北师大版数学高一必修1课时达标训练(十五)
高中数学 课时达标训练(七)北师大版必修1-北师大版高一必修1数学试题
课时达标训练(七) 一、选择题1.函数y =|x +1|的图像是( )2.设函数f (x )=⎩⎪⎨⎪⎧ -1 x >0,0 x =0,1 x <0,则f (f (f (-1)))=( ) A .0 B .1C .-1 D .23.已知f ⎝ ⎛⎭⎪⎫1x =11+x,那么函数f (x )的解析式及定义域正确的是( ) A .f (x )=x 1+x(x ≠-1) B .f (x )=x1+x(x ≠-1且x ≠0) C .f (x )=11+xD .f (x )=1+x4.(某某高考)小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶. 与以上事件吻合得最好的图像是( )二、填空题5.已知函数f (x )=⎩⎪⎨⎪⎧ 3x +2,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a =________.6.设f (x )满足f (-x )+2f (x )=x +3,则f (1)=________.7.已知a ,b 为常数,若f (x )=x 2+4x +3,f (ax +b )=x 2+10x +24,则5a -b =________.8.已知f (x )=⎩⎪⎨⎪⎧ x -3 x ≥9,f f x +4 x <9,则f (7)=______.三、解答题9.已知函数y =f (x )的图像如图所示,求f (x )的解析式.10.甲、乙两车同时沿某公路从A 地驶往300 km 外的B 地,甲车先以75 km/h 的速度行驶,在到达AB 中点C 处停留2 h 后,再以100 km/h 的速度驶往B 地,乙车始终以速度v 行驶.(1)请将甲车离A 地的距离x (km)表示为离开A 地时间t (h)的函数,并画出这个函数图像;(2)若两车在途中恰好相遇两次(不包括A 、B 两地),试确定乙车行驶速度v 的取值X 围.答案1.解析:选A y =|x +1|=⎩⎪⎨⎪⎧ x +1,x ≥-1,-x -1,x <-1,由解析式可知,A 项符合题意.2.解析:选B ∵f (-1)=1,∴f (f (-1))=f (1)=-1.∴f (f (f (-1)))=f (-1)=1.3.解析:选B 令t =1x ,则x =1t(t ≠0), ∴f (t )=11+1t=t t +1(t ≠-1). ∴f (x )=xx +1(x ≠0且x ≠-1).4.解析:选C 出发时距学校最远,先排除A ,中途堵塞停留,距离没变,再排除D ,堵塞停留后比原来骑得快,因此排除B ,故选C.5.解析:f (0)=2,f (f (0))=f (2)=4+2a =4a ,∴a =2.答案:26.解析:令x =1得,f (-1)+2f (1)=4,再令x =-1得,f (1)+2f (-1)=2.两式联立消去f (-1)得,f (1)=2.答案:27.解析:由f (x )=x 2+4x +3,f (ax +b )=x 2+10x +24,得(ax +b )2+4(ax +b )+3=x 2+10x +24,即a 2x 2+2abx +b 2+4ax +4b +3=x 2+10x +24. 比较系数,得⎩⎪⎨⎪⎧ a 2=1,2ab +4a =10,b 2+4b +3=24,解得⎩⎪⎨⎪⎧ a =-1,b =-7或⎩⎪⎨⎪⎧ a =1,b =3,则5a -b =2.答案:28.解析:f (7)=f (f (7+4))=f (f (11))=f (11-3)=f (8)=f (f (8+4))=f (f (12))=f (12-3)=f (9)=9-3=6.答案:69.解:当x ≤-2时,图像为一条射线,过(-2,0)与(-4,3),设y =ax +b ,将两点代入,得-2a +b =0,及-4a +b =3,解得a =-32,b =-3, 所以它的解析式为y =-32x -3(x ≤-2); 当-2<x <2时,图像为一条线段(不包括端点),它的解析式为y =2(-2<x <2); 当x ≥2时,图像为一条射线,过(2,2)与(3,3),设y =cx +d ,将两点代入,得2c +d =2,3c +d =3,解得c =1,d =0,所以它的解析式为y =x (x ≥2).综上得f (x )=⎩⎪⎨⎪⎧ -32x - 3 x ≤-2, 2 -2<x <2,x x ≥2.10.解:(1)x =⎩⎪⎨⎪⎧ 75t ,0≤t <2,150,2≤t ≤4,150+t -4×100,4<t ≤5.5.它的图像如下图①所示;(2)由已知,乙车离开A 地的距离x (km)表示为离开A 地的时间t (h)的函数为x =vt ⎝ ⎛⎭⎪⎫0≤t ≤300v ,其图像是一条线段. 由图像知,当此线段经过(4,150)时,v =752(km/h); 当此线段经过点(5.5,300)时,v =60011(km/h). ∴当752<v <60011时,两车在途中相遇两次.(如上图②).。
【北师大版】高中数学必修1:全册配套同步习题(打包37份,含答案)
第一章集合1集合的含义与表示第1课时集合的含义课时过关·能力提升1给出下列说法:①地球周围的行星能构成一个集合;②实数中不是有理数的所有数能构成一个集合;③集合A为{1,2,3},集合B为{1,3,2},是不同的集合.其中正确的个数是()A.0B.1C.2D.3解析:①是错误的,因为“周围”是个模糊的概念,不满足集合元素的确定性.②是正确的,虽然满足条件的数有无数多个,但任给一个元素都能判断出其是否属于这个集合.③是错误的,因为集合中的元素是无序的.答案:B2已知集合M中的元素满足x=3k-1,k∈Z,则下列表示正确的是()A.-1∉MB.-11∈MC.3k2-1∈MD.-34∉M解析:A错,当k=0时,-1∈M;B错,若3k-1=-11,则k=-∉Z;C正确,因为3k2-1=3k-1,解得k=0或k=1,满足条件;D错,当k=-10时,-34∈M.故选C.答案:C3集合A的元素y满足y=x2+1,集合B的元素(x,y)满足y=x2+1(A,B中x∈R,y∈R).下列选项中元素与集合的关系都正确的是()A.2∈A,且2∈BB.(1,2)∈A,且(1,2)∈BC.2∈A,且(3,10)∈BD.(3,10)∈A,且2∈B答案:C4已知集合A含有两个元素a-3和2a-1,若a∈A,则实数a的值是()A.-3B.0或1C.1D.-1解析:由于a∈A,则a=a-3或a=2a-1.若a=a-3,则有-3=0,不成立;若a=2a-1,则a=1,此时集合A 中的两个元素是-2,1,符合题意.答案:C5已知集合M中含有3个元素0,x2,-x,则x满足的条件是()A.x≠0B.x≠-1C.x≠0且x≠-1D.x≠0且x≠1解析:由-解得x≠0且x≠-1.故选C.-答案:C6集合A中有3个元素1,2,3,集合B中有2个元素4,5,设集合M中的元素x满足x=a+b,a ∈A,b∈B,则M中元素的个数为()A.3B.4C.5D.6解析:因为集合A为1,2,3,集合B为4,5,集合M中的元素满足x=a+b,a∈A,b∈B,所以a+b的值可能为1+4=5,1+5=6,2+4=6,2+5=7,3+4=7,3+5=8,所以集合M中的元素有5,6,7,8,共4个,故选B.答案:B7若已知-5是x2-ax-5=0的根,集合M中的元素为方程x2-4x-a=0的根,则集合M中所有元素之和为.解析:把-5代入方程x2-ax-5=0,得a=-4,将a=-4代入方程x2-4x-a=0得x2-4x+4=0,故集合M中的元素即为2.因此所有元素之和为2.答案:28设a,b为非零实数,则x=的所有值组成的集合中的元素为.解析:当a<0,b<0时,ab>0,则x=-1-1+1=-1;当a<0,b>0时,ab<0,则x=-1+1-1=-1;当a>0,b>0时,ab>0,则x=1+1+1=3;当a>0,b<0时,ab<0,则x=1-1-1=-1.故x=-1或x=3.所以由x的所有值构成的集合中的元素为-1,3.答案:-1,39已知集合A的元素满足条件x=m+n,n,m∈Z.,x2=-,判断x1,x2与集合A之间的关系;(1)设x1=-(2)任取x3,x4∈A,判断x3+x4与集合A之间的关系.=-,∴x1∉A,解(1)∵x1=-∵x2=-=-1+2,∴x2∈A.(2)x3,x4∈A,设x3=m1+n1,x4=m2+n2(m1,n1,m2,n2∈Z).则x3+x4=m1+n1+m2+n2=(m1+m2)+(n1+n2),∵m1,n1,m2,n2∈Z,∴m1+m2,n1+n2∈Z,∴x3+x4∈A.10设集合A的元素为2,3,a2+2a-3,集合B的元素为|a+3|,2.已知5∈A,且5∉B,求a的值.解∵5∈A,∴a2+2a-3=5,解得a=2或a=-4.又5∉B,∴|a+3|≠5,解得a≠2,且a≠-8.∴a=-4.★11已知方程ax2-3x-4=0的解组成的集合为A.(1)若A中有两个元素,求实数a的取值范围.(2)若A中至多有一个元素,求实数a的取值范围.解(1)因为A中有两个元素,所以方程ax2-3x-4=0有两个不等的实数根,所以即a>-且a≠0.所以实数a的取值范围为a>-,且a≠0.(2)当a=0时,由-3x-4=0得x=-;当a≠0时,若关于x的方程ax2-3x-4=0有两个相等的实数根,则Δ=9+16a=0,即a=-;若关于x的方程无实数根,则Δ=9+16a<0,即a<-,故所求的a的取值范围是a≤-或a=0.∈A.★12已知集合A的元素全为实数,且满足当a∈A时,-(1)若2∈A,则A中一定还有哪些元素?(2)0是不是集合A中的元素?请你设计一个实数a∈A,再求出A中的所有元素.(3)根据(1)(2),你能得出什么结论?,计算可得,解(1)当2∈A时,依次代入-=-3∈A,-=-∈A,--∈A,=2∈A,……-结果循环出现,故A中一定还有-3,-.(2)0不是集合A中的元素.若0∈A,则-=1∈A,而此时-没有意义,与条件-∈A矛盾,故0不是集合A中的元素.若a=3,则集合A的元素为3,-2,-.(3)根据(1)(2)可得出如下结论:A中不含0,1,-1;若a∈A,则其负倒数也属于A.第2课时集合的表示课时过关·能力提升1集合{1,3,5,7,9}用描述法表示应是()A.{x|x是不大于9的非负奇数}B.{x|x≤9,x∈N}C.{x|1≤x≤9,x∈Z}D.{x|0≤x≤9,x∈N}解析:B,D只说明集合中的元素是小于等于9的自然数;C只说明集合中的元素是小于等于9的正整数,B,C,D都没指明是奇数,所以只有A正确,故选A.答案:A2已知集合M={x∈N+|-≤x≤},则下列说法中正确的是()A.M是空集B.∈MC.该集合是有限集D.1∉M解析:由已知得M={1},因此M是有限集.答案:C3下列集合中,含义不同于另外三个集合的是()A.{x|x=1}B.{x|x2=1}C.{1}D.{y|(y-1)2=0}答案:B4由方程组--的解组成的集合是()A.(1,1)B.{1}C.{(1,1)}D.{1,1}解析:由--解得方程组的解组成的集合是{(1,1)},故选C.答案:C★5若P={x|x=2k,k∈Z},Q={x|x=2k+1,k∈Z},R={x|x=4k+1,k∈Z},且a∈P,b∈Q,则有()A.a+b∈PB.a+b∈QC.a+b∈RD.a+b不属于P,Q,R中的任何一个解析:由题意知,P为偶数集,Q为奇数集,R是除以4余1的数构成的集合,是奇数的一部分,而a+b是奇数与偶数之和,仍为奇数,故选B.答案:B6下列集合中不是空集的是()A.{x|x<0且x>1}B.{x∈N|x2-2=0}C.{x∈R|x2-x+1=0}D.{(x,y)|x2+y2=0}解析:A选项中集合是空集;B选项中,由x2-2=0得x=± ∉N,所以是空集;C选项中判别式Δ=1-4=-3<0,方程无解,所以是空集;只有D选项不是空集,是集合{(0,0)},故选D.答案:D7下列命题中正确的是(只填序号).①0∈{⌀};②由1,2,3组成的集合可表示为{1,2,3},也可表示为{3,2,1};③方程(x-1)2(x-2)=0的所有解的集合可表示为{1,1,2};④集合{x|2<x<5}可以用列举法表示.解析:①中的{⌀}中的元素为⌀,所以0∉{⌀},故①不正确;由元素的无序性可知②正确;③中的集合不满足互异性,故③不正确;④中的集合不能用列举法表示,故④不正确.答案:②8给出下列说法:①在直角坐标平面内,第一、三象限的点的集合为{(x,y)|xy>0};②方程-+|y+2|=0的解集为{-2,2};③集合{(x,y)|y=1-x}与{x|y=1-x}是同一集合.其中正确序号是.解析:在直角坐标平面内,第一、三象限的点的横、纵坐标是同号的,且集合中的代表元素为点(x,y),故①正确;方程-+|y+2|=0等价于-即-解为有序实数对(2,-2),即解集为{(2,-2)}或-,故②不正确;集合{(x,y)|y=1-x}的代表元素是(x,y),集合{x|y=1-x}的代表元素是x,一个是实数对,一个是实数,故这两个集合不相同.③不正确,综上所述,只有①正确.答案:①9已知集合A={x|-3<x<3,x∈Z},B={(x,y)|y=x2+1,x∈A},则集合B用列举法表示是.解析:易求集合A={-2,-1,0,1,2},则集合B={(-2,5),(-1,2),(0,1),(1,2),(2,5)}.答案:{(-2,5),(-1,2),(0,1),(1,2),(2,5)}10用列举法表示下列集合:(1)不大于10的非负偶数组成的集合;(2)方程x2=x的所有实数解组成的集合;(3)直线y=2x+1与y轴的交点组成的集合.分析::题目中要求用列举法表示集合,需先辨析集合中元素的特征及满足的性质,再一一列举出满足条件的元素.解(1)因为不大于10是指小于或等于10,非负是大于或等于0的意思,所以不大于10的非负偶数集是{0,2,4,6,8,10}.(2)方程x2=x的实数解是x=0或x=1,所以方程的实数解组成的集合为{0,1}.(3)将x=0代入y=2x+1,得y=1,即交点是(0,1),故直线y=2x+1与y轴的交点组成的集合是{(0,1)}.11若一数集的任一元素的倒数仍在该集合中,则称该数集为“可倒数集”.(1)判断集合A={-1,1,2}是否为可倒数集.(2)试写出一个含3个元素的可倒数集.解(1)由于2的倒数为不在集合A中,故集合A不是可倒数集.(2)若a∈A,则必有∈A,现已知集合A中含有3个元素,故必有一个元素有a=,即a=±1,故可以取集合A=或-或等.★12对于a,b∈N+,现规定:a*b=与的奇偶性相同与的奇偶性不同集合M={(a,b)|a*b=36,a,b∈N+}.(1)用列举法表示a,b奇偶性不同时的集合M;(2)当a与b的奇偶性相同时,集合M中共有多少个元素?解(1)当a,b的奇偶性不同时,a*b=a×b=36,则满足条件的(a,b)有(1,36),(3,12),(4,9),(9,4),(12,3),(36,1),故集合M可表示为M={(1,36),(3,12),(4,9),(9,4),(12,3),(36,1)}.(2)当a与b的奇偶性相同时,a*b=a+b=36,由于两奇数之和为偶数,两偶数之和仍为偶数,故36=1+35=2+34=3+33=…=17+19=18+18=19+17=…=35+1,所以当a,b的奇偶性相同时,这样的元素共有35个.2集合的基本关系课时过关·能力提升1已知集合A={x|-1<x<2},B={x|-1<x<1},则()A.A⫋BB.B⫋AC.A=BD.B⊈A解析:由A={x|-1<x<2},而B={x|-1<x<1},作数轴如图,故B⫋A.答案:B2已知集合A={1,2},B={1,2,3,4,5},且A⫋M⊆B.则符合条件的集合M的个数为()A.6B.7C.8D.不确定解析:∵A⫋M,∴M中一定含有A的全部元素1,2,且至少含有一个不属于A的元素.又M⊆B,∴M中除有1,2外,还有3,4,5中的1个,2个或3个,故M的个数即为{3,4,5}的非空子集,有7个.答案:B3集合M={-1,0,1}和N={x|x2+x=0}的关系用Venn图可表示为()解析:∵M={-1,0,1},N={0,-1},∴N⫋M,故选B.答案:B4若集合A={1,3,x},B={x2,1},且B⊆A,则满足条件的实数x的个数是()A.1B.2C.3D.4解析:由B⊆A,知x2=3或x2=x,解得x=±或x=0或x=1.当x=1时集合A,B都不满足元素的互异性,故x=1舍去.答案:C5已知集合A={1,2,3,4},B={(x,y)|x∈A,y∈A,xy∈A},则集合B的所有真子集的个数为()A.512B.256C.255D.254答案:C★6设集合M=∈,N=+∈,则()A.M=NB.M⫋NC.M⫌ND.M⊈N解析:∵集合M中,x=(k∈Z),集合N中,x=(k∈Z),∴M中的x表示的奇数倍,N中的x表示的整数倍.∴M⫋N.答案:B7已知集合A=--,B={(x,y)|y=3x+b},若A⊆B,则实数b=.解析:由已知A={(0,2)},因为A⊆B,所以2=3×0+b,解得b=2.答案:28设集合M={(x,y)|x+y<0,xy>0}和P={(x,y)|x<0,y<0},则M与P的关系为.答案:M=P9已知A={x|x2-4=0},B={x|ax-6=0},且B是A的子集.(1)求a的取值集合M;(2)写出集合M的所有非空真子集.解(1)由已知得A={2,-2},∵B⊆A,∴B=⌀或{2}或{-2}.①当B=⌀时,方程ax-6=0无解,得a=0;②当B={2}时,方程ax-6=0的解为x=2,得2a-6=0,所以a=3;③当B={-2}时,方程ax-6=0的解为x=-2,得-2a-6=0,所以a=-3.∴a的取值集合M={0,3,-3}.(2)M={0,3,-3}的非空真子集为{0},{3},{-3},{0,3},{0,-3},{3,-3}.10已知集合A={2,4,6,8,9},B={1,2,3,5,8},非空集合C是这样一个集合:其各元素都加2后,就变为A的一个子集;其各元素都减2后,则变为B的一个子集,求集合C.解逆向操作,A中元素减2得0,2,4,6,7,则C中元素必在其中;B中元素加2得3,4,5,7,10,则C中元素必在其中,所以C中元素只能是4或7.所以C={4}或{7}或{4,7}.★11已知集合A={x|0<x-a≤5},B=-.(1)若A⊆B,求实数a的取值范围.(2)若B⊆A,求实数a的取值范围.(3)集合A与B能否相等?若能,求出a的值;若不能,请说明理由.解A={x|a<x≤a+5},B=-.(1)若A⊆B,则-解得∴0≤a≤1,即所求a的取值范围是0≤a≤1.(2)若B⊆A,则-≥6,或-即a≤-12或∴a≤-12.即所求a的取值范围是a≤-12.(3)若A=B,即{x|a<x≤a+5}=-,∴-即不可能同时成立.∴A≠B.§3集合的基本运算3.1交集与并集课时过关·能力提升1已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中的元素个数为()A.5B.4C.3D.2答案:D2若集合A={-1,1},B={x|mx=1},且A∪B=A,则m的值为()A.1B.-1C.1或-1D.1或-1或0解析:∵A∪B=A,∴B⊆A.当B=⌀时,m=0;当B={-1}时,m=-1;当B={1}时,m=1.故选D.答案:D3已知集合M={x|-2≤x-1≤2}和N={x|x=2k-1,k∈N+}的关系的Venn图如图,则阴影部分所示的集合的元素共有()A.3个B.2个C.1个D.无穷多个解析:M={x|-1≤x≤3},阴影部分所示的集合为M∩N={1,3}.故阴影部分所示的集合中共有2个元素.答案:B4已知集合A={(x,y)|x,y为实数,且x2+y2=1},B={(x,y)|x,y为实数,且x+y=1},则A∩B的元素个数为()A.4B.3C.2D.1解析:联立两集合中的函数关系式由x+y=1得x=1-y,代入x2+y2=1得y2-y=0即y(y-1)=0,解得y=0或y=1,把y=0代入x2+y2=1解得x=1,把y=1代入x2+y2=1解得x=0,所以方程组的解为或有两组解,则A∩B的元素个数为2.故选C.答案:C5已知集合A={1,2,3},B∩A={3},B∪A={1,2,3,4,5},则集合B的子集的个数为()A.6B.7C.8D.9答案:C6设集合A={(x,y)|y=x2-1},B={(x,y)|y=3x-3},则A∩B=.解析:A∩B=--=或={(1,0),(2,3)}.答案:{(1,0),(2,3)}7已知集合A={x|x≤-2,或x>5},B={x|1<x≤m},若A∩B={x|5<x≤7},则m=.解析:将集合A和集合A∩B用数轴表示出来,如图,要使A∩B={x|5<x≤7},则B={x|1<x≤m}={x|1<x≤7}.∴m=7.答案:78某班共有30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为.解析:设两者都喜欢的有x人,则只喜欢篮球的有(15-x)人,只喜欢乒乓球的有(10-x)人.故(15-x)+(10-x)+x+8=30,解得x=3,所以15-x=12,即所求人数为12.答案:129已知集合A={-4,2a-1,a2},B={a-5,1-a,9},分别求满足下列条件的a的值.(1)9∈A∩B;(2){9}=A∩B.解(1)∵9∈A∩B,且9∈B,∴9∈A,∴2a-1=9或a2=9,解得a=5或a=±3.检验,知a=5或a=-3.(2)∵{9}=A∩B,∴9∈A∩B,∴由(1)知,a=5或a=-3.检验,知a=-3.10已知集合A={x|-2≤x≤5},集合B={x|m+1≤x≤2m-1},且A∪B=A,试求实数m的取值范围.分析::由A∪B=A,得B⊆A,则有B=⌀,或B≠⌀,因此对集合B分类讨论.解∵A∪B=A,∴B⊆A.又A={x|-2≤x≤5}≠⌀,∴B=⌀或B≠⌀.当B=⌀时,有m+1>2m-1,∴m<2.当B≠⌀时,如图,由数轴可得解得2≤m≤3.综上可得,实数m的取值范围是{m|m≤3}.★11为完成一项实地测量任务,夏令营的同学们成立了一支测绘队,需要24人参加测量,20人参加计算,16人参加绘图.测绘队的成员中有许多同学是多面手:其中在参加两项工作的人中,有8人既参加了测量又参加了计算,有6人既参加了测量又参加了绘图,有4人既参加了计算又参加了绘图;另有一些人三项工作都参加了.请问这个测绘队至少有多少人?解由题意可得,测量目前有8+6=14人参加,一共需要24人,所以还差10人;计算目前有8+4=12人参加,一共需要20人,所以还差8人;绘图目前有6+4=10人参加,一共需要16人,所以还差6人,若三项都参加的有x(x≤6)人,则只参加测量的有(10-x)人,只参加计算的有(8-x)人,只参加绘图的有(6-x)人,所以总人数就是x+8+6+4+(10-x)+(8-x)+(6-x)=42-2x≥30,当且仅当x=6时等号成立.由以上分析:可知,三项都参加的有6人时,测绘队总人数最少,且最少为30人.答:这个测绘队至少有30人.★12已知集合A={x|x2-3x+2=0},B={x|x2-ax+a-1=0},C={x|x2-mx+2=0},且A∪B=A,A∩C=C,求实数a,m.分析:根据并集、交集的性质转化为B⊆A,C⊆A,而A={1,2},从而转化为B,C中的方程的根的问题,注意运用分类讨论的思想方法.解由x2-3x+2=0,得x=1或x=2,故A={1,2},因为A∪B=A,所以B⊆A,故B有四种情况:⌀,{1},{2},{1,2}.因为x2-ax+a-1=(x-1)[x-(a-1)],所以必有1∈B,因此a-1=1或a-1=2,解得a=2或a=3.又因为A∩C=C,所以C⊆A,故C有四种情况:⌀,{1},{2},{1,2}.①若C=⌀,则关于x的方程x2-mx+2=0没有实数根,由Δ=m2-8<0,得-2<m<2;②若C={1},则关于x的方程x2-mx+2=0有两个相等的实数根为1,所以很显然不成立;③若C={2},同②,也不成立;④若C={1,2},则解得m=3.综上所述,a=2或a=3;m=3或-2<m<2.3.2全集与补集课时过关·能力提升1已知集合A,B,C为非空集合,M=A∩C,N=B∩C,P=M∪N,则一定有()A.C∩P=CB.C∩P=PC.C∩P=C∪PD.C∩P=⌀答案:B2已知集合U={x|x是小于6的正整数},A={1,2},B∩(∁U A)={4},则∁U(A∪B)=() A.{3,5} B.{3,4}C.{2,3}D.{2,4}解析:U={1,2,3,4,5},∵B∩(∁U A)={4},∴4∈B.∴∁U(A∪B)={3,5}.答案:A3已知全集为U,集合M,N满足M∪N=U,则下列关系中一定正确的是()A.N⊆∁U MB.M∩N=⌀C.∁U M⊆ND.(∁U M)∪(∁U N)=U解析:借助Venn图易知选C.答案:C4已知全集U={1,2,3,4,5},若A={x|x2-3x+2=0},B={x|x=2a,a∈A}.则集合∁U(A∪B)中元素的个数为()A.1B.2C.3D.4解析:∵A={1,2},B={2,4},∴A∪B={1,2,4}.∴∁U(A∪B)={3,5},共有2个元素.答案:B★5设全集U=R,集合A={x|x≤1,或x≥3},集合B={x|k<x<k+1,k∈R},且B∩(∁U A)≠⌀,则k 的取值范围是()A.k<0或k>2B.2<k<3C.0<k<3D.-1<k<2解析:由题意知,∁U A={x|1<x<3},且k<k+1,故B≠⌀.又B∩(∁U A)≠⌀,结合图形,故k需满足解得0<k<3.答案:C6已知全集U=R,集合A={x|x≥0},B={y|y>1},则∁U A与∁U B的关系是.解析:由全集、补集的概念,得∁U A={x|x<0},∁U B={y|y≤1},显然∁U A⫋∁U B.答案:∁U A⫋∁U B7设集合A={x|x+m≥0},B={x|-2<x<4},全集U=R,且(∁U A)∩B=⌀,则实数m的取值范围为.解析:∵A={x|x≥-m},∴∁U A={x|x<-m},∵B={x|-2<x<4},(∁U A)∩B=⌀,∴-m≤-2,即m≥2,∴m的取值范围是{m|m≥2}.答案:{m|m≥2}8已知U为实数集,集合M={x|0<x<2},N={x|y=-},则M∩(∁U N)=.解析:N={x|x-1≥0}={x|x≥1},∁U N={x|x<1},则M∩(∁U N)={x|0<x<1}.答案:{x|0<x<1}9已知集合A={x|4≤x<6},B={x|3<x<15},求:(1)A∪B;(2)(∁R A)∩B.解(1)A∪B={x|4≤x<6}∪{x|3<x<15}={x|3<x<15}.(2)∵∁R A={x|x<4,或x≥6},∴(∁R A)∩B={x|3<x<4,或6≤x<15}.10已知集合A={x|x2+ax+12b=0}和B={x|x2-ax+b=0},满足(∁R A)∩B={2},A∩(∁R B)={4},求实数a,b的值.解由条件(∁R A)∩B={2}和A∩(∁R B)={4},知2∈B,但2∉A;4∈A,但4∉B.-将x=2和x=4分别代入B,A两集合中的方程得即-解得a=,b=-即为所求.★11已知A={x|x2-2x-8=0},B={x|x2+ax+a2-12=0,a∈R}.若B∪A≠A,求实数a的取值范围.分析:本题主要考查补集思想的应用,解题的关键是从求解问题的反面考虑,采用“正难则反”的解题策略.解设B∪A=A,则B⊆A,又因为A={x|x2-2x-8=0}={-2,4},所以集合B有以下三种情况:①当B=⌀时,Δ=a2-4(a2-12)<0,即a2>16,所以a<-4或a>4;②当B是单元素集时,Δ=a2-4(a2-12)=0,所以a=-4或a=4.若a=-4,则B={2}⊈A;若a=4,则B={-2}⊆A;③当B={-2,4}时,-2,4是关于x的方程x2+ax+a2-12=0的两个根,所以----所以a=-2.综上可得,B∪A=A时,a的取值范围为a<-4或a=-2或a≥4.所以B∪A≠A的实数a的取值范围为-4≤a<4,且a≠-2.第一章检测(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1设集合S={x|x≥2},T={x|x≤5},则S∩T=()A.(-∞,5]B.[2,+∞)C.(2,5)D.[2,5]答案:D2已知集合A={-2,0,2},B={x|x2-x-2=0},则A∩B=()A.⌀B.{2}C.{0}D.{-2}解析:易得B={-1,2},则A∩B={2},故选B.答案:B3设全集U={1,2,3,4,5},集合A={1,2},则∁U A=()A.{1,2}B.{3,4,5}C.{1,2,3,4,5}D.⌀解析:由题意得∁U A={3,4,5},故选B.答案:B4已知集合M={1,2,3},N={2,3,4},则()A.M⊆NB.N⊆MC.M∩N={2,3}D.M∪N={1,4}解析:由集合的交集、并集及子集的概念,可知M∩N={2,3}.答案:C5设全集U=R,集合A=-,B={x|x2-x-6=0},则阴影部分所表示的集合是()A.{3}B.{-2}C.{3,-2}D.{⌀}解析:由Venn图可知阴影部分对应的集合为B∩(∁U A),∵集合A=-={3},B={x|x2-x-6=0}={-2,3},∴B∩(∁U A)={-2},故选B.答案:B6设集合A={a,b},集合B={a+1,5},若A∩B={2},则A∪B等于()A.{1,2}B.{1,5}C.{2,5}D.{1,2,5}解析:由题意A∩B={2},可得a=1,b=2,则集合A={1,2},集合B={2,5}.A∪B={1,2}∪{2,5}={1,2,5},故选D.答案:D7已知集合A={x|a-1≤x≤a+2},B={x|3<x<5},则能使A⊇B成立的实数a的取值范围是()A.{a|3<a≤4}B.{a|3≤a≤4}C.{a|3<a<4}D.⌀解析:∵A⊇B,∴a-1≤3,且a+2≥5.∴3≤a≤4.故选B.答案:B8已知集合A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3},(∁U B)∩A={9},则A=() A.{1,3} B.{3,7,9} C.{3,5,9} D.{3,9}解析:因为A∩B={3},所以3∈A,又因为∁U B∩A={9},所以9∈A,所以选D.除此之外,本题也可以用Venn图的方法帮助理解,Venn图如图.答案:D9已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}解析:∵A∪B={x|x≤0,或x≥1},∴∁U(A∪B)={x|0<x<1}.故选D.答案:D10经统计知,某小区有小汽车的家庭有35家,有电动自行车的家庭有65家,既有小汽车又有电动自行车的家庭有20家,则小汽车和电动自行车至少有一种的家庭数为() A.60 B.80 C.100 D.120解析:∵某小区有小汽车的家庭有35家,有电动自行车的家庭有65家,既有小汽车又有电动自行车的家庭有20家,∴画出Venn图,结合图形知,小汽车和电动自行车至少有一种的家庭数为15+20+45=80,故选B.答案:B11若集合A={-1,1},B={x|mx=1},且A∪B=A,则m的值为()A.1B.-1C.1或-1D.1或-1或0解析:当m=0时,B=⌀,满足A∪B=A,即m=0;当m≠0时,B=,由A∪B=A,得=1或-1,即m=1或-1.故m=1或-1或0.答案:D12设I={1,2,3,4},A与B是I的子集,若A∩B={1,3},则称(A,B)为一个“理想配集”.那么符合此条件的“理想配集”的个数是(规定(A,B)与(B,A)是两个不同的“理想配集”)()A.4B.8C.9D.16解析:对子集A分类讨论:当A是两元素集{1,3}时,B可以为{1,2,3,4},{1,3,4},{1,2,3},{1,3},共4种结果;当A是三元素集{1,2,3}时,B可以取{1,3,4},{1,3},共2种结果;当A是三元素集{1,3,4}时,B可以为{1,2,3},{1,3},共2种结果;当A是四元素集{1,2,3,4}时,此时B取{1,3},有1种结果.综上所述,共有4+2+2+1=9种结果,故选C.答案:C二、填空题(本大题共4小题,每小题5分,共20分.把答案:填在题中的横线上)13若2∉{x|x-a<0},则实数a的取值集合是.解析:由题意知,{x|x-a<0}={x|x<a},∵2∉{x|x-a<0},∴a≤2,∴实数a的取值集合是{a|a≤2}.答案:{a|a≤2}14已知集合M={2},N={x|2x-a=0},且M∩N=N,则实数a=.解析:N=,∵M∩N=N,∴N⊆M.∴∈{2},即=2.∴a=4.答案:415已知集合A={x,y},B={2,2y},若A=B,则x+y=.解析:当x=2,y=2y时,x=2,y=0,则x+y=2;当x=2y,y=2时,x=4,y=2,则x+y=6.答案:2或616已知集合A={x|x≤-2,或x>1},B={x|2a-3<x<a+1},若A∪B=R,则a的取值范围是.解析:∵集合A={x|x≤-2,或x>1},B={x|2a-3<x<a+1},且A∪B=R,--∴解得0<a≤,∴a的范围是0<a≤.答案:0<a≤三、解答题(本大题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)17(10分)设A={x∈Z|-6≤x≤6},B={1,2,3},C={3,4,5,6}.求(1)A∪(B∩C);(2)A∩[∁A(B∪C)].解(1)由题意知,A={-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}.∵B∩C={3},∴A∪(B∩C)={-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}.(2)∵B∪C={1,2,3,4,5,6},∴∁A(B∪C)={-6,-5,-4,-3,-2,-1,0},∴A∩[∁A(B∪C)]={-6,-5,-4,-3,-2,-1,0}.18(12分)已知集合A={x|-1≤x<3},B={x|2x-4≥x-2}.(1)求A∩B;(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.解(1)由题意知B={x|x≥2},∴A∩B={x|2≤x<3}.(2)由题意知C=-,∵B∪C=C,∴B⊆C.∴-<2,∴a>-4.19(12分)设全集U=R,A={x∈R|a≤x≤2},B={x∈R|2x+1≤x+3,且3x≥2}.(1)若B⊆A,求实数a的取值范围;(2)若a=1,求A∪B,(∁U A)∩B.解(1)B=且,又B⊆A,∴a≤.(2)若a=1,则A={x|1≤x≤2},此时A∪B={x|1≤x≤2}∪=.由∁U A={x|x<1,或x>2},得(∁U A)∩B={x|x<1,或x>2}∩.20(12分)已知全集U=R,集合A={x|2x+a>0},B={x|x<-1,或x>3}.(1)当a=2时,求集合A∩B,A∪B;(2)若A∩(∁U B)=⌀,求实数a的取值范围.解由2x+a>0得x>-,即A=-.(1)当a=2时,A={x|x>-1}.∴A∩B={x|x>3}.A∪B={x|x≠-1}.(2)∵B={x|x<-1,或x>3},∴∁U B={x|-1≤x≤3}.又A∩(∁U B)=⌀,∴-≥3,解得a≤-6.∴实数a的取值范围是(-∞,-6].21(12分)已知集合A={x|2m+1≤x≤3m-5},B={x|x<-1,或x>16}.(1)若A∩B=⌀,求实数m的取值范围;(2)若A⊆(A∩B),求实数m的取值范围.解(1)∵A={x|2m+1≤x≤3m-5},B={x|x<-1,或x>16},若A∩B=⌀, 则当A=⌀时,符合题意,此时2m+1>3m-5,所以m<6.当A≠⌀时,---所以6≤m≤7.综上所述,m≤7.(2)∵A={x|2m+1≤x≤3m-5},B={x|x<-1,或x>16},且A⊆(A∩B), ∴A为空集或A为B的非空子集.则2m+1>3m-5或---或-解得m<6或m>.22(12分)设数集M=,N=-,且M,N都是集合U={x|0≤x≤1}的子集,定义“b-a”为集合{x|a≤x≤b}的“长度”,求集合M∩N的长度的最小值.解在数轴上表示出集合M与N,可知当m=0且n=1,或n-=0且m+=1时,M∩N的“长度”最小.当m=0且n=1时,M∩N=,“长度”为;当m=且n=时,M∩N=,“长度”为.综上,M∩N的“长度”的最小值为.第二章函数§1生活中的变量关系§2对函数的进一步认识2.1函数概念课时过关·能力提升1已知函数f(x)=的定义域为M,g(x)=的定义域为N,则M∩N=()-A.{x|x≥-2}B.{x|x<2}C.{x|-2<x<2}D.{x|-2≤x<2}答案:D2函数f(x)=(x∈R)的值域是()A.(0,1)B.(0,1]C.[0,1)D.[0,1]解析:由x2+1≥1,得0<≤1,故函数f(x)的值域为(0,1].答案:B3已知函数y=f(x)的定义域为(-1,3),则在同一坐标系中,函数f(x)的图像与直线x=2的交点有()A.0个B.1个C.2个D.0个或多个解析:函数y=f(x)的定义域为(-1,3),则在同一坐标系中,函数f(x)的图像与直线x=2的交点个数有1个,故选B.答案:B4已知等腰三角形ABC的周长为10,且底边长y关于腰长x的函数关系为y=10-2x,则此函数的定义域为()A.RB.{x|x>0}C.{x|0<x<5}D.解析:∵等腰三角形的周长为10,∴-<x<5.-答案:D5已知两个函数f(x)和g(x)的定义域和值域都是集合{1,2,3},其定义如下表,则方程g(f(x))=x的解集为()x 1 2 3A.{1}B.{2}C.{3}D.⌀解析:当x=1时,g(f(1))=g(2)=2,不符合题意;当x=2时,g(f(2))=g(3)=1,不符合题意;当x=3时,g(f(3))=g(1)=3,符合题意.故选C.答案:C★6若函数f(x)=(a2-2a-3)x2+(a-3)x+1的定义域和值域都为R,则a的值是()A.a=-1或a=3B.a=-1C.a=3D.a不存在解析:因为函数f(x)的定义域和值域都为R,所以函数f(x)为一次函数,即---解得a=-1.故选B.答案:B7函数y=的定义域是.解析:要使该函数有意义,则x+2≥0,故x≥-2.答案:{x|x≥-2}8已知集合M={x|y=x2+1},集合N={y|y=x2+1},则M∩N=.解析:∵M=R,N={y|y≥1},∴M∩N={y|y≥1}.答案:{y|y≥1}9函数f(x)=(--2)0+-的定义域是.答案:{x|x>1,且x≠5}10已知函数f(x)=.(1)求f(2);(2)求函数f(x)的值域.解(1)f(2)=.(2)f(x)=-=1-,又≠0,∴1-≠1,∴f(x)≠1,故函数f(x)的值域是(-∞,1)∪(1,+∞).11若f{f[f(x)]}=27x+26,求一次函数f(x)的解析式.解设f(x)=ax+b(a≠0),则f[f(x)]=a2x+ab+b,f{f[f(x)]}=a(a2x+ab+b)+b=a3x+a2b+ab+b,所以解得则f(x)=3x+2.★12已知函数f(x)=.(1)求f(2)与f,f(3)与f.(2)由(1)中求得的结果,你能发现f(x)与f的关系吗?并证明你的发现.(3)求f(1)+f(2)+f(3)+…+f(2 016)+f+f+…+f.解(1)∵f(x)=,∴f(2)=,f,f(3)=,f.(2)由(1)中的结果发现f(x)+f=1.证明如下:f(x)+f==1.(3)f(1)=.由(2)知f(2)+f=1,f(3)+f=1,…f(2 016)+f=1,∴原式=…=2 015+.个2.2函数的表示法第1课时函数的三种表示方法课时过关·能力提升1已知函数f(x),g(x)分别由下表给出:则f(g(1))=()A.2B.1C.3D.不确定解析:由已知得g(1)=3,所以f(g(1))=f(3)=1.答案:B2去年国庆长假期间,某日8时至16时累计参观故宫人数的折线图如图所示,那么在8时~9时,9时~10时,…,15时~16时的八个时段中,入宫人数最多的时段是()A.8时~9时B.11时~12时C.13时~14时D.15时~16时解析:结合函数图像可知,在8时~9时,9时~10时,…,15时~16时的八个时段中,图像变化最快的,增加得最快的是11时~12时之间,故选B.答案:B,则当x≠0,且x≠1时,f(x)=()3若f-A. B.-C.D.-1-答案:B4下列函数中,不满足f(2x)=2f(x)的是()A.f(x)=|x|B.f(x)=x-|x|C.f(x)=x+1D.f(x)=-x解析:因为f(2x)=|2x|=2|x|=2f(x),所以A满足要求;因为f(2x)=2x-|2x|=2(x-|x|)=2f(x),所以B满足要求;因为f(2x)=2x+1≠2(x+1)=2f(x),所以C不满足要求;因为f(2x)=-2x=2f(x),所以D满足要求.故选C.答案:C5若函数y=f(x)的定义域是[0,2],则函数y=f(2x-1)的定义域是()A.[0,1]B.[0,2]C.D.[-1,3]解析:因为函数y=f(x)的定义域是[0,2],即0≤x≤2,所以0≤2x-1≤2,解得≤x≤.因此y=f(2x-1)的定义域是.答案:C6已知函数g(x)=1-2x,f[g(x)]=-(x≠0),则f(0)等于()A.-3B.-C.D.3解析:令g(x)=1-2x=0,则x=,则f(0)=-=3.故选D.答案:D7函数f(n)对任意实数n满足条件f(n+3)=,若f(1)=6,则f(7)的值为.解析:由f(n+3)=得,f(7)==f(1)=6.答案:6★8若2f(x)+f=2x+(x≠0),则f(2)=.答案:9如图,函数f(x)的图像是曲线OAB,其中点O,A,B的坐标分别为(0,0),(1,2),(3,1),那么f的值等于.解析:由函数f(x)的图像,知f(1)=2,f(3)=1,则f=f(1)=2.答案:210求下列函数的解析式:(1)已知f(x+1)=x2-3x+2,求f(x);(2)已知f(1-x)=-,求f(x).解(1)∵f(x+1)=x2-3x+2=(x+1)2-5x+1=(x+1)2-5(x+1)+6,∴f(x)=x2-5x+6.(2)令1-x=t,则x=1-t.又1-x2≥0,∴-1≤x≤1,∴0≤1-x≤2,即0≤t≤2.∴f(t)=---(0≤t≤2).∴f(x)=-(0≤x≤2).★11已知函数f(x)=(a,b为常数,且a≠0),满足f(2)=1,且f(x)=x有唯一解,(1)求函数y=f(x)的解析式.(2)求f(f(-3))的值.解(1)∵f(2)=1,∴=1,即2a+b=2.①又f(x)=x有唯一解,即=x有唯一解,∴ax2+(b-1)x=0有两个相等的实数根,∴Δ=(b-1)2=0,∴b=1,代入①得a=,∴f(x)=.=6,(2)由(1)知f(-3)=--故f(f(-3))=f(6)=.★12已知f(x)对任意的实数a,b,都有f(ab)=f(a)+f(b)成立.(1)求f(0)与f(1)的值;(2)求证:f=-f(x);(3)若f(2)=p,f(3)=q(p,q均为常数),求f(36).(1)解令a=b=0,得f(0)=f(0)+f(0),解得f(0)=0;令a=1,b=0,得f(0)=f(1)+f(0),解得f(1)=0.(2)证明令a=,b=x,得f(1)=f+f(x)=0,即f=-f(x).(3)解令a=b=2,得f(4)=f(2)+f(2)=2p,令a=b=3,得f(9)=f(3)+f(3)=2q.令a=4,b=9,得f(36)=f(4)+f(9)=2p+2q.第2课时分段函数课时过关·能力提升1已知f(x)=则f(f(f(-3)))=()A.0B.πC.π+1D.2π解析:因为-3<0,所以f(-3)=0,所以f(f(-3))=f(0)=π,又π>0,所以f(f(f(-3)))=f(π)=π+1.答案:C2函数f(x)=x+的图像是()解析:f(x)=-故选C.答案:C3某城市出租车起步价为10元,最长可租乘3 km(含3 km),以后每1 km为1.6元(不足1 km,按1 km计费),若出租车行驶在不需等待的公路上,则出租车的费用y(元)与行驶的里程x(km)之间的函数图像大致为()解析:由题意,当0<x≤3时,y=10;当3<x≤4时,y=11.6;当4<x≤5时,y=13.2;……当n-1<x≤n时,y=10+(n-3)×1.6,故选C.答案:C4已知f(x)=则f+f-等于() A.-2 B.4 C.2 D.-4答案:B5已知f(x)=g(x)=3-2x,则f(g(2))=() A.-3 B.-2 C.3 D.-1解析:因为g(x)=3-2x,所以g(2)=3-2×2=-1<0,所以f(g(2))=f(-1)=-1+4=3.答案:C6拟定从甲地到乙地通话m min的话费y(元)满足y=其中[m]是不超过m的最大整数,如[3.74]=3,从甲地到乙地通话5.2 min的话费是()A.3.71元B.4.24元C.4.77元D.7.95元解析:f(5.2)=1.06×(0.5×[5.2]+2)=4.77.答案:C7若函数f(x)=则f(-3)=.解析:f(-3)=f(-3+2)=f(-1)=f(-1+2)=f(1)=f(1+2)=f(3)=2×3=6.答案:6若f(1-a)=f(1+a),则a的值为.8已知实数a≠0,函数f(x)=--答案:---9已知函数f(x)=(1)求f-,f,f的值;(2)作出函数f(x)的简图;(3)求函数f(x)的值域.分析:给出的函数是分段函数,应注意在不同的自变量取值范围内函数有不同的解析式.(1)根据自变量的值所在的区间,选用相应的关系式求函数值.(2)函数f(x)在不同区间上的关系式都是常见的基本初等函数,因而可利用常见函数的图像完成作图.(3)函数的值域是各段函数值的集合的并集.解函数的定义域为[-1,0)∪[0,1)∪[1,2]=[-1,2].(1)∵-1≤x<0时,f(x)=-x,∴f-=--.∵0≤x<1时,f(x)=x2,∴f.∵1≤x≤2时,f(x)=x,∴f.(2)在同一平面直角坐标系中分段画出函数f(x)的图像,如图.(3)由(2)中函数f(x)的图像可知,函数的值域为[0,2].★10某市范围内住宅电话通话费为前3 min 0.20元,以后每分0.10元(不足3 min按3 min计,以后不足1 min按1 min 计).(1)在直角坐标系内,画出一次通话在6 min内(包括6 min)的通话费y(元)关于通话时间t(min)的函数图像;(2)如果一次通话t min(t>0),写出通话费y(元)关于通话时间t(min)的函数关系式(可用[t]表示不小于t的最小整数).解(1)如图:(2)由(1)知,话费与时间t的关系是分段函数,当0<t≤3时,话费为0.2元;当t>3时,话费应为[0.2+([t]-3)×0.1]元,所以y=-★11已知函数的图像由两条射线及开口向下的抛物线的一部分(包括端点)组成,如图,试求函数的解析式.解设左射线所在直线的解析式为y=kx+b,因为点(1,1),(0,2)在直线上,故由得-所以左射线的解析式为y=-x+2(x<1).同理可得右射线的解析式为y=x-2(x>3).再设抛物线的解析式为y=a(x-2)2+2,因为点(1,1)在此抛物线上,所以a+2=1,a=-1,所以中间抛物线的解析式为y=-(x-2)2+2=-x2+4x-2,1≤x≤3.综上所述,所求函数的解析式为y=----2.3映射课时过关·能力提升1映射f:A→B,在f作用下A中元素(x,y)与B中元素(x-1,3-y)对应,则与B中元素(0,1)对应的A中元素是()A.(-1,2)B.(0,3)C.(1,2)D.(-1,3)2下列从集合A到集合B的对应中为映射的是()A.A=B=N+,对应关系f:x→y=|x-3|B.A=R,B={0,1},对应关系f:x→y=C.A={x|x>0},B={y|y∈R},对应关系f:x→y=±D.A=Z,B=Q,对应关系f:x→y=答案:B3集合A={a,b},B={-1,0,1},从A到B的映射f:A→B满足f(a)+f(b)=0,那么这样的映射f:A→B的个数为()A.2B.3C.5D.8解析:存在的映射有-1+1=0,1+(-1)=0,0+0=0共3个.答案:B4已知A=B=R,x∈A,y∈B,f:x→y=ax+b是从A到B的映射,若3和7的原像分别是5和9,则6在f下的像是()A.3B.4C.5D.6解析:因为3和7的原像分别是5和9,所以解得-即f:x→y=x-2,所以当x=6时,y=6-2=4,故选B.答案:B5已知映射f:A→B,其中集合A={-3,-2,-1,1,2,3,4},集合B中的元素都是A中的元素在映射f下的像,且对任意的a∈A,在B中和它对应的元素是|a|,则集合B中的元素的个数是() A.4 B.5 C.6 D.7解析:对应关系是f:a→|a|,因此3和-3对应的像是3;-2和2对应的像是2;1和-1对应的像是1;4对应的像是4,所以B={1,2,3,4}.6若A到B的映射f:x→3x-1,B到C的映射g:y→,则A到C的映射h:x→.解析:由题意,得y=3x-1,.--故h:x→.-答案:-7设集合A和B都是自然数集,映射f:A→B把A中的元素n映射到B中的元素2n+n,则在映射f下,A中的元素对应B中的元素3.解析:对应关系为f:n→2n+n,根据2n+n=3,可得n=1.答案:18设a,b为实数,集合M=,N={a,0},f:x→x表示把集合M中的元素x映射到集合N中仍为x,则a+b的值为.解析:∵f:x→x,∴M=N,∴=0,a=1,b=0.故a+b=1.答案:19设f,g都是由A到A的映射(其中A={1,2,3}),其对应关系如下表:设a=g(f(3)),b=g(g(2)),c=f(g(f(1))).试判断a,b,c的大小关系.解∵a=g(f(3))=g(1)=2,b=g(g(2))=g(1)=2,c=f(g(f(1)))=f(g(2))=f(1)=2,∴a=b=c.10设f:A→B是A到B的一个映射,其中A=B={(x,y)|x,y∈R},f:(x,y)→(x-y,x+y).(1)求A中元素(-1,2)的像;(2)求B中元素(-1,2)的原像.解(1)A中元素(-1,2)在B中对应的元素为(-1-2,-1+2),即A中元素(-1,2)的像为(-3,1).(2)设A中元素(x,y)与B中元素(-1,2)对应,则由--解得所以B中元素(-1,2)的原像为.11已知从集合A到集合B={0,1,2,3}的映射f:x→-,试问集合A中的元素最多有几个?写出元素最多时的集合A.解∵f:x→-是从集合A到集合B的映射,∴A中每一个元素在集合B中都有像.令-=0,则该方程无解,故0没有原像.分别令-=1,2,3可得x=±2,±,±.故集合A中的元素最多为6个,即A=---.★12设映射f:A→B,其中A=B={(x,y)|x,y∈R},f:(x,y)→(3x-2y+1,4x+3y-1).(1)求A中元素(3,4)的像.(2)求B中元素(5,10)的原像.(3)A中是否存在这样的元素(a,b)使它的像仍是它本身?若有,求出这个元素;反之,说明理由.解(1)因为所以--所以集合A中元素(3,4)的像是(2,23).(2)因为--所以所以集合B中元素(5,10)的原像是(2,1).(3)因为--即--解得所以存在元素使它的像仍是它本身.§3函数的单调性第1课时函数单调性的定义与判断课时过关·能力提升1设函数f(x)在区间(a,b),(c,d)上是增加的,且x1∈(a,b),x2∈(c,d),x1<x2,则f(x1)与f(x2)的大小关系是()A.f(x1)<f(x2)B.f(x1)>f(x2)C.f(x1)=f(x2)D.不能确定答案:D2若y=f(x)是R上的增函数,且f(2m)<f(9-m),则实数m的取值范围是()A.(3,+∞)B.(-∞,3)C.(-∞,0)D.(-3,3)。
高中数学 课时达标训练(十)北师大版必修1
课时达标训练(十)一、选择题1.如何平移抛物线y =2x 2可得到抛物线y =2(x -4)2-1 ( ) A .向左平移4个单位,再向上平移1个单位 B .向左平移4个单位,再向下平移1个单位 C .向右平移4个单位,再向上平移1个单位 D .向右平移4个单位,再向下平移1个单位2.设abc >0,二次函数f (x )=ax 2+bx +c 的图像可能是 ( )3.(山东高考)设函数f (x )=1x,g (x )=-x 2+bx ,若y =f (x )的图像与y =g (x )的图像有且仅有两个不同的公共点A (x 1,y 1),B (x 2,y 2),则下列判断正确的是( )A .x 1+x 2>0,y 1+y 2>0B .x 1+x 2>0,y 1+y 2<0C .x 1+x 2<0,y 1+y 2>0D .x 1+x 2<0,y 1+y 2<04.设b >0,二次函数y =ax 2+bx +a 2-1的图像为下列之一,则a 的值为( )A .1B .-1 C.-1-52 D.-1+52二、填空题5.将抛物线y =-x 2+2x -1向左平移1个单位后,得到的解析式是________. 6.函数y =x 2+m 的图像向下平移2个单位,得到函数y =x 2-1的图像,则实数m = ________.7.已知二次函数f (x )的顶点坐标为(1,-2),且过点(2,4),则f (x )=________. 8.已知方程x 2-4|x |+5=m 有四个全不相等的实根,则实数m 的取值范围是________. 三、解答题9.已知抛物线y =ax 2+bx +c (a ≠0)与x 轴有两个不同的交点A (x 1,0),B (x 2,0)且x 21+x 22=269,试问该抛物线是由y =-3(x -1)2的图像向上平移几个单位得到的?10.已知二次函数y =ax 2+bx +c 的图像与y =-12x 2+2x +3的形状相同,开口方向相反,与直线y =x -2的交点坐标为(1,n )和(m,1),求这个二次函数的解析式.答案1.解析:选D 要得到y =2(x -4)2-1的图像,只需将y =2x 2的图像向右平移4个单位,再向下平移1个单位.2.解析:选D 由A 、C 、D 知,f (0)=c <0, ∵abc >0,∴ab <0,∴对称轴x =-b2a >0,知A 、C 错;D 符合要求,由B 知f (0)=c >0,∴ab >0,∴x =-b2a<0,B 错误. 3.解析:选B 由于函数y =f (x )的图像在一三象限且关于坐标原点对称,函数y =g (x )的图像过坐标原点,结合函数图像可知点A ,B 一定只能一个在第一象限、另一个在第三象限,即x 1x 2<0,由于y 1+y 2=1x 1+1x 2=x 1+x 2x 1x 2,故x 1+x 2,y 1+y 2一定异号.问题即为方程-x 2+bx =1x仅有两个不同的实根,即方程x 3-bx 2+1=0有一个二重根、一个单根.此时结合图像可知位于第一象限的点A 的横坐标为方程根,根据方程根的理论,如果x 1是方程x 3-bx 2+1=0的二重根,x 2为一个单根,则x 3-bx 2+1=(x -x 1)2(x -x 2)=x 3-(2x 1+x 2)x 2+(x 21+2x 1x 2)x -x 21x 2,这个等式对任意x 恒成立,比较等式两端x 的系数可得x 21+2x 1x 2=0,即x 1+2x 2=0,即x 1+x 2=-x 2>0,所以x 1+x 2>0,y 1+y 2<0.4.解析:选B 由第一个图与第二个图中与x 轴的两个交点为对称点,则两根之和为0.又已知x 1+x 2=-ba≠0,故可排除.由第三个图与第四个图知,一根为0,另一根为正数,即x 1+x 2=-b a>0,又b >0,故a <0,图像开口向下,应为第三个图.由图像过原点(0,0),即a 2-1=0,解得a =-1或a =1(舍).5.解析:∵y =-x 2+2x -1=-(x -1)2, ∴函数y =-x 2+2x -1向左平移一个单位后, 所得函数解析式为y =-[(x +1)-1]2=-x 2. 答案:y =-x 26.解析:y =x 2-1的图像向上平移2个单位,得到函数y =x 2+1的图像,则m =1. 答案:17.解析:设f (x )=a (x -1)2-2,因为过点(2,4), 所以有a (2-1)2-2=4,得a =6.所以f (x )=6(x -1)2-2=6x 2-12x +4. 答案:6x 2-12x +48.解析:设f (x )=x 2-4|x |+5,则f (x )=⎩⎪⎨⎪⎧x 2-4x +5,x ≥0,x 2+4x +5,x <0.即f (x )=⎩⎪⎨⎪⎧x -2+1,x ≥0,x +2+1,x <0,作出f (x )的图像,如图:要使方程x 2-4|x |+5=m 有四个全不相等的实根,需使函数f (x )与y =m 的图像有四个不同的交点,由图像可知,1<m <5.答案:(1,5)9.解:由题意可设所求抛物线的解析式为y =-3(x -1)2+k ,展开得y =-3x 2+6x -3+k .由题意得x 1+x 2=2,x 1x 2=3-k3, ∴x 21+x 22=(x 1+x 2)2-2x 1x 2=269, 即4--k 3=269. 解得k =43.∴该抛物线是由y =-3(x -1)2的图像向上平移43个单位得到的,它的解析式为y =-3(x -1)2+43,即y =-3x 2+6x -53.10.解:∵y =ax 2+bx +c 的图像与y =-12x 2+2x +3的形状相同,开口方向相反.∴a =12,则y =12x 2+bx +c .又(1,n ),(m,1)两点均在y =x -2上, ∴⎩⎪⎨⎪⎧n =1-2,1=m -2⇒⎩⎪⎨⎪⎧m =3,n =-1,即点(1,-1)和(3,1)均在所求的抛物线上.∴⎩⎪⎨⎪⎧-1=12+b +c ,1=92+3b +c .解得⎩⎪⎨⎪⎧b =-1,c =-12.∴这个二次函数的解析式为y =12x 2-x -12.。
2024-2025年北师大版数学选择性必修第一册第一章达标检测(带答案)
第二部分阶段测试 第一章达标检测时间:120分钟 分数:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线ax +by +c =0同时经过第一、二、四象限,则a ,b ,c 应满足( ) A .ab>0,bc<0 B .ab>0,bc>0 C .ab<0,bc>0 D .ab<0,bc<0 2.已知点M(0,-1),点N 在直线x -y +1=0上,若直线MN 垂直于直线x +2y -3=0,则点N 的坐标是( )A .(-2,-3)B .(2,1)C .(2,3)D .(-2,-1) 3.若直线l 1:x +(1+m)y +m -2=0和直线l 2:mx +2y +8=0平行,则m 的值为( )A .1B .-2C .1或-2D .-234.直线x -2y +1=0关于直线x =1对称的直线方程是( )A .x +2y -1=0B .2x +y -1=0C .2x +y -3=0D .x +2y -3=05.若圆x 2+y 2-2ax +3by =0的圆心位于第三象限,那么直线x +ay +b =0一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限6.经过点(1,0)且圆心是两直线x =1与x +y =2的交点的圆的方程为( ) A .(x -1)2+y 2=1 B .(x -1)2+(y -1)2=1 C .x 2+(y -1)2=1 D .(x -1)2+(y -1)2=2 7.直线y =kx +1与圆(x -2)2+(y -1)2=4相交于P ,Q 两点.若|PQ|≥2 2 ,则k 的取值范围是( )A .⎣⎢⎡⎦⎥⎤-34,0 B .⎣⎢⎡⎦⎥⎤-33,33 C .[-1,1] D .[- 3 , 3 ]8.设有一组圆C k :(x -1)2+(y -k)2=k 4(k∈N +),给出下列四个命题:①存在k ,使圆与x 轴相切;②存在一条直线与所有的圆均相交;③存在一条直线与所有的圆均不相交;④所有的圆均不经过原点.其中正确的命题序号是( )A.①②③ B.②③④ C.①②④ D.①③④二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.如图,直线l 1,l 2相交于点O ,点P 是平面内的任意一点,若x ,y 分别表示点P 到l 1,l 2的距离,则称(x ,y )为点P 的“距离坐标”.下列说法正确的是( )A.距离坐标为(0,0)的点有1个B.距离坐标为(0,1)的点有2个C.距离坐标为(1,2)的点有4个D.距离坐标为(x ,x )的点在一条直线上10.已知圆M 与直线x +y +2=0相切于点A (0,-2),圆M 被x 轴所截得的弦长为2,则下列结论正确的是( )A .圆M 的圆心在定直线x -y -2=0上B .圆M 的面积的最大值为50πC .圆M 的半径的最小值为1D .满足条件的所有圆M 的半径之积为1011.已知圆O :x 2+y 2=9和圆M :x 2+y 2+6x -4y +9=0交于P ,Q 两点,下列说法正确的是( )A.两圆有两条公切线B.直线PQ 的方程为3x -2y +9=0C.线段PQ 的长为61313D.所有过点P ,Q 的圆的方程可以记为x 2+y 2-9+λ(x 2+y 2+6x -4y +9)=0(λ∈R ,λ≠-1)三、填空题:本题共3小题,每小题5分,共15分.12.过圆x 2+y 2-2y -4=0与x 2+y 2-4x +2y =0的交点,且圆心在直线l :2x +4y -1=0上的圆的方程是________________.13.已知直线l 1:3x -2y -1=0和l 2:3x -2y -13=0,直线l 与l 1,l 2的距离分别是d 1,d 2,若d 1∶d 2=2∶1,则直线l 的方程为________________.14.[双空题]已知圆C :x 2+y 2+2(a -1)x -12y +2a 2=0.当圆C 的面积最大时,实数a 的值为________;若此时圆C 关于直线l :mx +ny -6=0(m >0,n >0)对称,则mn3m +n 的最大值为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 15.(本小题满分13分)在平面直角坐标系xOy 中,已知△ABC 的三个顶点的坐标分别为A (-3,2),B (4,3),C (-1,-2).(1)求△ABC 中,BC 边上的高线所在直线的方程; (2)求△ABC 的面积.16.(本小题满分15分)已知圆C :x 2+y 2-2y -4=0,直线l :mx -y +1-m =0. (1)判断直线l 与圆C 的位置关系; (2)若直线l 与圆C 交于不同两点A ,B ,且|AB |=32 ,求直线l 的方程.17.(本小题满分15分)已知半径为5的动圆C 的圆心在直线l :x -y +10=0上. (1)若动圆C 过点(-5,0),求圆C 的方程; (2)是否存在正实数r ,使得动圆C 中满足与圆O :x 2+y 2=r 2相外切的圆有且仅有一个?若存在,请求出r 的值;若不存在,请说明理由.18.(本小题满分17分)①圆心C在直线l:2x-7y+8=0上,且B(1,5)是圆上的点;②圆心C在直线x-2y=0上,但圆C不经过点(4,2),并且直线4x-3y=0与圆C相交所得的弦长为4;③圆C过直线l:2x+y+4=0和圆x2+y2+2x-4y-16=0的交点.在以上三个条件中任选一个,补充在下面问题中,问题:平面直角坐标系xOy中,圆C过点A(6,0),且________.(1)求圆C的标准方程;(2)求过点A的圆C的切线方程.19.(本小题满分17分)已知P是直线3x+4y+8=0上的动点,PA,PB是圆C:x2+y2-2x-2y+1=0的两条切线,A、B是切点.(1)求四边形PACB面积的最小值;(2)直线上是否存在点P,使得∠BPA=60°?若存在,求出点P的坐标;若不存在,请说明理由.第一章达标检测1.解析:由题意,令x =0,得y =-cb >0;令y =0,得x =-c a>0.即bc <0,ac <0,从而ab >0.答案:A2.解析:由点N 在直线x -y +1=0上,排除A ,B.由k MN =2,排除D.故选C. 答案:C 3.解析:∵直线l 1:x +(m +1)y +m -2=0与l 2:mx +2y +8=0平行,∴m (m +1)=1×2,解得m =1或m =-2.当m =-2时,直线l 1:x -y -4=0,l 2:x -y -4=0,l 1与l 2重合,故舍去;当m =1时,l 1∥l 2.∴m =1.故选A.答案:A4.解析:将“关于直线对称的两条直线”转化为“关于直线对称的两点”,在直线x -2y +1=0上取一点P (3,2),点P 关于直线x =1的对称点P ′(-1,2)必在所求直线上,只有选项D 满足.答案:D5.解析:圆x 2+y 2-2ax +3by =0的圆心为⎝ ⎛⎭⎪⎫a ,-32b ,由于圆心位于第三象限,所以a <0,b >0.直线方程x +ay +b =0可化为y =-1a x -b a .因为-1a >0,-ba >0,所以直线不经过第四象限.答案:D6.解析:由⎩⎪⎨⎪⎧x =1,x +y =2, 得⎩⎪⎨⎪⎧x =1,y =1,即所求圆的圆心坐标为(1,1).由该圆过点(1,0),得其半径为1,故圆的方程为(x -1)2+(y -1)2=1.答案:B7.解析:若|PQ |≥22 ,则圆心(2,1)到直线y =kx +1的距离d ≤ 4-⎝ ⎛⎭⎪⎫2222 =2 ,即|2k |1+k 2≤2 ,解得-1≤k ≤1. 答案:C8.解析:命题①中,当k =1时,圆心(1,1),半径r =1,满足与x 轴相切,故①正确;命题②③中,圆心(1,k )恒在直线kx -y =0上,该线与圆一定相交,故②正确,只要k 足够大,对任意直线,总有直线与圆相交,故③错误;命题④中,若(0,0)在圆上,则1+k 2=k 4,而k ∈N +,若k 是奇数,则左式是偶数,右式是奇数,方程无解,若k 是偶数,则左式是奇数,右式是偶数,方程无解,故所有的圆均不经过原点,故④正确.故选C.答案:C9.解析:对于A ,若距离坐标为(0,0),即P 到两条直线的距离都为0,P 为两直线的交点,即距离坐标为(0,0)的点只有1个,A 正确;对于B ,若距离坐标为(0,1),即P 到直线l 1的距离为0,到直线l 2的距离为1,P 在直线l 1上,到直线l 2的距离为1,符合条件的点有2个,B 正确;对于C ,若距离坐标为(1,2),即P 到直线l 1的距离为1,到直线l 2的距离为2,有4个符合条件的点,即与直线l 1相距为2的两条平行线和与直线l 2相距为1的两条平行线的交点,C 正确;对于D ,若距离坐标为(x ,x ),即P 到两条直线的距离相等,则距离坐标为(x ,x )的点在2条相互垂直的直线上,D 错误.故选ABC.答案:ABC10.解析:∵圆M 与直线x +y +2=0相切于点A (0,-2),∴直线AM 与直线x +y +2=0垂直,∴直线AM 的斜率为1,则点M 在直线y =x -2,即x -y -2=0上,A 正确;设M (a ,a -2),∴圆M 的半径r =|AM |=a 2+(a -2+2)2 =2 |a |,∴圆M 被x 轴截得的弦长为2r 2-(a -2)2 =2a 2+4a -4 =2,解得a =-5或a =1,当a =-5时,圆M 的面积最大,为πr 2=50π,B 正确;当a =1时,圆M 的半径最小,为2 ,C 错误;满足条件的所有圆M 的半径之积为52 ×2 =10,D 正确.故选ABD.答案:ABD11.解析:A ,因为圆O :x 2+y 2=9和圆M :x 2+y 2+6x -4y +9=0相交于P ,Q 两点,所以两圆有两条公切线,故正确;B ,圆O :x 2+y 2=9和圆M :x 2+y 2+6x -4y +9=0的方程相减得3x -2y +9=0,所以直线PQ 的方程为3x -2y +9=0,故正确;C ,圆心O 到直线PQ 的距离为d =99+4=91313,所以线段PQ 的长|PQ |=2r 2-d 2=2 9-8113 =121313,故错误;D ,因为λ∈R ,λ≠-1,所以⎩⎪⎨⎪⎧x 2+y 2=9,x 2+y 2+6x -4y +9=0, 可知该圆恒过P ,Q 两点,方程可化为x 2+y 2+6λx 1+λ -4λy 1+λ +9λ-91+λ =0,而(6λ1+λ )2+(4λ1+λ )2-49λ-91+λ =16λ2+36(1+λ)2 >0,所以方程x 2+y 2-9+λ(x 2+y 2+6x -4y +9)=0(λ∈R ,λ≠-1)表示圆,但不包括圆M ,故错误.故选AB.答案:AB12.解析:设圆的方程为x 2+y 2-4x +2y +λ(x 2+y 2-2y -4)=0(λ≠-1),则(1+λ)x 2-4x +(1+λ)y 2+(2-2λ)y -4λ=0,把圆心⎝⎛⎭⎪⎫21+λ,λ-11+λ 代入2x +4y -1=0,可得λ=13,所以所求圆的方程为x 2+y 2-3x +y -1=0.答案:x 2+y 2-3x +y -1=013.解析:由直线l 1,l 2的方程知l 1∥l 2,又由题意知,直线l 与l 1,l 2均平行. 设直线l :3x -2y +m =0(m ≠-1且m ≠-13),由两平行直线间的距离公式,得d 1=|m +1|13 ,d 2=|m +13|13 ,又d 1∶d 2=2∶1,所以|m +1|=2|m +13|,解得m =-25或m =-9.故所求直线l 的方程为3x -2y -25=0或3x -2y -9=0. 答案:3x -2y -25=0或3x -2y -9=014.解析:圆C 的方程可化为[x +(a -1)]2+(y -6)2=-a 2-2a +37,当a =-1时,-a 2-2a +37取得最大值38,此时圆C 的半径最大,面积也最大;当a =-1时,圆心坐标为(2,6),圆C 关于直线l :mx +ny -6=0(m >0,n >0)对称,则点(2,6)在直线上,所以2m+6n -6=0,即m +3n =3,由题得mn 3m +n =11m +3n,所以1m +3n =13 (m +3n )(1m +3n )=13(10+3n m +3m n )≥13(10+2 3n m ×3m n )=163 ,当且仅当3n m =3m n ,即m =n =34时取等号,所以mn 3m +n =11m +3n≤316.答案:-131615.解析:(1)∵直线BC 的斜率k BC =3+24+1 =1,∴BC 边上的高线所在直线的斜率k =-1.∴BC 边上的高线所在直线的方程为y -2=-(x +3), 即x +y +1=0.(2)∵B (4,3),C (-1,-2),∴|BC |=(-2-3)2+(-1-4)2=52 .由B (4,3),C (-1,-2),得直线BC 的方程为x -y -1=0,∴点A 到直线BC 的距离d =|-3-2-1|2 =32 ,∴S △ABC =12×52 ×32 =15.16.解析:(1)圆C 的标准方程为x 2+(y -1)2=5,所以圆C 的圆心为C (0,1),半径r=5 ,圆心C (0,1)到直线l :mx -y +1-m =0的距离d =|0-1+1-m |m 2+1 =|m |m 2+1 <1<5 ,因此直线l 与圆C 相交.(2)圆心C 到直线l 的距离d =(5)2-⎝ ⎛⎭⎪⎫3222=22 .又d =|m |m 2+1 ,|m |m 2+1=22,解得m =±1,∴直线l 的方程为x -y =0或x +y -2=0. 17.解析:(1)依题意,可设动圆C 的方程为(x -a )2+(y -b )2=25, 其中圆心(a ,b )满足a -b +10=0. 又因为动圆过点(-5,0),所以(-5-a )2+(0-b )2=25,联立⎩⎪⎨⎪⎧a -b +10=0,(-5-a )2+(0-b )2=25, 解得⎩⎪⎨⎪⎧a =-10,b =0, 或⎩⎪⎨⎪⎧a =-5,b =5.故所求圆C 的方程为(x +10)2+y 2=25或(x +5)2+(y -5)2=25.(2)圆O 的圆心(0,0)到直线l 的距离d =|10|1+1=52 .当r 满足r +5<d 时,动圆C 中不存在与圆O :x 2+y 2=r 2相外切的圆; 当r 满足r +5>d 时,r 每取一个数值,动圆C 中存在两个圆与圆O :x 2+y 2=r 2相外切; 当r 满足r +5=d ,即r =52 -5时,动圆C 中有且仅有1个圆与圆O :x 2+y 2=r 2相外切. 故当动圆C 中与圆O 相外切的圆仅有一个时,r =52 -5. 18.解析:选①条件.(1)方法一:设所求圆的方程为(x -a )2+(y -b )2=r 2, 由题意得⎩⎪⎨⎪⎧(6-a )2+(0-b )2=r 2,(1-a )2+(5-b )2=r 2,2a -7b +8=0,解得a =3,b =2,r 2=13,∴所求圆的方程是(x -3)2+(y -2)2=13. 方法二:设线段AB 的垂直平分线为m ,则圆心C 在直线m 上且在直线l 上,即C 是m 与l 的交点, 直线AB 的斜率是-1,直线m 的斜率是1,AB 中点为(72 ,52 ),∴直线m :x -y -1=0,由⎩⎪⎨⎪⎧x -y -1=0,2x -7y +8=0, 解得⎩⎪⎨⎪⎧x =3,y =2, ∴圆心C (3,2)且|CA |=13 ,∴所求圆的方程是(x -3)2+(y -2)2=13.(2)∵A 在圆C 上,k AC =-23 ,过点A 的切线斜率为32 ,∴过点A 的切线方程是y =32 (x -6),即3x -2y -18=0.选②条件.(1)设所求圆的方程为(x -a )2+(y -b )2=r 2,由题意得a =2b ,设圆心C 到直线4x -3y =0的距离为d ,r 2=(a -6)2+b 2, 由垂径定理可知r 2=d 2+22,即(|4a -3b |5 )2+4=(a -6)2+b 2,将a =2b 代入得,b 1=2,b 2=4, 又∵圆C 不经过点(4,2),∴a =8,b =4,r 2=20,∴所求圆的方程是(x -8)2+(y -4)2=20.(2)∵A 在圆C 上,k AC =2,过点A 的切线斜率为-12 ,∴过点A 的切线方程是y =-12(x -6),即x +2y -6=0.选③条件.(1)方法一:设所求圆C 的方程为x 2+y 2+2x -4y -16+λ(2x +y +4)=0, 代入点A (6,0)得λ=-2,∴所求圆的方程为x 2+y 2-2x -6y -24=0,即(x -1)2+(y -3)2=34.方法二:设直线l :2x +y +4=0与圆x 2+y 2+2x -4y -16=0的交点E (x 1,y 1),F (x 2,y 2),则⎩⎪⎨⎪⎧2x +y +4=0,x 2+y 2+2x -4y -16=0, 即5x 2+26x +16=0,解得x 1=-13+895 ,x 2=-13-895,∴E (-13+895 ,6-2895 ),F (-13-895 ,6+2895),设所求圆C 的方程为(x -a )2+(y -b )2=r 2,将A ,E ,F 代入,得所求圆的方程为(x -1)2+(y -3)2=34.(2)∵A 在圆C 上,k AC =-35 ,过点A 的切线斜率为53 ,∴过点A 的切线方程是y =53(x -6),即5x -3y -30=0.19.解析:(1)如图,连接PC ,由点P 在直线3x +4y +8=0上,可设点P 的坐标为⎝ ⎛⎭⎪⎫x ,-2-34x .圆C 的标准方程为(x -1)2+(y -1)2=1,所以圆心C (1,1),半径为1.所以S 四边形PACB =2S △PAC =2×12 ×|AP |×|AC |=|AP |.因为|AP |2=|PC |2-|CA |2=|PC |2-1,所以当|PC |2最小时,|AP |最小.因为|PC |2=(1-x )2+⎝ ⎛⎭⎪⎫1+2+34x 2 =⎝ ⎛⎭⎪⎫54x +1 2+9,所以当x =-45 时,|PC |2min =9,所以|AP |min =9-1 =22 ,即四边形PACB 面积的最小值为22 .(2)假设直线上存在点P 满足题意.因为∠BPA =60°,|AC |=1,所以|PC |=2.设P (x ,y ),则⎩⎪⎨⎪⎧(x -1)2+(y -1)2=4,3x +4y +8=0,整理可得25x 2+40x +96=0,所以Δ=402-4×25×96<0.所以这样的点P 是不存在的.。
新教材北师大版高中数学选择性必修第一册全册各章节课时分层练习题含解析
北师大版选择性必修第一册课时练习第一章直线与圆.................................................................................................................... - 2 -1、一次函数的图象与直线的方程直线的倾斜角、斜率及其关系 ........................ - 2 -2、直线方程的点斜式................................................................................................ - 7 -3、直线方程的两点式直线方程的一般式.......................................................... - 12 -4、两条直线的平行与垂直...................................................................................... - 16 -5、两条直线的交点坐标.......................................................................................... - 20 -6、平面直角坐标系中的距离公式.......................................................................... - 25 -7、圆的标准方程...................................................................................................... - 30 -8、圆的一般方程...................................................................................................... - 34 -9、直线与圆的位置关系.......................................................................................... - 38 -10、圆与圆的位置关系............................................................................................ - 44 - 第二章圆锥曲线 ................................................................................................................... - 50 -1、椭圆及其标准方程.............................................................................................. - 50 -2、椭圆的简单几何性质.......................................................................................... - 55 -3、双曲线及其标准方程.......................................................................................... - 61 -4、双曲线的简单几何性质...................................................................................... - 66 -5、抛物线及其标准方程.......................................................................................... - 73 -6、抛物线的简单几何性质...................................................................................... - 78 -7、直线与圆锥曲线的位置关系.............................................................................. - 84 - 第三章空间向量与立体几何................................................................................................ - 91 -1、点在空间直角坐标系中的坐标.......................................................................... - 91 -2、空间两点间的距离公式...................................................................................... - 96 -3、从平面向量到空间向量空间向量的运算(一) ............................................. - 100 -4、空间向量的运算(二) ......................................................................................... - 105 -5、空间向量的运算(三) ......................................................................................... - 110 -6、空间向量基本定理............................................................................................ - 117 -7、空间向量运算的坐标表示及应用.................................................................... - 123 -8、直线的方向向量与平面的法向量.................................................................... - 129 -9、用向量方法研究立体几何中的位置关系........................................................ - 135 -10、空间中的角...................................................................................................... - 142 -11、空间中的距离问题.......................................................................................... - 153 - 第五章计数原理 ................................................................................................................. - 163 -1、分类加法计数原理分步乘法计数原理........................................................ - 163 -2、基本计数原理的简单应用................................................................................ - 167 -3、排列与排列数排列数公式............................................................................ - 172 -4、组合组合数及其性质.................................................................................... - 175 -5、二项式定理的推导............................................................................................ - 179 -6、二项式系数的性质............................................................................................ - 182 - 第六章概率 ......................................................................................................................... - 187 -1、条件概率的概念................................................................................................ - 187 -2、乘法公式与事件的独立性全概率公式........................................................ - 192 -3、随机变量............................................................................................................ - 199 -4、离散型随机变量的分布列................................................................................ - 202 -5、离散型随机变量的均值.................................................................................... - 207 -6、离散型随机变量的方差.................................................................................... - 213 -7、二项分布............................................................................................................ - 220 -8、超几何分布........................................................................................................ - 225 -9、正态分布............................................................................................................ - 230 -第七章统计案例................................................................................................................ - 235 -1、一元线性回归.................................................................................................... - 235 -2、成对数据的线性相关性.................................................................................... - 240 -3、独立性检验问题................................................................................................ - 246 -第一章直线与圆1、一次函数的图象与直线的方程直线的倾斜角、斜率及其关系一、选择题1.已知直线过点A(0,4)和点B(1,2),则直线AB的斜率为()A.3B.-2C.2D.不存在B[由题意可得AB的斜率为k=2-41-0=-2.]2.以下两点确定的直线的斜率不存在的是()A.(4,1)与(-4,-1) B.(0,1)与(1,0)C.(1,4)与(-1,4) D.(-4,1)与(-4,-1)D[选项A,B,C,D中,只有D选项的横坐标相同,所以这两点确定的直线与x轴垂直,即它们确定的直线的斜率不存在.]3.已知直线l经过第二、四象限,则直线l的倾斜角α的取值范围是() A.0°≤α<90°B.90°≤α<180°C.90°<α<180°D.0°<α<180°C[直线倾斜角的取值范围是0°≤α<180°,又直线l经过第二、四象限,所以直线l 的倾斜角α的取值范围是90°<α<180°.]4.直线l 的倾斜角是斜率为33的直线的倾斜角的2倍,则l 的斜率为( ) A .1 B .3 C .233 D .-3B [法一:设斜率为33的直线的倾斜角为α,则tan α=33,0°≤α<180°,∴α=30°,∴2α=60°,∴l 的斜率k =tan 2α=3.故选B .法二:设斜率为33的直线的倾斜角为α,则tan α=33,∴l 的斜率k =tan 2α=2tan α1-tan 2α=2331-⎝ ⎛⎭⎪⎫332=3.故选B .] 5.过点M (-2,m ),N (m ,4)的直线的斜率等于1,则m 的值为( )A .1B .4C .1或3D .1或4A [∵k MN =m -4-2-m=1,∴m =1.] 二、填空题6.已知直线l 过点A (1,2),且不过第四象限,则直线l 的斜率k 的最大值是________.2 [如图,k OA =2,k l ′=0,只有当直线落在图中所示位置时才符合题意,故k ∈[0,2].故直线l 的斜率k 的最大值为2.]7.已知A (2,-3),B (4,3),C ⎝ ⎛⎭⎪⎫5,m 2三点在同一条直线上,则实数m 的值为________.12 [因为A 、B 、C 三点在同一条直线上,所以有k AB =k AC ,即3-(-3)4-2=m 2-(-3)5-2,解得m =12.] 8.若直线l 的斜率k 的取值范围是[)0,3,则该直线的倾斜角α的取值范围是________.⎣⎢⎡⎭⎪⎫0,π3 [当0≤k <3时,即0≤tan α<3,又α∈[)0,π,所以α∈⎣⎢⎡⎭⎪⎫0,π3.] 三、解答题9.经过下列两点的直线的斜率是否存在?如果存在,求其斜率,并确定直线的倾斜角α.(1)A (2,3),B (4,5);(2)C (-2,3),D (2,-1);(3)P (-3,1),Q (-3,10).[解] (1)存在.直线AB 的斜率k AB =5-34-2=1,即tan α=1,又0°≤α<180°,所以倾斜角α=45°.(2) 存在.直线CD 的斜率k CD =-1-32-(-2)=-1,即tan α=-1,又0°≤α<180°,所以倾斜角α=135°.(3)不存在.因为x P =x Q =-3,所以直线PQ 的斜率不存在,倾斜角α=90°.10.已知实数x ,y 满足y =x 2-2x +2(-1≤x ≤1).(1)求y +3x +2的最大值和最小值; (2) 求x +y +5x +2的最大值和最小值. [解] (1)如图,可知y +3x +2表示经过定点P (-2,-3)与曲线段AB 上任一点(x ,y )的直线的斜率k .由已知条件,可得A(1,1),B(-1,5).易知k P A≤k≤k PB.由斜率公式得k P A=43,k PB=8,所以43≤k≤8.故y+3x+2的最大值是8,最小值是43.(2)由(1)知,y+3x+2的最大值是8,最小值是43.又x+y+5x+2=y+3x+2+1,所以x+y+5x+2的最大值是9,最小值73.11.若经过两点A(2,1),B(1,m2)的直线l的倾斜角为锐角,则m的取值范围是()A.(-∞,1) B.(-1,+∞)C.(-1,1) D.(-∞,-1)∪(1,+∞)C[∵直线l的倾斜角为锐角,∴斜率k=m2-11-2>0,∴-1<m<1.]12.已知点A(a,2),B(3,b+1),且直线AB的倾斜角为90°,则() A.a=3,b=1 B.a=2,b=2C.a=2,b=3D.a=3,b∈R且b≠1D[由已知a=3,又A,B为不同的两点,故b≠1.]13.(多选题)给出下列结论,其中说法正确的是()A .若()1,k 是直线l 的一个方向向量,则k 是该直线的斜率B .若直线l 的斜率是k ,则()1,k 是该直线的一个方向向量C .任一条直线都有倾斜角,但不一定有斜率D .任一条直线都有斜率,但不一定有倾斜角[答案] ABC14.(一题两空)已知点A (3,1),B (-2,k ),C (8,1).(1)直线AC 的倾斜角为________;(2)若这三点能构成三角形,则实数k 的取值范围为________.0 (-∞,1)∪(1,+∞) [因为k AC =1-18-3=05=0.所以直线AC 的倾斜角为0,又k AB =k -1-2-3=1-k 5, 要使A ,B ,C 三点能构成三角形,需三点不共线,即k AB ≠k AC ,∴1-k 5≠0.∴k ≠1.]15.把一块长和宽都是13 dm 的矩形纸片按图(1)裁好,问能否拼成图(2)所示的矩形,为什么?(1) (2)[解] 不能,如图,以B 为坐标原点建立直角坐标系,使得BE 在y 轴正半轴上,AB 在x 轴负半轴上.边AC所在直线的斜率为k AC=88-5=83,边EC所在直线的斜率为k EC=135≠83,即k AC≠k EC,所以A、C、D、E四点不可能在同一条直线上.即不能拼成图(2)所示的矩形.2、直线方程的点斜式一、选择题1.直线的点斜式方程y-y0=k(x-x0)可以表示()A.任何一条直线B.不过原点的直线C.不与坐标轴垂直的直线D.不与x轴垂直的直线D[点斜式方程适用的前提条件是斜率存在,故其可表示不与x轴垂直的直线.]2.斜率为4,且过点(2,-3)的直线的点斜式方程是()A.y+3=4(x-2)B.y-3=4(x-2)C.y-3=4(x+2) D.y+3=4(x+2)[答案]A3.已知直线x-ay=4在y轴上的截距是2,则a等于()A .-12B .12C .-2D .2C [直线x -ay =4可化为y =1a x -4a ,∴-4a =2,得a =-2.]4.直线l 1:y =k 1x +b 1与l 2:y =k 2x +b 2的位置关系如图所示,则有( )A .k 1<k 2且b 1<b 2B .k 1<k 2且b 1>b 2C .k 1>k 2且b 1>b 2D .k 1>k 2且b 1<b 2A [设直线l 1,l 2的倾斜角分别为α1,α2.由题图可知,90°<α1<α2<180°,所以k 1<k 2,又b 1<0,b 2>0,所以b 1<b 2.故选A .]5.若y =a |x |与y =x +a (a >0)有两个公共点,则a 的取值范围是( )A .a >1B .0<a <1C .∅D .0<a <1或a >1A [y =x +a (a >0)表示斜率为1,在y 轴上的截距为a (a >0)的直线,y =a |x |表示关于y 轴对称的两条射线.∴当0<a ≤1时,只有一个公共点;当a >1时,有两个公共点,故选A .]二、填空题6.直线y =43x -4在y 轴上的截距是________.-4 [由y =43x -4,令x =0,得y =-4.]7.直线y =k (x -2)+3必过定点,该定点为________.(2,3) [将直线方程化为点斜式得y -3=k (x -2),∴该直线过定点(2,3).]8.已知直线y =(3-2k )x -6不经过第一象限,则k 的取值范围为________. ⎣⎢⎡⎭⎪⎫32,+∞ [由题意知,需满足它在y 轴上的截距不大于零,且斜率不大于零,则⎩⎨⎧-6≤0,3-2k ≤0,得k ≥32.] 三、解答题9.已知位于第一象限的△ABC中,A(1,1),B(5,1),∠A=60°,∠B=45°.求:(1)AB边所在直线的方程;(2)AC边与BC边所在直线的方程.[解](1)∵A(1,1),B(5,1),∴直线AB与x轴平行.∴直线AB的斜率为0,从而该直线的方程为y-1=0.(2)∵∠A=60°,∴k AC=3,AC边所在直线方程为y-1=3(x-1),即3x-y+1-3=0.又∵∠B=45°,∴直线BC的倾斜角为135°,其斜率为-1.∴BC边所在直线方程为y-1=-(x-5),即x+y-6=0.10.如图,直线l:y-2=3(x-1)过定点P(1,2),求过点P且与直线l所夹的角为30°的直线l′的方程.[解]设直线l′的倾斜角为α′,由直线l的方程y-2=3(x-1)知,直线l的斜率为3,则倾斜角为60°.当α′=90°时,满足l与l′所夹的锐角为30°,此时直线l′的方程为x=1;当α′=30°时,也满足l与l′所夹的锐角为30°,此时直线l′的斜率为33,由直线方程的点斜式得l′的方程为y-2=33(x-1),即y=33(x-1)+2.综上,所求直线l′的方程为x=1或y=33(x-1)+2.11.直线l1:y=ax+b与直线l2:y=bx+a(ab≠0,a≠b)在同一平面直角坐标系内的图象只可能是()A B C DD [对于A 选项,由l 1得a >0,b <0,而由l 2得a >0,b >0,矛盾;对于B 选项,由l 1得a <0,b >0,而由l 2得a >0,b >0,矛盾;对于C 选项,由l 1得a >0,b <0,而由l 2得a <0,b >0,矛盾;对于D 选项,由l 1得a >0,b >0,而由l 2得a >0,b >0.故选D .]12.(多选题)下列四个结论,其中正确的是( )A .方程k =y -2x +1与方程y -2=k (x +1)表示同一条直线B .直线l 过点P (x 0,y 0),倾斜角为90°,则其方程为x =x 0C .直线l 过点P (x 0,y 0),斜率为0,则其方程为y =y 0D .所有直线都有点斜式和斜截式方程BC [A 中方程,k =y -2x +1,x ≠-1;D 中斜率不存在的直线没有点斜式和斜截式方程,∴AD 错误,BC 正确.]13.(一题两空)将直线y =3x 绕原点逆时针旋转90°,所得到的直线为________;再向右平移1个单位,所得到的直线为________.y =-13x y =-13x +13 [将直线y =3x 绕原点逆时针旋转90°,得到直线y =-13x ,再向右平移1个单位,所得到的直线为y =-13(x -1),即y =-13x +13.]14.已知直线l :y =kx +2k +1.(1)求证:直线l 恒过一个定点;(2)当-3<x <3时,直线上的点都在x 轴上方,求实数k 的取值范围.[解] (1)证明:由y =kx +2k +1,得y -1=k (x +2).由直线方程的点斜式可知,直线恒过定点(-2,1).(2)设函数f (x )=kx +2k +1,显然其图象是一条直线(如图所示), 若使当-3<x <3时,直线上的点都在x 轴上方, 需满足⎩⎨⎧f (-3)≥0,f (3)≥0.即⎩⎨⎧-3k +2k +1≥0,3k +2k +1≥0. 解得-15≤k ≤1. 所以,实数k 的取值范围是⎣⎢⎡⎦⎥⎤-15,1.15.在平面直角坐标系中,如果x 与y 都是整数,就称点(x ,y )为整点,下列结论正确的是( )A .存在这样的直线,既不与坐标轴平行又不经过任何整点B .如果k 与b 都是无理数,则直线y =kx +b 不经过任何整点C .直线y =kx +b 经过无穷多个整点的充分必要条件是:k 与b 都是有理数D .存在恰经过一个整点的直线AD [A 正确,如直线y =2x +12,不经过任何整点(x =0,y =12;x ≠0,y 是无理数)B 错误,直线y =2x -2中k 与b 都是无理数,但直线经过整点(1,0);C 错误,当k =0,b =12时,直线y =12不通过任何整点; D 正确,比如直线y =2x 只经过一个整点(0,0).]3、直线方程的两点式直线方程的一般式一、选择题1.一条直线不垂直于坐标轴,则它的方程()A.可以写成两点式或截距式B.可以写成两点式或斜截式或点斜式C.可以写成点斜式或截距式D.可以写成两点式或截距式或斜截式或点斜式B[由于直线不垂直于坐标轴,所以直线的斜率存在,且直线上任意两点的横坐标及纵坐标都不相同,所以直线能写成两点式或斜截式或点斜式.由于直线在坐标轴上的截距有可能为0,所以直线不一定能写成截距式.故选B.] 2.直线l的方程为Ax+By+C=0,若直线l过原点和二、四象限,则() A.C=0,B>0B.A>0,B>0,C=0C.AB<0,C=0 D.AB>0,C=0D[通过直线的斜率和截距进行判断.]3.已知两直线的方程分别为l1:x+ay+b=0,l2:x+cy+d=0,它们在坐标系中的位置如图所示,则()A.b>0,d<0,a<c B.b>0,d<0,a>cC.b<0,d>0,a>c D.b<0,d>0,a<cC[由已知直线表达式,得l1:y=-1a x-ba,l2:y=-1c x-dc,由题图知⎩⎪⎨⎪⎧-1a >-1c >0-ba <0-d c >0⇒⎩⎪⎨⎪⎧c <a <0b <0d >0.]4.把直线x -y +3-1=0绕点(1,3)逆时针旋转15°后,所得直线l 的方程是( )A .y =-3xB .y =3xC .x -3y +2=0D .x +3y -2=0B [如图,已知直线的斜率为1,则其倾斜角为45°,则直线l 的倾斜角α=45°+15°=60°. ∴直线l 的斜率k =tan α=tan 60°=3,∴直线l 的方程为y -3=3(x -1),即y =3x .]5.若直线Ax +By +C =0过坐标原点,则A ,B ,C 满足的条件是( ) A .C =0B .AB ≠0且C =0 C .A 2+B 2≠0且C =0D .A +B =0C [A ,B 不能同时为0.] 二、填空题6.斜率为2,且经过点A (1,3)的直线的一般式方程为________.2x -y +1=0 [由直线点斜式方程可得y -3=2(x -1),化成一般式为2x -y +1=0.]7.过点(-1,1)和(3,9)的直线在x 轴上的截距是________.-32 [直线方程为y -19-1=x +13+1,即y =2x +3,令y =0,得x =-32,∴在x 轴上的截距为-32.]8.过点P (3,-1),且在x 轴上的截距等于在y 轴上的截距的2倍的直线l 的方程是________.x +2y -1=0或x +3y =0 [设直线l 在x 轴上的截距为a ,在y 轴上的截距为b ,当a =0时,b =0,此时直线l 的方程为 y x =-13,所以x +3y =0;当a ≠0时,a =2b ,此时直线l 的方程为x 2b +yb =1,代入(3,-1),得x +2y -1=0.]三、解答题9.已知直线(a +2)x +(a 2-2a -3)y -2a =0在x 轴上的截距为3,求直线在y 轴上的截距.[解] 由已知,直线过点(3,0),所以3(a +2)-2a =0, 即a =-6.所以直线方程为-4x +45y +12=0,即4x -45y -12=0.令x =0,得y =-415. 故直线在y 轴上的截距为-415.10.求经过点B (3,4),且与两坐标轴围成一个等腰直角三角形的直线方程. [解] 由题意可知,所求直线的斜率为±1. 又过点(3,4),由点斜式得y -4=±(x -3). 所求直线的方程为x -y +1=0,或x +y -7=0.11.过点A (3,-1)且在两坐标轴上截距的绝对值相等的直线有( ) A .2条 B .3条 C .4条 D .无数多条 B [当截距都为零时满足题意要求,直线为y =-13x ; 当截距不为零时,设直线方程为x a +yb =1, ∴⎩⎪⎨⎪⎧3a +-1b =1|a |=|b |,∴⎩⎨⎧ a =2b =2或⎩⎨⎧a =4b =-4,即直线方程为x 2+y 2=1或x 4+y -4=1,∴满足条件的直线共有3条.故选B .]12.已知直线a 1x +b 1y +1=0和直线a 2x +b 2y +1=0都过点A (2,1),则过点P 1(a 1,b 1)和点P 2(a 2,b 2)的直线方程是( )A .2x +y +1=0B .2x -y +1=0C .2x +y -1=0D .x +2y +1=0A [∵点A (2,1)在直线a 1x +b 1y +1=0上,∴2a 1+b 1+1=0.由此可知点P 1(a 1,b 1)在直线2x +y +1=0上. ∵点A (2,1)在直线a 2x +b 2y +1=0上,∴2a 2+b 2+1=0.由此可知点P 2(a 2,b 2)也在直线2x +y +1=0上. ∴过点P 1(a 1,b 1)和点P 2(a 2,b 2)的直线方程是2x +y +1=0.]13.(多选题)若直线ax +by +c =0同时要经过第一、二、四象限,则a ,b ,c 应满足( )A .ab >0B .bc <0C .ab <0D .bc >0AB [易知直线的斜率存在,则直线方程可化为y =-a b x -cb ,由题意知⎩⎪⎨⎪⎧-a b <0,-c b >0,所以ab >0,bc <0.]14.(一题两空)已知点A (3,0),B (0,4),动点P (x ,y )在线段AB 上运动,则xy 的最大值为________;最小值为________.3 0 [线段AB 的方程为x 3+y 4=1(0≤x ≤3),所以xy =4x ⎝ ⎛⎭⎪⎫1-x 3=-43⎝ ⎛⎭⎪⎫x -322+3,所以当x =32时,xy 的最大值为3;当x =0或3时,xy 的最小值为0.]15.已知直线l 过点M (2,1),且与x 轴、y 轴的正方向分别交于A ,B 两点,当△AOB 的面积最小时,求直线l 的方程.[解]根据题意,设直线l的方程为xa+yb=1,由题意,知a>2,b>1,∵l过点M(2,1),∴2a+1b=1,解得b=aa-2,∴△AOB的面积S=12ab=12a·aa-2,化简,得a2-2aS+4S=0.①∴Δ=4S2-16S≥0,解得S≥4或S≤0(舍去).∴S的最小值为4,将S=4代入①式,得a2-8a+16=0,解得a=4,∴b=aa-2=2.∴直线l的方程为x+2y-4=0.4、两条直线的平行与垂直一、选择题1.下列直线中与直线x-y-1=0平行的是()A.x+y-1=0B.x-y+1=0C.x+y+1=0 D.ax-ay-a=0B[显然B中直线与直线x-y-1=0斜率相等但不重合.]2.已知直线l1的斜率k1=1,直线l2的斜率k2=-1,则l1与l2的位置关系是()A.平行B.垂直C.相交但不垂直D.不确定B[∵k1·k2=-1,∴l1⊥l2.]3.下列直线中,与已知直线y=-43x+1平行,且不过第一象限的直线的方程是( )A .3x +4y +7=0B .4x +3y +7=0C .4x +3y -42=0D .3x +4y -42=0B [先看斜率,A 、D 选项中斜率为-34,排除掉;直线与y 轴交点需在y 轴负半轴上,才能使直线不过第一象限,只有B 选项符合.]4.如果直线l 1的斜率为a ,l 1⊥l 2,则直线l 2的斜率为( ) A .1a B .aC .-1aD .-1a 或不存在D [当a ≠0时,由l 1⊥l 2得k 1·k 2=a ·k 2=-1,∴k 2=-1a ;当a =0时,l 1与x 轴平行或重合,则l 2与y 轴平行或重合,故直线l 2的斜率不存在.∴直线l 2的斜率为-1a 或不存在.]5.以A (-1,1),B (2,-1),C (1,4)为顶点的三角形是( ) A .锐角三角形 B .钝角三角形C .以A 点为直角顶点的直角三角形D .以B 点为直角顶点的直角三角形C [∵k AB =-23,k AC =32,∴k AB ·k AC =-1,即AB ⊥AC .] 二、填空题6.若直线l 1:2x +my +1=0与直线l 2:y =3x -1平行,则m =________. -23[-2m =3,∴m =-23.] 7.若直线l 1:2x -5y +20=0,l 2:mx -2y -10=0与两坐标轴围成的四边形有外接圆,则实数m 的值为________.-5 [l 1、l 2与坐标轴围成的四边形有外接圆,则四边形对角互补.因为坐标轴垂直,故l 1⊥l 2,即2m +10=0,∴m =-5.]8.已知A (3,1),B (-1,-1),C (2,1),则△ABC 的BC 边上的高所在的直线方程为________.3x+2y-11=0[k BC=1-(-1)2-(-1)=23,∴BC边上的高所在直线的斜率k=-3 2,∴所求直线方程为y-1=-32(x-3),即3x+2y-11=0.]三、解答题9.已知点A(-1,3),B(4,2),以AB为直径的圆与x轴交于点M,求点M 的坐标.[解]设M(x,0)∴M是以AB为直径的圆与x轴的交点,∴AM⊥BM,∴k AM·k BM=-1,即3-0-1-x×2-04-x=-1,∴x2-3x+2=0,∴x=1或x=2,∴M(1,0)或M(2,0).10.已知A(-m-3,2),B(-2m-4,4),C(-m,m),D(3,3m+2),若直线AB⊥CD,求m的值.[解]∵A、B两点纵坐标不等,∴AB与x轴不平行.∵AB⊥CD,∴CD与x轴不垂直,-m≠3,m≠-3.①当AB与x轴垂直时,-m-3=-2m-4,解得m=-1.而m=-1时,C,D纵坐标均为-1,∴CD∥x轴,此时AB⊥CD,满足题意.②当AB与x轴不垂直时,由斜率公式k AB=4-2-2m-4-(-m-3)=2-(m+1),k CD=3m+2-m3-(-m)=2(m+1)m+3.∵AB⊥CD,∴k AB·k CD=-1,即2-(m+1)·2(m+1)m+3=-1,解得m=1,综上m的值为1或-1.11.直线l1:mx-2y+1=0,l2:x-(m-1)y-1=0,则“m=2”是“l1∥l2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件C[由l1∥l2得-m(m-1)=1×(-2),得m=2或m=-1,经验证,当m=-1时,直线l1与l2重合,舍去,所以“m=2”是“l1∥l2”的充要条件.] 12.若{(x,y)|ax+2y+2=0}∩{(x,y)|3x-y-2=0}=∅,则系数a=()A.6B.-6C.32D.-32B[由题意知,两直线平行,∴a3=2-1,∴a=-6.]13.(多选题)下列说法中,不正确的是()A.若两直线斜率相等,则两直线平行B.若l1∥l2,则k1=k2C.若两直线中有一条直线的斜率不存在,另一条直线的斜率存在,则两直线相交D.若两直线斜率都不存在,则两直线平行ABD[当k1=k2时,l1与l2平行或重合,A不正确;若两直线平行,那么它们的斜率可能都不存在,B不正确;显然C正确;若两直线斜率都不存在,则两直线平行或重合,D不正确.]14.(一题两空)直线l1的斜率k1=34,直线l2经过点A(1,2),B(a-1,3).(1)若l1∥l2,则a的值为________.(2)若l1⊥l2,则a的值为________.10 354[直线l2的斜率k2=3-2a-1-1=1a-2,由l1∥l2,得k1=k2,∴1a-2=34,∴a=10 3.由l1⊥l2,得k1·k2=-1,∴1a-2×34=-1,∴a=54.]15.已知O 为坐标原点,点M (2,2),N (5,-2),点P 在x 轴上,分别求满足下列条件的P 的坐标.(1)∠MOP =∠OPN ; (2)∠MPN 是直角. [解] 设P (x ,0),(1)∵∠MOP =∠OPN ,∴MO ∥PN ,∴k OM =k NP , 又k OM =2-02-0=1,k NP =0-(-2)x -5=2x -5. ∴2x -5=1,解得x =7,即P (7,0). (2)∵∠MPN =90°,∴MP ⊥NP , ∴k MP ·k NP =-1,∵k MP =22-x ,k NP =2x -5, ∴22-x ×2x -5=-1,解得x =1或x =6. ∴P (1,0)或(6,0).5、 两条直线的交点坐标一、选择题1.直线3x -2y +m =0和(m 2+1)x +3y -3m =0的位置关系是( ) A .平行 B .相交 C .重合 D .不确定 B [∵k 1=32,k 2=-m 2+13<0,∴k 1≠k 2的两直线相交.] 2.直线l 1:3x -4y +5=0与l 2:4x -3y -13=0的交点坐标为( ) A .(2,3) B .⎝ ⎛⎭⎪⎫73,3 C .⎝ ⎛⎭⎪⎫3,73 D .⎝ ⎛⎭⎪⎫37,3B [由⎩⎪⎨⎪⎧3x -4y +5=04x -3y -13=0,得⎩⎪⎨⎪⎧x =73y =3,本题也可代入选项验证.]3.两条直线x +y -a =0与x -y -2=0相交于第一象限,则实数a 的取值范围是( )A .{a |-2<a <2}B .{a |a <-2}C .{a |a >2}D .{a |a <-2或a >2}C [联立方程,得⎩⎨⎧x +y -a =0,x -y -2=0,解得⎩⎪⎨⎪⎧x =a +22y =a -22,由交点在第一象限,得⎩⎪⎨⎪⎧a +22>0a -22>0,解得a >2.所以实数a 的取值范围是{a |a >2}.]4.已知直线ax +4y -2=0与2x -5y +b =0互相垂直,垂足为(1,c ),则a +b +c =( )A .-4B .20C .0D .24 A [由两直线垂直得-a 4×25=-1,∴a =10,将垂足代入ax +4y -2=0,得c =-2,再代入2x -5y +b =0,得b =-12, ∴a +b +c =-4.]5.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为( ) A .-9 B .9 C .-6 D .6 A [由⎩⎨⎧ y =2x ,x +y =3, 得⎩⎨⎧x =1,y =2.∴点(1,2)满足方程mx +2y +5=0,即m ×1+2×2+5=0,∴m =-9.] 二、填空题6.三条直线ax +2y +8=0,4x +3y =10和2x -y =10相交于一点,则a 的值为________.-1 [由⎩⎨⎧ 4x +3y =102x -y =10,得⎩⎨⎧x =4y =-2.将(4,-2)代入ax +2y +8=0,得4a +2×(-2)+8=0, ∴a =-1.]7.已知直线y =kx +3k -2与直线y =-14x +1的交点在x 轴上,则k 的值为________.27[直线y =-14x +1交x 轴于点(4,0). ∵两条直线的交点在x 轴上,∴直线y =kx +3k -2过点(4,0).∴0=4k +3k -2.∴k =27.]8.当a 取不同实数时,直线(2+a )x +(a -1)y +3a =0恒过一个定点,这个定点的坐标为________.(-1,-2) [直线方程可写成a (x +y +3)+2x -y =0,则该直线系必过直线x +y +3=0与直线2x -y =0的交点,即(-1,-2).]三、解答题9.已知直线l 经过直线3x +4y -2=0与直线2x +y +2=0的交点P ,且垂直于直线x -2y -1=0.(1)求直线l 的方程;(2)求直线l 与两坐标轴围成的三角形的面积S . [解] (1)由⎩⎨⎧3x +4y -2=0,2x +y +2=0,解得⎩⎨⎧x =-2,y =2,∴点P 的坐标是(-2,2). 又所求直线l 与x -2y -1=0垂直, 可设直线l 的方程为2x +y +C =0.把点P 的坐标代入得2×(-2)+2+C =0,即C =2. ∴所求直线l 的方程为2x +y +2=0.(2)由直线l 的方程知它在x 轴、y 轴上的截距分别是-1、-2,所以直线l 与两坐标轴围成三角形的面积S =12×1×2=1.10.已知△ABC 的顶点A 的坐标为(5,6),两边AB 、AC 上的高所在直线的方程分别为4x +5y -24=0与x -6y +5=0,求直线BC 的方程.[解] ∵AB 边上的高所在直线的方程为4x +5y -24=0, ∴可设直线AB 的方程为5x -4y +m =0, 把点A (5,6)坐标代入得25-24+m =0, ∴m =-1,即直线AB 方程为5x -4y -1=0, 由⎩⎨⎧ 5x -4y -1=0x -6y +5=0,得⎩⎨⎧x =1y =1,即B (1,1). 同理可得C (6,0), ∴k BC =1-01-6=-15. ∴直线BC 的方程为y =-15(x -6),即x +5y -6=0.11.已知点P (-1,0),Q (1,0),直线y =-2x +b 与线段PQ 相交,则b 的取值范围是( )A .[-2,2]B .[-1,1]C .⎣⎢⎡⎦⎥⎤-12,12D .[0,2]A [点P ,Q 所在直线的方程为y =0,由⎩⎨⎧y =-2x +b ,y =0,得交点⎝ ⎛⎭⎪⎫b 2,0,由-1≤b2≤1,得-2≤b ≤2.]12.直线x -2y +1=0关于直线x =1对称的直线方程是( ) A .x +2y -1=0 B .2x +y -1=0 C .2x +y -3=0D .x +2y -3=0D [设所求直线上任一点(x ,y ),则它关于x =1对称的点(2-x ,y )在直线x -2y +1=0上,所以2-x -2y +1=0,即x +2y -3=0.故选D .]13.(多选题)已知点P (x 0,y 0)是直线l :Ax +By +C =0外一点,则( ) A .Ax 0+By 0+C ≠0 B .Ax 0+By 0+C =0C .方程Ax +By +C +(Ax 0+By 0+C )=0表示不过点P 且与l 垂直的直线D .方程Ax +By +C +(Ax 0+By 0+C )=0表示不过点P 且与l 平行的直线 AD [因为点P (x 0,y 0)不在直线Ax +By +C =0上,所以Ax 0+By 0+C ≠0,所以直线Ax +By +C +(Ax 0+By 0+C )=0不经过点P ;又直线Ax +By +C +(Ax 0+By 0+C )=0与直线l :Ax +By +C =0平行,排除C .故选AD .]14.(一题两空)已知直线x -2y +1=0,x +3y -1=0,ax +2y -3=0共有两个不同的交点.(1)若它们相交于一点,则a =________; (2)若它们共有两个不同的交点,则a =________.-11 -1或23 [因为直线x -2y +1=0与x +3y -1=0相交于一点⎝ ⎛⎭⎪⎫-15,25,若它们相交于一点,则-15a +45-3=0,所以a =-11.若要使三条直线共有两个不同交点,只需ax +2y -3=0与以上两条直线中的一条平行即可,当ax +2y -3=0与x -2y +1=0平行时,有-a 2=12,解得a =-1;当ax +2y -3=0与x +3y -1=0平行时,有-a 2=-13,解得a =23.]15.一条光线沿直线2x -y +2=0入射到直线x +y -5=0后反射,求反射光线所在直线的方程.[解] 取直线2x -y +2=0上一点A (0,2),设点A (0,2)关于直线x +y -5=0对称的点为B (a ,b ),则⎩⎪⎨⎪⎧a 2+b +22-5=0,b -2a =1,解得 ⎩⎨⎧a =3,b =5,∴B (3,5).由⎩⎨⎧ 2x -y +2=0,x +y -5=0,解得⎩⎨⎧x =1,y =4,∴直线2x -y +2=0与直线x +y -5=0的交点为P (1,4), ∴反射光线在经过点B (3,5)和点P (1,4)的直线上, 该直线的方程为y -4=4-51-3(x -1),整理得x-2y+7=0.故反射光线所在直线的方程为x-2y+7=0.6、平面直角坐标系中的距离公式一、选择题1.点(1,2)到直线y=2x+1的距离为()A.55B.255C.5D.25A[直线y=2x+1,即2x-y+1=0,由点到直线的距离公式得d=|2×1-2+1| 22+(-1)2=55,故选A.]2.已知点(3,m)到直线x+3y-4=0的距离等于1,则m等于()A.3B.-3C.-33D.3或-33D[由|3+3m-4|2=1,解得m=3或-33,故选D.]3.已知两点A(3,2)和B(-1,4)到直线mx+y+3=0的距离相等,则实数m 的值为()A.-6或12B.-12或1C.-12或12D.0或12A[|3m+2+3|m2+12=|-m+4+3|m2+12,即|3m+5|=|7-m|,解得m=-6或12.]4.到直线3x-4y+1=0的距离为3,且与此直线平行的直线方程是() A.3x-4y+4=0B.3x-4y+4=0或3x-4y-2=0C .3x -4y +16=0D .3x -4y +16=0或3x -4y -14=0D [在直线3x -4y +1=0上取点(1,1).设与直线3x -4y +1=0平行的直线方程为3x -4y +m =0,则|3×1-4×1+m |32+(-4)2=3,解得m =16或m =-14, 即所求直线方程为3x -4y +16=0或3x -4y -14=0.]5.过点P (0,1)且和A (3,3),B (5,-1)距离相等的直线的方程是( ) A .y =1 B .2x +y -1=0 C .y =1或2x +y -1=0 D .2x +y -1=0或2x +y +1=0C [∵k AB =3-(-1)3-5=-2,过P 与AB 平行的直线方程为y -1=-2(x -0),即2x +y -1=0,又AB 的中点C (4,1),∴PC 的方程为y =1.] 二、填空题6.已知A (a ,3),B (-2,5a ),|AB |=13,则实数a 的值为________. 3或-2 [依题意及两点间的距离公式,得[a -(-2)]2+(3-5a )2=13,整理得a 2-a -6=0,解得a =3或a =-2.]7.在平面直角坐标系xOy 中,P 是曲线y =x +4x (x >0)上的一个动点,则点P 到直线x +y =0的距离的最小值是________.4 [由题意可设P ⎝ ⎛⎭⎪⎫x 0,x 0+4x 0(x 0>0),则点P 到直线x +y =0的距离d =⎪⎪⎪⎪⎪⎪x 0+x 0+4x 02=⎪⎪⎪⎪⎪⎪2x 0+4x 02≥22x 0·4x 02=4,当且仅当2x 0=4x 0,即x 0=2时取等号.故所求最小值是4.]8.点A (-3,1),C (1,y )关于点B (-1,-3)对称,则|AC |=________.45 [由已知得y +12=-3,解得y =-7,即C (1,-7),∴|AC |=[1-(-3)]2+(-7-1)2=45.] 三、解答题9.已知直线l 经过点P (-2,5),且斜率为-34. (1)求直线l 的方程;(2)若直线m 与l 平行,且点P 到直线m 的距离为3,求直线m 的方程. [解] (1)由直线方程的点斜式,得y -5=-34(x +2), 整理得,所求直线方程为3x +4y -14=0.(2)由直线m 与直线l 平行,可设直线m 的方程为3x +4y +C =0, 由点到直线的距离公式得|3×(-2)+4×5+C |32+42=3, 即|14+C |5=3,解得C =1或C =-29,故所求直线方程为3x +4y +1=0或3x +4y -29=0.10.已知直线l 1:mx +8y +n =0与l 2:2x +my -1=0互相平行,且l 1,l 2之间的距离为5,求直线l 1的方程.[解] ∵l 1∥l 2,∴m 2=8m ≠n-1,∴⎩⎨⎧ m =4,n ≠-2或⎩⎨⎧m =-4,n ≠2.(1)当m =4时,直线l 1的方程为4x +8y +n =0, 把l 2的方程写成4x +8y -2=0, ∴|n +2|16+64=5,解得n =-22或n =18. 故所求直线的方程为2x +4y -11=0或2x +4y +9=0.(2)当m =-4时,直线l 1的方程为4x -8y -n =0,l 2的方程为2x -4y -1=0, ∴|-n +2|16+64=5,解得n =-18或n =22.故所求直线的方程为2x -4y +9=0或2x -4y -11=0.11.在直角坐标系中,A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后,再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是( )A .210B .6C .33D .25 A [如图,设点P 关于直线AB ,y 轴的对称点分别为D ,C ,易求得D (4,2), C (-2,0),则△PMN 的周长=|PM |+|MN |+|NP |=|DM |+|MN |+|NC |.由对称性,D 、M 、N 、C 共线,∴|CD |即为所求,由两点间的距离公式得|CD |=40=210.]12.若直线3x +4y -3=0与直线6x +my +14=0平行,则它们之间的距离是( )A .1B .2C .12 D .4B [∵63=m 4≠14-3,∴m =8,直线6x +my +14=0可化为3x +4y +7=0,两平行线之间的距离d =|-3-7|32+42=2.] 13.(多选题)已知直线l :x cos α+y sin α=2,则下列结论正确的是( ) A .原点到直线l 距离等于2B .若点P (x 0,y 0)在直线l 上,则x 20 + y 20 ≥4C .点(1,1)到直线l 距离d 的最大值等于2+2D .点(1,1)到直线l 距离d 的最小值等于2- 2 ABCD [由点到直线的距离公式知,A 正确;由A 正确得,||OP ≥2,所以x 20 + y 20 ≥4;因为d =|cos α+sin α-2|cos 2α+sin 2α=⎪⎪⎪⎪⎪⎪2sin ⎝ ⎛⎭⎪⎫α+π4-2,所以d 的最大值等于2+2,最小值等于2-2.]14.(一题两空)在平面直角坐标系内,已知A (1,2),B (1,5),C (3,6),D (7,-1),则平面内任意一点到点A 与点C 的距离之和的最小值为________,平面内到A ,B ,C ,D 的距离之和最小的点的坐标是________.25 (2,4) [设平面上任一点M ,因为|MA |+|MC |≥|AC |=25,当且仅当A ,M ,C 共线,且M 在A ,C 之间时取等号,同理,|MB |+|MD |≥|BD |,当且仅当B ,M ,D 共线,且M 在B ,D 之间时取等号,连接AC ,BD 交于一点M (图略),此时|MA |+|MC |+|MB |+|MD |最小,则点M 即为所求.因为k AC =6-23-1=2,所以直线AC 的方程为y -2=2(x -1),即2x -y =0.①又因为k BD =5-(-1)1-7=-1,所以直线BD 的方程为 y -5=-(x -1),即x +y -6=0.②联立①②得⎩⎨⎧ 2x -y =0,x +y -6=0,解得⎩⎨⎧x =2,y =4,所以M (2,4).]15.已知正方形的中心为直线2x -y +2=0,x +y +1=0的交点,正方形一边所在的直线l 的方程为x +3y -5=0,求正方形其他三边所在直线的方程.[解] 设与直线l :x +3y -5=0平行的边所在的直线方程为l 1:x +3y +c =0(c ≠-5).由⎩⎨⎧2x -y +2=0,x +y +1=0, 得正方形的中心坐标为P (-1,0), 由点P 到两直线l ,l 1的距离相等,得|-1-5|12+32=|-1+c |12+32,得c =7或c =-5(舍去).∴l 1:x +3y +7=0.又正方形另两边所在直线与l 垂直, ∴设另两边所在直线的方程分别为3x -y +a =0,3x -y +b =0. ∵正方形中心到四条边的距离相等, ∴|-3+a |32+(-1)2=|-1-5|12+32,得a =9或a =-3,∴另两条边所在的直线方程分别为3x -y +9=0,3x -y -3=0.∴另三边所在的直线方程分别为3x -y +9=0,x +3y +7=0,3x -y -3=0.7、 圆的标准方程一、选择题1.圆心为点(3,4)且过点(0,0)的圆的方程是( ) A .x 2+y 2=25 B .x 2+y 2=5C .(x -3)2+(y -4)2=25D .(x +3)2+(y +4)2=25C [r =(3-0)2+(4-0)2=5,故选C .]2.圆C :(x +4)2+(y -3)2=9的圆心C 到直线4x +3y -1=0的距离等于( ) A .65 B .85 C .245 D .265B [由已知得,C (-4,3),则圆心C 到直线4x +3y -1=0的距离d =|-16+9-1|42+32=85.] 3.点(a ,a )在圆(x -1)2+(y +2)2=2a 2的内部,则a 的取值范围为( ) A .⎝ ⎛⎭⎪⎫-∞,-52B .⎝ ⎛⎦⎥⎤-∞,-52C .⎣⎢⎡⎭⎪⎫-52,+∞D .⎝ ⎛⎭⎪⎫-52,+∞A [由(a -1)2+(a +2)2<2a 2,得a <-52.]4.设P 是圆(x -3)2+(y +1)2=4上的动点,Q 是直线x =-3上的动点,则|PQ |的最小值为( )A .6B .4C .3D .2B [由题意,知 |PQ |的最小值即为圆心到直线x =-3的距离减去半径长,即|PQ |的最小值为6-2=4,故选B .]5.方程|y|-1=1-(x-1)2表示的曲线是()A.半圆B.圆C.两个圆D.两个半圆D[由题意知|y|-1≥0,则y≥1或y≤-1,当y≥1时,原方程可化为(x-1)2+(y-1)2=1(y≥1),其表示以(1,1)为圆心、1为半径、直线y=1上方的半圆;当y≤-1时,原方程可化为(x-1)2+(y+1)2=1(y≤-1),其表示以(1,-1)为圆心、1为半径、直线y=-1下方的半圆.所以方程|y|-1=1-(x-1)2表示的曲线是两个半圆.故选D.]二、填空题6.圆(x+2)2+y2=5关于原点(0,0)对称的圆的方程为________.(x-2)2+y2=5[(x+2)2+y2=5的圆心为(-2,0),圆心关于原点的对称点为(2,0),即为对称圆的圆心,所以关于原点的对称圆的方程为(x-2)2+y2=5.]7.设P(x,y)是曲线x2+(y+4)2=4上任意一点,则(x-1)2+(y-1)2的最大值为________.26+2[由(x-1)2+(y-1)2的几何意义知:本题是求圆上一点到点(1,1)的最大值,其最大值为(0-1)2+(-4-1)2+2=26+2.]8.已知△ABC的顶点A(-1,0),B(1,0),C在圆(x-2)2+(y-2)2=1上移动,则△ABC面积的最小值为________.1[∵|AB|=2.∴当△ABC的高,即C到AB的距离最小时,S△ABC最小,又圆心为(2,2),半径为1.所以此时C的坐标为(2,1),S的最小值为1.]△ABC三、解答题9.求圆心C(8,-3)且过点P(5,1)的圆的标准方程.[解]法一:设圆的标准方程为(x-8)2+(y+3)2=r2,。
北师大版数学必修一课时作业15指数扩充及其运算性质 Word版含解析
【解析】(-) =,要使(-) 有意义,则需->,即<.
【答案】
(>)的值是()
..
ቤተ መጻሕፍቲ ባይዱ..
.化简()·()的结果是()
..
..
二、填空题(每小题分,共分)
-+(-)- -=.
【答案】-
【答案】
.若==,则 =.
【解析】由==,
得 =() = ,
=()=,
【答案】
三、解答题(每小题分,共分)
.将下列根式化为分数指数幂的形式:
即--=±.
.()已知=,=,
求-的值;
()已知,是方程-+=的两根,且>>,
求的值.
【解析】()-=-=.
当=,=时,
原式==
=-=-.
()因为,是方程-+=的两根,
所以
因为>>,所以>,
=
==,
所以==.
()·(>);
()(>);
()(>,>);
()(>,>).
()方法一:从外向里化为分数指数幂.
方法二:从里向外化为分数指数幂.
.化简求值:
能力提升
.化简·的结果是()
.-
.-
【解析】由题意可知≤,则·=(-) · =-(-) ·(-) =-(-) =-=-.
【答案】
.若+=,则()=.
【解析】因为+=,
所以+=+++=,
所以=-,=-.
∴()=[(-)]-=(-)-=-.
【答案】-
.已知 + =,求下列各式的值.
()+-;()+-;()--.
【解析】()将+=两边平方,
2019-2020年高中数学课时达标训练十五北师大版必修
2019-2020年高中数学课时达标训练十五北师大版必修一、选择题1.(山东高考)函数f (x )= 1-2x+1x +3的定义域为 ( )A .(-3,0]B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1]2.指数函数y =b ·a x在[b,2]上的最大值与最小值的和为6,则a =( ) A .2 B .-3 C .2或-3 D.123.已知f (x )=⎩⎪⎨⎪⎧f x -,x ≥0,2x,x <0,则f (8)等于( )A .4B .0 C.14D .2 4.定义运算a ×b =⎩⎪⎨⎪⎧aa ≤b ,b a >b ,则函数f (x )=1×2x的图像是( )二、填空题5.函数y =8-2x的定义域是 ________.6.已知a =0.30.2,b =0.20.2,c =0.20.3,d =⎝ ⎛⎭⎪⎫12-1.5,则a ,b ,c ,d 由小到大排列的顺序是________.7.函数f (x )=⎩⎪⎨⎪⎧-x +3-3a ,x <0,a x,x ≥0(a >0,a ≠1)是(-∞,+∞)上的减函数,则a 的取值范围是________.答案:⎝ ⎛⎦⎥⎤0,238.若0<a <1,b <-1,则函数f (x )=a x+b 的图像一定不经过第________象限. 三、解答题9.已知函数y =a 2x +2a x-1(0<a <1)在区间[-1,1]上的最大值是14,试求a 的值. 10.已知函数f (x )=⎝⎛⎭⎪⎫12x -1+12·x 3.(1)求f (x )的定义域; (2)讨论f (x )的奇偶性; (3)证明f (x )>0.答案1.解析:选A 由题意得⎩⎪⎨⎪⎧1-2x≥0,x +3>0,所以-3<x ≤0.2.解析:选A ∵y =b ·a x为指数函数,∴b =1,则[b,2]=[1,2].由于y =a x为单调函数,∴函数在区间[1,2]的端点处取得最值,∴a +a 2=6,解得a =2或a =-3(舍去).3.解析:选C f (8)=f (6)=f (4)=f (2)=f (0)=f (-2)=2-2=14.4.解析:选A 当x <0时,2x <1,f (x )=2x ;当x ≥0时,2x≥1,f (x )=1.5.解析:∵8-2x≥0,即2x≤23,又y =2x在R 上为增函数.∴x ≤3的定义域为(-∞,3].答案:(-∞,3]6.解析:∵0.30.2<0.30=1,同理:0.20.2<1,0.20.3<1,⎝ ⎛⎭⎪⎫12-1.5>1,考查幂函数y =x 0.2,可知该函数在(0,+∞)上是增函数.∴0.30.2>0.20.2;考查指数函数y =0.2x ,可知该函数在R 上是减函数,∴0.20.2>0.20.3,综上,0.20.3<0.20.2<0.30.2<⎝ ⎛⎭⎪⎫12-1.5,即c <b <a <d .答案:c <b <a <d7.解析:当x <0时,函数f (x )=-x +3-3a 是减函数;当x ≥0时,函数f (x )=a x 是减函数,则0<a <1;且满足0+3-3a ≥a 0,解得a ≤23,所以a 的取值范围是⎝ ⎛⎦⎥⎤0,23. 答案:⎝ ⎛⎦⎥⎤0,23 8.解析:函数f (x )=a x+b 的图像可由函数y =a x的图像向上(b >0时)或向下(b <0)时,平移|b |个单位得到,∵0<a <1,b <-1,结合图像可知,f (x )=a x+b 的图像一定不经过第一象限.答案:一9.解:由y =a 2x +2a x-1(0<a <1), 令t =a x,∵x ∈[-1,1]∴a ≤t ≤1a,∴y =t 2+2t -1=(t +1)2-2. 对称轴为t =-1.∵0<a <1∴1a >1,∴当t =1a,即x =-1时,y 取最大值.y max =1a 2+2a -1=14,解得a =13,a =-15.∵0<a <1,∴a =13.10.解:(1)由题意,2x-1≠0,即x ≠0, ∴定义域为(-∞,0)∪(0,+∞). (2)对任意x ∈(-∞,0)∪(0,+∞), ∵f (-x )=⎝ ⎛⎭⎪⎫12-x -1+12(-x )3=2-x+1-x -·(-x )3=1+2x -2x·(-x )3=⎝⎛⎭⎪⎫12x -1+12·x 3=f (x ),∴f (x )为定义域上的偶函数. (3)当x >0时,2x>1, ∴2x-1>0. 又∵x 3>0, ∴f (x )>0.由偶函数的图像关于y 轴对称,知x <0时,f (x )>0也成立. 故对于x ∈(-∞,0)∪(0,+∞),恒有f (x )>0.2019-2020年高中数学课时达标训练十五新人教A 版选修题组1 利用导数公式求函数的导数 1.给出下列结论:①(cos x )′=sin x ;②⎝ ⎛⎭⎪⎫sin π3′=cos π3;③若y =1x 2,则y ′=-1x ;④⎝ ⎛⎭⎪⎫-1x ′=12x x.其中正确的个数是( ) A .0 B .1 C .2 D .32.已知f (x )=x α(α∈Q *),若f ′(1)=14,则α等于( )A.13B.12C.18D.14题组2 利用导数的运算法则求导数 3.函数y =sin x ·cos x 的导数是( ) A .y ′=cos 2x +sin 2x B .y ′=cos 2x -sin 2x C .y ′=2cos x ·sin x D .y ′=cos x ·sin x 4.函数y =x 2x +3的导数为________.5.已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.6.求下列函数的导数.(1)y =sin x -2x 2;(2)y =cos x ·ln x ;(3)y =e xsin x.题组3 利用导数公式研究曲线的切线问题7.曲线y =x e x+2x +1在点(0,1)处的切线方程为________.8.若曲线f (x )=x ·sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a =________.9.已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a =________.10.在平面直角坐标系xOy 中,点P 在曲线C :y =x 3-10x +13上,且在第一象限内,已知曲线C 在点P 处的切线的斜率为2,求点P 的坐标.[能力提升综合练]1.f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x ),n ∈N ,则f 2 017(x )=( )A .sin xB .-sin xC .cos xD .-cos x2.已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1 D.123.曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为( ) A .-12 B.12 C .-22 D.224.已知直线y =3x +1与曲线y =ax 3+3相切,则a 的值为( ) A .1 B .±1 C .-1 D .-25.已知函数f (x )=f ′⎝ ⎛⎭⎪⎫π4cos x +sin x ,则f ⎝ ⎛⎭⎪⎫π4=________.6.设f (x )=x (x +1)(x +2)…(x +n ),则f ′(0)=________.7.已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.8.设f (x )=x 3+ax 2+bx +1的导数f ′(x )满足f ′(1)=2a ,f ′(2)=-b ,其中常数a ,b ∈R .求曲线y =f (x )在点(1,f (1))处的切线方程.9.已知两条直线y =sin x ,y =cos x ,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.答 案即时达标对点练1. 解析:选B 因为(cos x )′=-sin x ,所以①错误.sin π3=32,而⎝ ⎛⎭⎪⎫32′=0,所以②错误.⎝ ⎛⎭⎪⎫1x2′=0-(x 2)′x 4=-2x x 4=-2x3,所以③错误.⎝ ⎛⎭⎪⎫-1x ′=-0-(x 12)′x=12x -12x=12x -32=12x x,所以④正确. 2. 解析:选D ∵f (x )=x α, ∴f ′(x )=αxα-1.∴f ′(1)=α=14.3. 解析:选 B y ′=(sin x ·cos x )′=cos x ·cos x +sin x ·(-sin x )=cos 2x -sin 2x .4. 解析:y ′=⎝ ⎛⎭⎪⎫x 2x +3′=(x 2)′(x +3)-x 2(x +3)′(x +3)2=2x (x +3)-x 2(x +3)2=x 2+6x(x +3)2.答案:x 2+6x (x +3)25. 解析:f ′(x )=a ⎝ ⎛⎭⎪⎫ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3. 答案:36. 解:(1)y ′=(sin x -2x 2)′=(sin x )′-(2x 2)′ =cos x -4x .(2)y ′=(cos x ·ln x )′=(cos x )′·ln x +cos x ·(ln x )′ =-sin x ·ln x +cos xx.(3)y ′=⎝ ⎛⎭⎪⎫e xsin x ′ =(e x )′·sin x -e x·(sin x )′sin 2x =e x ·sin x -e x·cos x sin 2x =e x(sin x -cos x )sin 2x. 7. 解析:y ′=e x+x e x+2,则曲线在点(0,1)处的切线的斜率为k =e 0+0+2=3,所以所求切线方程为y -1=3x ,即y =3x +1.答案:y =3x +18. 解析:因为f ′(x )=sin x +x cos x ,所以f ′⎝ ⎛⎭⎪⎫π2=sin π2+π2cos π2=1.又直线ax +2y +1=0的斜率为-a 2,所以根据题意得1×⎝ ⎛⎭⎪⎫-a 2=-1,解得a =2.答案:29. 解析:∵f ′(x )=3ax 2+1, ∴f ′(1)=3a +1. 又f (1)=a +2,∴切线方程为y -(a +2)=(3a +1)(x -1).∵切线过点(2,7),∴7-(a +2)=3a +1,解得a =1.答案:110. 解:设点P 的坐标为(x 0,y 0),因为y ′=3x 2-10,所以3x 20-10=2,解得x 0=±2.又点P 在第一象限内,所以x 0=2,又点P 在曲线C 上,所以y 0=23-10×2+13=1,所以点P 的坐标为(2,1).能力提升综合练1. 解析:选C 因为f 1(x )=(sin x )′=cos x ,f 2(x )=(cos x )′=-sin x ,f 3(x )=(-sin x )′=-cos x ,f 4(x )=(-cos x )′=sin x ,f 5(x )=(sin x )′=cos x ,所以循环周期为4,因此f 2 017(x )=f 1(x )=cos x .2. 解析:选A 因为y ′=x 2-3x ,所以根据导数的几何意义可知,x 2-3x =12,解得x =3(x =-2不合题意,舍去).3. 解析:选B y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=11+sin 2x ,把x =π4代入得导数值为12,即为所求切线的斜率.4. 解析:选A 设切点为(x 0,y 0),则y 0=3x 0+1,且y 0=ax 30+3,所以3x 0+1=ax 30+3…①.对y =ax 3+3求导得y ′=3ax 2,则3ax 20=3,ax 20=1…②,由①②可得x 0=1,所以a =1.5. 解析:∵f ′(x )=-f ′⎝ ⎛⎭⎪⎫π4sin x +cos x ,∴f ′⎝ ⎛⎭⎪⎫π4=-f ′⎝ ⎛⎭⎪⎫π4×22+22,得f ′⎝ ⎛⎭⎪⎫π4=2-1.∴f (x )=(2-1)cos x +sin x .∴f ⎝ ⎛⎭⎪⎫π4=1. 答案:16. 解析:令g (x )=(x +1)(x +2)…(x +n ), 则f (x )=xg (x ),求导得f ′(x )=x ′g (x )+xg ′(x )=g (x )+xg ′(x ), 所以f ′(0)=g (0)+0×g ′(0)=g (0)=1×2×3×…×n . 答案:1×2×3×…×n7. 解析:法一:∵y =x +ln x , ∴y ′=1+1x,y ′|x =1=2.∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1), 即y =2x -1.∵y =2x -1与曲线y =ax 2+(a +2)x +1相切,∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行).由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1,消去y ,得ax 2+ax +2=0. 由Δ=a 2-8a =0,解得a =8. 法二:同法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1). ∵y ′=2ax +(a +2), ∴y ′|x =x 0=2ax 0+(a +2).由⎩⎪⎨⎪⎧2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎪⎨⎪⎧x 0=-12,a =8. 答案:88. 解:因为f (x )=x 3+ax 2+bx +1,所以f ′(x )=3x 2+2ax +b .令x =1,得f ′(1)=3+2a +b ,又f ′(1)=2a ,3+2a +b =2a ,解得b =-3,令x =2得f ′(2)=12+4a +b ,又f ′(2)=-b ,所以12+4a +b =-b ,解得a =-32.则f (x )=x 3-32x 2-3x +1,从而f (1)=-52.又f ′(1)=2×⎝ ⎛⎭⎪⎫-32=-3,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -⎝ ⎛⎭⎪⎫-52=-3(x -1),即6x +2y -1=0.9. 解:不存在.由于y =sin x ,y =cos x ,设两条曲线的一个公共点为P (x 0,y 0),所以两条曲线在P (x 0,y 0)处的斜率分别为k 1=y ′|x =x 0=cos x 0,k 2=y ′|x =x 0=-sin x 0.若使两条切线互相垂直,必须使cos x 0·(-sin x 0)=-1,即sin x 0·cos x 0=1,也就是sin 2x 0=2,这是不可能的,所以两条曲线不存在公共点,使在这一点处的两条切线互相垂直.。
【全程复习方略】2014-2015学年北师大版高中数学必修一课时作业(十五) 3.2.1]
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课时提升作业(十五)指数概念的扩充(30分钟50分)一、选择题(每小题3分,共18分)1.将写成根式,正确的是( )A. B. C. D.【解析】选D.因为=,所以选D.2.(2014·江中高一检测)计算=( )A. B. C.-3 D.5【解题指南】观察出哪一个数的立方等于.【解析】选B.因为==,所以=.3.式子-70的值等于( )A.-4B.-10C.2D.3【解析】选C.因为=3,70=1,所以原式=3-1=2.4. (a7b8化为根式是( )A. B. C. D.【解析】选A.(a7b8=,故A正确.5.(2014·益阳高一检测)把根式(a>b)改写成分数指数幂的形式是( ) A.(a-b B.(a-bC.-D.-【解析】选A.根据分数指数幂与根式的关系可得结果.6.等于( )A. B.α2 C.-1 D.1【解析】选D.===1.二、填空题(每小题4分,共12分)7.(2014·广州高一检测)设α,β为方程2x2+3x+1=0的两个根,则= .【解题指南】先根据根与系数的关系求出α+β的值.【解析】利用根与系数的关系,得α+β=-,所以=,因为8-2=,所以=8.答案:88.(2014·上饶高一检测)式子(1-2x有意义,则x∈.【解析】因为(1-2x==,所以1-2x>0,即x<.答案:【举一反三】式子(1-2x有意义,则x∈.【解析】因为(1-2x==,所以1-2x≠0,即x≠.答案:∪9.(2014·延安高一检测)把(a>0)写成分数指数幂的形式为.【解析】==.答案:三、解答题(每小题10分,共20分)10.(2014·重庆高一检测)求值:(1)3.(2)8.(3)0.008.【解析】(1)因为=32,所以3=.(2)因为813=274,所以8=27.(3)令0.008=b,所以=b4,即b4=,所以b=.【误区警示】在(3)中要注意b>0,不要出现b=〒这种错误.11.把下列是根式的化为分数指数幂,是分数指数幂的化为根式(式中字母均为正实数).(1).(2).(3)(a+b.(4).【解析】(1)=.(2)=2.(3)(a+b=.(4)=(x3+y.【拓展延伸】指数幂的扩充意义根式与分数指数幂互化后,所有的式子表示都可以归结为分数指数幂,即归结为指数表达.“指数概念”的扩充过程类似“数”的扩充过程,体现了整个数学的组织化,系统化的精神.(30分钟50分)一、选择题(每小题4分,共16分)1.(2014·榆林高一检测)要使有意义,则a可能取的值为( )A.0B.-2C.-D.【解析】选D.由==可知结果.2.(2014·渭南高一检测)-+等于( )A.2B.-2C.0D.1【解析】选C.-+=-+=0.3.(2014·西安高一检测)若(a2)3=π2,则a=( )A. B.- C.± D.【解析】选C.因为(a2)3=π2中,a可以取正、负值,所以a=〒=〒.【误区警示】没有明确a的范围而错选A.4.若有意义,则x的取值范围是( )A.x>2B.x<2C.x>2或x<-2D.x∈R【解题指南】开偶次方根时,被开方数应为非负数.【解析】选A.要使有意义,只需使≥0,即x-2>0,所以x>2.二、填空题(每小题5分,共10分)5.(2014·吉安高一检测)在,,,2-1中,最大的数是.【解析】因为==,==,2-1=,<0,所以最大.答案:6.(2014·佛山高一检测)计算= .【解析】==|π-3=π-3.答案:π-3三、解答题(每小题12分,共24分)7.求函数y=(2x+3-(6x-5)0的定义域.【解析】由题意得解得x>-且x≠.故函数的定义域为∪.【变式训练】函数y=(4x-3-(x-5)0的定义域为.【解析】由题意得解得x>且x≠5.答案:x>且x≠58.已知幂函数y=f(x)的图像过点.(1)求f(x)的解析式.(2)求f(25)的值.(3)若f(a)=b(a,b>0),则a用b可表示成什么?【解题指南】解答本题的关键是根据条件求出y=f(x)的解析式,进而求解(2)(3).【解析】(1)设f(x)=x t,则9t=.即32t=3-1,所以t=-,所以f(x)=(x>0).(2)f(25)=2===.(3)由f(a)=b得=b,所以a=b-2=.关闭Word文档返回原板块。
最新北师大版高一数学必修一测试题全套及答案
最新北师大版高一数学必修一测试题全套及答案第一章测试题一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|-1≤x<3},B={x|2<x≤5},则A∪B等于()A.{x|2<x<3}B.{x|-1≤x≤5}C.{x|-1<x<5} D.{x|-1<x≤5}解析:结合数轴分析可知,A∪B={x|-1≤x≤5}.答案:B2.符合条件{a}P⊆{a,b,c}的集合P的个数是()A.2 B.3C.4 D.5解析:集合P内除了含有元素a外,还必须含b,c中至少一个,故P={a,b},{a,c},{a,b,c}共3个.答案:B3.已知集合A,B均为集合U={1,3,5,7,9}的子集,若A∩B={1,3},(∁U A)∩B={5},则集合B等于()A.{1,3} B.{3,5}C.{1,5} D.{1,3,5}解析:画出满足题意的Venn图,由图可知B={1,3,5}.答案:D4.设M={x|x=a2+1,a∈N*},P={y|y=b2-4b+5,b∈N*},则下列关系正确的是() A.M=P B.M PC.P M D.M与P没有公共元素解析:∵a∈N*,∴x=a2+1=2,5,10,….∵b∈N*,∴y=b2-4b+5=(b-2)2+1=1,2,5,10,….∴M P.答案:B5.若全集U={1,2,3,4,5,6},M={2,3},N={1,4},则集合{5,6}等于()A.M∪N B.M∩NC.(∁U M)∪(∁U N) D.(∁U M)∩(∁U N)解析:∵∁U M={1,4,5,6},∁U N={2,3,5,6},∴(∁U M)∩(∁U N)={5,6}.答案:D6.如图,I为全集,M,P,S是I的三个子集,则阴影部分所表示的集合是() A.(M∩P)∩S B.(M∩P)∪SC.(M∩P)∩(∁I S)D.(M∩P)∪(∁I S)解析:阴影部分在M中,也在P中但不在S中,故表示的集合为(M∩P)∩(∁I S).答案:C7.已知集合A={x|x<3,或x≥7},B={x|x<a}.若(∁U A)∩B≠∅,则a的取值范围为() A.a>3 B.a≥3C.a≥7 D.a>7解析:因为A={x|x<3,或x≥7},所以∁U A={x|3≤x<7},又(∁U A)∩B≠∅,则a>3.答案:A8.已知集合A={x|x>a},B={x|1<x<2},且A∪(∁R B)=R,则实数a的取值范围是() A.{a|a≤1} B.{a|a<1}C.{a|a≥2} D.{a|a>2}解析:∁R B={x|x≤1或x≥2},∵A∪(∁R B)=R,∴a≤1.答案:A9.若集合A={x||x|=1},B={x|ax=1},若A∪B=A,则实数a的值为()A.1 B.-1C.1或-1 D.1或0或-1解析:∵A={-1,1}且A∪B=A,∴B⊆A,∴B={-1}或{1}或∅.当B={1}时a=1;当B={-1}时a=-1;当B=∅时a=0.∴a的值为0或1或-1.答案:D10.定义集合M与N的新运算:M⊕N={x|x∈M或x∈N且x∉M∩N},则(M⊕N)⊕N =()A.M∩N B.M∪NC.M D.N解析:按定义,M⊕N表示右上图的阴影部分,两圆内部的公共部分表示M∩N.(M⊕N)⊕N应表示x∈M⊕N或x∈N且x∉(M⊕N)∩N的所有x的集合,(M⊕N)∩N表示右下图右边的阴影部分,因此(M⊕N)⊕N=M.答案:C二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)11.已知集合A={x|x≤2},B={x|x>a},如果A∪B=R,那么a的取值范围是________.解析:如图中数轴所示,要使A∪B=R,需满足a≤2.答案:a≤212.集合A={1,2,3,5},当x∈A时,若x-1∉A,x+1∉A,则称x为A的一个“孤立元素”,则A中孤立元素的个数为________.解析:当x=1时,x-1=0∉A,x+1=2∈A;当x=2时,x-1=1∈A,x+1=3∈A;当x=3时,x-1=2∈A,x+1=4∉A;当x=5时,x-1=4∉A,x+1=6∉A;综上可知,A中只有一个孤立元素5.答案:513.设U=R,A={x|x>0},B={x|x>1},则A∩(∁U B)=________________________________________________________________________.解析: ∵∁U B ={x |x ≤1},借助数轴可以求出∁U B 与A 的交集为图中阴影部分,即{x |0<x ≤1}.答案: {x |0<x ≤1} 14.已知集合A{2,3,7},且A 中至多有1个奇数, 则这样的集合共有________个.解析: (1)若A 中有且只有1个奇数,则A ={2,3}或{2,7}或{3}或{7}; (2)若A 中没有奇数,则A ={2}或∅. 答案: 6三、解答题(本大题共4个小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(12分)已知M ={1,t },N ={t 2-t +1},若M ∪N =M ,求t 的取值集合. 解析: ∵M ∪N =M , ∴N ⊆M ,即t 2-t +1∈M ,(1)若t 2-t +1=1,即t 2-t =0,解得t =0或t =1,当t =1时,M 中的两元素相同,不符合集合中元素的互异性,舍去.∴t =0. (2)若t 2-t +1=t ,即t 2-2t +1=0,解得t =1, 由(1)知不符合题意,舍去. 综上所述,t 的取值集合为{0}.16.(12分)已知集合A ={x |-1≤x <3},B ={x |2x -4≥x -2}. (1)求A ∩B ;(2)若集合C ={x |2x +a >0},满足B ∪C =C ,求实数a 的取值范围. 解析: (1)∵B ={x |x ≥2}, ∴A ∩B ={x |2≤x <3}(2)∵C =⎩⎨⎧⎭⎬⎫x ⎪⎪x >-a 2,B ∪C =C ⇔B ⊆C ,∴-a2<2, ∴a >-4.∴a 的取值范围是{a |a >-4}.17.(13分)若集合A ={x |-3≤x ≤4}和B ={x |2m -1≤x ≤m +1}. (1)当m =-3时,求集合A ∩B . (2)当B ⊆A 时,求实数m 的取值范围.解析: (1)当m =-3时,B ={x |-7≤x ≤-2}, A ∩B ={x |-3≤x ≤-2}. (2)∵B ⊆A ,∴B =∅或B ≠∅. 当B =∅时,2m -1>m +1,即m >2. 当B ≠∅时,有 ⎩⎪⎨⎪⎧2m -1≤m +12m -1≥-3m +1≤4,即-1≤m ≤2.综上所述,所求m 的范围是m ≥-1.18.(13分)已知全集U =R ,集合A ={a |a ≥2或a ≤-2},B ={a |关于x 的方程ax 2-x +1=0有实根}.求A ∪B ,A ∩B ,A ∩(∁U B ).解析: A ={a |a ≥2或a ≤-2}, 对于方程ax 2-x +1=0有实根, 当a =0时,x =1;当a ≠0时,Δ=1-4a ≥0,a ≤14. 所以B =⎩⎨⎧⎭⎬⎫a | a ≤14 .所以A ∪B =⎩⎨⎧⎭⎬⎫a | a ≤14或a ≥2,A ∩B ={a |a ≤-2},A ∩(∁UB )={a |a ≥2}.第二章 测试题一、选择题(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =x 2-2x 的定义域为{0,1,2,3},那么其值域为( )A.{-1,0,3} B.{0,1,2,3}C.{y|-1≤y≤3} D.{y|0≤y≤3}解析:当x=0时y=0,当x=1时y=-1,当x=2时y=0,当x=3时y=3,值域为{-1,0,3}.答案:A2.幂函数y=xm2-2m-3(m∈Z)的图像如图所示,则m的值为()A.-1<m<3B.0C.1D.2解析:从图像上看,由于图像不过原点,且在第一象限下降,故m2-2m-3<0,即-1<m<3;又从图像看,函数是偶函数,故m2-2m-3为负偶数,将m=0,1,2分别代入,可知当m=1时,m2-2m-3=-4,满足要求.答案:C3.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,其图像可能是()解析:汽车经过启动、加速行驶、匀速行驶、减速行驶直至停车,在行进过程中s 随时间t的增大而增大,故排除D.另外汽车在行进过程中有匀速行驶的状态,故排除C.又因为在开始时汽车启动后加速行驶的过程中行驶路程s随时间t的变化越来越快,在减速行驶直至停车的过程中行驶路程s随时间t的变化越来越慢,排除B.答案:A4.函数y=f(x)的图像与直线x=a(a∈R)的交点有()A.至多有一个B.至少有一个C.有且仅有一个D.有一个或两个以上解析:由函数的定义对于定义域内的任意一个x值,都有唯一一个y值与它对应,所以函数y =f (x )的图像与直线x =a (a ∈R )至多有一个交点(当a 的值不在定义域时,也可能没有交点).答案: A5.对于定义域为R 的奇函数f (x ),下列结论成立的是( ) A .f (x )-f (-x )>0 B .f (x )-f (-x )≤0 C .f (x )·f (-x )≤0D .f (x )·f (-x )>0解析: f (-x )=-f (x ),则f (x )·f (-x )=-f 2(x )≤0. 答案: C6.函数y =x 2+bx +c (x ∈[0,+∞))是单调函数,则有( ) A .b ≥0 B .b ≤0 C .c ≥0D .c ≤0解析: 作出函数y =x 2+bx +c 的简图,对称轴为x =-b2.因该函数在[0,+∞)上是单调函数,故对称轴只要在y 轴及y 轴左侧即可,故-b2≤0,所以b ≥0.答案: A7.幂函数y =f (x )图像如图,那么此函数为( )A .y =x -2B .y =x 32 C .y =x 12D .y =x 23解析: 可设函数为y =x α,将(2,2)代入得α=12. 答案: C8.某工厂的大门是一抛物线形水泥建筑物,大门的地面宽度为8 m ,两侧距离地面3 m 高处各有一个壁灯,两壁灯之间的水平距离为6 m ,如图所示.则厂门的高约为(水泥建筑物厚度忽略不计,精确到0.1 m)( )A .6.9 mB .7.0 mC .7.1 mD .6.6 m解析: 建立如图所示的坐标系,于是由题设条件知抛物线的方程为y =ax 2(a <0),设点A 的坐标为(4,-h ),则C (3,3-h ),将这两点的坐标代入y =ax 2,可得⎩⎪⎨⎪⎧-h =a ·42,3-h =a ·32,解得⎩⎨⎧a =-37,h =487≈6.9,所以厂门的高约为6.9 m.答案: A9.设f (x )=⎩⎪⎨⎪⎧x +3,(x >10),f (f (x +5)),(x ≤10),则f (5)的值是( ) A .24 B .21 C .18D .16解析: f (5)=f (f (10)),f (10)=f (f (15))=f (18)=21,f (5)=f (21)=24. 答案: A10.下列函数中,满足“对任意x 1,x 2∈(0,+∞),都有f (x 1)-f (x 2)x 1-x 2>0”的是( ) A .f (x )=2x B .f (x )=-3x +1 C .f (x )=x 2+4x +3D .f (x )=x +1x解析:f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在(0,+∞)上为增函数,而f (x )=2x 及f (x )=-3x +1在(0,+∞)上均为减函数,故排除A ,B.f (x )=x +1x 在(0,1)上递减,在[1,+∞)上递增,故排除D.答案: C二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)11.若函数f (x )=⎩⎪⎨⎪⎧x -12,x >0,-2,x =0,(x +3)12,x <0,则f (f (f (0)))=________.解析: f (0)=-2,f (f (0))=f (-2)=(-2+3)12=1, f (f (f (0)))=f (1)=1-12=1. 答案: 112.设函数f (x )是R 上的减函数,若f (m -1)>f (2m -1),则实数m 的取值范围是________. 解析: 由题意得m -1<2m -1,故m >0. 答案: (0,+∞)13.设函数f (x )=(x +1)(x +a )x为奇函数,则a =________. 解析: f (-x )=(1-x )(a -x )-x ,又f (x )为奇函数,故f (x )=-f (-x ), 即(x +1)(x +a )x =(1-x )(a -x )x ,所以x 2+(a +1)x +a x =x 2-(a +1)x +a x , 从而有a +1=-(a +1),即a =-1. 答案: -114.已知函数f (x ),g (x )分别由下表给出:当g [f (x )]=2时,x =解析: ∵g [f (x )]=2, ∴f (x )=2,∴x =1. 答案: 1三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(12分)已知二次函数y =f (x )的最大值为13,且f (3)=f (-1)=5,求f (x )的解析式,并求其单调区间.解析: ∵f (3)=f (-1)=5, ∴对称轴为x =1,又∵最大值为13,∴开口向下,设为f (x )=a (x -1)2+13(a <0),代入x =-1, ∴4a +13=5,∴a =-2, ∴f (x )=-2(x -1)2+13.函数在(-∞,1]上单调递增,在[1,+∞)上单调递减. 16.(12分)已知函数f (x )=x 2+ax ,且f (1)=2, (1)证明函数f (x )是奇函数;(2)证明f (x )在(1,+∞)上是增函数; (3)求函数f (x )在[2,5]上的最大值与最小值.解析: (1)证明:f (x )的定义域为{x |x ≠0},关于原点对称,因为f (1)=2所以1+a =2,即a =1f (x )=x 2+1x =x +1x f (-x )=-x -1x =-f (x ) 所以f (x )是奇函数.(2)证明:任取x 1,x 2∈(1,+∞)且x 1<x 2 f (x 1)-f (x 2)=x 1+1x 1-(x 2+1x 2) =(x 1-x 2)·x 1x 2-1x 1x 2∵x 1<x 2,且x 1x 2∈(1,+∞) ∴x 1-x 2<0,x 1x 2>1,∴f (x 1)-f (x 2)<0 所以f (x )在(1,+∞)上为增函数.(3)由(2)知,f (x )在[2,5]上的最大值为f (5)=265, 最小值为f (2)=52.17.(13分)已知函数f (x )=1x 2+1,令g (x )=f ⎝⎛⎭⎫1x .(1)如图,已知f (x )在区间[0,+∞)的图像,请据此在该坐标系中补全函数f (x )在定义域内的图像,并说明你的作图依据;(2)求证:f (x )+g (x )=1(x ≠0).解析: (1)∵f (x )=1x 2+1,所以f (x )的定义域为R . 又任意x ∈R ,都有f (-x )=1(-x )2+1=1x 2+1=f (x ), 所以f (x )为偶函数,故f (x )的图像关于y 轴对称,补全图像如图所示.(2)证明:∵g (x )=f ⎝⎛⎭⎫1x =1⎝⎛⎭⎫1x 2+1=x 21+x 2(x ≠0), ∴f (x )+g (x )=11+x 2+x 21+x 2=1+x 21+x 2=1, 即f (x )+g (x )=1(x ≠0).18.(13分)已知函数f (x )=ax 2+(2a -1)x -3在区间⎣⎡⎦⎤-32,2上的最大值为1,求实数a的值.解析: 当a =0时,f (x )=-x -3,f (x )在⎣⎡⎦⎤-32,2上不能取得1,故a ≠0.∴f (x )=ax 2+(2a -1)x -3(a ≠0)的对称轴方程为x 0=1-2a 2a .(1)令f ⎝⎛⎭⎫-32=1,解得a =-103, 此时x 0=-2320∈⎣⎡⎦⎤-32,2, 因为a <0,f (x 0)最大,所以f ⎝⎛⎭⎫-32=1不合适;(2)令f (2)=1,解得a =34, 此时x 0=-13∈⎣⎡⎦⎤-32,2,因为a =34>0,x 0=-13∈⎣⎡⎦⎤-32,2,且距右端点2较远, 所以f (2)最大,合适;(3)令f (x 0)=1,得a =12(-3±22), 验证后知只有a =12(-3-22)才合适. 综上所述,a =34或a =-12(3+22).第三章 测试题一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.化简[3(-5)2]34的结果为()A .5B .5C .- 5D .-5解析: [3(-5)2]34=(352)34=523×34=512= 5.答案: B2.若log 513·log 36·log 6x =2,则x =( )A .9B .19C .25D .125解析: 由换底公式,得 lg13lg 5·lg 6lg 3·lg x lg 6=2,∴-lg x lg 5=2. ∴lg x =-2lg 5=lg 125.∴x =125. 答案: D3.已知函数f (x )=4+a x +1的图像恒过定点P ,则点P 的坐标是( )A .(-1,5)B .(-1,4)C .(0,4)D .(4,0)解析: ∵y =a x 恒过定点(0,1), ∴y =4+a x +1恒过定点(-1,5). 答案: A4.函数y =(a 2-1)x 在(-∞,+∞)上是减函数,则a 的取值范围是( ) A .|a |>1 B .|a |>2 C .a > 2D .1<|a |<2解析: 由0<a 2-1<1得1<a 2<2,∴1<|a |< 2. 答案: D5.函数y =a x -1的定义域是(-∞,0],则a 的取值范围是( ) A .a >0 B .a >1 C .0<a <1D .a ≠1解析: 由a x -1≥0得a x ≥1,又知此函数的定义域为(-∞,0],即当x ≤0时,a x ≥1恒成立,∴0<a <1.答案: C6.函数y =f (x )=a x -b的图像如图所示,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0解析: 由图像得函数是减函数, ∴0<a <1.又分析得,图像是由y =a x 的图像向左平移所得, ∴-b >0,即b <0.从而D 正确. 答案: D7.函数y =⎩⎪⎨⎪⎧3x -1-2,x ≤1,⎝⎛⎭⎫13x -1-2,x >1的值域是( )A .(-2,-1)B .(-2,+∞)C .(-∞,-1]D .(-2,-1]解析: 当x ≤1时,0<3x -1≤31-1=1, ∴-2<3x -1-2≤-1. 当x >1时,⎝⎛⎭⎫13x<⎝⎛⎭⎫131, ∴0<⎝⎛⎭⎫13x -1<⎝⎛⎭⎫130=1,则-2<⎝⎛⎭⎫13x -1-2<1-2=-1.答案: D8.某工厂6年来生产甲种产品的情况是:前3年年产量的增大速度越来越快,后3年年产量保持不变,则该厂6年来生产甲种产品的总产量C 与时间t (年)的函数关系图像为( )解析: 由题意知前3年年产量增大速度越来越快,可知在单位时间内,C 的值增大的很快,从而可判定结果.答案: A9.设函数f (x )=⎩⎪⎨⎪⎧log 2(x -1),x ≥2,⎝⎛⎭⎫12x -1,x <2,若f (x 0)>1,则x 0的取值范围是( )A .(-∞,0)∪(2,+∞)B .(0,2)C .(-∞,-1)∪(3,+∞)D .(-1,3)解析: 当x 0≥2时,∵f (x 0)>1, ∴log 2(x 0-1)>1,即x 0>3; 当x 0<2时,由f (x 0)>1得⎝⎛⎭⎫12x 0-1>1,⎝⎛⎭⎫12x 0>⎝⎛⎭⎫12-1,∴x 0<-1.∴x 0∈(-∞,-1)∪(3,+∞). 答案: C10.函数f (x )=log a (bx )的图像如图,其中a ,b 为常数.下列结论正确的是( ) A .0<a <1,b >1 B .a >1,0<b <1 C .a >1,b >1D .0<a <1,0<b <1解析: 由于函数单调递增,∴a >1,又f (1)>0, 即log a b >0=log a 1,∴b >1. 答案: C二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)11.若函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫13x,x ∈[-1,0],3x ,x ∈(0,1],则f ⎝⎛⎭⎫log 312=________. 解析: ∵-1=log 313<log 312<log 31=0,∴f ⎝⎛⎭⎫log 312=⎝⎛⎭⎫13log 312=3-log 312=3log 32=2.答案: 212.将甲桶中的a 升水缓慢注入空桶乙中,t 分钟后甲桶中剩余的水量符合指数衰减曲线y =a e nt .假设过5分钟后甲桶和乙桶的水量相等,若再过m 分钟甲桶中的水只有a8升,则m=________.解析: 根据题意12=e 5n ,令18a =a e nt ,即18=e nt ,因为12=e 5n ,所以⎝⎛⎭⎫123=e 5n ×3.故18=e 15n ,解得t =15, 故m =15-5=10. 答案: 1013.若函数y =2x +1,y =b ,y =-2x -1三图像无公共点,结合图像则b 的取值范围为________.解析: 如图.当-1≤b ≤1时,此三函数图像无公共点. 答案: [-1,1]14.函数f (x )=-a 2x -1+2恒过定点的坐标是________. 解析: 令2x -1=0,解得x =12,又f ⎝⎛⎭⎫12=-a 0+2=1, ∴f (x )过定点⎝⎛⎭⎫12,1.答案: ⎝⎛⎭⎫12,1三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(12分)计算下列各式的值: (1)(32×3)6+(2×2)43-(-2 008)0;(2)lg 5lg 20+(lg 2)2;(3)(log 32+log 92)·(log 43+log 83)+(log 3312)2+ln e -lg 1. 解析: (1)原式=(213×312)6+(2×212)12×43-1=213×6×312×6+232×12×43-1 =22×33+21-1 =4×27+2-1 =109.(2)原式=lg 5lg(5×4)+(lg 2)2 =lg 5(lg 5+lg 4)+(lg 2)2 =(lg 5)2+lg 5lg 4+(lg 2)2 =(lg 5)2+2lg 5lg 2+(lg 2)2 =(lg 5+lg 2)2=1.(3)原式=⎝⎛⎭⎫lg 2lg 3+lg 22lg 3·⎝⎛⎭⎫lg 32lg 2+lg 33lg 2+14+12-0 =3lg 22lg 3·5lg 36lg 2+34=54+34=2. 16.(12分)已知函数f (x )=log a (1-x )+log a (x +3)(a >0,且a ≠1). (1)求函数f (x )的定义域和值域;(2)若函数f (x )有最小值为-2,求a 的值.解析: (1)由⎩⎪⎨⎪⎧1-x >0x +3>0得-3<x <1,所以函数的定义域{x |-3<x <1}, f (x )=log a (1-x )(x +3), 设t =(1-x )(x +3)=4-(x +1)2, 所以t ≤4,又t >0,则0<t ≤4.当a >1时,y ≤log a 4,值域为{y |y ≤log a 4}. 当0<a <1时,y ≥log a 4,值域为{y |y ≥log a 4}. (2)由题意及(1)知:当0<a <1时,函数有最小值, 所以log a 4=-2,解得:a =12.17.(13分)已知函数f (x )=3x ,且f (a +2)=18,g (x )=3a -4x 的定义域为[0,1]. (1)求函数g (x )的解析式; (2)判断函数g (x )的单调性.解析: (1)∵f (x )=3x ,∴f (a +2)=3a +2=18,∴3a =2. ∴g (x )=2-4x (x ∈[0,1]).(2)设x 1,x 2为区间[0,1]上任意两个值,且x 1<x 2, 则g (x 2)-g (x 1)=2-4x 2-2+4x 1=(2x 1-2x 2)(2x 1+2x 2), ∵0≤x 1<x 2≤1,∴2x 2>2x 1>1, ∴g (x 2)<g (x 1).所以,函数g (x )在[0,1]上是减函数. 18.(13分)已知f (x )=-x +log 21-x1+x ,(1)求f (x )的定义域;(2)求f ⎝⎛⎭⎫-12 012+f ⎝⎛⎭⎫12 012;(3)当x ∈(-a ,a ](其中a ∈(-1,1),且a 为常数)时,f (x )是否存在最小值?如果存在,求出最小值;如果不存在,请说明理由.解析: (1)由1-x 1+x >0得x -1x +1<0∴⎩⎪⎨⎪⎧x -1>0x +1<0或⎩⎪⎨⎪⎧x -1<0x +1>0, ∴-1<x <1,即f (x )的定义域为(-1,1). (2)对x ∈(-1,1)有f (-x )=-(-x )+log 21+x 1-x=-⎝ ⎛⎭⎪⎫-x +log 21-x 1+x =-f (x )∴f (x )为奇函数∴f ⎝⎛⎭⎫-12 012=-f ⎝⎛⎭⎫12 012. ∴f ⎝⎛⎭⎫-12 012+f ⎝⎛⎭⎫12 012=0. (3)设-1<x 1<x 2<1,则1-x 11+x 1-1-x 21+x 2=2(x 2-x 1)(1+x 1)(1+x 2). ∵-1<x 1<x 2<1,∴x 2-x 1>0,(1+x 1)(1+x 2)>0, ∴1-x 11+x 1>1-x 21+x 2. ∴函数y =1-x1+x在(-1,1)上是减函数.从而得f (x )=-x +log 21-x1+x在(-1,1)上也是减函数.又a ∈(-1,1),∴当x ∈(-a ,a ]时,f (x )有最小值,且最小值为f (a )=-a +log 21-a1+a .第四章 测试题一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =(x -1)(x 2-2x -3)的零点为( ) A .1,2,3 B .1,-1,3 C .1,-1,-3D .无零点解析: 令y =(x -1)(x 2-2x -3)=0,解得x =1,-1,3,故选B. 答案: B2.下列函数中没有零点的是( ) A .f (x )=log 2x -3 B .f (x )=x -4 C .f (x )=1x -1D .f (x )=x 2+2x解析: 由于函数f (x )=1x -1中,对任意自变量x 的值,均有1x -1≠0,故该函数不存在零点.答案: C3.如图所示的函数图像与x 轴均有交点,其中不能用二分法求图中交点横坐标的是( )A .①③B .②④C .①②D .③④解析: 对于①③在函数零点两侧函数值的符号相同,故不能用二分法求. 答案: A4.已知函数f (x )=e x -x 2+8x ,则在下列区间中f (x )必有零点的是( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)解析: f (-1)=1e -9<0,f (0)=e 0=1>0,f (x )是连续函数,故f (x )在(-1,0)上有一零点.答案: B5.若函数f (x )的图像是连续不断的,且f (0)>0, f (1)·f (2)·f (4)<0,则下列说法中正确的是( )A .函数f (x )在区间(0,1)内有零点B .函数f (x )在区间(1,2)内有零点C .函数f (x )在区间(0,2)内有零点D .函数f (x )在区间(0,4)内有零点解析: 因为f (0)>0,f (1)·f (2)·f (4)<0,则f (1),f (2),f (4)恰有一负两正或三个都是负的,函数的图像与x 轴相交有多种可能.例如,所以函数f (x )必在区间(0,4)内有零点. 答案: D6.二次函数y =x 2+px +q 的零点为1和m ,且-1<m <0,那么p 、q 应满足的条件是( ) A .p >0且q <0 B .p >0且q >0 C .p <0且q >0D .p <0且q <0解析: 由已知得f (0)<0,-p2>0,解得q <0,p <0.答案: D7.若x 0是方程ln x +x =4的解,则x 0属于区间( ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)解析: 构造函数f (x )=ln x +x -4,则函数f (x )的图像是连续不断的一条曲线,又f (2)=ln 2+2-4<0,f (3)=ln 3+3-4>0,所以f (2)·f (3)<0,故函数的零点所在区间为(2,3),即方程ln x +x =4的解x 0属于区间(2,3),故选C.答案: C8.若函数f (x )=ax +b 只有一个零点2,那么函数g (x )=bx 2-ax 的零点是( )A .0,2B .0,-12C .0,12D .2,12解析: 函数f (x )=ax +b 只有一个零点2,则2a +b =0,所以b =-2a (a ≠0),所以g (x )=-2ax 2-ax =-ax (2x +1),故函数g (x )有两个零点0,-12,故选B.答案: B9.当x ∈(4,+∞)时,f (x )=x 2,g (x )=2x ,h (x )=log 2x 的大小关系是( ) A .f (x )>g (x )>h (x ) B .g (x )>f (x )>h (x ) C .g (x )>h (x )>f (x )D .f (x )>h (x )>g (x )解析: 在同一坐标系中,画出三个函数的图像,如右图所示. 当x =2时,f (x )=g (x )=4,当x =4时,f (x )=g (x )=16,当x >4时,g (x )图像在最上方,h (x )图像在最下方,故g (x )>f (x )>h (x ). 答案: B10.为了改善某地的生态环境,政府决心绿化荒山,计划第一年先植树0.5万亩,以后每年比上年增加1万亩,结果第x 年植树亩数y (万亩)是时间x (年)的一次函数,这个函数的图像是( )解析: 函数解析式为y =x +0.5,故选A. 答案: A二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 11.用二分法求方程x 3+4=6x 2的一个近似解时,已经将一根锁定在区间(0,1)内,则下一步可断定该根所在的区间为________.解析: 设f (x )=x 3-6x 2+4,显然f (0)>0,f (1)<0, 又f ⎝⎛⎭⎫12=⎝⎛⎭⎫123-6×⎝⎛⎭⎫122+4>0, ∴下一步可断定方程的根所在的区间为⎝⎛⎭⎫12,1. 答案: ⎝⎛⎭⎫12,112.函数f (x )=x 3-x 2-x +1在[0,2]上的零点有________个. 解析: x 3-x 2-x +1=(x -1)2(x +1), 由f (x )=0得x =1或x =-1. ∴f (x )在[0,2]上有1个零点. 答案: 113.已知函数f (x )=⎩⎨⎧2x ,(x ≥2)(x -1)3,(x <2)若函数y =f (x )-k 有两个零点,则实数k 的取值范围是________.解析: 画出分段函数f (x )的图像如图所示.结合图像可以看出,函数y =f (x )-k 有两个零点,即y =f (x )与y =k 有两个不同的交点,k 的取值范围为(0,1).答案: (0,1)14.已知函数t =-144lg ⎝⎛⎭⎫1-N100的图像可表示打字任务的“学习曲线”,其中t (小时)表示达到打字水平N (字/分钟)所需的学习时间,N (字/分钟)表示每分钟打出的字数,则按此曲线要达到90字/分钟的水平,所需的学习时间是________小时.解析: 当N =90时,t =-144lg ⎝⎛⎭⎫1-90100=144. 答案: 144三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(12分)若函数y =ax 2-x -1只有一个零点,求实数a 的取值范围.解析: (1)若a =0,则f (x )=-x -1为一次函数,函数必有一个零点-1.(2)若a ≠0,函数是二次函数,因为二次方程ax 2-x -1=0只有一个实数根,所以Δ=1+4a =0,得a =-14.综上,当a =0和-14时函数只有一个零点.16.(12分)以下是用二分法求方程x 3+3x -5=0的一个近似解(精确度0.1)的不完整的过程,请补充完整,并写出结论.设函数f (x )=x 3+3x -5,其图像在(-∞,+∞)上是连续不断的一条曲线. 先求值:f (0)=________,f (1)=________,f (2)=________,f (3)=________. 所以f (x )在区间________内存在零点x 0,填表:结论:________________________________________________________________________. 解析: -5 -1 9 31 (1,2)∵|1.187 5-1.125|=0.062 5<0.1, ∴原方程的近似解可取为1.187 5.17.(13分)某商品在近100天内,商品的单位f (t )(元)与时间t (天)的函数关系式如下:f (t )=⎩⎨⎧t4+22,0≤t ≤40,t ∈Z ,-t2+52,40<t ≤100,t ∈Z .销售量g (t )与时间t (天)的函数关系式是( ) g (t )=-t 3+1123(0≤t ≤100,t ∈Z ).这种商品在这100天内哪一天的销售额最高?解析: 依题意,该商品在近100天内日销售额F (t )与时间t (天)的函数关系式为F (t )=f (t )·g (t )=⎩⎨⎧⎝⎛⎭⎫t 4+22⎝⎛⎭⎫-t 3+1123,0≤t ≤40,t ∈Z ,⎝⎛⎭⎫-t 2+52⎝⎛⎭⎫-t 3+1123,40<t ≤100,t ∈Z .(1)若0≤t ≤40,t ∈Z ,则F (t )=⎝⎛⎭⎫t 4+22⎝⎛⎭⎫-t 3+1123 =-112(t -12)2+2 5003,当t =12时,F (t )max =2 5003(元).(2)若40<t ≤100,t ∈Z ,则 F (t )=⎝⎛⎭⎫-t 2+52⎝⎛⎭⎫-t 3+1123 =16(t -108)2-83,∵t =108>100, ∴F (t )在(40,100]上递减,∴当t =41时,F (t )max =745.5. ∵2 5003>745.5,∴第12天的日销售额最高.18.(13分)据气象中心观察和预测:发生于M 地的沙尘暴一直向正南方向移动,其移动速度v (km/h)与时间t (h)的函数图像如图所示,过线段OC 上一点T (t ,0)作横轴的垂线l ,梯形OABC 在直线l 左侧部分的面积即为t (h)内沙尘暴所经过的路程s (km).(1)当t =4时,求s 的值;(2)将s 随t 变化的规律用数学关系式表示出来;(3)若N 城位于M 地正南方向,且距M 地650 km ,试判断这场沙尘暴是否会侵袭到N 城,如果会,在沙尘暴发生后多长时间它将侵袭到N 城?如果不会,请说明理由.解析: (1)由图像可知:当0≤t ≤10时,v =3t ,则 当t =4,v =3×4=12, 故s =12×4×12=24.(2)当0≤t ≤10时, s =12·t ·3t =32t 2, 当10<t ≤20时,s =12×10×30+30(t -10)=30t -150; 当20<t ≤35时,s =12×10×30+10×30+(t -20)×30-12×(t -20)×2(t -20)=-t 2+70t -550. 综上,可知s =⎩⎪⎨⎪⎧32t 2,t ∈[0,10]30t -150,t ∈(10,20]-t 2+70t -550,t ∈(20,35].(3)∵t ∈[0,10]时,s max =32×102=150<650,t ∈(10,20]时,s max =30×20-150=450<650, ∴当t ∈(20,35]时,令-t 2+70t -550=650. 解得t 1=30,t 2=40. ∵20<t ≤35, ∴t =30.即沙尘暴发生30 h 后将侵袭到N 城.模块质量评估(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列表示错误的是( ) A .{a }∈{a ,b } B .{a ,b }⊆{b ,a } C .{-1,1}⊆{-1,0,1}D .∅⊆{-1,1}解析: A 中两个集合之间不能用“∈”表示,B ,C ,D 都正确. 答案: A2.若集合A ={y |y =2x ,x ∈R },B ={y |y =x 2,x ∈R },则( ) A .A ⊆BB .A ⊇BC.A=B D.A∩B=∅解析:A={y|y>0},B={y|y≥0},∴A⊆B.答案:A3.设a=log32,b=log52,c=log23,则()A.a>c>b B.b>c>aC.c>b>a D.c>a>b解析:易知log23>1,log32,log52∈(0,1).在同一平面直角坐标系中画出函数y=log3x 与y=log5x的图像,观察可知log32>log52.所以c>a>b.比较a,b的其他解法:log32>log33=1 2,log52<log55=12,得a>b;0<log23<log25,所以1log23>1log25,结合换底公式即得log32>log52.答案:D4.函数y=ax2+bx+3在(-∞,-1]上是增函数,在[-1,+∞)上是减函数,则() A.b>0且a<0 B.b=2a<0C.b=2a>0 D.a,b的符号不定解析:由题知a<0,-b2a=-1,∴b=2a<0.答案:B5.要得到y=3×⎝⎛⎭⎫13x的图像,只需将函数y=⎝⎛⎭⎫13x的图像()A.向左平移3个单位长度B.向右平移3个单位长度C.向左平移1个单位长度D.向右平移1个单位长度解析:由y=3×⎝⎛⎭⎫13x=⎝⎛⎭⎫13-1×⎝⎛⎭⎫13x=⎝⎛⎭⎫13x-1知,D正确.答案:D6.在同一坐标系内,函数y=x a(a<0)和y=ax+1a的图像可能是如图中的()解析:∵a<0,∴y=ax+1a的图像不过第一象限.还可知函数y=x a(a<0)和y=ax+1a在各自定义域内均为减函数.答案:B7.设a=log54,b=(log53)2,c=log45,则()A.a<c<b B.b<c<aC.a<b<c D.b<a<c解析:∵0<log53<log54<1,log45>1,∴b<a<c.答案:D8.若函数f(x)=ax2+2x+1至多有一个零点,则a的取值范围是()A.1 B.[1,+∞)C.(-∞,-1] D.以上都不对解析:当f(x)有一个零点时,若a=0,符合题意,若a≠0,则Δ=4-4a=0得a=1,当f(x)无零点时,Δ=4-4a<0,∴a>1.综上所述,a≥1或a=0.答案:D9.已知函数f(x)=log a|x|在(0,+∞)上单调递增,则()A.f(3)<f(-2)<f(1) B.f(1)<f(-2)<f(3)C.f(-2)<f(1)<f(3) D.f(3)<f(1)<f(-2)解析:因为f(x)=log a|x|在(0,+∞)上单调递增,所以a>1,f(1)<f(2)<f(3).又函数为f(x)=log a|x|为偶函数,所以f(2)=f(-2),所以f(1)<f(-2)<f(3).答案:B10.设f(x)是奇函数,且在(0,+∞)内是增加的,又f(-3)=0,则x·f(x)<0的解集是() A.{x|x<-3,或0<x<3}B.{x|-3<x<0,或x>3}C.{x|x<-3,或x>3}D.{x|-3<x<0,或0<x<3}解析:∵f(x)是奇函数,∴f(3)=-f(-3)=0.∵f(x)在(0,+∞)是增加的,∴f(x)在(-∞,0)上是增加的.结合函数图像x·f(x)<0的解为0<x<3或-3<x<0.答案:D11.一个商人有一批货,如果月初售出可获利1 000元,再将收益都存入银行,已知银行月息为2.4%;如果月末售出可获利1 200元,但要付50元货物保管费.这个商人若要获得最大收益,则这批货( )A .月初售出好B .月末售出好C .月初或月末一样D .由成本费的大小确定出售时机解析: 设这批货成本为a 元,月初售出可收益y 1=(a +1 000)×(1+2.4%)(元),月末售出可收益y 2=a +1 200-50=a +1 150(元).则y 1-y 2=(a +1 000)×1.024-a -1 150 =0.024a -126.当a >1260.024>5 250时,月初售出好;当a <5 250时,月末售出好;当a =5 250时,月初、月末收益相等,但月末售出还要保管一个月,应选择月初售出. 答案: D12.若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内解析: 计算出函数在区间端点处的函数值并判断符号,再利用零点的存在条件说明零点的位置.∵f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a ), ∴f (a )=(a -b )(a -c ),f (b )=(b -c )(b -a ), f (c )=(c -a )(c -b ),∵a <b <c ,∴f (a )>0,f (b )<0,f (c )>0,∴f (x )的两个零点分别位于区间(a ,b )和(b ,c )内. 答案: A二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上)13.设g (x )=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0,则g ⎝⎛⎭⎫g ⎝⎛⎭⎫12=________. 解析: ∵g ⎝⎛⎭⎫12=ln 12<0,∴g ⎝⎛⎭⎫g ⎝⎛⎭⎫12=eln 12=12.答案: 1214.已知集合A ={x |log 2x ≤2},B =(-∞,a ),若A ⊆B ,则实数a 的取值范围是(c ,+∞),其中c =________.解析: A ={x |0<x ≤4},B =(-∞,a ).若A ⊆B ,则a >4,即a 的取值范围为(4,+∞),∴c =4. 答案: 415.函数y =22-2x -3x 2的递减区间是________. 解析: 令u =2-2x -3x 2,y =2u ,由u =-3x 2-2x +2知,u 在⎝⎛⎭⎫-13,+∞上为减函数,而y =2u 为增函数,所以函数的递减区间为⎝⎛⎭⎫-13,+∞. 答案: ⎝⎛⎭⎫-13,+∞ 16.函数f (x )=⎩⎪⎨⎪⎧4x -4,x ≤1,x 2-4x +3,x >1的图像和函数g (x )=log 2x 的图像有________个交点.解析: 作出函数y =f (x )与y =g (x )的图像如图,由图可知,两个函数的图像有3个交点.答案: 3三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)已知集合A ={x |3≤x <7},B ={x |2<x <10},C ={x |x <a }. (1)求A ∪B ; (2)求(∁R A )∩B ;(3)若A ⊆C ,求a 的取值范围.解析: (1)因为A ={x |3≤x <7},B ={x |2<x <10}, 所以A ∪B ={x |2<x <10}.(2)因为A ={x |3≤x <7},所以∁R A ={x |x <3或x ≥7}.。
18学年高中数学课时达标训练(十五)北师大版必修1
课时达标训练(十五)一、选择题1.(山东高考)函数f (x )= 1-2x+1x +3的定义域为 ( )A .(-3,0]B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1]2.指数函数y =b ·a x在[b,2]上的最大值与最小值的和为6,则a =( ) A .2 B .-3 C .2或-3 D.123.已知f (x )=⎩⎪⎨⎪⎧f x -,x ≥0,2x,x <0,则f (8)等于( )A .4B .0 C.14 D .2 4.定义运算a ×b =⎩⎪⎨⎪⎧a a ≤b ,ba >b ,则函数f (x )=1×2x的图像是( )二、填空题5.函数y =8-2x的定义域是 ________.6.已知a =0.30.2,b =0.20.2,c =0.20.3,d =⎝ ⎛⎭⎪⎫12-1.5,则a ,b ,c ,d 由小到大排列的顺序是________.7.函数f (x )=⎩⎪⎨⎪⎧-x +3-3a ,x <0,a x,x ≥0(a >0,a ≠1)是(-∞,+∞)上的减函数,则a 的取值范围是________.答案:⎝ ⎛⎦⎥⎤0,238.若0<a <1,b <-1,则函数f (x )=a x+b 的图像一定不经过第________象限. 三、解答题9.已知函数y =a 2x +2a x-1(0<a <1)在区间[-1,1]上的最大值是14,试求a 的值. 10.已知函数f (x )=⎝⎛⎭⎪⎫12-1+12·x 3.(1)求f (x )的定义域; (2)讨论f (x )的奇偶性; (3)证明f (x )>0.答案1.解析:选A 由题意得⎩⎪⎨⎪⎧1-2x≥0,x +3>0,所以-3<x ≤0.2.解析:选A ∵y =b ·a x为指数函数,∴b =1,则[b,2]=[1,2].由于y =a x为单调函数,∴函数在区间[1,2]的端点处取得最值,∴a +a 2=6,解得a =2或a =-3(舍去).3.解析:选C f (8)=f (6)=f (4)=f (2)=f (0)=f (-2)=2-2=14.4.解析:选A 当x <0时,2x <1,f (x )=2x ;当x ≥0时,2x≥1,f (x )=1.5.解析:∵8-2x≥0,即2x≤23,又y =2x在R 上为增函数.∴x ≤3的定义域为(-∞,3].答案:(-∞,3]6.解析:∵0.30.2<0.30=1,同理:0.20.2<1,0.20.3<1,⎝ ⎛⎭⎪⎫12-1.5>1,考查幂函数y =x 0.2,可知该函数在(0,+∞)上是增函数.∴0.30.2>0.20.2;考查指数函数y =0.2x ,可知该函数在R 上是减函数,∴0.20.2>0.20.3,综上,0.20.3<0.20.2<0.30.2<⎝ ⎛⎭⎪⎫12-1.5,即c <b <a <d .答案:c <b <a <d7.解析:当x <0时,函数f (x )=-x +3-3a 是减函数;当x ≥0时,函数f (x )=a x 是减函数,则0<a <1;且满足0+3-3a ≥a 0,解得a ≤23,所以a 的取值范围是⎝ ⎛⎦⎥⎤0,23. 答案:⎝ ⎛⎦⎥⎤0,23 8.解析:函数f (x )=a x+b 的图像可由函数y =a x的图像向上(b >0时)或向下(b <0)时,平移|b |个单位得到,∵0<a <1,b <-1,结合图像可知,f (x )=a x+b 的图像一定不经过第一象限.答案:一9.解:由y =a 2x +2a x-1(0<a <1), 令t =a x,∵x ∈[-1,1]∴a ≤t ≤1a,∴y =t 2+2t -1=(t +1)2-2. 对称轴为t =-1.∵0<a <1∴1a >1,∴当t =1a,即x =-1时,y 取最大值.y max =1a 2+2a -1=14,解得a =13,a =-15.∵0<a <1,∴a =13.10.解:(1)由题意,2x-1≠0,即x ≠0, ∴定义域为(-∞,0)∪(0,+∞). (2)对任意x ∈(-∞,0)∪(0,+∞), ∵f (-x )=⎝ ⎛⎭⎪⎫12-x -1+12(-x )3=2-x+1-x -·(-x )3=1+2x -2x·(-x )3=⎝⎛⎭⎪⎫12x -1+12·x 3=f (x ),∴f (x )为定义域上的偶函数. (3)当x >0时,2x>1, ∴2x-1>0. 又∵x 3>0, ∴f (x )>0.由偶函数的图像关于y 轴对称,知x <0时,f (x )>0也成立. 故对于x ∈(-∞,0)∪(0,+∞),恒有f (x )>0.。
高中数学课时达标训练五北师大版必修1
高中数学课时达标训练五北师大版必修1一、选择题1.谚语“瑞雪兆丰年”说明( )A.下雪与来年的丰收具有依赖关系B.下雪与来年的丰收具有函数关系C.下雪是丰收的函数D.丰收是下雪的函数2.下列变量间的关系是函数关系的是( )A.匀速航行的轮船在2小时内航行的路程B.某地蔬菜的价格与蔬菜的供应量的关系C.正方形的面积S与其边长a之间的关系D.光照时间和苹果的亩产量.3.右图中,纵轴是某公司职工人数,但刻度被抹掉了,横轴是工作年数(有刻度),则该公司中工作5年或更多时间的职工所占的百分比是( )A.9% B.23%C.30% D.36%4.我们知道,溶液的酸碱度由pH确定,当pH>7时,溶液呈碱性;当pH<7时,溶液呈酸性.若将给定的HCl的溶液加水稀释,那么在下列图像中,能反映HCl溶液的pH值与所加水的体积V的变化关系的图像是( )二、填空题5.给出下列关系:①圆的半径与其面积之间的关系;②一个人的寿命与这个人做好事的次数之间的关系;③正整数和它的正约数的个数之间的关系.其中有函数关系的是(填代号)________.6.下表给出的y与x的关系,则y与x是________关系(函数或非函数).7.在某报《自测健康状况》的报道中,自测血压结果与相应年龄的统计数据如下表.观察表中数据的特点,用适当的数填入表中空白处.8.如图是一份统计图表,根据此图表得到的以下说法中,正确的有________.①这几年人民生活水平逐年提高;②人民生活消费增长最快的一年是2006年;③生活价格指数上涨速度最快的一年是2007年;④虽然2008年生活消费增长是缓慢的,但由于生活价格指数有较大降低,因而人民生活有较大的改善.。
北师大版数学高一必修1课时达标训练(四)
课时达标训练(四)一、选择题1.(山东高考)已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为() A.{1,2,4}B.{2,3,4}C.{0,2,4} D.{0,2,3,4}2.图中阴影部分表示的集合是()A.A∩(∁U B)B.(∁U A)∩BC.∁U(A∩B) D.∁U(A∪B)3.(浙江高考)设全集U={1,2,3,4,5,6},集合P={1,2,3,4},Q={3,4,5},则P∩(∁U Q)=()A.{1,2,3,4,6} B.{1,2,3,4,5}C.{1,2,5} D.{1,2}4.(重庆高考)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=() A.{1,3,4}B.{3,4}C.{3} D.{4}二、填空题5.已知全集U=R,A={x|x>2},m∈∁U A,则实数m的取值范围是________.6.已知U={三角形},A={锐角三角形},B={钝角三角形},则(∁U A)∪(∁U B)=________.7.设集合U={1,2,3,4,5},A={2,4},B={3,4,5},C={3,4},则(A∪B)∩(∁U C)=________.8.设全集U={1,3,5,7},集合M={1,a-5},M⊆U,∁U M={5,7},则实数a的值为________.三、解答题9.设全集U={1,2,3,4},且集合A={x|x2-5x+m=0,x∈U},若∁U A={1,4},求m的值.10.我们知道,如果集合A⊆U,那么U的子集A的补集为∁U A={x|x∈U,且x∉A}.类似地,对于集合A,B,我们把集合{x|x∈A,且x∉B}叫作A与B的差集,记作A-B.例如,A={1,2,3,5,8},B={4,5,6,7,8},则A-B={1,2,3},B-A={4,6,7}.据此,回答以下问题:(1)若U是高一(1)班全体同学的集合,A是高一(1)班女同学组成的集合,求U-A及∁U A;(2)在图中,分别用阴影表示集合A-B;(3)如果A-B=∅,那么A与B之间具有怎样的关系?答案1.解析:选C∁U A={0,4},所以(∁U A)∪B={0,4}∪{2,4}={0,2,4}.2.解析:选A显然图中阴影部分为B的补集与集合A的公共部分.即:A∩∁U B.3.解析:选D∁U Q={1,2,6},故P∩(∁U Q)={1,2}.4.解析:选D因为A∪B={1,2,3},所以∁U(A∪B)={4},故选D.二、填空题5.解析:∵U=R,A={x|x>2},∴∁U A={x|x≤2}.又m∈∁U A,∴m≤2.答案:[2,+∞)6.解析:∁U A={钝角三角形或直角三角形},∁U B={锐角三角形或直角三角形},∴(∁U A)∪(∁U B)=U.答案:U7.解析:∵A∪B={2,3,4,5},∁U C={1,2,5},∴(A∪B)∩(∁U C)={2,5}.答案:{2,5}8.解析:∵M⊆U,∁U M={5,7},∴a-5=3,∴a=8.答案:89.解:∵U={1,2,3,4},∁U A={1,4},又A={x|x2-5x+m=0,x∈U}∴A={2,3}.∴2,3是方程x2-5x+m=0的两根,由根与系数的关系得:2×3=m,得:m=6. 10.解:(1)U-A={x|x是高一(1)班的男生},∁U A={x|x是高一(1)班的男生}.(2)阴影部分如下图所示.(3)若A-B=∅,则A⊆B.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时达标训练(十五)
一、选择题
1.(山东高考)函数f (x )=
1-2x +1x +3的定义域为 ( ) A .(-3,0]
B .(-3,1]
C .(-∞,-3)∪(-3,0]
D .(-∞,-3)∪(-3,1]
2.指数函数y =b ·a x 在[b,2]上的最大值与最小值的和为6,则a =( )
A .2
B .-3
C .2或-3 D.12
3.已知f (x )=⎩⎪⎨⎪⎧
f (x -2),x ≥0,2x ,x <0,则f (8)等于( ) A .4 B .0
C.14
D .2 4.定义运算a ×b =⎩⎪⎨⎪⎧
a (a ≤
b ),b (a >b ),则函数f (x )=1×2x 的图像是( )
二、填空题
5.函数y =8-2x 的定义域是
________.
6.已知a =0.30.2,b =0.20.2,c =0.20.3,d =⎝⎛⎭⎫12-1.5,则a ,b ,c ,d 由小到大排列的顺
序是________.
7.函数f (x )=⎩⎪⎨⎪⎧
-x +3-3a ,x <0,a x ,x ≥0(a >0,a ≠1)是(-∞,+∞)上的减函数,则a 的取值范围是________.
答案:⎝⎛⎦
⎤0,23 8.若0<a <1,b <-1,则函数f (x )=a x +b 的图像一定不经过第________象限.
三、解答题
9.已知函数y =a 2x +2a x -1(0<a <1)在区间[-1,1]上的最大值是14,试求a 的值.
10.已知函数f (x )=⎝⎛⎭
⎫12x -1+12·x 3. (1)求f (x )的定义域;
(2)讨论f (x )的奇偶性;
(3)证明f (x )>0.
答案
1.解析:选A 由题意得⎩⎪⎨⎪⎧
1-2x ≥0,x +3>0,所以-3<x ≤0. 2.解析:选A ∵y =b ·a x 为指数函数,∴b =1,则[b,2]=[1,2].由于y =a x 为单调函数,∴函数在区间[1,2]的端点处取得最值,∴a +a 2=6,解得a =2或a =-3(舍去).
3.解析:选C f (8)=f (6)=f (4)=f (2)=f (0)=f (-2)=2-2=14
. 4.解析:选A 当x <0时,2x <1,f (x )=2x ;当x ≥0时,2x ≥1,f (x )=1.
5.解析:∵8-2x ≥0,即2x ≤23,又y =2x 在R 上为增函数.∴x ≤3的定义域为(-∞,3].
答案:(-∞,3]
6.解析:∵0.30.2<0.30=1,同理:0.20.2<1,0.20.3<1,⎝⎛⎭⎫12-1.5>1,考查幂函数y =x 0.2,
可知该函数在(0,+∞)上是增函数.
∴0.30.2>0.20.2;考查指数函数y =0.2x ,可知该函数在R 上是减函数,∴0.20.2>0.20.3,综
上,0.20.3<0.20.2<0.30.2<⎝⎛⎭⎫12-1.5,即c <b <a <d .
答案:c <b <a <d
7.解析:当x <0时,函数f (x )=-x +3-3a 是减函数;
当x ≥0时,函数f (x )=a x 是减函数,则0<a <1;且满足0+3-3a ≥a 0,解得a ≤23
,所以a 的取值范围是⎝⎛⎦
⎤0,23. 答案:⎝⎛⎦
⎤0,23 8.解析:函数f (x )=a x +b 的图像可由函数y =a x 的图像向上(b >0时)或向下(b <0)时,平移|b |个单位得到,∵0<a <1,b <-1,结合图像可知,f (x )=a x +b 的图像一定不经过第一象限.
答案:一
9.解:由y =a 2x +2a x -1(0<a <1),
令t =a x ,∵x ∈[-1,1]∴a ≤t ≤1a
, ∴y =t 2+2t -1=(t +1)2-2.
对称轴为t =-1.
∵0<a <1∴1a >1,∴当t =1a
, 即x =-1时,y 取最大值.
y max =1a 2+2a -1=14,解得a =13
, a =-15
. ∵0<a <1,∴a =13
. 10.解:(1)由题意,2x -1≠0,即x ≠0,
∴定义域为(-∞,0)∪(0,+∞).
(2)对任意x ∈(-∞,0)∪(0,+∞),
∵f (-x )=⎝ ⎛⎭
⎪⎫12-x -1+12(-x )3 =2-x +1
2(2-x -1)·(-x )3 =1+2x
2(1-2x )·(-x )3 =⎝ ⎛⎭
⎪⎫12x -1+12·x 3=f (x ), ∴f (x )为定义域上的偶函数.
(3)当x >0时,2x >1,
∴2x -1>0.
又∵x 3>0,
∴f (x )>0.
由偶函数的图像关于y轴对称,知x<0时,f(x)>0也成立.故对于x∈(-∞,0)∪(0,+∞),恒有f(x)>0.。