.平角是一条直线B.周角是一条射线C.两条射线组成的图形是角D.一条射线绕它的端点旋转而成的图形叫做角14.如图,是一个正方体骰子的表面展开图,将其折叠成正方体骰子(点数朝外),如果1点在上面,3点在左面,在前面的点数为()A.2B.4C.5D.615.如图是一个小正方形的展开图,把展开图折叠成小正方形后,有“祝”字一面的相对面上的字是()A.考B.试C.成D.功16.如图,点C,D在线段AB上,AC=13AB,CD=12CB,若AB=3,则图中所有线段长的和是()A.6B.8C.10D.1217.下列几何体中,由曲面和平面围成的是()A.三棱柱B.圆锥C.球体D.正方体18.已知:如图,C是线段AB的中点,D是线段BC的中点,AB=20 cm,那么线段AD等于()A.15 cm B.16 cm C.10 cm D.5 cm19.下列说法中正确的是()A.两条射线组成的图形叫做角;B.各边相等的多边形叫做正多边形;C.一个圆分割成圆心角度数比位1∠2∠3的三个扇形,则最小扇形的圆心角是60°;D.小于平角的角可分为锐角和钝角两类.20.A、B两辆汽车沿着笔直的公路行驶,A车从甲地出发,B车从乙地出发,行驶到途中两车相遇,各自仍朝前进的方向行驶,到了目的地后立即返回,过了某一时刻,两车又在原地点相遇,则两车必定是()A.沿着同一条公路行驶B.沿着两条不同的公路行驶C.以上两种情况都有可能D.以上都不对二、填空题21.已知36a∠=︒,则a∠的补角的度数是__________.22.已知∠α=65°30′,则∠α的余角大小是_______.23.图中以A 为端点的线段共有______条.24.计算:34°25′20″×3=_______________25.一个角的余角比它的补角的14还少12︒,则这个角的度数为_______. 26.如图,从A 处观测C 处仰角30CAD ∠=︒,从B 处观测C 处的仰角45CBD ∠=︒,从C 处观测A 、B 两处的视角ACB =∠______度.27.一副三角板叠在一起如图放置,最小锐角的顶点D 恰好放在等腰直角三角形的斜边上,AC 与DM 、DN 分别交于点E 、F ,把∠DEF 绕点D 旋转到一定位置,使得DE=DF ,则∠BDN 的度数是_________ .28.数轴上的点P 对应的数是1-,将点P 向右移动8个长度单位得到点Q ,则线段PQ 的中点在数轴上对应的数是____________.29.在∠ABC 中,∠ABC 和∠ACB 的平分线交于点O ,且∠BOC =110°,则∠A 的度数是____________.30.若∠α=20°40′,则∠α的补角的大小为_____.31.如图,A 岛在B 岛的北偏东30°方向,C 岛在B 岛的北偏东80°方向,A 岛在C 岛北偏西40°方向,从A 岛看B ,C 两岛的视角∠BAC 是______ 度.32.点A 和点B 在同一平面上,如果从A 观察B ,B 在A 的北偏东14°方向,那么从B 观察A ,A 在B 的_____方向.33.已知线段AB=10cm ,直线AB 上有一点C ,且BC=4cm ,M 是线段AC 的中点,则线段BM 的长是_cm .34.如图,O 的弦AB 长为2,CD 是O 的直径,30,15ADB ADC ∠=︒∠=︒.∠O 的半径长为_________.∠P 是CD 上的动点,则PA PB +的最小值是_________.35.如图,将一副直角三角尺按图∠放置,使三角尺∠的长直角边与三角尺∠的某直角边在同一条直线上,则图∠中的∠1=______°.36.如图,已知∠ABC 的内角∠A=α°,分别作内角∠ABC 与外角∠ACD 的平分线,两条平分线交于点A 1,得∠A 1;∠A 1BC 和∠A 1CD 的平分线交于点A 2,得∠A 2;…以此类推得到∠A 2014,则∠A 2014的度数是_______.37.一副直角三角板叠放如图,90C E ∠=∠=︒.现将含45°角的三角板ADE 固定不动,把含30°角的三角板ABC (其中30CAB ∠=︒)绕顶点A 顺时针旋转角α(0180α︒<<︒).当旋转角在30°~180°的旋转过程中,使得两块三角板至少有一组对应边(所在的直线)互相平行,此时符合条件的α=________.38.已知∠AOB =80°,OC 为从O 点引出的任意一条射线,若OM 平分∠AOC ,ON 平分∠BOC ,则∠MON 的度数是_____.39.如图所示,若图中共有m 条线段,n 条射线,则m n +=__________________.40.如图,请你在有序号的方格中选出两个画出阴影,使它们与图中四个有阴影的正方形一起可以构成正方体表面的展开图,你选择的两个正方形是____________ (填序号,任填一组即可).三、解答题41.如图,直线AB 和CD 相交于点O ,35BOD ∠=︒,OA 平分EOC ∠,求EOD ∠的度数.42.图中哪些图形是立体图形,哪些是平面图形?平面图形:_______________;立体图形:_______________.43.如图,已知长方形ABCD 的长AB x =米,宽BC y =米,x ,y 满足()2540x y -+-=,一动点P 从A 出发以每秒1米的速度沿着A D C B →→→运动,另一动点Q 从B 出发以每秒2米的速度沿B C D A →→→运动,P ,Q 同时出发,运动时间为t .(1)x =______________,y =______________.(2)当 4.5t =时,求APQ △的面积;(3)当P ,Q 都在DC 上,且PQ 距离为1时,求t 的值44.如图1,已知A 、O 、B 三点在同一直线上,射线OD 、OE 分别平分∠AOC 、∠BOC .(1)求∠DOE 的度数;(2)如图2,在∠AOD 内引一条射线OF OC ⊥,其他不变,设()090DOF αα∠=︒︒<<︒.∠求∠AOF 的度数(用含α的代数式表示);∠若∠BOD 是∠AOF 的2倍,求∠DOF 的度数.45.如图,在77⨯的正方形网格中有一个格点ABC .(1)在图中作出ABC 关于直线l 对称的111A B C △(2)在直线l 上找到一点D ,使得AD CD +的值最小(在图中标出D 点位置,保留作图痕迹)46.如图,直线,EF CD 相交于点,,O OA OB OC ⊥平分AOF ∠.(1)若40AOE ∠=︒,求∠BOD 的度数;(2)若30BOE ∠=︒,求∠DOE 的度数.47.如图,点C 是线段AB 的中点,点D 在线段AB 上,且13AD AB =.(1)若4cm AD =,求线段CD 的长.(2)若3cm CD =,求线段AB 的长.48.(1)如图1,将两个正方形的一个顶点重合放置,若40AOD ∠=︒,则COB ∠=______度;(2)如图2,将三个正方形的一个顶点重合放置,求∠1的度数;(3)如图3,将三个正方形的一个顶点重合放置,若OF 平分DOB ∠,那么OE 平分AOC ∠吗?为什么?49.如图,90,60AOB COD AOC ∠=∠=︒∠=︒,射线ON 以10度/秒的速度从OD 出发绕点O 顺时针转动到OA 时停止,同时射线OM 以25度/秒的速度从OA 出发绕点O 逆时针转动到OD 时停止,设转动时间为t 秒.(1)当OM ON 、重合时,求t 的值;(2)当ON 平分BOD ∠时,试通过计算说明OM 平分AOD ∠;(3)当t 为何值时,MON ∠与AOD ∠互补?参考答案:1.D【分析】由正方体展开图的特征即可判定出正方体的展开图.【详解】解:由正方体展开图的特征即可判定D不是正方体的展开图,故选:D.【点睛】本题主要考查了几何体的展开图,解题的关键是熟记正方体展开图的特征.2.D【详解】试题分析:根据题意可得:A、B、C三点构成直角三角形,BC为斜边,则根据直角三角形的性质可得:,故选D.3.B【详解】线段有:AB、AC、BC.故选:B.4.D【分析】根据面动成体,梯形绕下底边旋转是圆锥加圆柱,可得答案.【详解】面动成体,直角三角形绕直角边旋转一周可得圆锥,长方形绕一边旋转一周可得圆柱,那么所求的图形是下面是圆锥,上面是圆柱的组合图形.故选D.【点睛】此题考查点、线、面、体的问题,解决本题的关键是得到所求的平面图形是得到几何体的主视图的被纵向分成的一半.5.B【分析】逐一判断出各选项中的几何体的名称即可得答案.【详解】A是棱柱,不符合题意;B是棱锥,符合题意,C是球体,不符合题意;D是圆柱,不符合题意;故选B.【点睛】本题考查了几何体的识别,熟练掌握常见几何体的图形特征是解题的关键.6.C=-;点C在点B右侧时,【分析】根据题意知,点C在点B左侧时,MN BM BN+MN BM BN =,因为点M 是线段AB 的中点,点N 是线段BC 的中点,分别算出,BM BN 长度,代入计算即可.【详解】解:因为点C 是直线AB 上一点,所以需要分类讨论:(1)点C 在点B 左侧时,作图如下:∠10cm AB =,4cm BC =, ∠152BM AB cm ==,122BN BC cm ==, 又∠MN BM BN =-,∠=523MN cm -=.(2)当点C 在点B 右侧时,作图如下:由(1)知,152BM AB cm ==,122BN BC cm ==, ∠+MN BM BN =,∠+=5+2=7cm MN BM BN =,综上所述,MN 的长度是3cm 或7cm .故选:C【点睛】本题考查线段长度的计算,根据题意分类讨论是解题关键.7.D【分析】根据平角、两点间的距离、角的定义和直线公理逐项进行解答即可得.【详解】A 、平角的两条边在一条直线上,故本选项错误;B 、连接两点的线段的长度叫做两点间的距离,故此选项错误;C 、有公共端点是两条射线组成的图形叫做角,故此选项错误;D 、经过两点有一条直线,并且只有一条直线,正确,故选:D .【点睛】本题考查了平角、两点间的距离、角的概念以及直线公理的内容,熟练掌握相关知识是解题的关键.8.A【分析】由OC 平分∠AOB 可得到∠AOB=2∠AOC ,代入计算可得解.【详解】解:OC 平分∠AOB ,则227322?554AOB AOC ∠=∠=︒'⨯=︒', 故选:A【点睛】本题考查了角平分线和角的计算,比较基础.9.A【分析】如解图所示,依据60ABC ∠=︒,242∠=︒,即可得到18EBC ∠=︒,再根据BE CD ,即可得出118EBC ∠=∠=︒.【详解】:如图,∠60ABC ∠=︒,242∠=︒,∠18EBC ∠=︒,∠BE CD ,∠118EBC ∠=∠=︒,故选:A .【点睛】此题考查了平行线的性质,掌握两直线平行,内错角相等是解决此题的关键. 10.D【分析】由平面图形的折叠及正方体的展开图解题.【详解】解:正方体共有11种表面展开图,A 、B 、C 项都是正方体的展开图,D 出现了“田”字格,故不是正方体的展开图;故选择:D.【点睛】本题考查的是正方体的展开图,以及学生的立体思维能力.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.11.C【分析】利用正方体及其表面展开图的特点解题.【详解】解:这是一个正方体的平面展开图,共有六个面,其中面“国”与面“我”相对,面“梦”与面“的”相对,“中”与面“梦”相对.故选:C.12.D【分析】根据图形,找出以O为顶点的所有小于180°的角即可.【详解】解:以O为顶点且小于180°的角有:∠AOC,∠COD,∠DOE,∠EOB,∠AOD,∠AOE,∠COE,∠COB,∠DOB.一共有9个;故选择:D.【点睛】本题考查了角的表示,解题的关键是要找到图中两两相交直线的交点,作为角的顶点,且找出的角要小于180°.13.D【分析】根据角的定义即可判断.【详解】如果一个角的终边继续旋转,旋转到与始边成一条直线时,所成的角叫做平角,故A错误;当终边旋转到与始边重合时,所成的角叫做周角,故B错误;有公共端点的两条不重合的射线组成的图形叫做角,故C错误;一条射线绕它的端点旋转而成的图形叫做角,故D正确.故选D.【点睛】此题考查了角的定义,掌握角的两种定义和周角、平角的定义是解题的关键. 14.A【分析】利用正方体及其表面展开图的特点可知“3点”和“4点”相对,“5点”和“2点”相对,“6点”和“1点”相对,当1点在上面,3点在左面,可知5点在后面,继而可得出2点在前面.【详解】这是一个正方体的表面展开图,共有六个面,其中面“3点”和面“4点”相对,面“5点”和面“2点”相对,面“6点”和面“1点”相对,如果1点在上面,3点在左面,可知5点在后面,2点在前面;故选A.【点睛】此题考查学生的空间想象能力,先找到每个面的对面,进而确定它们的位置. 15.D【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答即可.【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,∠“祝”与“功”是相对面.故选:D.【点睛】本题主要考查了展开与折叠,注意正方体的空间图形,从相对面入手,分析及解答问题.16.C【详解】解:∠AB=3,∠AC=13AB=13×3=1,∠BC=3-1=2,∠CD=12CB=12×2=1,∠AD=1+1=2,CB=1+1=2,DB=2-1=1,即图中所有线段长的和是AC+AD+AB+CD+CB+DB=1+2+3+1+2+1=10.故选C.17.B【分析】三棱柱由平面组成、圆锥由曲面和平面组成、球体由曲面组成、正方体由平面组成,结合各图形的特点可得出答案.【详解】解:三棱柱由平面组成、圆锥由曲面和平面组成、球体由曲面组成、正方体由平面组成;故选:B【点睛】此题考查了认识立体图形的知识,熟练掌握是解题的关键.18.A【分析】根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=12AB,CD=12CB,AD=AC+CD,又AB=4cm,继而即可求出答案.【详解】∠点C是线段AB的中点,AB=20cm,∠BC=12AB=12×20cm=10cm,∠点D是线段BC的中点,∠BD=12BC=12×10cm=5cm,∠AD=AB-BD=20cm-5cm=15cm.故选A.【点睛】本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.19.C【详解】A. 由公共端点的两条射线组成的图形叫做角,故不正确;B. 各边相等,且各角也相等的多边形叫做正多边形,故不正确;C. 一个圆分割成圆心角度数比位1∠2∠3的三个扇形,则最小扇形的圆心角是1360123⨯++=60°,正确; D. 小于平角的角可分为锐角,直角和钝角三类,故不正确.故选C .【点睛】本题考查了角、正多边形、圆心角的定义,以及角的分类,熟练掌握各知识点是解答本题的关键.20.A【详解】解:根据题意,两车必定沿着同一条公路行驶.故选A .21.144°【分析】根据补角的定义即可求出a ∠的补角的度数.【详解】解: a ∠的补角的度数是180°-a ∠=180°-36°=144°故答案为: 144°.【点睛】此题考查的是求一个角的补角,掌握补角的定义是解决此题的关键.22.24°30′##24.5°【分析】如果两个角的和为90°,则这个两个角互为余角,根据互为余角的两个角的和为90°作答.【详解】解:根据定义∠α的余角度数是90°﹣65°30′=24°30′.故答案为:24°30′.【点睛】本题考查角互余的概念:和为90度的两个角互为余角.属于基础题,较简单. 23.3【分析】根据线段的定义分别写出各条线段即可【详解】解:图中以A 为端点的线段有线段AB ,线段AC ,线段AD ,共3条故答案为:3【点睛】本题考查了线段的定义,属于基础题,较简单24.10316'︒【分析】直接根据角的运算计算即可.【详解】160',1'60''︒==3425'20''310316'∴︒⨯=︒故答案为:10316'︒.【点睛】本题主要考查角的运算,掌握度分秒之间的关系是解题的关键.25.76︒【分析】设这个角为x ,则它的余角为90x ︒-,补角为180x ︒-,根据题意列出方程即可求解.【详解】设这个角为x ,则它的余角为90x ︒-,补角为180x ︒-()190180124x x ∴-=-- 19045124x x -=-- 3574x = 4573x =⨯ 76x =︒即这个角为76︒故答案为76︒.【点睛】此题主要考查角度的计算,解题的关键是根据题意列出方程求解.26.15【分析】根据三角形外角的性质求解即可.【详解】解:∠CBD ∠是ABC 的外角,∠CBD CAD ACB ∠=∠+∠,∠453015ACB CBD CAD ∠=∠-∠=︒-︒=︒.故答案为:15【点睛】本题考查了仰角的概念和三角形外角性质,掌握三角形的外角等于与它不相邻的两个内角的和是解题关键.27.120°【分析】根据等腰三角形的性质和特殊直角三角形的角度求得∠DFC ,进一步利用三角形外角的性质即可得到结果.【详解】解:如图,∠DE=DF ,∠EDF=30°, ∠∠DFC=12(180°-∠EDF )=75°,∠∠C=45°,∠∠BDN=∠DFC+∠C=75°+45°=120°.故答案为:120°.【点睛】本题考查了旋转的性质,直角三角形的性质,等腰三角形的性质,掌握三角形的内角和与外角的性质是解题的关键.28.3【分析】利用数轴得到点Q表示的数,再根据线段中点定义可得答案.【详解】解:∠点P对应的数是-1,将点P向右移动8个长度单位得到点Q,∠点Q表示的数为:-1+8=7,∠线段PQ的中点对应的数是1713 2-+-=故答案为:3.【点睛】本题考查了数轴,掌握数轴上两点间的距离是解决此题的关键.29.40°【分析】根据三角形内角和定理列式求出∠OBC+∠OCB,再根据角平分线的定义求出∠ABC+∠ACB,然后利用三角形的内角和定理列式计算即可得解.【详解】解:如图,在∠BOC中,∠BOC = 110°,∴∠OBC + ∠OCB = 180°- 110°= 70°,OB、OC分别是∠ABC和∠ACB的平分线,∴∠ABC = 2∠OBC,∠ACB=2∠OCB,∴∠ABC +∠ACB = 2×70°= 140°,∴在∠ABC中,∠A = 180°-(∠ABC+∠ACB)= 180°- 140°= 40°,故答案为:40°.【点睛】本题考查了三角形的内角和定理,角平分线的定义,整体思想的利用是解题的关键.30.159°20′【详解】试题分析:根据∠α的补角=180°﹣∠α,代入求出即可.解:∠∠α=20°40′,∠∠α的补角=180°﹣20°40′=159°20′,故答案为159°20′.考点:余角和补角;度分秒的换算.31.70°【详解】由题意可知∠DBC=80°,∠DBA=30°,∠∠ABC=50°,又∠DB∠EC,∠ECA=40°,∠∠ECB=100°,∠∠ACB=60°,∠∠BAC=180°-60°-50°=70°32.南偏西14°.【分析】根据方位角的概念,画图正确表示出方位角,利用平行线的性质即可求解.【详解】由题意可知,∠1=14°,∠AC∠BD,∠∠1=∠2=14°,根据方向角的概念可知,由点B测点A的方向为南偏西14°方向.故答案为:南偏西14°.【点睛】此题考查的知识点是方向角,解答此类题需要从运动的角度,正确画出方位角,即可解答.33.3或7【分析】根据线段的和差,可得BC的长,根据线段中点的性质,可得答案.【详解】当点C在线段AB上时,AC=AB−BC=10−4=6,点M是线段AC的中点,AC=3,MA=12BM=AB−AM=10−3=7;当点C在线段的反向延长线上时,AC=AB+BC=10+4=14,点M是线段AC的中点,AM=1AC=7,2BM=AB−AM=10−7=3,故答案为:3或7.【点睛】本题考查了两点间的距离,利用线段的和差、线段中点的性质是解题关键,要分类讨论,以防遗漏.34. 2 【分析】∠连接,OA OB ,易证AOB 是等边三角形,弦AB 长为2,2OA OB ==,即可得到答案;∠先证90BOC AOB AOC ∠=∠+∠=︒,延长BO 交O 于点E ,连接AE 交CD 于点P ,连接BP ,则此时PA PB PA PE AE +=+=,即PA PB +的最小值是AE 的长,再用勾股定理求出AE 即可.【详解】解:∠连接,OA OB ,∠30,ADB ∠=︒ ∠60AOB ∠=︒, ∠OA OB =,∠AOB 是等边三角形, ∠弦AB 长为2, ∠2OA OB ==, 即O 的半径长为2, 故答案为:2 ∠∠15ADC ∠=︒, ∠230AOC ADC ︒∠=∠=, ∠90BOC AOB AOC ∠=∠+∠=︒,延长BO 交O 于点E ,连接AE 交CD 于点P ,连接BP ,则此时PA PB PA PE AE +=+=,即PA PB +的最小值是AE 的长,∠60BAO ∠=︒,∠2OA OE ==, ∠30OAE AEB ︒∠=∠=, ∠90BAE BAO OAE ∠=∠+∠=︒,∠AE ==即PA PB +的最小值是故答案为:【点睛】此题考查了圆周角定理、勾股定理、等边三角形的判定和性质、轴对称最短路径等知识,熟练掌握相关定理并灵活应用是解题的关键. 35.105【分析】利用三角形外角性质求解. 【详解】如图,∠∠2=30︒,∠3=45︒, ∠∠4=∠2+∠3=75︒, ∠∠1=1804105︒-∠=︒, 故答案为:105..【点睛】此题考查三角板的角度计算,三角形外角的性质,观察图形掌握各角度之间的位置关系是解题的关键. 36.201420141A 2α∠=【分析】由三角形的外角性质知:∠A=∠ACD-∠ABC ,而∠A 1=12(∠ACD-∠ABC ),即∠A 1=12∠A ,同理可得,∠A 2=12∠A 1,依此类推即可. 【详解】∠∠ACD 是∠ABC 的外角, ∠∠ACD =∠A +∠ABC ,∠1B A 平分∠ABC ,1CA 平分∠ACD ,∠112A BC ABC ∠=∠,112ACD ACD ∠=∠, ∠1A CD ∠是1A CB 的外角, ∠111ACD A BC A ∠=∠+∠, ∠11122ACD ABC A ∠=∠+∠, ∠()11122A ACD ABC A ∠=∠-∠=∠, 同理可得:1212A A ∠=∠, 根据规律可得:201420141A 2α∠=【点睛】本题考查的是三角形内角和定理及三角形外角的性质,找出规律是解答此题的关键.37.60°或105°或135°【分析】分类讨论:当//BC AD 时,当//AC DE 时,当//AB DE 时,利用角度之间的关系计算即可;【详解】解:如图当//BC AD 时,,90C CAD ︒∠=∠=∠903060a DAB ︒=-︒=∠=︒, 如图,当//AC DE 时,90E CAE ︒∠=∠=,则459030105DAB α︒=∠=︒+︒-︒=, 如图,当//AB DE 时,90A E B E ∠=∠=︒,∠4590135BAD α=∠=︒+︒=︒;综上:符合条件的α为60°或105°或135°, 故答案为:60°或105°或135°.【点睛】本题考查角度之间的计算,平行的性质,解题的关键是对平行的边进行分情况讨论.38.40°或140°【分析】根据角平分线的定义求得∠MOC =12∠AOC ,∠CON =12∠BOC ;然后根据图形中的角与角间的和差关系来求∠MON 的度数. 【详解】解:∠OM 平分∠AOC ,ON 平分∠BOC .∠∠MOC=12∠AOC,∠CON=∠BON=12∠BOC.如图1,∠MON=∠MOC-∠CON=12(∠AOC-∠BOC)=12∠AOB=12×80°=40°;如图2,∠MON=∠MOC+∠CON=12(∠AOC+∠BOC)=12(360°﹣∠AOB)=12×280°=140°.如图3,∠MON=∠MOC+∠CON=12(∠AOC+∠BOC)=12∠AOB=12×80°=40°;故答案为:40°或140°.【点睛】此题主要考查了角平分线的定义.注意“数形结合”数学思想在解题过程中的应用.39.26【分析】根据射线、线段的定义进而判断得出m,n的值再代入计算即可.【详解】解:图中共有10条线段,共有16条射线,则m=10,n=16,所以m n+=10+16=26.故答案为26.【点睛】此题主要考查了射线、线段的定义,熟练掌握它们的定义是解题关键.40.∠∠或∠∠或∠∠或∠∠【分析】观察所给图形结合正方体的平面展开图的特点进行填涂即可.【详解】根据正方体的展开图的特点,按如下方式进行填涂后可以构成正方体表面的展开图:故答案为:∠∠或∠∠或∠∠或∠∠.【点睛】本题主要考查正方体展开图的2-3-1型和2-2-2-型,掌握正方体的展开图是解题关键.41.110EOD ∠=︒.【分析】根据对顶角相等先求出∠AOC 的度数,然后根据角平分线的定义求出∠COE 的度数,最后根据∠OCE 与∠EOD 互为邻补角即可得出答案. 【详解】35BOD ∠=︒,35AOC ∴∠=︒OA 平分EOC ∠,223570COE AOC ∴∠=∠=⨯︒=︒ 180110EOD COE ∴∠=︒-∠=︒.【定睛】本题主要考查了角的和差运算,根据对顶角相等和角平分线的定义求出∠COE 是 解决此题的关键.42. ②③⑧ ①④⑤⑥⑦【分析】根据立体图形和平面图形定义分别进行判断. 【详解】解:∠∠∠是平面图形;∠∠∠∠∠是立体图形.【点睛】本题考查认识立体图形:有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一个平面内,这就是立体图形. 43.(1)5,4(2)1APQ S =△平方米 (3)4t =【分析】(1)根据绝对值和乘方的非负性,即可求解;(2)根据题意得:当t =4.5时,点P 在CD 上,DP =0.5米,点Q 刚好到达点D 处,可得12PQ =米,再由12APQ S PQ AD =⋅⋅△,即可求解; (3)当P ,Q 都在DC 上,可得4 4.5t ≤≤,然后分两种情况讨论:当P 左Q 右时,当Q 左P 右时,即可求解.【详解】(1)解∠∠()2540x y -+-=, ∠50,40x y -=-=, ∠x =5,y =4, 故答案为:5,4;(2)解:当t =4.5时,P 走过的路程为4.5米,此时点P 在CD 上,DP =0.5米,Q 走过的路程为9米,刚好到达点D 处, ∠12PQ =米, ∠11141222APQ S PQ AD =⋅⋅=⨯⨯=△平方米;(3)解:点P 在DC 上,49t ≤≤,点Q 在DC 上,2 4.5t ≤≤, ∠4 4.5t ≤≤,当P 左Q 右时,4DP t =-,24CQ t =-,∠()()5424133PQ CD DP CQ t t t =--=----=-, ∠1331t -=, 解得:4t =当Q 左P 右时,4DP t =-,24CQ t =-,∠()()4245313PQ DP CQ CD t t t =+-=-+--=-, ∠3131t -=, 解得144.53t =>,不符题意,舍去. 综上,满足题意的4t =.【点睛】本题主要考查了动点问题,涉及绝对值和平方式的非负性,三角形面积的求解,解题的关键是关键题意用时间t表示出线段长度,列式求出t的值.44.(1)90°;(2)∠90°-2α°∠18°【分析】(1)根据角平分线的定义和平角的定义,即可求解;(2)∠根据余角的性质得:∠COE=∠DOF=α°,根据角平分线的定义,可得∠BOC=2α°,进而即可求解;∠用α分别表示出∠BOD和∠AOF的度数,结合∠BOD是∠AOF的2倍,列出关于α的方程,即可求解.【详解】(1)∠点A、O、B三点在同一直线上,射线OD、OE分别平分∠AOC、∠BOC,∠∠COD=12∠AOC,∠COE=12∠BOC,∠∠COD+∠COE=12∠AOC+12∠BOC=12(∠AOC+∠BOC)=12×180°=90°,∠∠DOE=∠COD+∠COE=90°;(2)∠∠OE平分∠BOC,∠∠BOC=2∠COE,∠OF∠OC,∠∠COF=∠COD+∠DOF=90°,∠∠COE+∠COD=90°,∠∠COE=∠DOF=α°,∠∠BOC=2α°,∠∠AOF+∠BOC=90°,∠∠AOF=90°-2α°;∠∠∠BOE=∠COE=α°,∠∠BOD=∠BOE+∠DOE=90°+α°,∠∠BOD=2∠AOF=2(90°-2α°)=180°-4α°,∠90°+α°=180°-4α°,∠α=18,即:∠DOF=18°.【点睛】本题主要考查角的和差倍分,涉及余角的定义和性质,平角的定义,角平分线的定义,根据题意,列出一元一次方程,是解题的关键.45.(1)图见解析(2)图见解析【分析】(1)分别作出A ,B ,C 的对应点111A B C ,,即可; (2)连接1AA ,1CA 交l 于点D ,点D 即为所求. 【详解】(1)如图所示; (2)如图所示:【点睛】本题考查了作图—轴对称变换,最短问题,解决本题的关键是熟练掌握基本知识.46.(1)20°;(2)60°【分析】(1)先求出∠AOF =140°,然后根据角平分线的定义求出∠AOC =70°,再由垂线的定义得到∠AOB =90°,则∠BOD =180°-∠AOB -∠AOC =20°;(2)先求出∠AOE =60°,从而得到∠AOF =120°,根据角平分线的性质得到∠AOC =60°,则∠COE =∠AOE +∠AOC =120°,∠DOE =180°-∠COE =60°. 【详解】解:(1)∠∠AOE =40°, ∠∠AOF =180°-∠AOE =140°, ∠OC 平分∠AOF , ∠∠AOC =12∠AOF =70°, ∠OA ∠OB , ∠∠AOB =90°,∠∠BOD =180°-∠AOB -∠AOC =20°;(2)∠∠BOE=30°,OA∠OB,∠∠AOE=60°,∠∠AOF=180°-∠AOE=120°,∠OC平分∠AOF,∠∠AOC=12∠AOF=60°,∠∠COE=∠AOE+∠AOC=60°+60°=120°,∠∠DOE=180°-∠COE=60°.【点睛】本题主要考查了几何中角度的计算,角平分线的定义,垂线的定义,解题的关键在于能够熟练掌握角平分线的定义.47.(1)2 cm;(2)18cm【分析】(1)先求出AB的长,再结合线段中点的定义求出AC的长,进而即可求解;(2)设AB=x cm,则13AD x=cm,根据线段的中点的定义,列出方程,进而即可求解.【详解】(1)∠13AD AB=,AD=4 cm,∠AB=3×4=12 cm,∠点C是线段AB的中点,∠AC=12AB=11262⨯=cm,∠CD=AC-AD=6-4=2 cm;(2)设AB=x cm,则13AD x=cm,∠点C是线段AB的中点,∠AB=2(AD+CD),即x=2(13x+3),解得:x=18,∠AB=18cm.【点睛】本题主要考查线段的和差倍分以及一元一次方程的应用,利用一元一次方程解决问题,是解题的关键.48.(1)140;(2)20°;(3)OE平分∠AOC,见解析【分析】(1)根据正方形各角等于90°,得出∠COD+∠AOB=180°,再根据∠AOD=40°,∠COB=∠COD+∠AOB-∠AOD,即可得出答案;(2)根据已知得出∠1+∠2,∠1+∠3的度数,再根据∠1+∠2+∠3=90°,最后用∠1+∠2+∠1+∠3-(∠1+∠2+∠3),即可求出∠1的度数;(3)根据∠COD=∠AOB和等角的余角相等得出∠COA=∠DOB,∠EOA=∠FOB,再根据角平分线的性质得出∠DOF=∠FOB=12∠DOB和∠EOA=12∠DOB=12∠COA,从而得出答案.【详解】解:(1)∠两个图形是正方形,∠∠COD=90°,∠AOB=90°,∠∠COD+∠AOB=180°,∠∠AOD=40°,∠∠COB=∠COD+∠AOB-∠AOD=140°故答案为:140;(2)如图,由题意知,∠1+∠2=50°∠,∠1+∠3=60°∠,又∠1+∠2+∠3=90°∠,所以:∠+∠-∠得:∠1=20°;(3)OE平分∠AOC,理由如下:∠∠COD=∠AOB,∠∠COA=∠DOB(等角的余角相等),同理:∠EOA=∠FOB,∠OF平分∠DOB,∠12DOF FOB DOB∠=∠=∠,∠1122EOA DOB COA ∠=∠=∠,∠OE平分∠AOC.【点睛】本题考查了角的和差运算,与余角和补角的有关的计算,根据所给出的图形,找到角与角的关系是本题的关键.49.(1)307t =;(2)见解析;(3)247t =或367t = 【分析】(1)根据题意10,25150DON t AOM t AOD ∠=∠=∠=︒, ,当OM ON 、重合时,+DON AOM AOD ∠∠=∠,计算即可;(2)根据题意可得=60BOD AOC ∠∠=︒,由ON 平分BOD ∠可计算出3t =,故25375AOM ∠=⨯=︒,即可说明OM 平分AOD ∠;(3)根据题意可得30MON ∠=︒分两种情况说明,当OM ON 、重合之前和OM ON 、重合之后分别计算即可.【详解】由题意:10,25DON t AOM t ∠=∠=()190,60COD AOC ∠=∠=150AOD COD AOC ∴∠=∠+∠=当,ON OM 重合时,DON AOM AOD ∠+∠=∠1025150t t ∴+= 解得:307t = ()290AOB COD ∠=∠=90AOC BOC BOD BOC ∴∠+∠=∠+∠=60BOD AOC ∴∠=∠= ON 平分BOD ∠1302DON BOD ∴∠=∠= ∠30103t =÷= ∠1253752AOM AOD ∠=⨯==∠ OM ∴平分AOD ∠()3150,180AOD AOD MON ∠=∠+∠=30MON ∴∠=当OM 与ON 重合前150DON MON AOM ∠+∠+∠=103025150 t t++=解得:247 t=当OM与ON重合后150 DON AOM MON∠+∠-∠= 102530150t t+-=解得:367 t=∴当247t=或367t=时,MON∠与AOD∠互补【点睛】本题考查的是角的综合题,一元一次方程的解法,旋转的性质,有一定的难度,分情况讨论是难点.。
中考数学20道经典几何题
中考数学20道经典几何题1.已知三角形ABC,AB=AC,∠A=36°,求BC与AB的比值。
2.直角三角形ABC中,∠C=90°,AC=3,BC=4,求斜边AB上的高。
3.四边形ABCD是平行四边形,对角线AC、BD相交于点O,若AB=5,AC=8,BD=6,求平行四边形ABCD的面积。
4.三角形ABC中,∠A=90°,D为BC中点,E、F分别为AB、AC上的点,且DE⊥DF,求证:BE²+CF²=EF²。
5.圆O的半径为5,弦AB=8,求圆心O到弦AB的距离。
6.等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60°,AD=3,BC=7,求梯形ABCD的周长。
7.三角形ABC中,∠C=90°,∠A=30°,BC=3,求三角形ABC的外接圆半径。
8.正方形ABCD的边长为4,E是BC中点,F是CD上一点,且CF=1,求∠AEF的度数。
9.三角形ABC是等边三角形,D是AC中点,E在BC延长线上,CE=CD,求证:BD=DE。
10.矩形ABCD中,AB=6,BC=8,点P在AD上,且AP=2,求点P到对角线BD的距离。
11.三角形ABC中,AB=AC,D是BC中点,DE⊥AB于E,DF⊥AC于F,若AB=5,DE=3,求DF的值。
12.菱形ABCD的对角线AC=6,BD=8,求菱形ABCD的边长。
13.三角形ABC中,∠B=90°,AB=3,BC=4,以BC为直径作圆O,交AC于D,求AD的长。
14.等腰三角形ABC中,AB=AC,∠A=120°,AB=4,求三角形ABC的面积。
15.三角形ABC中,∠C=90°,AC=4,BC=3,以AC为一边向三角形外作等腰直角三角形ACD,∠ACD=90°,求BD的长。
16.圆O的直径AB=10,弦AC=6,∠BAC的平分线交圆O于D,求CD的长。
历年中考平面几何基础题精选欣赏
历年中考平面几何基础题精选欣赏历年中考平面几何基础题精选欣赏历年中考平面几何基础题精选一、选择题1.(河北省2分)如图,2等于A、60B、90C、110D、180【答案】B。
【考点】平角的定义。
【分析】根据平角的定义得到1+902=180,即由2=90。
故选B。
2.(河北省3分)已知三角形三边长分别为2,,13,若为正整数则这样的三角形个数为A、2B、3C、5D、13【答案】B。
【考点】一元一次方程组的应用,三角形三边关系。
【分析】根据三角形的三边关系:三角形两边之和大于第三边,两边差小于第三边,得,解得,1115,所以,为12、13、14。
故选B。
3.(山西省2分)如图所示,AOB的两边.OA、OB均为平面反光镜,AOB=35,在OB上有一点E,从E点射出一束光线经OA上的点D反射后,反射光线DC恰好与OB平行,则DEB的度数是A.35B.70C.110D.120【答案】B。
【考点】平行线的性质,入射角与反射角的关系,三角形内角和定理,等腰三角形的性质。
【分析】过点D作DFAO交OB于点F,则DF是法线,根据入射角等于反射角的关系,得3,∵CD∥OB,2(两直线平行,内错角相等)。
3(等量代换);在Rt△DOF中,ODF=90,AOB=35,2=55在△DEF中,DEB=1802=70。
故选B。
4.(山西省2分)一个正多边形,它的每一个外角都等于45,则该正多边形是A.正六边形B.正七边形C.正八边形D.正九边形【答案】C。
【考点】多边形内角与外角。
【分析】多边形的外角和是360度,因为是正多边形,所以每一个外角都是45,即可得到外角的个数,从而确定多边形的边数:∵36045=8,这个正多边形是正八边形。
故选C。
5.(内蒙古巴彦淖尔、赤峰3分)下列图形中,1一定大于2的是A、【答案】C。
【考点】对顶角的性质,内错角的性质,三角形外角定理,圆周角定理。
【分析】根据对顶角的性质,内错角的性质,三角形外角定理,圆周角定理逐一作出判断:A.1和2是对顶角,根据对顶角相等的性质,2,选项错误;B.1和2是内错角,当两条直线平行时2,选项错误;C. 根据三角形的外角等于和它不相邻的两内角之和的性质,得2,选项正确;D.根据同弧所对圆周角相等的'性质,2,选项错误。
中考数学几何证明题汇编
AMNEFP几何证明题分类汇编一、证明两线段相等1.如图3,在梯形ABCD 中,AD BC ∥,EA AD ⊥,M 是AE 上一点,BAE MCE =∠∠,45MBE =∠.〔1〕求证:BE ME =.〔2〕假设7AB =,求MC 的长.2、〔8分〕如图11,一张矩形纸片ABCD ,其中AD=8cm ,AB=6cm ,先沿对角线BD 折叠,点C 落在点C ′的位置,BC ′交AD 于点G. 〔1〕求证:AG=C ′G ;〔2〕如图12,再折叠一次,使点D 与点A 重合,的折痕EN ,EN 角AD 于M ,求EM 的长.2、类题演练3如图,分别以Rt △ABC 的直角边AC 及斜边AB 向外作等边△ACD 、等边△ABE .∠BAC =30º,EF ⊥AB ,垂足为F ,连结DF . 〔1〕试说明AC =EF ;〔2〕求证:四边形ADFE 是平行四边形.4如图,在△ABC 中,点P 是边AC 上的一个动点,过点P 作直线MN ∥BC ,设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F . (1)求证:PE =PF ;(2)*当点P 在边AC 上运动时,四边形BCFE 可能是菱形吗?说明理由;(3)*假设在AC 边上存在点P ,使四边形AECF 是正方形,且 AP BC =32.求此时∠A 的大小.图3A BCDMEA B CD E F第20题图二、证明两角相等、三角形相似及全等1、〔9分〕AB 是⊙O 的直径,点E 是半圆上一动点〔点E 与点A 、B 都不重合〕,点C 是BE 延长线上的一点,且CD ⊥AB ,垂足为D ,CD 与AE 交于点H ,点H 与点A 不重合。
〔1〕〔5分〕求证:△AHD ∽△CBD〔2〕〔4分〕连HB ,假设CD=AB=2,求HD+HO 的值。
2、〔此题8分〕如图9,四边形ABCD 是正方形,BE ⊥BF ,BE=BF ,EF 与BC 交于点G 。
全国181套中考数学试题分类汇编52平面几何的综合
全国181套中考数学试题分类汇编52平面几何的综合52:平面几何的综合一、选择题1.(重庆江津4分)下列说法不正确是A、两直线平行,同位角相等 C、对顶角相等B、两点之间直线最短D、半圆所对的圆周角是直角【答案】B。
【考点】平行线的性质,对顶角的性质,线段公理,圆周角定理。
【分析】利用平行线的性质可以判断A正确;利用两点之间线段最短的线段公理可以判断B错误;利用对顶角相等的性质可以判断C正确;利用圆周角定理可以判断D正确。
故选B。
2.(重庆潼南4分)如图,在平行四边形ABCD中(AB≠BC),直线EF经过其对角线的交点O,且分别交AD、BC于点M、N,交BA、DC的延长线于点E、F,下列结论:①AO=BO;②OE=OF;③△EAM∽△EBN;④△EAO≌△CNO,其中正确的是A、①②B、②③C、②④D、③④【答案】B。
【考点】平行四边形的性质,全等三角形的判定和性质,相似三角形的判定。
【分析】①根据平行四边形的对边相等的性质即可求得AO≠BO,即判定该选项错误;②由ASA可证△AOE≌△COF,即可求得EO=FO,该选项正确;③根据相似三角形的判定即可求得△EAM∽△EBN,该选项正确;④易证△EAO≌△FCO,而△FCO和△CNO不全等,根据全等三角形的传递性即可判定该选项错误。
即②③正确。
故选B。
3.(浙江义乌3分)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连结CE交AD于点F,连结BD交 CE于点G,连结BE. 下列结论中:① CE=BD;② △ADC是等腰直角三角形;③ ∠ADB=∠AEB;④ CD・AE=EF・CG;一定正确的结论有 A.1个 B.2个【答案】D。
【考点】全等三角形的判定和性质,平行四边形的性质,等腰直角三角形的性质和判定,相C.3个 D.4个似三角形的判定和性质,平行的性质【分析】①由已知利用SAS证明△BAD≌△CAE,可得到CE=BD,结论正确;②由已知利用平行四边形的性质可得AE=CD,再结合△ADE是等腰直角三角形可得到△ADC是等腰直角三角形,结论正确;③由已知利用SAS证明△BAE≌△BAD。
全国各地中考平面几何题目汇编
ABC ABC 2017中考平面几何题目 (北京)28.在等腰直角ABC ∆中,090ACB ∠=,P 是线段BC 上一动点(与点B C 、不重合),连接AP ,延长BC 至点Q ,使得CQ CP =,过点Q 作QH AP ⊥于点H ,交AB 于点M .(1)若PAC α∠=,求AMQ ∠的大小(用含α的式子表示).(2)用等式表示线段MB 与PQ 之间的数量关系,并证明.( CP =) (成都)20. 如图,在ABC ∆中,AB AC =,以AB 为直径作圆O ,分别交BC 于点D ,交CA 的延长线于点E ,过点D 作DH AC ⊥于点H ,连接DE 交线段OA 于点F .(1)求证:DH 是圆O 的切线;(2)若A 为EH 的中点,求EF FD 的值; 23EF FD = (3)若1EA EF ==,求圆O 的半径.( 1,,EA EF OD OF r BD BE BF ====== )1,,1,1EA FD r BF r AF r ===+=- 111EA AF r BF FD r r-=⇒=+ ,12r += (安徽)23.已知正方形ABCD ,点M 为边AB 的中点.(1)如图1,点G 为线段CM 上的一点,且90AGB ∠=︒,延长AG ,BG 分别与边BC ,CD 交于点E ,F .② 证:BE CF =;②求证:2BE BC CE =⋅.(,CEG CGB CG FC BE ==)(2)如图2,在边BC 上取一点E ,满足2BE BC CE =⋅,连接AE 交CM 于点G ,连接BG 延长交CD 于点F ,求tan CBF ∠的值. (1tan 2CBF ∠=)H(CH=BE,CH/AM=CG/GM=FC/MB,FC=CH=BE,设BC=1,BE=x,得51x2-=,)(福州)24.(12分)如图,矩形ABCD中,AD=8,AB=6,P,Q分为线段AC、BC上一点,且四边形PDRQ是矩形,(1)若PDC为等腰三角形,求AP;(三种情况,PD=DC时,取PC的中垂线较好。
中考数学试题分类解析汇编专题7平面几何基础试题(共27页)
2021-2021年中考(zhōnɡ kǎo)数学试题分类解析汇编专题7:平面几何根底一、选择题1. 〔2021年3分〕三角形的周长小于13,且各边长为互不相等的整数,那么这样的三角形一共有【】A. 2个B. 3个C. 4个D. 5个【答案】B。
【考点】三角形三边关系。
【分析】根据三角形的两边之和大于第三边以及三角形的周长小于13,那么其中的任何一边不能超过5,因此画树状图如下:可知,满足两边之和大于第三边,两边之差小于第三边的三个数有三组:2,3,4;2,4,5;3,4,5。
那么这样的三角形一共有三个。
应选B。
2. 〔2021年3分〕下面给出的是一些产品的图案,从几何图形的角度看,这些图案既是中心对称图形又是轴对称图形的是【】A、 B、 C、 D、【答案(dá àn)】C。
【考点】中心对称图形,轴对称图形,生活中的旋转现象。
【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两局部沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。
因此,A、不是轴对称图形,也不是中心对称图形;B、不是轴对称图形,也不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、不是轴对称图形,是中心对称图形。
应选C。
3. 〔2021年3分〕一空间几何体的三视图如下图,那么这个几何体是【】A、圆柱B、圆锥C、球D、长方体【答案】A。
【考点】由三视图判断几何体。
【分析】根据主视图和左视图为矩形可判断出这个几何体是柱体;根据俯视图是圆可判断出这个几何体应该是圆柱。
应选A。
4.〔2021年3分〕如图是一个正四面体,它的四个面都是正三角形,现沿它的三条(sān tiáo)棱AC、BC、CD剪开展成平面图形,那么所得的展开图是【】A、 B、 C、 D、【答案】B。
【考点】几何体的展开图【分析】根据三棱锥的图形特点,可得展开图为B。
应选B。
5.〔2021年3分〕在下面四个图案中,假如不考虑图中的文字和字母,那么不是轴对称图形的是【】【答案】B。
全国各地2021年中考数学分类解析(159套)专题52 平面几何的综合
2021年全国中考数学试题分类解析汇编(159套63专题)专题52:平面几何的综合一、选择题1. (2012湖北鄂州3分)如图,四边形OABC 为菱形,点A 、B 在以O 为圆心的弧上,若OA=2,∠1=∠2,则扇形ODE 的面积为【 】A.π34B.π35C.π2D.π3【答案】A 。
【考点】菱形的性质,等边三角形的判定和性质,扇形面积的计算。
【分析】如图,连接OB .∵OA=OB=OC=AB=BC,∴∠AOB+∠BOC=120°。
又∵∠1=∠2,∴∠DOE=120°。
又∵OA=2,∴扇形ODE 的面积为21202 4 3603ππ⋅⋅=。
故选A 。
2. (2012湖南岳阳3分)如图,AB 为半圆O 的直径,AD 、BC 分别切⊙O 于A 、B 两点,CD 切⊙O 于点E ,AD 与CD 相交于D ,BC 与CD 相交于C ,连接OD 、OC ,对于下列结论:①OD 2=DE•CD; ②AD+BC=CD;③OD=OC;④S 梯形ABCD =CD•OA;⑤∠DOC=90°,其中正确的是【 】A .①②⑤ B.②③④ C.③④⑤ D.①④⑤【答案】A 。
【考点】切线的性质,切线长定理,相似三角形的判定与性质。
1052629【分析】如图,连接OE ,∵AD 与圆O 相切,DC 与圆O 相切,BC 与圆O 相切,∴∠DAO=∠DEO=∠OBC=90°,∴DA=DE,CE=CB ,AD∥BC。
∴CD=DE+EC=AD+BC。
结论②正确。
在Rt△ADO 和Rt△EDO 中,OD=OD ,DA=DE ,∴Rt△ADO≌Rt△EDO(HL )∴∠AOD=∠EOD。
同理Rt△CEO≌Rt△CBO,∴∠EOC=∠BOC。
又∠AOD+∠DOE+∠EOC+∠COB=180°,∴2(∠DOE+∠EOC)=180°,即∠DOC=90°。
结论⑤正确。
∴∠DOC=∠DEO=90°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ABC ABC V :V 2017中考平面几何题目 (北京)28.在等腰直角ABC ∆中,090ACB ∠=,P 是线段BC 上一动点(与点B C 、不重合),连接AP ,延长BC 至点Q ,使得CQ CP =,过点Q 作QH AP ⊥于点H ,交AB 于点M .(1)若PAC α∠=,求AMQ ∠的大小(用含α的式子表示).(2)用等式表示线段MB 与PQ 之间的数量关系,并证明.( CP =) (成都)20. 如图,在ABC ∆中,AB AC =,以AB 为直径作圆O ,分别交BC 于点D ,交CA 的延长线于点E ,过点D 作DH AC ⊥于点H ,连接DE 交线段OA 于点F .(1)求证:DH 是圆O 的切线;(2)若A 为EH 的中点,求EF FD 的值; 23EF FD = (3)若1EA EF ==,求圆O 的半径.( 1,,EA EF OD OF r BD BE BF ====== )1,,1,1EA FD r BF r AF r ===+=-111EA AF r BF FD r r-=⇒=+ ,r = (安徽)23.已知正方形ABCD ,点M 为边AB 的中点.(1)如图1,点G 为线段CM 上的一点,且90AGB ∠=︒,延长AG ,BG 分别与边BC ,CD 交于点E ,F .② 证:BE CF =;②求证:2BE BC CE =⋅.(,CEG CGB CG FC BE ==V:V ) (2)如图2,在边BC 上取一点E ,满足2BE BC CE =⋅,连接AE 交CM 于点G ,连接BG延长交CD于点F,求tan CBF∠的值. (51 tan2CBF-∠=)H(CH=BE,CH/AM=CG/GM=FC/MB,FC=CH=BE,设BC=1,BE=x,得51x2-=,)(福州)24.(12分)如图,矩形ABCD中,AD=8,AB=6,P,Q分为线段AC、BC上一点,且四边形PDRQ是矩形,(1)若PDCV为等腰三角形,求AP;(三种情况,PD=DC时,取PC的中垂线较好。
)(2)若AP=2,求线段RC的长。
(△PND∽△QMP→△PQR∽△ABC∽△PMC,→PRCQ共圆,∠PCR=90°,△KRC∽△PMC,三边符合3:4:5,算出RC=324)NKM(白银)27.如图,AN是Me的直径,//NB x轴,AB交Me于点C.(1)若点()()00,6,0,2,30A N ABN∠=,求点B的坐标;(3,2)(2)若D为线段NB的中点,求证:直线CD是Me的切线.(天水)(BC=62)(广东)25.如题25图,在平面直角坐标系中,O为原点,四边形ABCD是矩形,点A 、C 的坐标分别是和,点D 是对角线AC 上一动点(不与A 、C 重合),连结BD ,作,交x 轴于点E ,以线段DE 、DB 为邻边作矩形BDEF.(1)填空:点B 的坐标为 ;(2)是否存在这样的点D ,使得△DEC 是等腰三角形?若存在,请求出AD 的长度;若不存在,请说明理由;(若D 是AC 之中点时,△DEC 是等腰△,DE=EC, 若DC=EC ,∠ABD=∠ADB=75°,∴AD=AB=23 )(3)①求证:;(ME=CN ,MC=EN ,DM=MC/√3。
DE/EB=DM/EN=) ②设,矩形BDEF 的面积为,求关于的函数关系式(可利用①的结论),并求出的最小值M N(百色)25.已知ABC V 的内切圆O e 与,,AB BC AC 分别相切于点,,D E F ,若»»EFDE =,如图1. (1)判断ABC V 的形状,并证明你的结论;(2)设AE 与DF 相交于点M ,如图2,24,AF FC ==求AM 的长.823AM = (河池)25. 如图,AB 为⊙O 的直径,CD CB ,分别切⊙O 于点CD D B ,,交BA 的延长线于点E ,CO 的延长线交⊙O 于点OG EF G ⊥,于点F .⑵ 证ECF FEB ∠=∠;⑵若46==DE BC ,,求EF 的长.(△BCE 是3、4、5比例,∴△EDO 也是这样的。
OD=3,ED=5,OC=3√5,EF=2√5)(南宁)25.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为H ,连结AC ,过上一点E 作EG ∥AC 交CD 的延长线于点G ,连结AE 交CD 于点F ,且EG=FG ,连结CE .(1)求证:△ECF ∽△GCE ;(∠G=∠ACG=∠AEC )(2)求证:EG 是⊙O 的切线;(3)延长AB 交GE 的延长线于点M ,若tanG=,AH =3,求EM 的值.(2538 ) (广州)24.如图13,矩形ABCD 的对角线AC ,BD 相交于点O ,COD ∆关于CD 的对称图形为CED ∆.(1)求证:四边形OCED 是菱形;(2)连接AE ,若6cm AB =,5BC cm =.①求sin EAD ∠的值;②若点P 为线段AE 上一动点(不与点A 重合),连接OP ,一动点Q 从点O 出发,以1/cm s 的速度沿线段OP 匀速运动到点P ,再以1.5cm /s 的速度沿线段PA 匀速运动到点A ,到达点A 后停止运动.当点Q 沿上述路线运动到点A 所需要的时间最短时,求AP 的长和点Q 走完全程所需的时间.(安顺)25. 如图,AB 是O e 的直径,C 是O e 上一点,OD BC ⊥于点D ,过点C 作O e 的切线,交OD 的延长线于点E ,连接BE .(1)求证:BE 与O e 相切;(2)设OE 交O e 于点F ,若1,3DF BC =.4(3)3π (六盘水)25.如图,MN 是O ⊙的直径,4MN =,点A 在O ⊙上,30AMN =∠°,B 为»AN 的中点,P 是直径MN 上一动点.(1)利用尺规作图,确定当PA PB +最小时P 点的位置(不写作法,但要保留作图痕迹).(2)求PA PB +的最小值.(22)(海南)23.如图11,四边形ABCD 是边长为1的正方形,点E 在AD 边上运动,且不与点A 和点D 重合,连结CE ,过点C 作CF CE ⊥ 交AB 的延长线于点F ,EF 交BC 于点G 。
(1)求证:CDE CBF ∆≅∆;(2)当12DE =时,求CG 的长;(3)连结AG ,在点E 运动过程中,四边形CEAG 能否为平行四边形?若能,求出此时DE 的长;若不能,说明理由。
(不能。
AF=CG,DE=BG=BF ,△GFB 是等腰直角△,∠BFC=45°+45°=90°,矛盾)(杭州)21.如图,在正方形ABCD 中,点G 在对角线BD 上(不与点B ,D 重合),GE ⊥DC 于点E ,GF ⊥BC 于点F ,连结AG 。
(1)写出线段AG ,GE ,GF 长度之间的数量关系,并说明理由;(222AG DE GF =+)(2)若正方形ABCD 的边长为1,∠AGF=105°,求线段BG 的长。
1(326)6- (杭州)23.如图,已知△ABC 内接于⊙O ,点C 在劣弧AB 上(不与点A ,B 重合),点D 为弦BC 的中点,DE ⊥BC ,DE 与AC 的延长线交于点E ,射线AO 与射线EB 交于点F ,与⊙O 交于点G ,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,(1)点点同学通过画图和测量得到以下近似数据: ɑ30° 40° 50° 60° β120° 130° 140° 150° γ 150° 140° 130° 120°猜想:β关于ɑ的函数表达式,γ关于ɑ的函数表达式,并给出证明:(90βα=+ 180y α=- )(2)若γ=135°, CD=3,△ABE 的面积为△ABC 的面积的4倍,求⊙O 半径的长。
(河北)25.平面内,如图,在ABCD Y 中,10AB =,15AD =,4tan 3A =.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90︒得到线段PQ . (1)当10DPQ ∠=︒时,求APB ∠的大小;(100°)(2)当tan :tan 3:2ABP A ∠=时,求点Q 与点B 间的距离(结果保留根号);(10) (3)若点Q 恰好落在ABCD Y 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积(结果保留π).(当BP=8时,面积=16π,当BP=45=20π)(大庆)27.如图,四边形ABCD 内接于圆O ,090=∠BAD ,AC 为直径,过点A 作圆O 的切线交CB 的延长线于点E ,过AC 的三等分点F (靠近点C )作CE 的平行线交AB 于点G ,连结CG .(1)求证:CD AB =;(2)求证:BC BE CD ⋅=2;(3)当3=CG ,29=BE 时,求CD 的长. 28.如图,直角ABC ∆中,A ∠为直角,8,6==AC AB .点R Q P ,,分别在CA BC AB ,,边上同时开始作匀速运动,2秒后三个点同时停止运动,点P 由点A 出发以每秒3个单位的速度向点B 运动,点Q 由点B 出发以每秒5个单位的速度向点C 运动,点R 由点C 出发以每秒4个单位的速度向点A 运动,在运动过程中:(1)求证:APR ∆,BPQ ∆,CQR ∆的面积相等;6(2)t t -(2)求PQR ∆面积的最小值; 218(1)6PQR S t =-+V(3)用t (秒)(20≤≤t )表示运动时间,是否存在t ,使090=∠PQR ,若存在,请直接写出t 的值;若不存在,请说明理由. 存在3223t = (哈尔滨)24.已知:△ACB 和△DCE 都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE ,BD 交于点O ,AE 与DC 交于点M ,BD 与AC 交于点N .(1)如图1,求证:AE=BD ;(2)如图2,若AC=DC ,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形. △ACB 和△DCE ,△ACE 和△BCD ,△ABO 和△DEO ,△ECM 和△BCN (绥化市)28.如图,在矩形ABCD 中,E 为AB 边上一点,EC 平分DEB ∠,F 为CE 的中点,连接,AF BF ,过点E 作//EH BC 分别交,AF CD 于G ,H 两点.(1)求证:DE DC =;(2)求证:AF BF ⊥;()ABF AHF sss V ;V(3)当28AF GF =g 时,请直接写出CE 的长.(),2AEF EGF aa CE EF ==V :VD23.(恩施)如图11,AB 、CD 是O ⊙的直径,BE 是O ⊙的弦,且BE CD ∥,过点C 的切线与EB 的延长线交于点P ,连接BC . (1)求证:BC 平分ABP ∠;∠OCB=∠OBC,∠OCB=∠CBP (2)求证:2PC PB PE =?;(△BCP ~△CBP (3)若4BE BP PC -==,求O ⊙的半径M(黄冈)24.已知:如图所示,在平面直角坐标系xoy 中,四边形OABC 是矩形,4,3OA OC ==.动点P 从点C 出发,沿射线CB 方向以每秒2个单位长度的速度运动;同时,动点Q 从点O 出发,沿x 轴正半轴方向以每秒1个单位长度的速度运动.设点P 、点Q 的运动时间为()t s .(1)当1t s =时,求经过点,,O P A 三点的抛物线的解析式;3(4)4y x x =--(2)当2t s =时,求tan QPA ∠的值;tan QPA ∠=2/3(3)当线段PQ 与线段AB 相交于点M ,且2BM AM =时,求()t s 的值;t=3(4)连接CQ ,当点,P Q 在运动过程中,记CQP ∆与矩形OABC 重叠部分的面积为S ,求S 与t 的函数关系式.重合面积时间为 0t >1233(02)2S t t t =⨯⨯=<≤ ,233(24)(24)2S t t t t =--<≤ ,(黄石)24.(9分)在现实生活中,我们会看到许多“标准”的矩形,如我们的课本封面、A 4的打印纸等,其实这些矩形的长与宽之比都为2:1,我们不妨就把这样的矩形成为“标准矩形”.在“标准矩形”ABCD 中,P 为DC 边上一定点,且CP =BC ,如下图所示.(1)如图①,求证:BA =BP ;(2)如图②,点Q 在DC 上,且DQ =CP ,若G 为BC 边上一动点,当△AGQ 的周长最小时,求GBCG 的值; (3)如图③,已知AD =1,在(2)的条件下,连接AG 并延长交DC 的延长线于点F ,连接BF ,T 为BF 的中点,M 、N 分别为线段PF 与AB 上的动点,且始终保持PM =BN ,请证明:△MNT 的面积S 为定值,并求出这个定值. 21 2, 21222CG GB --== (3 ) 24MNT MNBF MTF BNT S S S S NB PN m=--===V V V湖北荆门24.已知:如图所示,在平面直角坐标系xoy 中,090,25,20C OB OC ∠===.若点M 是边OC 上的一个动点(与点,O C 不重合),过点M 作//MN OB 交BC 于点N .(1)求点C 的坐标;(16,-12)(2)当MCN ∆的周长与四边形OMNB 的周长相等时,求CM 的长;X=120/7(3)在OB 上是否存在点Q ,使得MNQ ∆为等腰直角三角形?若存在,请求出此时MN 的长;若不存在,请说明理由.(3)M 、N 是直角时:MN=300/37,Q 是直角时:MN=600/49湖北十堰23.已知AB 为O e 的直径,BC AB ⊥于B ,且BC AB =,D 为半圆O e 上的一点,连接BD 并延长交半圆O e 的切线AE 于E .(1)如图1,若CD CB =,求证:CD 是O e 的切线;(2)如图2,若F 点在OB 上,且CD DF ⊥,求AE AF的值.24.已知O 为直线MN 上一点,OP MN ⊥,在等腰Rt ABO ∆中,90BAO ∠=︒,//AC OP 交OM 于C ,D 为OB 的中点,DE DC ⊥交MN 于E .(1)如图1,若点B 在OP 上,则①AC = OE (填“<”,“=”或“>”);②线段CA 、CO 、CD 满足的等量关系式是 ;222CA CO CD +=(2)将图1中的等腰Rt ABO ∆绕O 点顺时针旋转α(045α︒<<︒),如图2,那么(1)中的结论②是否成立?请说明理由;不成立2222CA CO OA CD +=>(A 、D 、O 、C 四点共圆,OA 是直径,CD 是弦)(3)将图1中的等腰Rt ABO ∆绕O 点顺时针旋转α(4590α︒<<︒),请你在图3中画出图形,并直接写出线段CA 、CO 、CD 满足的等量关系式 .湖北随州24.如图,分别是可活动的菱形和平行四边形学具,已知平行四边形较短的边与菱形的边长相等.(1)在一次数学活动中,某小组学生将菱形的一边与平行四边形较短边重合,摆拼成如图1所示的图形,AF 经过点C ,连接DE 交AF 于点M ,观察发现:点M 是DE 的中点.下面是两位学生有代表性的证明思路:思路1:不需作辅助线,直接证三角形全等;思路2:不证三角形全等,连接BD 交AF 于点H .…(中位线方法)请参考上面的思路,证明点M 是DE 的中点(只需用一种方法证明);(2)如图2,在(1)的前提下,当∠ABE=135°时,延长AD 、EF 交于点N ,求AM/NE的值;(3)在(2)的条件下,若AF/AB =k(k的常数),直接用含k的代数式表示AM/MF的值.(2)AM/HE= AD/HD= 1/2,HE=√2 NE,∴AM/HE=AM/√2NE=1/2,∴AM/NE=√2/2(3)AF/AB =(AC+2MF)/AC/√2= √2(AC+2MF)/AC =kMF/AC=(√2k-2)/4, AC / MF= 4/(√2k-2)AM/MF=(AC+CM)/ MF= AC/ MF+1=4/(√2k-2)+1=(√2k+2)/(√2k-2)H湖北天水25.△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2,CQ=9时BC的长.△BPE∽△CEQ (∠B=∠C=45°,∠BEP=∠CQE=45°-∠PEQ)BC=6√2湖北聊城24.如图,Oe是ABCe于点D,∆的外接圆,O点在BC边上,BAC∠的平分线交O连接,BD CD,过点D作BC的平行线,与AB的延长线相交于点P.(1)求证:PD是Oe的切线;(2)求证:PBD DCA:;(∠DAC=∠BDP,∠ADC=∠P)∆∆(3)当6,8==时,求线段PB的长.AB AC.2()25284AC DC AC BP BD DC BD PBBD DC BD PB AC =⇒⋅=⋅⋅==== 湖北孝感23. 如图,O e 的直径10,AB = 弦6,AC ACB =∠的平分线交O e 于,D 过点D 作DE AB P 交CA 延长线于点E ,连接,.AD BD(1)由AB ,BD ,»AD 围成的曲边三角形的面积是 ; (2)求证:DE 是O e 的切线;(3)求线段DE 的长。