辉光放电光谱法定量分析金属材料表

合集下载

辉光放电光谱法测定合金化镀锌板镀层中铁含量

辉光放电光谱法测定合金化镀锌板镀层中铁含量
确定 好 铁 含 量 达 到 99% 作 为 积 分 的 终 点 判 定后,就可根据这 个 目 标 点 来 确 定 样 品 的 积 分 时 间,因为分析试样 时 分 析 方 法 是 以 积 分 时 间 来 控 制样品分析终点的。合金化镀锌板的镀层厚度较 薄,一般 在 10μm 以 内,试 验 中 考 察 了 多 个 不 同 厚度的合金 化 镀 锌 板 在 铁 含 量 达 到 99% 时 所 需 要的时 间,如 图 7 所 示,镀 层 厚 度 在 8μm 以 下 时,分析时间均在140s以下,当 试 样 的 镀 层 厚 度 达到8μm 以上时,分析时间超过140s,实验中将 积分时间确定 为 150s。 在 实 际 操 作 时 需 要 根 据 批量样品的实际情况来确定合适的积分时间。
在这个位置时样品中铁的含量。根据大部分样品 在这个位置的铁 含 量,即 可 确 定 一 个 铁 含 量 判 定 点,来告诉方 法 可 以 停 止 积 分 了。 试 验 了 多 个 样 品在积分到积分 终 点 位 置 时 的 铁 含 量,如 图 6 所 示,铁 含 量 都 在 96% ~99% 之 间,据 此 将 铁 含 量 达到99%作为积分终点 判 定 点。 实 际 试 验 时,因 为合 金 化 镀 锌 板 样 品 的 来 源、牌 号、批 次 不 同,镀 锌 基 板 也 就 不 同 ,铁 含 量 也 就 有 差 异 ,可 据 此 适 当 调整后选择合适的铁含量作为积分终点判定点。 2.7 方 法 积 分 时 间 的 确 定
图 5 镀 层 厚 度 与 积 分 终 点 位 置 的 关 系 Fig.5 Depth of coating vs depth of integral end-point
2.6 达 到 积 分 终 点 位 置 时 铁 含 量 判 定 点 的 确 定 由确定好的样 品 积 分 终 点 位 置,可 以 计 算 出

辉光放电质谱应用和定量分析

辉光放电质谱应用和定量分析

辉光放电质谱应用和定量分析作者:吴赫淮鑫斌来源:《商品与质量·学术观察》2013年第04期摘要:辉光放电质谱(GDMS)是利用辉光放电源作为离子源的一种无机质谱方法。

本文作者介绍了GDMS的基本原理和特点,然后在应用和定量方面进行了深入研究。

关键词:辉光放电质谱深度分析应用定量分析辉光放电质谱法(GDMS)被认为是目前对固体导电材料直接进行痕量及超痕量元素分析的最有效的手段。

由于其可以直接固体进样,近20 年来已广泛应用于高纯金属、合金等材料的分析。

1、基本原理辉光放电(G10w Discharge)是一种低压气体放电现象,由于气体放电的操作简单,可以产生很强的离子流,所以在早期的质谱研究中,气体放电就被用作离子源。

在真空火花源发展之前,气体放电源体现了巨大的实用价值。

火花源质谱(SSMS)得到发展后,表现出了很强的分析能力,在相当长的一段时间里,辉光放电淡出了研究者的视野。

然而,随着火花源研究的不断深入,这种离子源的局限性也逐渐显露,而辉光放电源则以自身出色的稳定性重新获得了重视。

2、辉光放电质谱的特点2.1 辉光放电质谱的工作原理辉光放电质谱由辉光放电离子源和质谱分析器两部分组成。

辉光放电离子源(GD源)利用惰性气体(一般是氩气,压强约10-100Pa)在上千伏特电压下电离产生的离子撞击样品表面使之发生溅射,溅射产生的样品原子扩散至等离子体中进一步离子化,进而被质谱分析器收集检测。

辉光放电属于低压放电,放电产生的大量电子和亚稳态惰性气体原子与样品原子频繁碰撞,使样品得到极大的溅射和电离。

同时,由于GD源中样品的原子化和离子化分别在靠近样品表面的阴极暗区和靠近阳极的负辉区两个不同的区域内进行,也使基体效应大为降低。

GD 源对不同元素的响应差异较小(一般在10倍以内),并具备很宽的线性动态范围(约10个数量级),因此,即使在没有标样的情况下,也能给出较准确的多元素半定量分析结果,十分有利于超纯样品的半定量分析。

辉光放电发射光谱法测定钢板镀锌层中铅镉铬

辉光放电发射光谱法测定钢板镀锌层中铅镉铬

辉光放电发射光谱法测定钢板镀锌层中铅镉铬于媛君;高品;邓军华;亢德华【摘要】通过条件试验,确定了辉光放电发射光谱仪(GD-OES)的最佳分析参数为:分析功率30 W、氩气气压620 Pa、预溅射时间200 s、积分时间10 s.选用多种基体标准样品,通过溅射率校正建立校准曲线,定量分析镀锌板镀层中铅、镉、铬元素含量及分布状况,得到镀锌层中各元素随深度变化的分析谱图,方法定义了镀层中元素积分计算方法,从而得到镀层中铅、镉、铬元素含量.以纯锌标准样品进行检出限测定,各元素的检出限分别为3.65(铅)、1.33(镉)、0.21(铬)μg/g;以纯锌标准样品进行短期精密度考察,3个元素测定结果的相对标准偏差(RSD,n=15)分别为2.8%(铅)、1.3%(镉)、6.6%(铬).制备了典型涂镀样板,采用实验方法进行测定,并采用电感耦合等离子体质谱法进行比对分析,结果一致性较好.实验方法适用于快速定量测定钢表面1~50 μm厚度的镀锌板镀层中铅、镉、铬元素含量.【期刊名称】《冶金分析》【年(卷),期】2015(035)009【总页数】7页(P1-7)【关键词】辉光放电发射光谱法;镀锌板;镀层;铅;镉;铬【作者】于媛君;高品;邓军华;亢德华【作者单位】鞍钢集团公司钢铁研究院,辽宁鞍山114001;鞍钢集团公司钢铁研究院,辽宁鞍山114001;鞍钢集团公司钢铁研究院,辽宁鞍山114001;鞍钢集团公司钢铁研究院,辽宁鞍山114001【正文语种】中文钢材表面涂镀是防止钢材腐蚀最有效、最经济的工艺,镀锌板被广泛应用于建筑、汽车、家电等行业。

随着全球环保意识提高,欧盟ROHS指令要求于2006年7月1日起,在欧盟市场内禁止销售含有Hg、Cd、Cr、Pb、多溴联苯及多溴联苯醚等有害物质的电子电气设备,与欧盟相呼应,日本、美国近年来相继制定了电气设备的本国限令。

我国是世界钢铁工业大国,随着欧盟ROHS指令的实施,对涂镀钢板的生产产生强大的冲击,国内钢铁生产企业急需正确评价镀层中有害元素Pb、Cd、Cr的方法分析标准。

辉光放电发射光谱法在材料分析中的应用

辉光放电发射光谱法在材料分析中的应用
在辉光放电发射光谱仪中 ,被电场加速的氩离 子使样品产生均匀的溅射 ,样品作为阴极 ,放在阳极 的前面 (见图 1) 。溅射出来的样品原子离开样品表 面 ,在阳极区与氩离子碰撞而被激发 ,产生样品组成
收稿日期 : 2007212228
作者简介 :杨 明 ( 19782) ,男 ,湖北人 ,助研 ,主要从事元素分析及 ICP2AES实验室的管理和测试工作 ,发表
0. 2
Mo
1
0. 8
Nb
2
0. 6
Ni
3
0. 1
Si
3
0. 4
Ti
1
0. 6
V
1
1. 0
Zr
2
1. 5
图 1 辉光放电阴极溅射光源示意图 Fig. 1 Scheme of glow discharge cathodic sputtering
1. 3 应用特点 由于辉光放电属于低气压放电 ,具有高度的稳
型及镀层表观厚度的概念 [ 17 ] 。 Zdenek W eiss等人用辉光放电光谱法对硬涂层
近年来 ,科学家发现在许多情况下 ,材料表层组 成及结构对材料的性质有特殊的作用 ,因此表层分 析和逐层分析的重要性日益为分析家所关注 。通常 用于表面分析的手段有俄歇电子能谱 (AES) 、X 射 线光电子能谱 (XPS) 、二次离子质谱 ( SIM S)和辉光 放电发射光谱 ( GD 2OES) 等 [ 1 ] 。由于设备价格 、分 析准确度和精密度等不同 ,在日常分析中的应用也 不一定相同 。辉光放电发射光谱分析技术 ,近几年 来正在被广泛应用于新材料的研究开发和产品的质 量控制中 [ 2~6 ] 。
和放电气压对元素谱线发射强度及相对强度稳定性 的影响 ;测定了中低合金钢标准样品中 C、Si、M n、

辉光放电光谱法分析镀锌钢板

辉光放电光谱法分析镀锌钢板

辉光放电光谱法分析镀锌钢板张毅,陈英颖,张志颖(宝山钢铁股份有限公司技术中心,上海201900)摘要:介绍了利用辉光放电光谱法分析不同种类的热镀锌板和电镀锌板的镀层定量分析;在锌铁合金化热镀锌板上界面定量计算方法的设计;锌铁合金化热镀锌板表面问题的发现。

试验结果表明,辉光放电光谱法是配合镀锌板产品质量控制、研究开发的一种有效的分析手段。

关键词:辉光放电;光谱法;镀锌板中图分类号:O657.31文献标识码:A文章编号:1001-4020(2004)04-0191-04ANALYSIS OF GALVANIZED ST EEL SHEET S BY GLOW DISCHARGE AESZHANG Yi,CHEN Ying-ying,ZHANG Zh-i ying(T echnical Center,Baoshan I ron and S teel Co.Ltd.,Shanghai201900,China)Abstract:G low discharge A ES(GD-A ES)w as applied effectively to the analysis of galvanized steel sheets.I n application of this analytical technique to the analysi s of galvanized steel sheets,a method was established to meet w ith the analysis of galvanized steel sheets of different pro duction-technolog ies(i.e.the hot-dipping galvanization o f pure zinc or of Zn-Fe alloy,the electroplating of zinc or of Zn-N i alloy and etc.)and to g ive chemical composition of elements in majo r, minor and micro amounts in the coating layer and t heir changes with the change of dept h of the coating layer simultaneously.T he results of the thickness and mass of the coating layer w er e also given,tog ether w ith the results of chemical composition of the substr ate metal.T he proposed method w as also applied to the analysis o f surface-defects.I n t he analysis of samples produced by hot-dipping process w ith Zn-Fe alloy,a correctio n factor was proposed in the calculation of Fe co ntent in the coating lay er to elimite the error due to the coarseness appeared on t he surface of the coating layer.Keywords:G low discharge atomic emission spectrometr y;Surface analysis;Galvanized steel sheet钢板表面镀锌处理是提高抗大气腐蚀的有效方法。

低合金钢 多元素含量的测定 辉光放电原子发射光谱法(常规法)

低合金钢 多元素含量的测定 辉光放电原子发射光谱法(常规法)

低合金钢多元素含量的测定辉光放电原子发射光谱法(常规法)低合金钢多元素含量的测定常用的方法之一是辉光放电原子发射光谱法,也被称为常规法。

下面是使用这种方法进行测定的步骤:
1. 样品制备:将待测低合金钢样品切割或打磨成适当大小,并确保表面平整和干净。

2. 样品溶解:将样品放入酸性溶液中进行溶解。

常用的酸性溶液可以是硝酸、盐酸等。

根据样品的特性选择适当的酸性溶液。

3. 辉光放电原子发射光谱分析仪设置:将溶解后的样品转移到辉光放电原子发射光谱分析仪中。

在设置仪器时,需要确定分析的元素以及相应的波长范围。

4. 仪器校准:在进行分析前,需要对仪器进行校准。

校准可通过使用已知浓度的标准溶液进行。

5. 分析测量:将样品注入辉光放电原子发射光谱分析仪中,然后通过激发和电离的过程产生荧光,分析仪将荧光信号转化为相应的光谱图。

6. 数据分析:根据测定得到的光谱图,使用相应的软件进行数据分析,并计算出各元素的含量。

需要注意的是,辉光放电原子发射光谱法对于不同元素有不同的灵敏度和检测限。

因此,在测定低合金钢中的多元素含量时,需要根据具体的要求和样品特性选择合适的分析方法和仪器参数。

此外,辉光放电原子发射光谱法还可以结合其他分析方法来提高准确性和可靠性,例如前处理方法、标准加入法等。

辉光放电质谱应用和定量分析

辉光放电质谱应用和定量分析
S F 。 = d 辉 光放 电质 谱 的工 作 原理 辉 光放 电质 谱 由辉光 放 电离子 源和质谱 分析器两部分组成 。 辉光放 电离子源 ( GD源 ) 利用惰性气体( 一 般 是氩 气 , 压 强约 1 0 — 1 0 0 P a ) 在上 千伏特 电压下 电离产 生 的离子 撞击样 品 表 面 使 之 发 生 溅 射 ,溅 射 产 生 的样 品 原 子 扩 散 至等离子体 中进一步 离子化 ,进 而被质谱 分析 器收集检 测。辉光放 电属于低 压放 电, 放 电产 生 的大 量 电子 和 亚 稳 态 惰 性 气 体 原 子 与 样 品 原 子 频 繁 碰 撞 , 使 样 品得 到 极 大 的溅 射和 电离 。同时,由于 GD源 中样 品的原子化 和 离子化分别 在靠近样 品表面 的阴极暗区和 靠近 阳极 的负 辉区两个 不同 的区域 内进行 , 也使基体效应大 为降低 。G D源对不 同元素 的 响应 差 异 较 小 ( 一般 在 1 O倍 以内) , 并具 备 很 宽的线性动态 范围 ( 约 1 0个数量级 ) ,因 此 , 即 使 在 没 有 标 样 的情 况 下 ,也 能 给 出较 准 确 的 多 元 素 半 定 量 分 析 结 果 ,十 分 有 利 于 超 纯 样 品 的半 定 量分 析 。 2. 2 G D源 的 供 电方式 GD 源 的供 电方式可分 为直流辉 光放 电 ( DC . GD) 、射频辉光放 电 ( RF — GD)和脉冲 辉光放 电 ( p u l s e d . GD) 。 后二者 与质谱 的结合 还处于实验室阶段 ,尚无商 品化 的仪器 出现 。 部 分 DC GDMS 配 备 四极 杆 质 谱 ,其 结 构 简 单 ,质 谱与辉. 光放 电离 子源 的结合 较容易实
中。
4 、定 量分析

辉光放电质谱法测定高纯镍中16种痕量杂质元素

辉光放电质谱法测定高纯镍中16种痕量杂质元素

辉光放电质谱法测定高纯镍中16种痕量杂质元素杨海岸;罗舜;闫豫昕;刘英波【摘要】采用辉光放电质谱法(GD-MS),不用标准样品绘制校准曲线,直接测定高纯镍中硅、磷、硫、锰、铁、钴、锌、砷、镉、锑、锡、铅、铋、镁、铝和铜共16个痕量杂质元素.确定了分析高纯镍的最佳仪器参数并总结了参数的调节方法.当预溅射时间设定在20 min时,可以完全消除样品在预处理过程中引入的钠、钙和铁的污染.在中分辨率分析模式下,选择丰度最高的24 Mg、27A1、28Si、31P、114 Cd、32S、209 Bi、75 As、55 Mn、56 Fe、59 Co、63 Cu、121 Sb、208Pb 作分析同位素可以减小同位素质谱峰干扰,但锌和锡例外.虽然64 Zn和120Sn丰度最高,但其质谱峰分别与36Ar14N16O和82Se36Ar的质谱峰重叠,因此实验选择质谱峰能分开、丰度较低的66Zn和118Sn作为分析同位素.采用实验方法对3个高纯镍样品进行分析,测定值与参考值以及电感耦合等离子体质谱法(ICP-MS)的测定值符合性较好.其精密度随着元素含量的增大而越来越好,当元素含量在μg/g 水平时,其相对标准偏差(RSD)小于10%.【期刊名称】《冶金分析》【年(卷),期】2015(035)005【总页数】6页(P1-6)【关键词】辉光放电质谱法;高纯镍;痕量元素;无需标准样品直接分析【作者】杨海岸;罗舜;闫豫昕;刘英波【作者单位】昆明冶金研究院,云南昆明650031;国家有色金属产品质量监督检验中心,云南昆明650031;昆明冶金研究院,云南昆明650031;国家有色金属产品质量监督检验中心,云南昆明650031;昆明冶金研究院,云南昆明650031;国家有色金属产品质量监督检验中心,云南昆明650031;昆明冶金研究院,云南昆明650031;国家有色金属产品质量监督检验中心,云南昆明650031【正文语种】中文镍是一种银白色的铁磁性金属,镍质量分数在99.99 %以上的金属镍称为高纯镍,它可以用作焊条、溅射靶材料、磁性薄膜、高纯镍管钠汞齐、引线框架及接线端口等特殊电子材料和合金材料 [1]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

所用波长,nm 371.994 165.701 288.15 403.449 177.497 425.433 341.477 396.152 337.279 130.217 174.272
GDOES定量深度逐层分析方法
分析方法的建立
仪器
GDS-750A辉光放电光谱仪(美国LECO公司) SS-1000试样磨抛机 (美国LECO公司) NT-200TP 直读天平(日本岛津公司) Dektak 6M表面轮廓仪(美国Veeco公司)
因素
水平
1
电压 (A) 电流(B)
500V 10mA 30s
3
900V 30mA 40s
4
1100V 40mA 50s
5
1300V 50mA 60s
GDOES定量深度逐层分析方法
光源参数的优化——正交试验
结论
通过方差分析和因素重要程度的排序可知,电压和电流为显著影响因素,预溅射时间的影响不显 著。对大部分我们所关注的10个主要分析元素(Mn, Si,Cr,Ni,C,P,Al,O, N)而言,电 压和电流对元素强度的其强度的相对标准偏差(RSD值),即分析稳定性的影响最大。 根据最佳水平组合排列发现,电压的最佳值为1100V和1300V,电流为20mA~50mA,预溅射 时间应大于30S。 一般而言,电压和电流设定越高,单位时间内剥离的样品量越多(即溅射率越大),受标样表面 状况的影响越小,稳定性越好,相对标准偏差值越小。预溅射时间越长,分析的稳定性越好。
建立GDOES定量深度逐层分析方法
分析方法的建立
标准样品的处理 标准样品的表面经320目SiC砂纸水磨抛光,抛光后,立即用无水酒精清洗表面,并 用热风吹干。
标准样品的溅射率计算 在经优化的仪器分析参数下,计算了各不同标准样品的溅射率。
标准工作曲线的制作 将所选用的标准样品处理后,在经优化的光源参数下激发各标准样品,经过溅射率 校正后,建立各分析元素分析强度和分析浓度的标准工作曲线。
GDOES定量深度逐层分析方法
光源参数的优化——正交试验
试验设定为3因素5水平试验。即考察放电电压,放电电流,预溅射时间对10个主要分析元素发射 强度稳定性的影响。每种组合重复5次。以各元素强度值的相对标准偏差RSD值为考察对象。RSD 值越小,强度的稳定性越好,参数选择的越合适。 正交试验的因素水平表如下:
因为本方法主要应用于纳米级厚度膜层的测定,为了保证在定量逐层分析 时有足够的分辨率,因此设定的数据采集频率必须确保每次采集到小于 0.3nm深度的表面信息。
GDOES定量深度逐层分析方法
光源参数的优化——速率实验
所选择的标准样品中元素的分析范围和以及各元素的特征谱线如下表所示。
GDOES定量深度逐层分析方法
镀层或膜层中主要元素的分析范围和所选用的特征谱线波长
元素 Fe C Si Mn P Cr Ni Al Ti O N
含量范围,% 40.4~100 0.001~4.9 0.001~4.8 0.001~23.2 0.001~0.8 0.000~29.0 0.001~57.8 0.002~100 0.001~30.0 0.001~38.9 0.001~8.3
绪论
各种深度逐层分析方法
俄歇电子能谱(AES) X射线光电子能谱(XPS) 二次离子质谱(SIMS) 辉光放电光谱(GD-OES)
GDOES定量深度逐层分析方法
方法建立的依据 分析方法的建立 光源参数的优化 定量逐层分析
GDOES定量深度逐层分析方法
方法建立的依据
考虑到所分析的样品主要为薄至纳米级厚度的氧化膜、钝化膜、镀镍层及镀 铬层等。因此建立分析方法时,必须考虑膜和镀层中所含的元素O、P、Ni、 Cr、Fe、Mn、Ti、Si、Al等以及易受污染的元素C,N等。建立的工作曲线 范围应该覆盖这些主要元素在膜中和镀层中的含量范围。
建立GDOES定量深度逐层分析方法
光源参数的优化
影响辉光放电等离子体的光源参数有三个:放电电流、放电电压和气体压力。 这三个参数不是完全独立的,如果其中两个被确定,第三参数将随着样品成 分的变化而变化。当采用辉光放电光谱法进行样品分析时,光源的控制一般 采用恒定放电电压和放电电流方式,因此放电电压和放电电流是重要的光源 参数。
GDOES定量深度逐层分析方法
光源参数的优化——束斑轮廓实验
结论:通过束斑轮廓实验,选定放电电压700V~900V,放电电流20~40mA。束斑情况 如下图:
1 凸状
2 凹状
3 平直
GDOES定量深度逐层分析方法
光源参数的优化——速率实验
选择一块溅射率较大的标准样品,以一定的时间溅射样品表面,用表面轮 廓仪测得溅射深度。可知单位时间内样品的溅射深度 nm·s-1。以此为依据, 设定数据采集频率 次·s-1。
GDOES定量深度逐层分析方法
光源参数的优化——束斑轮廓实验
对于定量逐层分析而言,只有底部平直的束斑轮廓才能够真实地反映出钢 铁表面纳米级薄膜样品的表面信息。本课题选择不同的标准样品为考察对象。 在不同光源参数下,对样品进行溅射,溅射后的束斑用表面形貌仪进行测定 比较,选出具有理想束斑形状的溅射条件。
在建立标准工作曲线的过程中,预溅射时间的长短对于获得稳定的元素强度 信号有很大的影响。因此必须选择合适的预溅射时间。
GDOES定量深度逐层分析方法
光源参数的优化
本论文通过以下三个实验来确定最佳的放电电压、放电电流和预溅射时间, 以获得最优的光源参数条件。 1)正交试验 2)束斑轮廓实验 3)速率实验
内容
绪论 GDOES定量深度逐层分析方法 精密度实验 准确度实验 应用 结论
绪论
金属材料具有较高的强度和优良的机械加工性能,但其最大缺点是 易腐蚀,往往造成巨大损失。许多金属材料防腐性能主要取决于表 面的特性和状态,通过表面处理技术可以实现以最低的经济成本来 生产优质产品。研究金属材料表面的自然氧化和腐蚀现象,以及各 种表面处理的新工艺,如闪镀、钝化等正成为一个重要的课题。金 属材料表面所形成的各种纳米级厚度的薄膜和镀层的化学成分和组 织结构对材料本身性能有很大的影响,因此需要建立与工艺研究相 适应的一种定量分析测试方法。
相关文档
最新文档