低氮燃烧器_低氮改造技术方案
燃煤锅炉低氮燃烧改造技术原理及方案
目录
• 引言 • 燃煤锅炉低氮燃烧技术原理 • 改造方案 • 实施步骤与注意事项 • 改造效果评估与优化建议 • 结论与展望
01 引言
背景介绍
随着我国经济的快速发展,能源需求 持续增长,燃煤锅炉作为主要的能源 供给设备之一,其排放的氮氧化物对 环境造成了严重污染。
注意事项
安全第一 质量保证 遵守法规 专业协作
在改造过程中,始终把安全放在第一位,确保施工过程不发生 安全事故。
确保改造工程质量,选用优质的材料和设备,严格把控施工工 艺。
改造过程应遵守国家和地方的相关环保法规,确保改造后的锅 炉氮氧化物排放达到标准。
充分利用专业人员的知识和经验,特别是在方案设计和技术实 施阶段,确保改造方案的科学性和可行性。
调整一次风和二次风比例
通过调整一次风和二次风的配比,控制燃料燃 烧过程中的氧气浓度,降低氮氧化物生成。
优化炉膛结构
改进炉膛设计,使炉膛内温度分布更加均匀,提高燃烧效率。
方案三:燃料分级燃烧技术
01
燃料分段燃烧
将燃料分成多段进行燃烧,降低 燃烧区的温度,减少氮氧化物生 成。
引入再燃区
02
03
优化再燃区结构
通过将燃料分成不同的阶段进行燃烧,降低氮氧 化物的生成。
国内外研究现状及发展趋势
国内外研究现状
国内外在低氮燃烧技术方面都有一定 的研究,但技术路线和应用情况有所 不同。
发展趋势
随着环保要求的提高,低氮燃烧技术 将更加受到重视,未来将有更多的研 究和应用。
03 改造方案
方案一:燃烧器改造
更换低氮燃烧器
通过更换低氮燃烧器,降低燃烧过程中氮氧化物的生 成量。
锅炉低氮燃烧技术优化改造施工方案
锅炉低氮燃烧技术优化改造施工方案一、背景和目的现代工业生产中,锅炉作为重要的热能设备,对环境保护和节能减排具有重要意义。
为了减少锅炉燃烧过程中产生的氮氧化物排放,需要对锅炉进行低氮燃烧技术改造。
本文旨在提出一套锅炉低氮燃烧技术优化改造施工方案,以实现锅炉的低排放。
二、施工前的准备工作1.收集锅炉现有参数和操作数据,包括锅炉型号、燃烧系统设计参数、燃烧器类型和工作状态等。
2.检查锅炉燃烧系统的性能和稳定性,确定存在的问题并进行记录。
3.确定改造的目标和要求,包括降低氮氧化物排放、提高燃烧效率和保持锅炉的正常运行等。
三、改造方案设计1.选择适合的低氮燃烧器:根据现有锅炉的参数和工作状态,选择适合的低氮燃烧器。
要考虑燃烧器的稳定性、燃烧效率和排放指标等因素。
2.调整燃烧器位置:根据现有锅炉的结构和燃烧系统的要求,调整燃烧器的位置,以达到最佳的燃烧效果和排放指标。
3.安装低氮燃烧器:根据设计方案,对锅炉进行低氮燃烧器的安装,包括燃烧器的连接、调整和固定等。
4.优化燃烧系统:对锅炉的燃烧系统进行优化,包括燃烧器的调整、配气系统的改进和燃烧器调整等。
5.安装储煤设备:为了提高锅炉的燃烧效率和稳定性,可以考虑安装储煤设备,以供应稳定的燃料。
四、施工流程1.施工准备:清理施工现场,准备工具和材料。
2.拆除原有设备:拆除原有的燃烧器和相关设备。
3.安装低氮燃烧器:按照设计方案,安装低氮燃烧器,包括燃烧器的连接和固定。
4.安装配气系统:安装新的配气系统,包括气体调节阀和压力传感器等。
5.优化燃烧系统:对燃烧系统进行优化,包括燃烧器的调整和燃烧器的调整等。
6.安装储煤设备:按照设计方案,安装储煤设备,包括储煤仓和输煤系统等。
7.调试和试运行:对改造后的锅炉进行调试和试运行,确保其正常工作和低排放。
五、施工安全及环境保护措施1.施工现场应设置安全警示标志和施工警示牌,确保施工区域的安全。
2.施工人员应经过专门培训,具备相关技术和安全知识。
燃气锅炉低氮改造方案
3.改造完成后,定期对环保设施进行维护,确保其正常运行。
十、项目总结
本方案旨在通过对燃气锅炉进行低氮改造,实现氮氧化物排放浓度≤30mg/m³,满足国家及地方环保要求。改造过程中,注重安全性、环保性和经济效益,确保改造项目的顺利实施。通过本次改造,将为企业带来长期的环境效益和经济效益,为我国环保事业贡献力量。
6.调试优化:完成改造后,对锅炉进行调试,调整燃烧参数,确保氮氧化物排放浓度达标。
7.验收评估:组织专家对改造效果进行评估,确保各项指标达到预期目标。
八、改造效果评估
1.氮氧化物排放浓度:改造后,氮氧化物排放浓度应≤30mg/m³。
2.燃烧效率:改造后,锅炉燃烧效率提高3%以上。
3.能源消耗:改造后,能源消耗降低5%以上。
2.调整燃烧参数:根据实际运行情况,优化燃烧器结构,提高燃烧效率;
3.增设烟气再循环系统:在锅炉尾部增设烟气再循环风机,将部分烟气引入燃烧器,降低火焰温度;
4.优化控制系统:采用先进的控制策略,实现燃烧过程的实时监控和优化调整,提高锅炉运行稳定性;
5.更新锅炉本体及辅助设备:对锅炉本体进行改造,提高热效率,降低氮氧化物排放。
第2篇
燃气锅炉低氮改造方案
一、前言
为响应我国环保政策,降低大气污染物排放,特别是氮氧化物的排放,本方案针对某地区燃气锅炉进行低氮改造。通过采用先进的低氮燃烧技术和优化锅炉运行参数,旨在实现氮氧化物排放浓度符合国家及地方环保标准,同时提高锅炉的热效率,降低能源消耗。
二、改造目标
1.降低氮氧化物排放浓度,满足国家及地方环保要求。
4.安全性:改造后,锅炉运行安全性提高,故障率降低。
5.经济效益:改造成本在合理范围内,投资回收期≤3年。
燃气锅炉低氮改造方案
燃气锅炉低氮改造方案为了应对环境污染的挑战和改善空气质量,燃气锅炉低氮改造成为了必要的举措。
在本文中,我们将讨论燃气锅炉低氮改造的方案,以期提供有效的解决方案。
一、方案概述燃气锅炉低氮改造的目标是降低氮氧化物(NOx)的排放量。
通过优化燃烧系统和引入额外的氮氧化物控制措施,可以实现降低NOx排放的效果。
具体而言,方案包括以下几个关键步骤:1. 优化燃烧系统:通过更换锅炉燃烧设备,改善燃烧效率,减少NOx的生成。
新一代低氮燃烧器采用先进的燃烧技术,能够更好地控制燃烧反应过程,降低NOx排放。
2. 引入尾气再循环技术:通过将一部分燃烧产生的废气回收再利用,将其混合到新鲜空气中重新参与燃烧,降低燃烧温度,减少NOx的生成。
3. 安装低氮燃烧系统:安装燃气锅炉专用的低氮燃烧系统,包括调节阀、排烟系统等。
这些系统在燃烧过程中能够减少NOx生成的同时,保持燃烧的稳定性和热效率。
二、方案优势1. 环保效益:通过燃气锅炉低氮改造,能够显著减少NOx的排放量,改善空气质量,保护环境。
减少大气污染物的排放对于人类健康和生态平衡都具有积极的影响。
2. 经济效益:低氮改造后的燃气锅炉在燃料利用率和热效率方面表现出色,能够节约能源和运行成本。
长期来看,低氮改造可以为企业带来可观的经济收益。
3. 质量保证:低氮燃烧系统的使用能够确保锅炉稳定运行和燃烧效果的优化。
燃烧过程的控制和调节能够提高锅炉的可靠性和耐久性,延长锅炉的使用寿命。
三、方案实施1. 技术评估:在实施燃气锅炉低氮改造之前,需要进行现有锅炉系统的技术评估。
通过现场勘测和数据分析,确定适合该锅炉的低氮改造方案。
2. 设备选型:根据实际需求和技术评估结果,选择合适的低氮燃烧器和相关设备。
确保设备的质量和性能能够满足要求。
3. 施工安装:根据设计方案,进行施工和设备安装。
确保施工过程中符合安全和质量要求,以及相关环保法规。
4. 调试验收:在施工完成后,进行系统调试和性能测试。
低氮燃烧改造方案
低氮燃烧改造方案引言随着环境保护意识的逐渐增强和环保政策的出台,低氮燃烧技术在工业和能源领域的应用越来越广泛。
本文将介绍低氮燃烧的概念和原理,并提出一种低氮燃烧改造方案,以减少燃烧过程中产生的氮氧化物(NOx)排放。
低氮燃烧的原理低氮燃烧是一种通过优化燃烧过程,减少氮氧化物排放的技术。
通常情况下,燃料中的氮在高温下与氧气反应生成氮氧化物。
因此,要降低氮氧化物排放,就需要控制燃烧过程中的高温和氧气供应。
为了实现低氮燃烧,可以采取以下措施:1.使用低氮燃料:选择低氮燃料,如天然气、液化石油气等,可以减少燃料中的氮含量,从而减少氮氧化物的生成。
2.调整燃烧器结构:通过改变燃烧器的结构,使得燃料与空气更加均匀地混合,从而减少局部高温区域的形成。
3.控制燃烧过程中的氧气供应:通过调整燃烧过程中的氧气供应量,可以控制燃烧温度,从而降低氮氧化物的产生。
低氮燃烧改造方案在现有工业和能源设备中,如锅炉、燃气轮机等,采用低氮燃烧技术可以有效降低氮氧化物排放。
下面将提出一种针对锅炉的低氮燃烧改造方案:1.安装低氮燃烧器:将传统燃烧器更换为低氮燃烧器,低氮燃烧器采用先进的燃烧技术,能够有效控制燃料与空气的混合,降低高温区域的形成,减少氮氧化物的生成。
2.喷枪调优:通过调整燃烧过程中的燃料喷射方式和角度,使得燃料更加均匀地分布在炉膛中,避免燃料过多集中在局部区域,从而降低局部高温区域的形成。
3.进行燃烧过程优化:通过监测燃烧过程中的各项参数,如燃烧温度、燃烧效率等,及时调整氧气供应量,确保燃料的充分燃烧,同时控制燃烧温度在合理范围内,以减少氮氧化物的产生。
改造效果评估为了评估低氮燃烧改造方案的效果,可以对改造后的锅炉进行氮氧化物排放测量,并与改造前的数据进行对比。
另外,还可以进行燃烧效率、燃料消耗量等方面的测量,以评估低氮燃烧对锅炉性能的影响。
通过改造后的测试数据分析,可以评估低氮燃烧改造方案的效果,判断是否达到减少氮氧化物排放的目标,以及对锅炉性能的影响。
低氮燃烧器改造施工方案
低氮燃烧器改造施工方案一、引言随着环保意识的日益增强,低氮燃烧技术逐渐成为工业领域节能减排的热门话题。
为了降低燃烧过程中产生的氮氧化物排放量,采用低氮燃烧器进行改造已成为解决方案之一。
本文将介绍低氮燃烧器的改造施工方案及重要注意事项。
二、改造前的准备工作在进行低氮燃烧器的改造前,需要对现有燃烧系统进行全面的评估和检测,确保其工作状态良好。
同时,还需要进行施工前的准备工作:1.方案设计:根据燃烧系统的具体情况,制定适合的低氮燃烧器改造方案。
2.材料准备:准备所需的改造材料和工具,确保施工顺利进行。
3.安全措施:制定施工安全措施和应急预案,确保施工过程中安全可靠。
三、改造施工步骤进行低氮燃烧器改造的施工步骤如下:1.拆除旧燃烧器:首先,要将原有的燃烧器进行拆除,并清理燃烧器安装位置。
2.安装新燃烧器:将低氮燃烧器按照设计要求进行安装,并确保连接处牢固。
3.调试试运行:完成安装后,进行试运行和调试,检查燃烧器运行状态和燃烧效果。
四、质量控制和验收在施工完成后,需要进行质量控制和验收工作,包括:1.性能测试:对改造后的低氮燃烧器进行性能测试,验证其低氮排放效果。
2.安全检查:对施工现场进行安全检查,确保改造后的系统安全可靠。
3.验收文件:编制改造施工的验收文件,做好档案管理,以备日后查阅。
五、总结与展望通过对低氮燃烧器改造施工方案的介绍,我们了解了在工业领域应用低氮燃烧技术的重要性,以及改造施工的具体步骤和注意事项。
未来,随着环保要求的提高,低氮燃烧技术将会得到更广泛的应用,为生态环境保护作出更大的贡献。
以上是低氮燃烧器改造施工方案的相关内容,希望能对您有所帮助。
谢谢阅读!。
锅炉低氮改造工程技术方案
锅炉低氮改造工程技术方案一、项目背景随着环境保护意识的增强和国家对环保政策的不断加强,对于工业企业的污染排放标准也在不断提高。
而作为工业生产过程中使用最为广泛的设备之一,锅炉在大气污染治理中扮演着重要的角色。
然而,由于传统锅炉在燃烧过程中排放的氮氧化物(NOx)含量较高,偏离了环保政策的要求,因此,对锅炉进行低氮改造已成为当前工业企业中亟需解决的问题。
本项目旨在对现有的锅炉进行低氮改造,减少氮氧化物的排放,提高锅炉的燃烧效率,并符合环保政策的要求,为企业的可持续发展提供保障。
二、目标与要求1. 降低氮氧化物排放浓度,符合国家环保标准;2. 提高锅炉的燃烧效率,降低能耗;3. 减少二氧化硫和其他有害气体的排放;4. 保持锅炉原有的工作稳定性和安全性;5. 降低改造成本,提高经济效益。
三、技术方案1. 锅炉低氮燃烧技术低氮燃烧技术是当前锅炉低氮改造的主要手段之一。
通过对锅炉燃烧系统进行调整和优化,减少氮氧化物的生成和排放。
具体包括以下几个方面:(1)调整燃烧风量和分布通过对锅炉的燃烧风量和分布进行调整,使之更加均匀,减少局部高温区域的形成,降低氮氧化物的生成。
(2)优化燃烧控制系统采用先进的燃烧控制系统,实时监测和控制燃烧过程中的氧气浓度和燃烧温度,确保燃烧过程的稳定性和完全燃烧,从而减少氮氧化物的生成。
(3)选用低氮燃烧器低氮燃烧器采用了特殊的设计结构和燃烧技术,通过与燃烧空气的充分混合,降低燃烧温度,减少氮氧化物的生成。
2. 尾气再循环技术尾气再循环技术是一种有效的锅炉低氮改造手段,通过将一部分燃烧产生的废气再循环混入燃料和空气中,减少燃烧温度,降低氮氧化物的生成。
具体操作包括:(1)收集尾气利用除尘设备和废气处理系统,将部分燃烧产生的废气收集起来。
(2)混合再循环将收集到的废气与燃料和空气进行混合再循环,降低燃烧温度,减少氮氧化物的生成。
3. 碱吸收脱硫技术除了降低氮氧化物排放,对于锅炉中二氧化硫和其他有害气体的排放也需要进行控制。
工业锅炉常用低氮燃烧技术解决方案
工业锅炉常用低氮燃烧技术解决方案
工业锅炉常用的低氮燃烧技术解决方案主要包括以下几种:
1. 空气分级燃烧:这种技术通过将空气分级为一次空气和二次空气,一次空气在预混区与燃料混合,二次空气在燃烧后期与燃料混合。
这种方式可降低炉膛温度,从而减少氮氧化物的生成。
2. 燃料分级燃烧:这种技术使用低氮氧化物产生能力的燃料,如生物质锅炉,或者使用催化剂促进氮氧化物的还原反应。
3. 低氧燃烧技术:这种方式可以减少氮氧化物的生成量,但需要注意氧浓度过低会导致碳不完全燃烧产生,可能导致有毒气体排放超标。
4. 烟气再循环技术:这种技术将一部分高温烟气回流到燃烧器,可以降低炉膛温度,从而减少氮氧化物的生成。
5. 燃料与空气预混合燃烧:采用这种技术可以减少燃烧过程中空气的总体需求量,同时燃料和空气的预先混合有助于控制火焰的传播,从而减少氮氧化物的生成。
6. 选择合适的锅炉类型:对于特定的工业应用,选择低氮锅炉或生物质锅炉等可以降低氮氧化物排放的设备,也是一种可行的低氮燃烧技术解决方案。
以上解决方案需要根据你的具体需求和锅炉的实际情况来选择和实施。
同时,低氮燃烧技术并不能完全消除氮氧化物的生成,还需要其他措施如改进燃烧设计、优化运行管理等来进一步降低氮氧化物的排放。
在实施这些技术时,应遵循相关环保法规,确保排放达标。
燃气锅炉低氮改造施工方案
燃气锅炉低氮改造施工方案一、项目概述随着环境意识的增强以及对大气污染的严格控制,燃气锅炉低氮改造成为燃气锅炉必要的技术更新。
本方案将对一台燃气锅炉进行低氮改造,以减少氮氧化物的排放,达到环保要求。
二、项目目标1.实现燃气锅炉氮氧化物排放量低于国家相关标准要求;2.保持燃气锅炉的稳定运行和高效能利用。
三、改造方法1.优化燃烧系统:采用低氮燃烧器进行替换,同时配备烟气再循环装置,降低燃烧温度和燃烧产物中的氮氧化物含量;2.安装SNCR脱硝装置:通过在燃烧过程中加入适量的尿素溶液,并在高温区域进行还原反应,以降低氮氧化物的生成;3.优化燃烧控制系统:通过改善燃烧过程的监控和调节,确保燃烧的稳定性和高效性。
四、施工步骤1.准备工作:a.完成必要的设计方案和施工图纸;b.购买和准备改造所需的设备和材料;c.对施工场地进行准备,确保安全和顺利进行施工。
2.换装低氮燃烧器:a.关停燃气锅炉并进行必要的清洗和检修;b.拆除原有燃烧器及相关管道设备;c.安装新的低氮燃烧器,并与燃气管道连接;d.安装烟气再循环装置,并与相关管道、风机等连接。
3.安装SNCR脱硝装置:a.在燃气锅炉高温区域进行SNCR脱硝装置的安装;b.连接脱硝装置与尿素溶液供应系统,并进行测试与调试。
4.改造燃烧控制系统:a.升级或更换原有燃烧控制系统,确保其能够实现低氮燃烧的要求;b.进行系统的测试与调试,确保其稳定运行。
5.系统联调与调试:a.对整个系统进行联调,确保各部件协调运行;b.优化系统参数,达到低氮排放和高效能利用的最佳状态。
6.安全检查和运行试验:a.进行改造系统的安全检查,确保设备和管道的安全运行;b.启动燃气锅炉进行运行试验,测试改造效果和性能。
五、施工周期根据燃气锅炉的具体型号和规模,施工周期一般为1-2个月(含设计和调试时间)。
六、投资估算具体投资估算需根据燃气锅炉的具体情况进行评估,涉及到燃烧器、烟气回收装置、SNCR脱硝装置、控制系统等设备的购买和安装成本。
锅炉燃烧器低氮改造方案
XXXXXXX有限公司燃气锅炉低氮改造工程项目编号:XXXXXXXXXXXXX施工方案安装单位:XXXXXXXXXXX有限公司2020年XX月XX日供货安装(调试)方案(1)概述XX系列低NOx燃气燃烧器采用当今世界最先进的燃烧技术,参照EN676及《GBT36699-2018锅炉用液体和气体燃料燃烧器技术条件》、《DB11-139-2015锅炉大气污染物排放标准》相关标准设计制造的新型机电一体化全自动低氮燃烧器,具有超低排放、燃烧效率高、运行平稳噪音低等特点。
要使燃烧器达到其最佳工作性能,安装符合要求至关重要。
不合格的安装会导致燃烧器工作时火焰歪斜、燃烧震动、噪音大及排放不达标等后果,严重时还会影响锅炉及燃烧器的使用寿命。
燃烧器的安装主要包括:燃烧机本体(含风机)安装、燃气阀组安装、风道安装(如需要)、烟气管道安装、电气安装等,改造项目还需增加旧燃烧器的拆除、锅炉炉口改造、循环烟气取烟口设置及烟管走向等工作。
施工工序如下:(2)燃烧器本体的安装按照现场实际情况,结合燃烧器的外形尺寸,确定烟气管道、燃气管道及风道(分体机)的走向布置。
根据锅炉的型式及燃烧方式确定燃烧器的安装方式(水平燃烧或垂直向下燃烧),一般水平燃烧较多。
燃烧器在循环烟气管道安装时,管道应设置保温,同时在最低点设置排水口,以免长时间运行后冷凝水积聚在燃烧器机壳内(机壳设有排水口),影响设备正常工作。
先把挂有吊链的龙门架立在锅炉前燃烧器安装的位置,用地牛把设备运至锅炉前,用钢丝绳把设备挂在的吊钩上,缓缓起吊,燃烧器火焰管的中心线与锅炉炉口的中心线重合时,慢慢将燃烧器推进锅炉炉口。
对准锅炉前板上的螺栓孔与燃烧器安装法兰孔,用水平尺对燃烧器找平,找正,最后拧紧固定螺栓,将燃烧机固定在锅炉上。
一体式超低氮燃烧器循环烟气口按水平方向安装,根据烟气管道走向,调整烟气入口的方向,且在烟气管道最低处设置放水口:1.用白色记号笔将烟气蝶阀和执行器、风门和执行器的相对安装关系做好标记;2.将烟气蝶阀执行器和执行器安装底板整体拆除并小心得放到旁边(注意:适当做好固定,避免意外掉落造成损坏);3. 将风门执行器和执行器安装底板整体拆除并小心得放到旁边(注意:适当做好固定,避免意外掉落造成损坏)(见下图);4.拔下与风压开关相连接的橙色塑料软管;5.安装好循环烟气管道;6.安装风门及烟气蝶阀执行器;7.安装风压开关软管;安装燃气蝶阀及执行器。
低氮燃烧改造方案
低氮燃烧改造方案引言随着环保意识的提高,对空气质量的要求也越来越高。
在大气污染治理中,控制燃烧过程中产生的氮氧化物(NOx)排放是一个重要的问题。
传统的燃烧方式往往会产生大量的氮氧化物,因此有必要进行低氮燃烧改造。
本文将介绍一种低氮燃烧改造方案,以帮助减少氮氧化物的排放。
方案概述低氮燃烧改造的核心思想是通过改变燃烧过程中的参数和条件,使燃料在燃烧过程中的产生氮氧化物的反应达到最低。
具体而言,我们将采取以下几个步骤来实现低氮燃烧改造:1.优化燃烧器设计2.调整燃烧过程参数3.使用先进的燃烧控制技术4.加装排放控制设备下面将详细介绍每一步的具体操作和效果。
优化燃烧器设计燃烧器是燃烧过程中最关键的组件之一。
优化燃烧器设计可以有效地改善燃料与空气的混合情况,从而降低氮氧化物的产生。
一种常用的优化方法是采用多级燃烧器,通过在不同位置注入燃料和空气,使其更好地混合。
此外,选用适当的燃烧器材料和表面涂层也可以提高燃烧效率,减少氮氧化物的生成。
调整燃烧过程参数燃烧过程中的参数对氮氧化物的生成有着重要的影响。
通过调整燃烧过程中的一些关键参数,可以降低氮氧化物的排放。
其中包括:•控制燃烧温度:降低燃烧温度是减少氮氧化物生成的有效方法。
可以通过调整燃料供给量、空气预热和燃烧器结构等手段来实现。
此外,可以采用燃烧过程中喷水或蒸汽等方式进行冷却,进一步降低燃烧温度。
•调整燃烧空气比:控制燃烧空气比可以影响燃烧反应的速率和路径,从而减少氮氧化物的生成。
通过优化燃料供给量和空气供给方式,可以实现合理的燃烧空气比,减少氮氧化物的排放。
使用先进的燃烧控制技术随着科技的进步,出现了许多先进的燃烧控制技术,可以有效地降低氮氧化物的排放。
其中一种重要的技术是燃烧优化系统。
通过监测燃烧过程中的关键参数,如燃烧温度、氧含量等,采用先进的控制算法进行实时调整,可以使燃烧过程中氮氧化物的生成达到最低。
加装排放控制设备除了通过改变燃烧过程参数和条件来降低氮氧化物排放外,还可以通过加装排放控制设备来进一步减少排放。
低氮燃烧器改造技术方案
低氮燃烧器改造技术方案中国作为全球最大的燃煤国家之一,在能源利用和环境保护方面面临着巨大的挑战。
煤炭燃烧产生的氮氧化物是空气污染的主要原因之一,因此低氮燃烧技术应运而生。
本文将介绍低氮燃烧器改造技术方案,以应对当前煤炭燃烧所带来的环境压力。
一、低氮燃烧技术简介低氮燃烧技术是通过优化燃烧过程,降低燃料中的氮氧化物排放。
目前主流的低氮燃烧技术包括分级燃烧、空燃比调节和燃烧温度控制等。
1. 分级燃烧技术分级燃烧技术采用多级供气方式,通过分区燃烧降低燃料的燃烧温度,减少氮氧化物的生成。
通过合理控制气流的分配,不仅可以提高燃烧效率,还能有效降低氮氧化物的排放量。
2. 空燃比调节技术空燃比调节技术是通过控制燃烧过程中的空气和燃料的比例,降低氮氧化物的生成。
通过优化燃烧器结构和控制系统,使燃烧器在不同负荷下都能保持适宜的空燃比,从而实现低氮燃烧。
3. 燃烧温度控制技术燃烧温度是影响氮氧化物生成的重要因素之一。
采用燃烧温度控制技术,可以通过调节燃烧器的出口温度,使其保持在适宜的范围内,从而降低氮氧化物的生成。
二、低氮燃烧器改造方案为了实现低氮燃烧,需要对现有的燃烧器进行改造。
下面介绍一个典型的低氮燃烧器改造方案。
1. 燃烧器结构优化通过对燃烧器的结构进行优化,可以提高燃烧效率和低氮燃烧能力。
例如,采用多孔板状燃料供给器,可以实现燃料的均匀分布,增强燃烧稳定性;增加燃烧器内部的混合器,可以提高燃烧效率。
2. 回转流化床技术回转流化床技术是一种燃烧方式,能够有效降低氮氧化物的生成。
通过引入适量的再循环废气和控制空气的分布,可以使燃料在燃烧过程中充分混合,减少氮氧化物的生成。
3. 进一步减少氮氧化物排放除了燃烧器的改造,还可以采取其他降低氮氧化物排放的措施。
例如,增加烟气再循环率,使部分烟气重新进入炉膛进行二次燃烧;采用SNCR(选择性非催化还原)技术,在燃烧过程中喷射还原剂,降低氮氧化物的浓度。
三、低氮燃烧器改造的经济效益与环境效益低氮燃烧器改造不仅能够降低氮氧化物的排放,减少空气污染,还能带来一系列的经济效益。
低氮燃烧器改造施工方案DOC
低氮燃烧器改造施工方案
一、背景介绍
当前我国环境保护形势严峻,大气污染成为社会关注的焦点之一。
在工业生产
过程中,燃烧器排放的氮氧化物是主要的污染源之一。
为了降低氮氧化物的排放量,提高燃烧效率,低氮燃烧器改造显得尤为重要。
二、改造前准备工作
1.对现有燃烧器进行全面检查,评估其性能状态;
2.准备所需的材料、工具和设备;
3.制定详细的改造计划,包括改造的时间节点和工作流程安排;
三、改造方案
1. 燃烧器内部清洗
•利用高压水枪对燃烧器内部进行彻底清洗,清除积存的杂质和沉积物;
•确保清洗后的燃烧器内部干净无杂质。
2. 更换燃烧器部件
•更换燃气喷嘴和风道,采用低氮气喷射技术,以提高燃烧效率;
•更新燃烧器的点火系统,确保点火稳定可靠。
3. 调整燃烧参数
•根据新的燃气喷射技术,调整燃烧器的气-气比和氧气含量,以实现低氮排放。
四、改造施工流程
1.拆卸原有燃烧器部件;
2.进行燃烧器内部清洗;
3.安装新的燃气喷嘴和风道;
4.更新点火系统;
5.调整燃烧参数;
6.完成改造后进行调试。
五、注意事项
1.在施工过程中严格遵守相关安全规范,确保施工人员安全;
2.改造过程需要由专业技术人员操作,确保改造质量;
3.施工结束后,对燃烧器进行全面检查和测试,确保改造效果符合预期。
六、结语
低氮燃烧器改造是当前环保技术的一项重要举措,通过合理施工和技术调整,
可以有效减少燃烧排放对环境的危害,保护生态环境,实现可持续发展。
希望本方案能为燃烧器改造工程提供一定的参考和帮助。
低氮燃烧器改造技术方案
低氮燃烧器改造技术方案引言随着环保意识的逐渐增强和环境法规的日益严格,低氮燃烧技术在工业领域得到了广泛应用。
低氮燃烧器改造技术是通过优化燃烧过程,减少氮氧化物(NOx)的排放,从而降低对环境的污染。
本文将介绍一种低氮燃烧器改造技术方案,以帮助企业实现低氮排放目标。
技术原理低氮燃烧器改造技术的核心原理是通过优化燃烧过程,减少氮氧化物的生成。
具体而言,该技术方案主要包括以下几个方面:1.燃烧器设计优化:优化燃烧器的结构和内部流场,使燃料和空气能够充分混合,提高燃烧效率,减少燃料过剩和不完全燃烧现象的发生。
2.燃料预处理技术:采用燃料预处理技术,如燃料预混合和分级燃烧等,可以使燃料在燃烧过程中充分混合,提高燃烧效率,减少氮氧化物的生成。
3.进气预热技术:通过对进气进行预热处理,可以提高进气温度,增加燃烧的可控性,减少氮氧化物的生成。
4.排烟气再循环技术:采用排烟气再循环技术,将一部分排烟气重新引入燃烧器,可以降低燃烧温度,减少氮氧化物的生成。
技术方案实施步骤低氮燃烧器改造技术方案的实施步骤如下:1.调研分析:对企业现有的燃烧设备和燃烧工艺进行调研分析,了解燃烧过程中的关键参数和问题,确定改造的重点和方向。
2.技术方案设计:根据调研结果,设计出针对性的低氮燃烧器改造技术方案,包括燃烧器结构优化、燃料预处理技术、进气预热技术和排烟气再循环技术等。
3.设备改造:根据技术方案要求,对燃烧器进行改造,包括改变燃料供给方式、优化燃烧器结构、安装预处理设备等。
4.调试测试:对改造后的燃烧器进行调试和测试,验证改造效果,确保达到低氮排放要求。
5.运营管理:对改造后的燃烧器进行运营管理,包括定期维护保养、监测排放情况、优化操作参数等,确保低氮排放效果的持续稳定。
技术方案的优势和应用低氮燃烧器改造技术方案具有以下优势:1.低排放:通过优化燃烧过程,减少氮氧化物的生成,使排放浓度满足环境法规要求。
2.高效节能:通过优化燃烧过程,提高燃烧效率,降低燃料消耗,实现能源的高效利用。
锅炉低氮燃烧技术优化改造施工方案
锅炉低氮燃烧技术优化改造施工方案编制:同意:审核:响应国家“节能减排”号召,计划对其135MW燃煤锅炉进行低NOx燃烧技术改造,锅炉本体采用钢筋混凝土构造,П型露天布置、固态排渣及平衡通风,采用中储式钢球磨煤机制粉系统,热风送粉四角直流燃烧器燃烧系统。
一、改造范围根据锅炉燃烧器改造要实现旳效果,本方案波及如下范围内旳改造:1.四角三层一次风室整体旋转2度;切园由∅300变化为∅ 7602.更换上二次风、中上二次风、中下二次风、下二次风4层,四角合计16件二次风喷口。
3.中上二次风位置旳三次风更换新三次风室后移位安装于下二次风位置,四角合计8件4.箱壳、保温改造4角5.更换上下三次风室组件8套6.三次风管路改造4角二层7.一次风管路改造4角三层8.Sofa燃烧器移位4角9.Sofa风道改造4角10.Sofa管屏改造4角11.辅助设备电缆等移位4角二、施工工艺及措施1 25T汽车吊及卷扬机布置工序卡1.1用25T吊车将新旧设备吊运至9m层。
1.2在9m层平台设置四台3t卷扬机,详细布置按现场吊装需要确定。
2 旧燃烧器拆除工序卡2.1在炉膛旳水冷壁转折角上部搭设脚手架,水冷壁早标高位置用切割机切割并且封堵。
2.2按照设计规定,对旧燃尽风做保护性拆除,首先拆除一次风弯头和煤粉管弯头部分,并将开口部分密封;2.3拆除旳旧燃烧器喷口及弯头移至电厂指定位置放置。
3 新燃烧器检查工序卡3.1新燃烧器及水冷壁管抵达现场后,首先对其进行外观检查,核算其水冷壁长度,确定炉膛燃烧器放置处旳开口尺寸;3.2对角线检查燃烧器水冷壁部分与否方正,检查水冷壁管排有无明显损伤,检查各部位旳焊接状况,有无漏焊或焊接质量过差旳问题,及时对其修整;3.3对水冷壁管进行通球试验;3.43.5检查其顶部吊耳构造,在合适位置焊接合适吊耳,用作寄存时栓挂。
4 煤粉管、扶梯平台拆除工序卡4.1燃烧器重要是通过其下部旳通道起升到就位位置,因此根据燃烧器构造尺寸,确定下部需要切割旳钢构造;4.2对9m层旳煤粉管弯头部分拆除。
低氮燃烧器改造施工方案
低氮燃烧器改造施工方案一、方案背景二、方案内容1.技术选型通过调研和比较市面上已有的低氮燃烧技术,选择适合该燃烧器的低氮燃烧技术方案。
常见的低氮燃烧技术包括分级燃烧、割流燃烧、喷射燃烧等。
2.设计改造方案根据燃烧器的具体情况,进行设计改造方案。
改造方案应包括燃烧器结构的改进、燃烧控制系统的升级、燃烧参数的优化等内容。
3.材料采购与加工根据改造方案,采购和加工所需的材料。
材料主要包括导流板、燃烧器内衬等。
4.施工准备对施工现场进行准备,包括清理、清洗、确保施工所需设备完好等。
5.更换燃烧器零部件根据设计方案,更换燃烧器零部件。
其中较为重要的是更换导流板和燃烧器内衬,以实现燃烧器内部空气流动的改变。
6.燃烧器调试改造完成后,进行燃烧器的调试工作。
调试主要包括燃烧器的点火、燃烧效果的观察和细调等。
7.改造效果检测改造后需要对燃烧器进行效果检测。
通过排放监测设备对烟气中的氮氧化物进行实时监测,比较改造前后的差异,评估低氮燃烧器改造效果。
8.完成报告根据改造施工过程和改造效果,编写改造报告。
报告中应包括改造施工的方法、步骤、所用材料及设备、改造效果等详细资料。
三、方案实施施工过程中要注意安全,采取相应的安全防护措施,确保无火灾、爆炸等意外事件发生。
材料采购应选择质量可靠的供应商,以确保材料的质量。
四、方案评估根据改造效果检测结果,评估低氮燃烧器改造的效果。
如果达到了设计要求,证明改造方案是成功的,能够实现燃烧过程中氮氧化物的减排。
同时,还需要对改造后的燃烧器进行使用情况的监测和维护,保持燃烧器的正常运行。
如有必要,进行后续的调整和改进,以进一步提高低氮燃烧器的性能和效果。
五、总结低氮燃烧器改造施工方案的实施,能够有效减少燃烧过程中氮氧化物的排放,对环境保护具有重要意义。
同时,该方案也需要密切配合相关的燃烧控制技术和设备,实现优化的燃烧效果。
在实施过程中,应注重安全和施工质量的控制,以确保改造的顺利进行和结果的满意。
低氮燃烧器改造技术方案
低氮燃烧器改造技术方案引言随着环保意识的提高和我国大气污染治理的加强,低氮燃烧技术作为一种有效的降低燃烧产生的氮氧化物(NOx)排放的方法已经得到广泛应用。
本文将介绍低氮燃烧器改造技术方案,包括低氮燃烧器的原理、改造的具体方法以及改造后的效果。
低氮燃烧器原理低氮燃烧器是一种通过优化燃烧过程来减少氮氧化物产生的燃烧设备。
其主要原理是通过改变燃料和空气的混合方式和燃烧温度来降低燃烧时氮气和氧气的反应速率,从而减少氮氧化物的生成。
低氮燃烧器通常采用以下几种技术来实现低氮燃烧:1.燃烧空气分级:通过将燃烧空气分为多个级别,分别与燃料混合并燃烧,可以降低燃烧的温度,减少氮氧化物的生成。
2.吹风预混燃烧:将燃烧气体和空气预先混合,并通过喷嘴将混合气体喷入燃烧室,可以使燃烧更加均匀稳定,减少氮氧化物的生成。
3.氧化剂还原剂分级燃烧:通过将氧化剂和还原剂分为多个级别,分别与燃料混合并燃烧,可以调节燃烧过程中氧化还原反应的位置和速率,降低氮氧化物的生成。
低氮燃烧器改造方法低氮燃烧器改造是在现有燃烧器基础上进行的改进和优化。
对于不同类型的燃烧设备,改造方法有所不同。
以下是常用的低氮燃烧器改造方法:1.燃烧室结构优化:通过对燃烧室结构进行优化设计,包括增加混合区长度、改善燃料和空气的混合程度等,可以提高燃烧效率,减少氮氧化物的生成。
2.燃料预处理:对燃料进行预处理,包括脱硫、脱氮等,可以减少燃料中氮氧化物的含量,从而降低燃烧过程中氮氧化物的生成。
3.燃料分级燃烧:通过将燃料分为多个级别,分别与空气混合并燃烧,可以减少燃烧过程中氮氧化物的生成。
4.燃烧风机优化:通过优化燃烧风机的设计和调节,可以使燃烧过程更加均匀稳定,减少氮氧化物的生成。
5.添加燃烧辅助装置:如添加SNCR(Selective Non-CatalyticReduction)装置,通过加入适量的还原剂来减少氮氧化物的生成。
低氮燃烧器改造效果通过采用低氮燃烧器改造技术,可以显著降低燃烧设备的氮氧化物排放。
锅炉低氮燃烧器改造方案
锅炉低氮燃烧器改造方案随着环境保护意识的不断提高,低氮燃烧技术在锅炉行业中得到了广泛应用。
锅炉低氮燃烧器的改造是一项重要的环保措施,旨在减少氮氧化物的排放,保护大气环境。
本文将介绍锅炉低氮燃烧器的改造方案,希望能为相关行业工作者提供一些有益的参考。
锅炉低氮燃烧器的改造需要对锅炉的燃烧系统进行全面的分析和评估。
通过对锅炉的运行情况、燃烧特性和燃烧器结构等方面进行综合分析,确定需要改造的具体内容和目标。
锅炉低氮燃烧器的改造可以从燃烧器结构和燃烧控制系统两个方面进行考虑。
在燃烧器结构方面,可以采用一些先进的技术手段,如分级燃烧技术、内外混合燃烧技术等,以提高燃烧效率和降低氮氧化物的生成。
在燃烧控制系统方面,可以采用先进的燃烧控制算法和传感器,实现对燃烧过程的精确控制,以提高燃烧效率和降低氮氧化物的排放。
锅炉低氮燃烧器的改造还需要考虑燃料适应性和运行稳定性。
在选择燃料时,需要考虑其低氮燃烧特性和可用性,以确保改造后的燃烧器能够适应不同种类的燃料。
在改造后的运行过程中,需要进行充分的测试和调试,以确保燃烧器能够稳定运行,并满足排放标准。
锅炉低氮燃烧器的改造还需要考虑经济性和可行性。
改造方案应综合考虑投资成本、改造周期和运行效益等因素,从而确定最优的改造方案。
同时,应结合实际情况,制定合理的改造计划和实施方案,确保改造工作的顺利进行。
锅炉低氮燃烧器的改造还需要进行后期的监测和维护工作。
通过对改造后的燃烧器进行定期的监测和维护,可以及时发现和解决问题,确保燃烧器的正常运行和低氮排放的持续效果。
锅炉低氮燃烧器的改造是一项重要的环保工作,对于减少氮氧化物的排放,保护大气环境具有重要意义。
通过对锅炉的燃烧系统进行全面的分析和评估,采用先进的技术手段和控制系统,确保燃烧器能够适应不同种类的燃料,并进行后期的监测和维护工作,可以实现锅炉低氮燃烧器的有效改造,达到降低氮氧化物排放的目标。
通过加强对锅炉低氮燃烧器改造技术的研发和应用,可以进一步推动环境保护工作的发展,为建设美丽中国做出贡献。
浅谈低氮燃烧技术及其改造方法
浅谈低氮燃烧技术及其改造方法针对某公司热电厂现有4号燃煤锅炉氮氧化物排放浓度超标的问题,浅谈燃烧过程中氮氧化物的生成机理、及采取的低氮燃烧技术改造措施。
通过文章的分析,希望对相关工作起到指导意义标签:低氮燃烧技术;生成机理;燃烧分级技术;空气分级燃烧技术;低氮燃烧器1 概述根据《国家环境保护“十二五”规划》和新的《火电厂大气污染物排放标准》(GB13223-2011)的要求,现有火力发电锅炉自2014年7月1日起,氮氧化物排放浓度限值为100mg/Nm3。
乌鲁木齐某公司热电厂现有4号燃煤锅炉(410t/h),氮氧化物排放浓度高达750mg/Nm3,已严重超标,必须对其进行脱硝技术改造。
锅炉脱硝技术实质就是控制燃料燃烧过程中NOx污染的产生或减少因燃烧产生的烟气中NOx污染的减量技术。
燃料燃烧的生命周期可分为燃烧前、燃烧中和燃烧后三个主要阶段,因此,锅炉脱硝实质就是控制燃烧前、燃烧中或燃烧后的NOx污染。
目前有关降低NOx的控制技术大致可分为两类,炉内脱氮和尾部脱氮。
炉内脱氮即低氮NOx燃烧技术,是降低燃煤锅炉氮氧化物排放最主要也是比较成熟的技术措施。
2 燃煤锅炉燃烧过程NOx的生成机理NOx主要是通过热力型NOx、燃料型NOx和快速型NOx三种途径生成的,并且都在煤燃烧过程中出现。
2.1 快速型NOx快速型NOx是由燃料挥发物中的碳氢化合物高温分解生成的CH自由基和空气中氮反应生成的HCN和N,再进一步与氧作用以极快的反应速率生成NO,它的生成与温度关系不大。
对于煤粉锅炉快速型NOx仅占NOx总排放量的5%左右。
2.2 热力型NOx热力型NOx是由于燃烧用助燃剂空气中的氮在高温下氧化而产生的,反应过程如下:N+O2=NO+O(t>816℃);O+N2=NO+N(t>1530℃)其中,NO与氧进一步氧化生成NO2。
热力型NOx是随燃烧温度的升高呈指数规律增加,占NOx总排放量的20~50%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
低氮燃烧器-低氮改造方案
1.双通道浓淡低氮燃烧技术
燃煤锅炉低氮改造考虑首先采用双通道浓淡低氮燃烧技术进行改造,保证在降低NO X的同时燃烧稳定性好,炉内避免结渣和高温腐蚀,并具有宽广煤质适应性。
双通道浓淡改造方案如下:
1)采用分级送入的高位分离燃尽风系统,燃尽风喷口能够垂直和水平方向双向摆动,有效控制汽温及其偏差;
2) 采用先进的上下浓淡及水平浓淡集成燃烧技术,使浓相相对集中,有效降低NOx排放,保证高效燃烧,降低飞灰可燃物含量;
3)两个通道错列布置,且中间设有两个腰部风来调节火焰位置,使煤粉燃烧更充分。
采用双通道浓淡低氮燃烧技术进行改造后,脱硝效率一般能达到40%-50%,且能保证在50%-70%低负荷稳燃,燃烧稳定性好、炉内避免结渣和高温腐蚀,并具有宽
广煤质适应性。
2.气体再燃技术
燃料再热低NOx燃烧技术
燃料再热低NOx燃烧技术:自下而上依次分为主燃料区、再燃区和燃尽区三段。
将70%-90%的燃料送入主燃料区,在∂接近于1的条件下燃烧,其余10%-30%的再燃燃料在再燃区中喷入,在∂<1的条件下形成很强的还原性气氛,生成大量的烃根,使得在主燃
烧区中生成的NOx在再燃烧区中被还原成氮气,同时还抑制了新的NOx的生成。
最后在燃尽
区中送入燃尽风,使未燃成分充分燃尽。
虽然在燃尽区中会重新生成少量的NOx,使用炉内气体再燃技术,NOx的最终排放量可以减少50%-80%。
因此,采用再燃烧技术,可以使NOx的排放量控制在120mg/Nm3以下。
采用气体再燃技术后,能够在利用双通道浓淡低氮燃烧技术改造后的基础上进一步降
低NOx浓度,一般能够进一步降低烟气中50%以上的NOx含量。
烟气中NOx浓度最低可以降到100mg/m3以下。
以下是我们在整个过程应注意:
再燃区温度的影响:NOx的最大降幅发生在1004-1070℃
再燃区停留时间的影响:再燃区内天然气和NOx的停留时间越长,但当停留时间超过0.7s,就变得不那么重要了
再燃区过量空气系数的影响:随着再燃区过量空气系数的增加或减少,最佳再燃区最佳过
量空气系数在0.85-0.9之间
再燃燃料特征的影响:再燃燃料的种类对NOx的还原率有重要的影响。
天然气比煤或油的反应能力强,其生成XN(NO、HCN、NH3等)基团的反应时间极短,因而被认为是最理想、使用也最为广泛的再燃燃料。