燃煤锅炉低氮燃烧改造技术原理及方案..

合集下载

燃煤锅炉低氮燃烧改造技术原理及方案

燃煤锅炉低氮燃烧改造技术原理及方案
燃煤锅炉低氮燃烧改造技术原理及 方案
目录
• 引言 • 燃煤锅炉低氮燃烧技术原理 • 改造方案 • 实施步骤与注意事项 • 改造效果评估与优化建议 • 结论与展望
01 引言
背景介绍
随着我国经济的快速发展,能源需求 持续增长,燃煤锅炉作为主要的能源 供给设备之一,其排放的氮氧化物对 环境造成了严重污染。
注意事项
安全第一 质量保证 遵守法规 专业协作
在改造过程中,始终把安全放在第一位,确保施工过程不发生 安全事故。
确保改造工程质量,选用优质的材料和设备,严格把控施工工 艺。
改造过程应遵守国家和地方的相关环保法规,确保改造后的锅 炉氮氧化物排放达到标准。
充分利用专业人员的知识和经验,特别是在方案设计和技术实 施阶段,确保改造方案的科学性和可行性。
调整一次风和二次风比例
通过调整一次风和二次风的配比,控制燃料燃 烧过程中的氧气浓度,降低氮氧化物生成。
优化炉膛结构
改进炉膛设计,使炉膛内温度分布更加均匀,提高燃烧效率。
方案三:燃料分级燃烧技术
01
燃料分段燃烧
将燃料分成多段进行燃烧,降低 燃烧区的温度,减少氮氧化物生 成。
引入再燃区
02
03
优化再燃区结构
通过将燃料分成不同的阶段进行燃烧,降低氮氧 化物的生成。
国内外研究现状及发展趋势
国内外研究现状
国内外在低氮燃烧技术方面都有一定 的研究,但技术路线和应用情况有所 不同。
发展趋势
随着环保要求的提高,低氮燃烧技术 将更加受到重视,未来将有更多的研 究和应用。
03 改造方案
方案一:燃烧器改造
更换低氮燃烧器
通过更换低氮燃烧器,降低燃烧过程中氮氧化物的生 成量。

燃气锅炉超低氮排放改造原理及技术

燃气锅炉超低氮排放改造原理及技术

随着国家政府对环境保护的重视以及近几年连续出台的大气污染防治攻坚战文件来看,各地环保局对当地企业强制要求并执行燃煤锅炉更换为低氮燃气锅炉,普通的燃气锅炉实施低氮改造。

普通的燃气锅炉尾气排放的有害颗粒物,例如氮氧化物、一氧化碳等,成为大气污染的罪魁祸首,因此锅炉的低氮改造将会是一些生产企业及供暖单位迫切面临的任务。

那么,大家只知道锅炉需要改造,但是,燃气锅炉超低氮排放改造的原理是什么,需要什么技术能实现超低氮排放呢?下面,由中鼎锅炉专业技术人员给大家简单介绍一下。

1、氮氧化物危害氮氧化物即一氧化氮、二氧化氮等气体,为高温条件下,空气中的氮气和氧气化合反应生成。

氮氧化物与空气中的水结合最终会转化成硝酸和硝酸盐,硝酸是酸雨的成因之一;它与其他污染物在一定条件下能产生光化学烟雾污染。

酸雨危害是多方面的,包括对人体健康、生态系统和建筑设施都有直接和潜在的危害。

酸雨可使儿童免疫功能下降,慢性咽炎、支气管哮喘发病率增加,同时可使老人眼部、呼吸道患病率增加。

酸雨还可使农作物大幅度减产,特别是小麦,在酸雨影响下,可减产13%至34%。

大豆、蔬菜也容易受酸雨危害,导致蛋白质含量和产量下降。

酸雨对森林和其他植物危害也较大,常使森林和其他植物叶子枯黄、病虫害加重,最终造成大面积死亡。

2、氮氧化物排放标准我们知道用燃气锅炉替代燃煤锅炉能够大大降低污染,普通的燃气锅炉氮氧化物排放高于30毫克,这意味着大部分普通的燃气锅炉都达不到30mg以下,除非配有低氮燃烧机,但是使用低氮燃烧机的锅炉本身也是需要有特殊的要求的,那就是对锅炉炉膛尺寸需要加大,中鼎锅炉最新生产的低氮燃气锅炉专门针对环保政策要求的NOX排放30mg以下,且配置超低氮燃烧器,能安全、稳定、高效地运行,每一台出厂的低氮锅炉均能达到低氮排放达标。

3、甲烷-空气燃烧过程氮化学基本原理燃烧理论将NOx的生成分为热力型NOx(Thermal NOx)、快速型NOx (Prompt NOx)和燃料型NOx(Fuel NOx)。

低NOx燃烧技术专业资料

低NOx燃烧技术专业资料

燃煤锅炉的低NO x燃烧技术NOx是对N2O、NO2.NO、N2O5以及PAN等氮氧化物的统称。

在煤的燃烧过程中, NOx生成物重要是NO和NO2, 其中尤以NO是最为重要。

实验表白, 常规燃煤锅炉中NO生成量占NOx总量的90%以上, NO2只是在高温烟气在急速冷却时由部分NO转化生成的。

N2O之所以引起关注, 是由于其在低温燃烧的流化床锅炉中有较高的排放量, 同是与地球变暖现象有关, 对于N2O的生成和克制的内容我们将结合流化床燃烧技术进行介绍。

因此在本章的讨论中, NOx即可以理解为NO和NO2。

一、燃煤锅炉NO x的生成机理根据NOx中氮的来源及生成途径, 燃煤锅炉中NOx的生成机理可以分为三类: 即热力型、燃料型和快速型, 在这三者中, 又以燃料型为主。

它们各自的生成量和炉膛温度的关系如图3-1所示。

实验表白, 燃煤过程生成的NOx中NO占总量的90%, NO2只占5%~10%。

1.热力型NOx热力型NOx是参与燃烧的空气中的氮在高温下氧化产生的, 其生成过程是一个不分支的链式反映, 又称为捷里多维奇(Zeldovich)机理→(3-1)O2O2→+O+NONN(3-2)2→+N+NOOO(3-3)2如考虑下列反映→+(3-4)N+NOHOH则称为扩大的捷里多维奇机理。

由于N≡N三键键能很高, 因此空气中的氮非常稳定, 在室温下, 几乎没有NOx生成。

但随着温度的升高, 根据阿仑尼乌斯(Arrhenius)定律, 化学反映速率按指数规律迅速增长。

实验表白, 当温度超过1200℃时, 已有少量的NOx生成, 在超过1500℃后, 温度每增长100℃, 反映速率将增长6~7倍, NOx的生成量也有明显的增长, 如图3-1所示。

但总体上来说, 热力型NOx的反映速度要比燃烧反映慢, 并且温度对其生成起着决定性的影响。

对于煤的燃烧过程, 通常热力型NOx不是重要的, 可以不予考虑。

一般来说通过减少火焰温度、控制氧浓度以及缩短煤在高温区的停留时间可以克制热力型NOx的生成。

火电厂锅炉低氮燃烧改造及运行优化调整

火电厂锅炉低氮燃烧改造及运行优化调整

火电厂锅炉低氮燃烧改造及运行优化调整在中国大量使用的燃煤火电厂是当前主要的电力供应形式,但其对环境产生的影响十分重大。

二氧化碳、二氧化硫、氮氧化物等废气的排放,导致了严重的大气污染和气候变化。

为了响应国家环保政策,降低空气污染,火电厂锅炉低氮燃烧改造成为了必须推行的环保措施。

锅炉低氮燃烧技术是一种集成燃烧、烟气净化和控制技术的综合性技术,其主要目的是在保证锅炉运行效率的前提下,减少氮氧化物排放,使得排放量满足国家规定的标准。

改造锅炉的低氮燃烧技术需要从锅炉燃烧器、炉膛、空气预热器等方面进行调整,其中燃烧器的改造是核心,也是难点。

通常改造燃烧器的方式有下列几种:1. 增加燃烧器数量:大多数的火电厂采用的是旋转炉火式锅炉,通过增加燃烧器的数量和分布大幅调整火焰形态,从而改善炉内的温度分布,减少氧气含量,实现低氮燃烧。

2. 燃烧器分类燃烧:这种方式采用不同类型的燃烧器分别进行燃烧,其中大多数的燃烧器是低氮燃烧器,少数是传统燃烧器,从而可以得到更好的性能和低排放。

3. 燃烧器燃烧风门控制:调整燃烧器的进气量和出气量控制氧气含量,以减少NOx的生成。

低氮燃烧改造后,需要进一步调整运行参数,以获得最佳性能。

为了达到低污染和高效率的目的,需要调整的参数如下:1. 调整燃烧器:燃烧器改造后需要通过清洗喷头和喷嘴等部件来保证其工作良好。

此外,还需要适当调节氧气进口量和燃烧风量等参数,以确保燃烧稳定,减少NOx排放。

2. 适当调整氧气含量:最佳环保效果的运行时只需要进入最小的空气量,是的NOx的生成最少,并且污染物的浓度降低。

但是必须确保燃烧不会停止或变得不稳定。

3. 减少过量空气:适当减少过量空气可以减少NOx的生成量,但是过量空气也能够平衡燃烧过程中的热和反应,因此需要进行适度的调整。

总之,锅炉低氮燃烧改造和运行优化调整是非常必要的工作。

尽管改造和调整费用高昂,但是对环保和社会责任来说是非常值得的。

随着环保政策的加强和技术水平的提高,相信低氮燃烧技术在未来将得到更加广泛的应用。

燃煤锅炉的低氮燃烧改造

燃煤锅炉的低氮燃烧改造

燃煤锅炉的低氮燃烧改造发布时间:2023-07-25T02:59:11.383Z 来源:《新型城镇化》2023年16期作者:姜耀方[导读] 低氮燃烧改造通常包括以下措施:燃烧调整:通过调整煤粉的供给方式、燃烧室结构和空气分布,优化燃烧过程,使燃烧温度均匀分布,减少煤粉的过剩空气系数,降低燃烧温度,从而减少NOx的生成。

徐州华鑫发电有限公司江苏省徐州市 221000摘要:燃煤锅炉的低氮燃烧改造是一种旨在减少燃煤锅炉排放的氮氧化物(NOx)的技术措施。

燃煤锅炉是传统的能源供热设备,但其燃烧过程会产生大量的NOx,这对环境和人体健康都带来了负面影响。

低氮燃烧改造旨在通过改变燃烧过程,降低燃烧温度和延长燃烧时间,从而减少NOx的生成和排放。

关键词:燃煤锅炉低氮燃烧燃烧器氮氧化物热力性能引言低氮燃烧改造通常包括以下措施:燃烧调整:通过调整煤粉的供给方式、燃烧室结构和空气分布,优化燃烧过程,使燃烧温度均匀分布,减少煤粉的过剩空气系数,降低燃烧温度,从而减少NOx的生成。

燃烧器改造:采用低氮燃烧器替代传统燃烧器,低氮燃烧器具有良好的混合性和燃烧稳定性,能够有效控制燃烧过程中的温度和氧浓度,降低NOx的生成。

排烟氮氧化物减排技术:采用氮氧化物减排技术,如选择性催化还原(SCR)和选择性非催化还原(SNCR),通过添加氨水或尿素等还原剂,在高温下将NOx还原为氮气和水蒸气,从而降低排放浓度。

本文将结合低氮燃烧技术在燃煤锅炉的应用现状进行分析,并针对性的提出改造措施,并对改造效果进行验证。

1工程概况本文所研究燃煤锅炉为330MW,在实际生产中配置了6套直吹制粉系统和30只旋流燃烧器;该型燃煤锅炉采用对冲燃烧方式应用。

本文所研究燃煤锅炉的主要技术参数,如表1所示。

表1 燃煤锅炉主要技术指标图1 燃煤锅炉燃烧器基本结构示意图如图1所示,燃煤锅炉燃烧器主要包括有旋流控制机构、一次风挡板、二次风挡板控制机构、二次风旋流叶片、三次风旋流叶片等组成[2]。

燃煤锅炉低氮燃烧改造技术原理及方案

燃煤锅炉低氮燃烧改造技术原理及方案

烃生成物 CH,CH2
氰氧化物 (OCN,HNCO)
N2O NOx 还原性气氛 氧化性气氛
氨类(NH3, NH2,NH,N)
NOx H
N2
1.1 NOx生成类型
热力型 燃料型 快速型
1.2 低NOx控制方法

低NOx控制的一次措施:控制NOx的生成
1)低NOx燃烧器
2)空气分级(二段燃烧) 3)燃料再燃(三段燃烧)
低氮燃烧及改造
广东电网公司电力科学研究院
目 录
1 低氮燃烧的必要性
1.1 NOx生成类型 1.2 低NOx控制方法 1.3 低氮燃烧必要性
2 低氮燃烧的调整技术
2.1 基本原理 2.2 低氧燃烧技术 2.3 分级配风技术 2.4 配煤掺烧技术
3 低氮燃烧改造
3.1 3.2 3.3 3.4 低NOx燃烧器 空气分级的燃烧器布置 烟煤锅炉低氮燃烧系统改造实例 无烟煤锅炉低氮燃烧改造要点
• 采用低NOx燃烧技术, 大部分在役老机组都有较大的减排空 间; • 近几年投运的新机组, 大多已采用了先进的低氮燃烧技术, 基本没有改造空间,但还可通过燃烧优化降低NOx排放。
2 低氮燃烧的调整技术
2.1 基本原理
2.2 低氧燃烧技术
2.3 分级配风技术
2.4 配煤掺烧技术
2.1 基本原理
• 低氮燃烧的基本原则:控制燃烧温度以减少“热力”型NOx 的生成,和(或)减少燃料氮与燃烧空气中氧的混合,通过形 成富燃区域将燃料NOx还原成N2,以减少“燃料”型NOx, 在煤热解完成后,再将二次风分级送入以完成焦炭燃烧。 • 安全稳定燃烧和减排NOx恰好构成了一对矛盾,现行各种低 NOx燃烧方法对炉内火焰稳定性和燃料的完全燃烧程度都有明 显不利的影响,因此选择合理的NOx控制措施必须兼顾燃烧经 济性和安全性的影响。

低氮燃烧技术在锅炉中的应用及优化

低氮燃烧技术在锅炉中的应用及优化

低氮燃烧技术在锅炉中的应用及优化随着我国工业快速发展,各行各业都在追求更高效、更环保的生产方式和能源利用方式。

其中,锅炉作为能源重要的转化设备,其燃烧技术也面临着新的挑战。

低氮燃烧技术作为燃烧技术的一种新兴技术,在锅炉中的应用也越来越广泛。

一、低氮燃烧技术的定义及发展低氮燃烧技术是将空气、燃料和氮气按一定比例混合,使燃料在高温下发生完全燃烧的同时,尽可能地减少氮气和空气的反应,尤其是减少氮氧化物的生成。

因为氮氧化物是空气污染的主要成因之一。

低氮燃烧技术的发展经历了多个阶段。

最初的低氮燃烧技术是通过增大空气过量系数、喷孔、改变油枪结构等手段,减少氮氧化物生成的技术。

随后,经过不断的技术改进和完善,基于先进的反应动力学的计算和模拟,出现了低氮燃烧技术的第二代,其最大的特点是采用了强制混合的方式,将气、液燃料和空气混合均匀,以达到更低的氮氧化物生成。

再以后,出现了基于计算流体力学(CFD)的模拟与应用,可以更准确地对燃料和空气在燃烧室内的流动和混合进行分析和模拟。

当前,随着科学技术的不断进步和完善,低氮燃烧技术又迎来了第三代技术。

它主要面向低氮燃烧技术关键科学问题及环境控制技术等重要应用,基于复杂非线性动力学系统模拟分析和多学科交叉融合,探索了关键技术和组件,使得低氮燃烧技术取得了更大的进步。

二、低氮燃烧技术在锅炉中的应用低氮燃烧技术不仅可以应用于家用燃气锅炉,也可以应用于工业锅炉。

工业锅炉的燃料种类多样,而低氮燃烧技术更具有普适性。

例如,低氮燃烧技术在燃煤锅炉中的应用。

通过采用低氮燃烧器等一系列技术手段,适当调整锅炉燃烧的氧气含量和温度,以及在锅炉前后增加SCR(选择性催化还原)等脱硝装置,最终可以大大降低燃煤锅炉中的氮氧化物排放。

同时,低氮燃烧技术还可以提高锅炉的热效率,降低废气排放温度,减少燃烧产物中的可燃性气氛,从而避免空气污染。

三、低氮燃烧技术的优化低氮燃烧技术在锅炉运用中,还需要通过不断的优化和改进,进一步完善特殊燃料、型号、和工况适用常规设计外的技术模型、运行参数与实践经验,提高低氮燃烧技术的实用性和适用性。

低氮燃烧原理

低氮燃烧原理

低氮燃烧原理
低氮燃烧是一种减少燃烧产生的氮氧化物排放的技术,其原理主要包括三个方面:燃烧温度控制、空气分级燃烧和煤粉喷嘴调节。

首先,低氮燃烧通过控制燃烧温度来减少氮氧化物的生成。

燃烧温度是氮氧化物生成的主要因素之一,高温会导致燃烧气体中氮和氧的反应增强,产生更多的氮氧化物。

因此,降低燃烧温度可以有效减少氮氧化物的生成。

具体的控制方法包括调整燃料供给量、优化燃烧器结构和使用高效的燃烧调控技术等。

其次,低氮燃烧还采用了空气分级燃烧的技术。

在传统的燃烧方式中,燃烧过程中空气和燃料混合均匀,导致燃烧温度偏高,容易产生大量的氮氧化物。

而空气分级燃烧将燃料的氧化过程分成多个阶段,逐渐加入不同含氧量的空气,使燃烧过程更加充分,燃烧温度得到有效控制,从而减少氮氧化物的生成。

最后,低氮燃烧还通过调节煤粉喷嘴的结构和参数来实现氮氧化物的减排。

煤粉喷嘴是将煤粉喷入燃烧器内进行燃烧的重要设备,其结构和参数的合理设计可以影响燃烧过程中的气流和煤粉的混合情况。

通过优化煤粉喷嘴的设计,可以进一步改善燃烧效果,减少氮氧化物的生成。

综上所述,低氮燃烧通过控制燃烧温度、采用空气分级燃烧技术和优化煤粉喷嘴设计等方式,实现减少氮氧化物排放的目的。

这种技术在工业生产和能源利用领域具有重要的应用价值,能够有效改善大气环境质量,降低空气污染的程度。

锅炉低氮改造工程技术方案

锅炉低氮改造工程技术方案

锅炉低氮改造工程技术方案一、项目背景随着环境保护意识的增强和国家对环保政策的不断加强,对于工业企业的污染排放标准也在不断提高。

而作为工业生产过程中使用最为广泛的设备之一,锅炉在大气污染治理中扮演着重要的角色。

然而,由于传统锅炉在燃烧过程中排放的氮氧化物(NOx)含量较高,偏离了环保政策的要求,因此,对锅炉进行低氮改造已成为当前工业企业中亟需解决的问题。

本项目旨在对现有的锅炉进行低氮改造,减少氮氧化物的排放,提高锅炉的燃烧效率,并符合环保政策的要求,为企业的可持续发展提供保障。

二、目标与要求1. 降低氮氧化物排放浓度,符合国家环保标准;2. 提高锅炉的燃烧效率,降低能耗;3. 减少二氧化硫和其他有害气体的排放;4. 保持锅炉原有的工作稳定性和安全性;5. 降低改造成本,提高经济效益。

三、技术方案1. 锅炉低氮燃烧技术低氮燃烧技术是当前锅炉低氮改造的主要手段之一。

通过对锅炉燃烧系统进行调整和优化,减少氮氧化物的生成和排放。

具体包括以下几个方面:(1)调整燃烧风量和分布通过对锅炉的燃烧风量和分布进行调整,使之更加均匀,减少局部高温区域的形成,降低氮氧化物的生成。

(2)优化燃烧控制系统采用先进的燃烧控制系统,实时监测和控制燃烧过程中的氧气浓度和燃烧温度,确保燃烧过程的稳定性和完全燃烧,从而减少氮氧化物的生成。

(3)选用低氮燃烧器低氮燃烧器采用了特殊的设计结构和燃烧技术,通过与燃烧空气的充分混合,降低燃烧温度,减少氮氧化物的生成。

2. 尾气再循环技术尾气再循环技术是一种有效的锅炉低氮改造手段,通过将一部分燃烧产生的废气再循环混入燃料和空气中,减少燃烧温度,降低氮氧化物的生成。

具体操作包括:(1)收集尾气利用除尘设备和废气处理系统,将部分燃烧产生的废气收集起来。

(2)混合再循环将收集到的废气与燃料和空气进行混合再循环,降低燃烧温度,减少氮氧化物的生成。

3. 碱吸收脱硫技术除了降低氮氧化物排放,对于锅炉中二氧化硫和其他有害气体的排放也需要进行控制。

CFB锅炉的低氮燃烧技术改造研究

CFB锅炉的低氮燃烧技术改造研究

CFB锅炉的低氮燃烧技术改造研究CFB锅炉是一种新型的环保建筑材料,目前已经广泛应用于工业生产领域,并在一定程度上代替了传统的钢铁、铸造等行业的燃烧设备。

虽然CFB锅炉具有高效、节能、低污染、运行稳定等优点,但是在一些情况下,它的氮氧化物排放也会对环境造成污染。

因此,对于CFB锅炉的低氮燃烧技术改造研究具有重要的现实意义。

1. 低氮燃烧技术的原理低氮燃烧技术是通过改变燃料的燃烧方式,降低燃料氮氧化物的生成速率,从而减少锅炉的氮氧化物排放。

其基本原理是在燃烧过程中采用特殊的燃烧方式,使得燃料中的氮氧化物发生化学反应,转化成氮气和水等无害气体。

在CFB锅炉中,通常采用SNCR和SCR 两种低氮燃烧技术。

SNCR技术是一种基于氨水添加剂的燃烧技术。

该技术通过在燃烧过程中向炉内喷射稀释的氨水溶液,并在炉内温度较高的区域进行喷射,使得氨水与燃料产生化学反应,生成一系列活性的氮氢化合物。

这些化合物与炉内的气体进行反应,在高温条件下将氮氧化物变成氮气和水蒸气。

SNCR技术的优点是能够实现快速反应,对燃烧设备的改造有一定的灵活性,同时能够兼顾燃料的热效率和环保要求。

但是由于其在炉内添加了大量的氨水,还存在氨逸出等问题,需要针对实际情况进行优化。

SCR技术是一种基于催化剂的燃烧技术。

该技术通过在燃烧过程中将烟气经过催化反应器,在催化剂的催化下将氮氧化物转化成氮气和水蒸气。

SCR技术的优点是能够实现较高的氮氧化物去除效率,并且不会产生氨逸出等问题。

但是该技术需要较高的催化剂成本和较为复杂的燃烧设备结构,因此对燃烧设备的改造要求较高。

CFB锅炉应用低氮燃烧技术进行改造,需要针对锅炉燃料、燃烧设备、炉内结构以及烟气处理等方面进行优化。

首先,针对CFB锅炉的燃料特点,需要选用合适的低氮燃烧技术。

例如,对于含碳燃料,可以采用SNCR技术;对于含硫、含氧化物燃料,可以采用SCR技术。

其次,针对CFB锅炉的燃烧设备,需要进行相应的改造。

浅析燃煤锅炉低氮燃烧技术

浅析燃煤锅炉低氮燃烧技术

浅析燃煤锅炉低氮燃烧技术燃煤锅炉是工业生产中常见的一种锅炉设备,它能够以煤炭为燃料进行高效能的热能转换,为工业生产提供了重要的能源支持。

由于煤炭燃烧会产生大量的氮氧化物,给环境带来了严重的污染问题。

为了解决这一问题,燃煤锅炉低氮燃烧技术应运而生。

本文将对燃煤锅炉低氮燃烧技术进行浅析,探讨其原理、应用和发展趋势。

一、低氮燃烧技术的原理燃煤锅炉低氮燃烧技术是通过改变燃煤锅炉的燃烧方式,减少氮氧化物的生成,从而达到环保减排的目的。

其原理主要包括两个方面:一是通过优化燃烧工艺,降低燃烧温度和氧气浓度,减少氮氧化物的生成;二是利用先进的燃料分级燃烧技术和烟气再循环技术,有效降低燃煤锅炉的氮氧化物排放。

二、低氮燃烧技术的应用低氮燃烧技术在燃煤锅炉中的应用已经取得了显著的成就。

通过改造燃煤锅炉,引入先进的低氮燃烧技术,能够有效减少氮氧化物的排放,符合环保政策和要求。

目前,低氮燃烧技术在工业生产中得到了广泛的应用,特别是在电力、化工、钢铁等行业的燃煤锅炉上取得了良好的效果。

在电力行业,燃煤锅炉是主要的热能供应设备,为电力生产提供了重要的支持。

由于燃煤锅炉的氮氧化物排放严重,已经成为了电力行业面临的一个难题。

低氮燃烧技术的引入,为电力行业提供了一种有效的解决方案。

通过改造燃煤锅炉,增加低氮燃烧技术装置,能够有效降低氮氧化物排放,保障电力生产的环保要求。

在化工和钢铁行业,燃煤锅炉同样也扮演着重要的角色。

这些行业对热能的要求更高,对煤炭燃烧的要求也更严格。

低氮燃烧技术不仅能够减少氮氧化物排放,还能够提高燃煤锅炉的热效率,使得工业生产更加环保、高效。

三、低氮燃烧技术的发展趋势随着环保意识的不断提高,燃煤锅炉低氮燃烧技术的发展趋势也愈发明显。

未来,低氮燃烧技术将呈现以下几个发展趋势:1. 技术不断创新。

低氮燃烧技术在煤炭燃烧领域属于先进技术,未来将不断进行技术创新,提高其应用范围和效果。

研发更加先进的低氮燃烧器和燃烧控制系统,提高燃煤锅炉的热效率和环保指标。

燃煤锅炉低氮燃烧技术

燃煤锅炉低氮燃烧技术

燃煤锅炉低氮燃烧技术摘要:燃煤在锅炉实际燃烧过程中会产生氮氧化物,如果没有进行全面性的优化改造,会造成氮氧化物的排放量持续增多,对人们的生存环境也会造成较大的影响。

在当前的环保情况下,低氮燃烧技术在燃煤锅炉中的应用应该进行积极的优化。

针对氮氧化物的实际生成以及排放等进行全面的控制,最终促进工业的良好的发展。

本文将针对低氮燃烧技术在燃煤锅炉中的应用进行针对性的探讨。

关键词:低氮燃烧技术;燃煤锅炉;环保随着经济的发展,社会的进步,低氮燃烧技术在燃煤锅炉中的应用受到了广泛的关注。

在工业生产中锅炉占有重要的地位,同时发挥着重要的作用,在实际运行中会消耗大量的燃料,进而释放出一些含有氮氧化物的废气。

如果这些物质没有经过精细化的处理,对环境会造成一定的污染。

在当前节能环保政策影响下,燃煤锅炉开始向低氮燃烧技术方式发展,同时将先进技术应用其中,进而降低氮氧化物的实际排放,在真正意义上能够提高锅炉的实际燃烧效率,对环境也具有一定的保护作用。

1、燃煤锅炉在燃烧过程中生成NOX的原理煤炭在燃烧的过程中,会产生NO和NO2等氮氧化物。

通常情况下,把NO和NO2合称为NOX。

一般来说,NOX的生成方式有三种,分别为燃烧生成方式、高温氧化生成方式及快速生成方式。

燃烧生成方式,指的是燃料当中存在氮化合物,在燃料燃烧的过程当中,形成NOX。

高温氧化生成方式,指的是空气中的氮气在高温状态之下,氧化形成NOX。

快速生成方式,指的是燃料在燃烧时,空气中的氮和燃料中的碳氢原子团反应形成NOX。

2、低氮燃烧技术具体分类低氮燃烧技术主要是将燃烧反应温度降低,同时将过量空气系数不断减少,进而能够将烟气在高温区中的实际停留时间不断缩短,最终将NOX进行全面性的控制。

在当前降低燃煤锅炉NOX排放量中是最为主要的方式。

对于低氮燃烧技术来讲工艺较为成熟,同时实际的投资以及相关的运行费用较低,因此在火电厂中的NOX实际排放控制具有较好的应用。

在当前形势下针对低氮燃烧技术具有以下几种分类。

燃煤锅炉低氮燃烧系统改造施工方技术方案

燃煤锅炉低氮燃烧系统改造施工方技术方案

燃煤锅炉低氮燃烧器改造施工组织措施、安全措施、技术措施、环保措施及施工方案、应急预案目录1. 项目简介 (1)2. 执行标准 (1)3. 项目施工范围 (2)4. 施工组织措施 (3)5. 安全风险辨识及防范措施 (6)5.1. 安全目标 (6)5.2. 安全风险辨识及防范措施 (7)5.2.1. 防止高处坠落措施 (7)5.2.2. 防止触电措施 (7)5.2.3. 防止起重伤害措施 (8)5.2.4. 防止物体打击措施 (8)5.2.5. 防止机械伤害措施 (9)5.2.6. 防止火灾措施 (9)5.2.7. 防止灼烫伤、窒息措施 (10)5.3. 现场安全人员检查的具体内容 (10)5.3.1. 针对人员的检查监督 (10)5.3.2. 现场设施的检查 (11)5.3.3. 工器具的检查 (11)5.3.4. 现场工作的专项检查 (12)6. 环保措施: (15)7. 主体设备施工方案及技术措施: (16)7.1. 开工前准备工作: (16)7.2. 施工工序及质量标准: (16)7.3. 工程试运: (22)8. 工期进度与进度管理措施 (23)8.1. 工期目标 (23)8.2. 进度控制措施 (23)9. 施工承包商资源配备 (23)9.1. 主要施工机械装备 (23)9.2. 劳动用具采购: (23)10. 应急预案 (25)11. 附件: (40)11.1. 设备安装、检修技术记录 (40)11.2. 施工进度表 (43)1项目简介**公司1025t/h锅炉,系第一时段建造的配套300MW机组锅炉(锅炉制于**年);其锅炉型号为**。

该炉为亚临界、一次中间再热、自然循环、单炉膛、平衡通风、固态排渣、露天布置、全钢架、全悬吊结构的燃煤锅炉。

该炉膛断面近似正方形:宽度12808mm、深度12802mm。

顶棚标高61500mm,炉膛高热负荷区域的水冷壁采用内螺纹管的膜式水冷壁,炉顶过热器和再热器各部件采用大口径管连接。

电站燃煤锅炉低NOX燃烧技术

电站燃煤锅炉低NOX燃烧技术

再燃法对于单个燃 烧器可以分出再燃 烧区; 对于多个燃烧器, 可以在主燃烧区之 后分出再燃烧区。 再燃烧法原理图
再燃法的实际应用:
再燃法是在贫燃区的下游 处将大约总燃料的15%导入到 燃烧区域,形成再燃区,在再 燃内(Φ>1),通过和碳氢化 合物及碳氢化合物的中间产物, 如HCN,与NO进行还原反应 (逆反应),从而减少NO。 在再燃区的燃尽阶段补入空气, 使炉内的燃料最终燃尽。采用 再燃法技术的锅炉一般都能将 NOX的排放量约60%。
燃烧器分级燃烧时,在火焰根部形成 富燃区,抑制了燃料NOX的生成。 由于二次风延迟与燃料混合,燃烧速 度降低,使火焰温度降低,故也抑制 了热力NOX的生成。
单个燃烧器的分级燃烧
2. 再燃烧法(采用天然气或甲烷)
再燃烧法的特点是,将燃烧分成三个区域:
第一次燃烧区,是氧化性或稍还原性气氛(1); 在第二燃烧区,将二次燃料送入还原性气氛(1),因而生成碳氢化合物基团, 这些基团与第一燃烧区内生成的NO反应,最终生成N2,这个区域通常称为再 燃烧区。二次燃料称为再燃燃料; 在第三燃烧区,再送入二次风(1),使燃料燃烧完全,称为燃尽区。
(a) 不分级
分级燃烧原理 (b)分级(两级)燃烧
右图表示不分级和分 级燃烧时高火焰温度(温度 峰值) 的变化。 由图可见,火焰温度 值降低,故热力NOX降低。 由于分级燃烧可以同时明 显地降低燃料NOX和热力 NOX,因而是一种有效的 低NOX燃烧技术,已被得 到广泛采用。
分级燃烧有两类: 一类是燃烧室中的分 级燃烧; 另一类是单个燃烧器 的分级燃烧。
二、低NOX煤粉燃烧技术
根据前面的分析可知,低NOx燃烧技术的主要途径如下: 减少燃料周围的氧浓度。包括减少炉内过剩空气系数,以减少炉内空气 总量;或减少一次风量和减少挥发分燃尽前燃料与二次风的掺混,以减 少着火区段的氧浓度; 在氧浓度较少的条件下,维持足够的停留时间,使燃料中的N不易生成 NOX,而且使已生成的NOX经过均相或多相反应而被还原分解; 在过剩空气的条件下,降低温度峰值,以减少热力NOX,如采用降低热 风温度和烟气再循环等; 加入还原剂,使还原剂生成CO,NH3和HCN,它们可将NOX还原分解。

锅炉低氮燃烧技术优化改造施工方案

锅炉低氮燃烧技术优化改造施工方案

锅炉低氮燃烧技术优化改造施工方案编制:同意:审核:响应国家“节能减排”号召,计划对其135MW燃煤锅炉进行低NOx燃烧技术改造,锅炉本体采用钢筋混凝土构造,П型露天布置、固态排渣及平衡通风,采用中储式钢球磨煤机制粉系统,热风送粉四角直流燃烧器燃烧系统。

一、改造范围根据锅炉燃烧器改造要实现旳效果,本方案波及如下范围内旳改造:1.四角三层一次风室整体旋转2度;切园由∅300变化为∅ 7602.更换上二次风、中上二次风、中下二次风、下二次风4层,四角合计16件二次风喷口。

3.中上二次风位置旳三次风更换新三次风室后移位安装于下二次风位置,四角合计8件4.箱壳、保温改造4角5.更换上下三次风室组件8套6.三次风管路改造4角二层7.一次风管路改造4角三层8.Sofa燃烧器移位4角9.Sofa风道改造4角10.Sofa管屏改造4角11.辅助设备电缆等移位4角二、施工工艺及措施1 25T汽车吊及卷扬机布置工序卡1.1用25T吊车将新旧设备吊运至9m层。

1.2在9m层平台设置四台3t卷扬机,详细布置按现场吊装需要确定。

2 旧燃烧器拆除工序卡2.1在炉膛旳水冷壁转折角上部搭设脚手架,水冷壁早标高位置用切割机切割并且封堵。

2.2按照设计规定,对旧燃尽风做保护性拆除,首先拆除一次风弯头和煤粉管弯头部分,并将开口部分密封;2.3拆除旳旧燃烧器喷口及弯头移至电厂指定位置放置。

3 新燃烧器检查工序卡3.1新燃烧器及水冷壁管抵达现场后,首先对其进行外观检查,核算其水冷壁长度,确定炉膛燃烧器放置处旳开口尺寸;3.2对角线检查燃烧器水冷壁部分与否方正,检查水冷壁管排有无明显损伤,检查各部位旳焊接状况,有无漏焊或焊接质量过差旳问题,及时对其修整;3.3对水冷壁管进行通球试验;3.43.5检查其顶部吊耳构造,在合适位置焊接合适吊耳,用作寄存时栓挂。

4 煤粉管、扶梯平台拆除工序卡4.1燃烧器重要是通过其下部旳通道起升到就位位置,因此根据燃烧器构造尺寸,确定下部需要切割旳钢构造;4.2对9m层旳煤粉管弯头部分拆除。

火电厂锅炉低氮燃烧改造及运行优化调整

火电厂锅炉低氮燃烧改造及运行优化调整

火电厂锅炉低氮燃烧改造及运行优化调整随着环保意识的不断增强和环境污染问题的日益严重,火电厂锅炉低氮燃烧改造及运行优化调整已成为行业发展的必然趋势。

火电厂作为我国主要的能源生产企业之一,其排放的氮氧化物对环境造成的影响日益凸显。

为了减少氮氧化物的排放,提高燃烧效率,火电厂需要进行锅炉低氮燃烧改造及运行优化调整,以满足环保要求和提高经济效益。

一、低氮燃烧技术的介绍低氮燃烧技术是指在燃烧过程中,通过一系列技术手段和措施,减少燃料燃烧产生的氮氧化物排放,达到环境保护的目的。

目前,常用的低氮燃烧技术主要包括SNCR技术(选择性非催化还原技术)、SCR技术(选择性催化还原技术)和燃烧优化技术。

SNCR技术通过将氨水喷入燃烧区域,与烟气中的氮氧化物发生化学反应,降低氮氧化物的排放。

SCR 技术则是通过在烟气中加入催化剂,使烟气中的氮氧化物与氨水发生还原反应,从而达到降低排放的目的。

而燃烧优化技术则是通过优化燃烧参数,提高燃烧效率,减少氮氧化物的生成。

四、低氮燃烧改造的运行优化调整低氮燃烧改造完成后,还需要进行运行优化调整,确保设备正常运行和降低氮氧化物的排放。

首先需要通过实时监测设备运行情况,及时发现问题并进行处理。

其次需要对设备进行定期的维护保养,保证设备的正常运行和性能稳定。

同时需要对设备进行性能测试和数据分析,找出存在的问题并及时采取措施进行调整。

还需要进行操作人员的培训和技术交流,提高操作人员的技术水平,确保设备的正常运行。

在火电厂锅炉低氮燃烧改造及运行优化调整方面,需要火电厂企业不断加强技术研发和设备更新,提升企业的环保和节能水平。

政府部门和监管机构也需要加强对火电厂的环保监管和执法力度,推动火电厂进行低氮燃烧改造,减少氮氧化物的排放,保护环境。

相信在政府、企业和社会各方的共同努力下,火电厂锅炉低氮燃烧改造及运行优化调整工作将取得更大的成果,为推动我国环保事业和节能减排工作做出更大的贡献。

# 炉低氮燃烧器改造施工方案

# 炉低氮燃烧器改造施工方案
2
加装金属软管),电缆在箱柜内布线应布置整齐美观。 3.4 电缆敷设 3.4.1 电缆敷设前应检查电缆型号、规格是否符合设计。 3.4.2 电缆排放整齐,不得交叉混缠,拐弯弧度一致,电缆弯曲半径不小于 12 倍
电缆直径。 3.4.3 电缆敷设水平段每隔 500mm 绑扎一道,垂直段每个支架上绑扎一道,拐弯
3.1 作业前准备工作: 3.1.1 锅炉停止运行,办理工作票。 3.1.2 设备及安装附件清点完毕,符合设计图纸和安装说明。 3.1.3 作业人员必须认真学习安规要求,质检规定,熟悉施工图纸,并且接受施
工技术措施技术、安全交底,经过技术交底签字手续后方可施工。 3.1.4 作业现场搭好合格脚手架,经检查合格满足作业条件。 3.1.5 检修场地已经完善隔离。 3.1.6 各专用和常用工器具准备齐全,并运至现场。 3.2 盘柜安装 3.2.1 就地盘柜底座制作安装应依据主厂房布置图定位,制作尺寸应与实际到货
#1 炉低氮燃烧器改造施工方案
1 设备概况
#1 锅炉型号为×××。该炉为亚临界、一次中间再热、自然循环、单炉膛、平 衡通风、固态排渣、露天布置、全钢架、全悬吊结构的燃煤锅炉。#1 炉 NOx 排放浓 度约为 720mg/Nm3,煤质较差的时候锅炉 NOx 排放浓度约 1000mg/Nm3,为了降低烟 气中 NOx 的含量,为烟气脱硝改造创造条件,须对#1 锅炉进行低 NOx 燃烧器改造。
2 #1 炉低氮燃烧器改造范围和目的
通过对#1 炉燃烧器系统的改造,使得 NOx 排放浓度在 450mg/Nm3 以下,同时确
保无烟煤和贫煤混煤燃烧的着火稳定性和燃烧效率,防止受热面结渣与腐蚀。
序号
项目名称
备注
四角水冷壁开孔,用以增装燃烬风喷口,从标高31.116

浅谈低氮燃烧技术及其改造方法

浅谈低氮燃烧技术及其改造方法

浅谈低氮燃烧技术及其改造方法针对某公司热电厂现有4号燃煤锅炉氮氧化物排放浓度超标的问题,浅谈燃烧过程中氮氧化物的生成机理、及采取的低氮燃烧技术改造措施。

通过文章的分析,希望对相关工作起到指导意义标签:低氮燃烧技术;生成机理;燃烧分级技术;空气分级燃烧技术;低氮燃烧器1 概述根据《国家环境保护“十二五”规划》和新的《火电厂大气污染物排放标准》(GB13223-2011)的要求,现有火力发电锅炉自2014年7月1日起,氮氧化物排放浓度限值为100mg/Nm3。

乌鲁木齐某公司热电厂现有4号燃煤锅炉(410t/h),氮氧化物排放浓度高达750mg/Nm3,已严重超标,必须对其进行脱硝技术改造。

锅炉脱硝技术实质就是控制燃料燃烧过程中NOx污染的产生或减少因燃烧产生的烟气中NOx污染的减量技术。

燃料燃烧的生命周期可分为燃烧前、燃烧中和燃烧后三个主要阶段,因此,锅炉脱硝实质就是控制燃烧前、燃烧中或燃烧后的NOx污染。

目前有关降低NOx的控制技术大致可分为两类,炉内脱氮和尾部脱氮。

炉内脱氮即低氮NOx燃烧技术,是降低燃煤锅炉氮氧化物排放最主要也是比较成熟的技术措施。

2 燃煤锅炉燃烧过程NOx的生成机理NOx主要是通过热力型NOx、燃料型NOx和快速型NOx三种途径生成的,并且都在煤燃烧过程中出现。

2.1 快速型NOx快速型NOx是由燃料挥发物中的碳氢化合物高温分解生成的CH自由基和空气中氮反应生成的HCN和N,再进一步与氧作用以极快的反应速率生成NO,它的生成与温度关系不大。

对于煤粉锅炉快速型NOx仅占NOx总排放量的5%左右。

2.2 热力型NOx热力型NOx是由于燃烧用助燃剂空气中的氮在高温下氧化而产生的,反应过程如下:N+O2=NO+O(t>816℃);O+N2=NO+N(t>1530℃)其中,NO与氧进一步氧化生成NO2。

热力型NOx是随燃烧温度的升高呈指数规律增加,占NOx总排放量的20~50%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.1 低NOx燃烧器(LNB)
(2)浓淡偏差型-撞击式(浙大)
3.1 低NOx燃烧器(LNB)
(2)浓淡偏差型-带稳燃挡板(清华)
3.1 低NOx燃烧器(LNB)
(2)浓淡偏差型-多重富集型MELNB(清华)
3.1 低NOx燃烧器(LNB)
几种燃烧器的计算机模拟结果:
3.1 低NOx燃烧器(LNB)
2 低氮燃烧的调整技术 2.1 基本原理 2.2 低氧燃烧技术 2.3 分级配风技术 2.4 配煤掺烧技术
2.1 基本原理
• 低氮燃烧的基本原则:控制燃烧温度以减少“热力”型NOx 的生成,和(或)减少燃料氮与燃烧空气中氧的混合,通过形 成富燃区域将燃料NOx还原成N2,以减少“燃料”型NOx, 在煤热解完成后,再将二次风分级送入以完成焦炭燃烧。
低氮燃烧及改造
广东电网公司电力科学研究院
目录
1 低氮燃烧的必要性
1.1 NOx生成类型 1.2 低NOx控制方法 1.3 低氮燃烧必要性
2 低氮燃烧的调整技术
2.1 基本原理 2.2 低氧燃烧技术 2.3 分级配风技术
2.4 配煤掺烧技术
3 低氮燃烧改造
3.1 低NOx燃烧器 3.2 空气分级的燃烧器布置 3.3 烟煤锅炉低氮燃烧系统改造实例 3.4 无烟煤锅炉低氮燃烧改造要点
1.1 NOx生成类型
• 氮氧化物是化石燃料与空气在高温燃烧时产生的,包括NOx (一氧化氮(NO)、二氧化氮(NO2) )、氧化二氮(N2O)等。在氮 氧化物中,NO占有90%以上,二氧化氮占5%-10%。 • NOX按生成机理的不同分为三类:热力型 、快速型和燃料型, 其中燃料型占60%~ 95%。 • 研究表明,煤中氮几乎全部以有机物的形式存在。形态主要 是吡咯型、吡啶型和季氮,其中吡咯型氮和吡啶型氮是煤中氮 的主要存在形式。
• 因此,三次风是否有利于降低NOx,需要根据锅炉的实际情 况,如煤种、三次风带粉量、三次风处的过量空气系数等, 通过试验确定。
2.3 分级配风技术
• 磨煤机停运时,提高并投入三次风冷却风,相当于增加了燃 烬风,则对降低NOx是有利的; • 某300MW机组锅炉的三次风冷却风管从Ф154×4.5改造为 Ф273×5,NOx排放下降100mg/m3,但效率略有降低。
2.2 低氧燃烧技术
低氧燃烧技术存在的问题: • 飞灰可燃物升高 • 锅炉热效率有可能下降 • 结渣、高温腐蚀、高温氧化等不利因素增加 • 壁温有可能超温 • 汽温可能超温或欠温
2.2 低氧燃烧技术
如何实现低氧燃烧: • 采用更细的煤粉细度 • 保证均匀的风粉分配 • 合理的配煤掺烧方案 实现方法:
2.4 配煤掺烧技术
450
450
400
400
NOx 浓度 (ppm,@6% O2) NOx浓度 (ppm @6% O )
2
350
350
300
300
250
250
200 28.0 28.5 29.0 29.5 30.0 30.5 31.0
煤中挥发分 (%)
200
0.7
0.8
0.9
1.0
1.1
1.2
煤中含氮量 (%)
3 低氮燃烧改造
烟煤锅炉低氮燃烧系统改造包括两个方面: • 选用低NOx燃烧器 • 在燃烧器布置上强化空气分级
3.1 低NOx燃烧器(LNB)
技术关键:借燃烧器不同结构控制煤粉着火并组织好“分 段”燃烧 。 (1)热回流型燃烧器,如WR型燃烧器、双通道大速差 燃烧器等; (2)浓淡偏差型燃烧器,如PM燃烧器等; (3)浓淡偏差+热回流型燃烧器,如稳燃罩燃烧器; (4)双调风旋流燃烧器 (5)烟气再循环低NOx燃烧器
(4) LNASB低NOx燃烧器(三井-巴布科克公司)
3.1 低NOx燃烧器(LNB)
(4) Opti-FlowTM低NOx燃烧器(ABT公司)
3.1 低NOx燃烧器(LNB)
(4) 径向浓淡旋流煤粉燃烧器(秦裕琨等)
3.1 低NOx燃烧器(LNB)
(4) 可控浓淡分离旋流燃烧器(浙大)
3.1 低NOx燃烧器(LNB)
2.3 分级配风技术
• 周界风提供煤粉燃烧初期所需的氧量,以及用于保护燃烧器, 改变周界风相当于改变二次风沿炉膛轴向的分配。
• 减少周界风量,燃烧器区域的氧化性气氛变弱,还原性气氛 增强,燃烧器区生成的NOx量降低。
• 周界风调整要考虑煤粉的着火距离和燃烧器的安全。
2.3 分级配风技术
周 界 风 调 整 试 验 结 果
(4)双调风旋流燃烧器
3.1 低NOx燃烧器(LNB)
(4)DRB-XCL型(B-W公司)
3.1 低NOx燃烧器(LNB)
(4)DRB-4ZTM型(B-W公司)
3.1 低NOx燃烧器(LNB)
(4)DRB-4ZTM型(B-W公司)
3.1 低NOx燃烧器(LNB)
(4) CF/SF型(FW公司)
2.3 分级配风技术
径向空气分级燃烧
2.3 分级配风技术
通过燃烧优化试验方法,在炉膛轴向形成下部富燃料、 贫氧;上部富氧、贫燃料的燃烧方式。 • 燃烬风调整 • 周界风调整 • 二次风配风调整 • 关于三次风
2.3 分级配风技术
低 负 荷 工 况 的 燃 烬 风 调 整 结 果
2.3 分级配风技术
3.1 低NOx燃烧器(LNB)
(4) CF/SF型(FW公司)
3.1 低NOx燃烧器(LNB)
(4) VF/SF型(FW公司)
3.1 低NOx燃烧器(LNB)
(4) NR系列燃烧器(BHK公司)
3.1 低NOx燃烧器(LNB)
(4) NR系列燃烧器(BHK公司)
3.1 低NOx燃烧器(LNB)
1.3 低氮燃烧的必要性
• NOx减排, 技术已不是障碍, 关键要选择适合自己的技术; • 无论对于SCR或SNCR, 先采用低氮燃烧技术, 都可节约投 资和运行成本; • 采用低NOx燃烧技术, 大部分在役老机组都有较大的减排空 间; • 近几年投运的新机组, 大多已采用了先进的低氮燃烧技术, 基本没有改造空间,但还可通过燃烧优化降低NOx排放。
1.1 NOx生成类型
空气中的氮
N2
燃料氮的转化 杂环氮
NOx

烃生成物中

结合的氮




(HCN,CN)

化 学
氰氧化物 (OCN,HNCO)


NOx
氨类(NH3, NH2,NH,N)
还原性气氛
氧化性气氛
N2
再燃
烃生成物 CH,CH2
N2O H
NOx
1.1 NOx生成类型
热力型 燃料型 快速型
3.1 低NOx燃烧器 3.2 空气分级的燃烧器布置 3.3 烟煤锅炉低氮燃烧系统改造实例 3.4 无烟煤锅炉低氮燃烧改造要点
3 低氮燃烧改造
煤中氮析出机理研究表明: • 烟煤中挥发分氮占主要比例,控制烟煤NOx的 生成主要是控制挥发分氮。 • 烟煤挥发分氮的析出速度很快,因此主要是要 控制烟煤的着火初期NOx析出。 • 控制烟煤NOx,空气分级是非常有效的措施。
2.3 分级配风技术
(2)径向空气分级燃烧 将二次风射流轴线向水冷壁偏转一定角度,形成一次风
煤粉气流在内,二次风在外的径向分级燃烧。此时,沿炉膛 水平径向把煤粉的燃烧区域分成位于炉膛中心的贫氧区和水 冷壁附近的富氧区。由于二次风射流向水冷壁偏转,推迟了 二次风与一次风的混合,降低了燃烧中心氧气浓度,使燃烧 中心α<1,煤粉在缺氧条件下燃烧,抑制了NOx 的生成。由 于在水冷壁附近形成氧化性气氛,可防止或减轻水冷壁的高 温腐蚀和结焦。同时,在一次风和炉膛水冷壁之间形成一层风 膜,达到风包粉的效果,同样起到了防止炉内防结渣的目的。
1.1 NOx生成类型
• 热力型氮:空气中氮在高温下氧化产生
O2 N 2O N O N 2 NO N N O2 NO O
在高温下总生成式为
N2 O2 2NO
NO

1 2 O2

NO2
1.1 NOx生成类型
• 快速型氮: 在碳氢化合物燃料燃烧在燃料过浓时,由于燃料挥发物中
低NOx燃烧器特点:
3.1 低NOx燃烧器(LNB)
(5) 烟气再循环低NOx燃烧器(三菱公司)
3.2 空气分级的燃烧器布置
强化空气分级燃烧的主要形式: (1)整体炉膛分级燃烧系统即OFA系统,整体炉膛分级燃烧系 统以轴向空气分级燃烧为基础。 (2)同轴燃烧系统CFS以径向空气分级燃烧技术为基础。 (3)低NOx同轴燃烧系统LNCFS,不仅在炉膛轴向,同时 在燃烧器区域的炉膛径向实现分级燃烧。 (4)TFS2000燃烧系统(CE公司),采用紧靠最上层一次风 煤粉喷口的紧凑布置燃尽风(CCOFA)和远离最上层一次风煤 粉喷口的多层分离燃尽风(SOFA)的多级OFA与CFSⅠ的组合 形式。
• 安全稳定燃烧和减排NOx恰好构成了一对矛盾,现行各种低 NOx燃烧方法对炉内火焰稳定性和燃料的完全燃烧程度都有明 显不利的影响,因此选择合理的NOx控制措施必须兼顾燃烧经 济性和安全性的影响。
2.2 低氧燃烧技术
氧量 (%) NOx (mg/mg3, @6% O2)
10
2#炉
800
9
8
NOx
7
通过燃烧优化试验,在经济性、安全性和低NOx 排放之间取得平衡,得到经济运行氧量曲线。
2.3 分级配风技术
(1)轴向空气分级燃烧 在燃烧器上方一定位置处开设一层或多层燃尽风喷口,将
助燃空气沿炉膛轴向分级送入炉内。在第一阶段,将供入炉膛 的空气量减少到总燃烧空气量的70%~75%左右,燃料先在贫 氧条件下燃烧。此时第一燃烧区内过剩空气系数α<1,降低了 燃烧区内的燃烧速度和温度水平。使燃料中的N在还原性气氛 中转化成NOx的量减少,而且将已生成的NOx部分还原,使 NOx排放量减少。在燃尽风喷口附近的第二燃烧区内,喷入的 空气与第一燃烧区内生成的烟气混合,剩余燃料在α>1的富氧 条件下完成燃烧过程。
相关文档
最新文档