第20讲-幻方与数阵图拓展
三年级奥数数阵图与幻方
数阵图与幻方知识框架一、数阵图定义及分类:定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.数阵:是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手:第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.三、幻方起源:幻方也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方.幻方起源于我国,古人还为它编撰了一些神话.传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:987654321我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们.四、幻方定义:幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的33⨯的数阵称作三阶幻方,44⨯的数阵称作四阶幻方,55⨯的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,98765432113414151612978105113216。
三年级数阵图与幻方
数阵图与幻方知识框架一、数阵图定义及分类:定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.数阵:是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手:第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.三、幻方起源:幻方也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方.幻方起源于我国,古人还为它编撰了一些神话.传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:987654321我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们.四、幻方定义:幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的33⨯的数阵称作三阶幻方,44⨯的数阵称作四阶幻方,55⨯的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,98765432113414151612978105113216。
小学四年级逻辑思维学习—数阵图与幻方
小学四年级逻辑思维学习—数阵图与幻方”知识定位一、什么是数阵图?在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。
它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。
那么,到底什么是数阵呢?我们先观察上面两个图:右图(1)中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13。
右图(2)就更有意思了,1~9九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15,不信你就算算。
上面两个图就是数阵图。
准确地说,数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。
要排出这样巧妙的数阵图,可不是一件容易的事情。
我们还是先从如何来填好数阵图开始。
如何填好数阵图?数阵图问题千变万化,这一类问题要求数阵中填入了一些数以后,能保证数阵中特定关系线(或关系区域)上的数的和相等,解决这一类问题可以按以下步骤解决问题:第一步:区分数阵图中的普通点(或方格),和交叉点(方格)第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算各个点与该点被重复计算次数之积的和的代数式,即数阵图关系线(关系区域)上和的总和,这个和是关系线(关系区域)的个数的整数倍.第三步:判断少数关键点上可以填入的数的余数性质,并得出相应的数阵图关系线(关系区域)和.第四步:运用已经得到的信息进行尝试:数阵图还有一类题型比较少见,解决这一类问题需要理清数阵中数与数之间的相关关系,找出问题关键.【授课批注】数阵图问题千变万化,一般没有特定的解法,往往需要综合运用掌握的各种数学知识来解决问题. 本讲出了要讲授填数阵图的主要技巧,还有以下注意点:1.引导学生从整体到局部对问题进行观察和判断;2.教授巧妙利用容斥原理、余数的性质、整除性质的数学方法;3.锻炼学生利用已知信息枚举,尝试的能力;4.培养学生综合运用各种数学知识,分析问题,找问题关键,解决问题的能力.二、什么是幻方?同学们是否知道我国古代有关“洛书”的神话传说?传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:三、如何解决幻方问题?幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的3×3的数阵称作三阶幻方,4×4的数阵称作四阶幻方,5×5的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,三阶幻方的中心位置上的数等于所有所填数的平均数,也等于横行、竖列、对角线上数和的三分之一.解决数表类问题中,首先要找出数填写的规律,再从规律中找到数表的数量关系,从而找出解决问题的关键.知识梳理987653421987654321(一)封闭型数阵问题(二)辐射型数阵(三)其它类型的数阵图(四)幻方例题精讲【试题来源】【题目】将1~6填入左下图的六个○中,使三角形每条边上的三个数之和都等于k,请指出k的取值范围.k=9 k=10 k=11 k=12【题目】小猴聪聪有一天捡到像左下图的模具,它试着将1~10分别填入图中,使得每个小三角形3个顶点上的数字之和为图中所表示的数值,你能做到吗?【题目】图中的6条线分别连接着9个圆圈,其中一个圆圈里的数是6.请你选9个连续自然数(包括6在内)填人圆圈内,使每条线上各数的和都等于23.6543216543216543216543216【题目】小兔子在森林玩耍,遇到一个画着奇怪图形的树桩,上面写着:把10至20这11个数分别填入下图的各圆圈内,使每条线段上3个圆内所填数的和都相等.如果中心圆内填的数相等,那么就视为同一种填法,请写出所有可能的填法,小兔子发了愁,你能帮它吗?【题目】海豚是很聪明的动物,它能将1~9填入右下图的九个○内,并且使得每个圆周和每条直线上的三数之和都相等,并且7,8,9依次位于小、中、大圆周上,你能做到吗?【题目】在下图中的10个○内填入0~9这10个数字,使得循环式成立:【题目】请在图中的每个圆圈内填入不同的自然数,使得图中每个圆圈中所填的数都是上一行与它相邻的两个圆圈中所填数的和,最下面的数是20.+=====----20【题目】请你将2~10这九个自然数填入图中的空格内每行、每列、每条对角线上的三数之和相等.【题目】请你将1~25这二十五个自然数填入图中的空格内每行、每列、每条对角线上的五数之和相等.【题目】将九个数填入左下图的九个空格中,使得任一行、任一列以及两条对角线上的三个数之和都等于定数k,则中心方格中的数必为k÷3【题目】在下图的九个方格中填入不大于12且互不相同的九个自然数(其中已填好一个数),使得任一行、任一列及两条对角线上的三个数之和都等于21.【题目】将前9个自然数填入右图的9个方格中,使得任一行、任一列以及两条对角线上的三个数之和互不相同,并且相邻的两个自然数在图中的位置也相邻.【题目】将1、2、3、4、5、6、7、8、9这九个数字,分别填入3×3阵列中的九个方格,使第二行组成的三位数是第一行组成的三位数的2倍,第三行组成的三位数是第一行组成的三位数的3倍.【题目】在一个3×3的网格中填入9个数使得每一横行、竖行、对角线上三个数的乘积相等.习题演练【题目】将1~7这七个数分别填入图中的○里,使每条直线上的三个数之和都等于12。
四年级数学思维能力拓展专题突破系列(二十)数阵图讲义(含答案)
四年级数学思维能力拓展专题突破系列(二十)数阵图------数阵图基础(1)1、掌握什么是数阵图2、会灵活应用多种方法求数阵图1、掌握数阵图的概念。
2、灵活应用数阵图的求解方法。
例题1:把1~5这五个数分别填在右图中的方格中,使得横行三数之和与竖列三数之和都等于9?例题2:将1~7这七个自然数填入右图的七个○内,使得每条线上的三个数之和都等于10。
例题3:将 10~20填入右图的○内,其中15已填好,使得每条边上的三个数字之和都相等。
例题4:下把1~5这五个数填入下图中的○里,使每条直线上的三个数之和相等。
(即是该课程的课后测试)练习1:如图,将1~7这七个数分别填入图中的○里,使每条直线上的三个数之和都等于12或10。
练习2:如图将1~9这九个数分别填入图中的○里(其中9已填好),使每条直线上的三个数之和都相等。
练习3:如图,将1~9这九个数分别填入图中的小方格里,使横行和竖列上五个数之和相等。
(至少找出两种本质上不同的填法)练习4:如图,将3~9这七个数分别填入图的○里,使每条直线上的三个数之和等于20。
练习5:如图,将1~11这十一个数分别填入图的○里,使每条直线上的三个数之和相等,并且尽可能大。
练习1:解析:练习2:解析:练习3:解析:练习4:解析:练习5:解析:中心数是重叠数,并且重叠4次。
所以每条直线上的三数之和等于[(1+2+…+11)+重叠数×4]÷5=(66+重叠数×4)÷5。
为使上式能整除,重叠数只能是1,6或11。
显然,重叠数越大,每条直线上的三数之和越大。
所以重叠数是11,每条直线上的三数之和是22。
四年级数学思维能力拓展专题突破系列(二十)数阵图------数阵图基础(2)1、掌握什么是数阵图2、会灵活应用多种方法求数阵图1、掌握幻方的概念。
2、求解幻方的方法。
例题1:请你将1~9这九个自然数填入图中的空格内每行、每列、每条对角线上的三数之和相等。
趣味数学—数阵图与幻方
三年级奥数--数阵图与幻方知识框架一、数阵图定义及分类:定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.数阵:是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手:第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.三、幻方起源:幻方也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方.幻方起源于我国,古人还为它编撰了一些神话.传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:987654321我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们.四、幻方定义:幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的33⨯的数阵称作三阶幻方,44⨯的数阵称作四阶幻方,55⨯的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,98765432113414151612978105113216。
小学奥数四年级幻方与数阵图
幻方与数阵图扩展[内容概述]本讲有两部分主要内容:1、 幻方的概念和性质,简单幻方的编制;2、把一些数字按照一定要求排列成相应的图形,叫做数阵图。
大致分为三类:封闭型数阵图、辐射型数阵图和复合型数阵图。
幻方的概念:所谓幻方是指在正方形方格表的每个方格内填入数,使得每行、每列和两条对角线上的各数之和相等;而阶数是指每行、每列所包含的方格数。
幻方题可以粗略的分为两种,一种是限制了所填入的数字,或者给出了需要填入的各个数字,或者已经填入一个或几个数字;另一种是对填入的数字没有任何限制,填对即可。
幻方又称为魔方,方阵等,它最早起源于我国。
宋代数学家杨辉称之为纵横图。
关于幻方的起源,我国有“河图”和“洛书”之说。
相传在远古时期,伏羲氏取得天下,把国家治理得井井有条,感动了上苍,于是黄河中跃出一匹龙马,背上驮着一张图,反作为礼物献给他,这就是“河图”了,是最早的幻方。
伏羲氏凭借着“河图”而演绎出了八卦。
后来大禹治洪水时,洛水中浮出一只大乌龟,它的背上有图有字,人们称之为“洛书”。
“洛书”所画的图中共有黑、白圆圈45个。
把这些连在一起的小圆和数目表示出来,得到1至9这九个数,恰组成一个三阶幻方。
幻方问题主要方法: 一、 累加法:利用累加的方法可以求出“幻和”和关键位置上的数字。
通常将若干个“幻和”累加在一起,再计算每一个位置上的重数,从而求出“幻和”和关键位置上的数字。
二、 求出“幻和”和关键位置上的数字后,结合枚举法完成数阵图的填写,在填写数阵图的过程中注意从特殊的数字和位置入手。
三、 比较法:利用比较的方法可以直接填出某些位置的数字。
注意观察数阵图中相关联的“幻和”之间的关系,注意它们之间共同的部分,去比较不同的部分。
四、 掌握好3阶幻方中的规律。
本讲还有一部分内容是数阵图拓展,也就是在三年级数阵图初步的基础上继续学习数阵图问题的解题方法。
数阵图问题方法多样且特殊,我们将在例题中详细讲解。
其实这些方法和幻方是一致的,大家可以在下面的学习中体会到这一点。
幻方和数阵
ii)a=1,b=3,c=5
d=s-(a+b)=6
e=s-(a+c)=4
f=s-(b+c)=2
?
?
iii)a=2,b=3,c=4
d=s-(a+b)=5
e=s-(a+c)=4
因为数字出现重复,所以不合题意。
?
(3)当s=11时,a+b+c=12
这时a、b、c的可能情况有:
?
学法指导
解数阵图的一般方法:
(1)认真分析隐含的数量关系和数字的位置关系,以特殊的位置为突破口,一般选择使用次数多的数作为关键数。
(2)依据数阵图中的条件,建立所求的和与关键数的关系式,并通过讨论最大值与最小值,以及试验的办法确定关键数的数值及相等的和。
(3)对其他部位上的数字作尝试选填,一直到能够得出符合要求的排法为止。
?
因此在解答这类问题时,常用的知识有:
1.等差数列的求和公式
总和=(首项+末项)×项数÷2
2.数字的奇偶性
奇数±奇数=偶数
偶数±偶数=偶数
奇数±偶数=奇数
可简记为:同性为偶,异性为奇(注:同性是同奇或同偶,异性是指一奇一偶)。
?
重点·难点
要善于确定所求的和与关键数字间的关系,用试验的方法,找到相等的和与关键数字;并会对基本解中的数进行适当调整,找到其他的解。还应注意到,对于不同的数阵图形,关键数字的位置会有所不同。并且若题目中没有特殊要求,只求出一个基本解即可。
知识网络
传说在五千年前,大禹治水的时代,人们在黄河中发现一只大龟,龟背上有一些奇怪的图案,经过破译,人们将龟背上的神奇的图案译成了 这样的数阵图,也称做幻方。
五年级奥数数阵图与幻方
数阵图与幻方知识集锦知识集锦数阵图是将一些数字按照一定要求排列而成的某些图形,数阵图可分为辐射型数阵图、封闭型数阵图和复合型数阵图三种形式。
数阵图和复合型数阵图三种形式。
幻方又叫魔方、九宫算或纵横图,它起源于我国上古时代,是一种具有奇妙性质的数字表格,在古代就有“河图”、“洛书”的传说。
“洛书”的传说。
在3×3的方格里,的方格里,填上填上9个连续的自然数,个连续的自然数,使每行、使每行、使每行、每列、每列、每列、每条对角线上的每条对角线上的3个自然数的和相等,这样的数字表格叫三阶幻方,相等的和叫做幻和。
类似的还有四阶幻方、五阶幻方……例题集合例题集合例1 1 把把3、4、5、6、7这五个数字分别填入下图的五个方格中,使横这五个数字分别填入下图的五个方格中,使横 行、竖列三个数的和都是行、竖列三个数的和都是1414。
练习1 1 将将5、6、7、8、9这五个数分别填入下图中,使横行、竖列三个数的和都是2121。
例2 2 将将1111~~17共七个数分别填入下图的圆圈内,使每条线段上的3个圆圈中的数之和都是4040。
练习2 2 将将1~13这十三个数分别填入下图的圆圈内,使每条线段上四个圆圈内的数字之和都是4747。
例3 3 把把1、2、3、4、5、6填入下图的圆圈中,使每条边上三个数字的和都等于9。
练习3 3 如下图,在五个小圆圈内分别填上如下图,在五个小圆圈内分别填上1、2、3、4、5这五个数,使每条直线上的三个数字之和都相等。
之和都相等。
例4 4 将将1~8填入下图的圆圈内,使每个大圆周上的五个数之和是2121。
练习4 4 将将1、2、3、4、5、6、7、8这八个数字分别填入下图(每个数字只用一次),如果两个大圆圈上五个小圆圈内的数字之和都是2222,那么,那么A 、B 两个圆圈内不可能填(两个圆圈内不可能填( ))。
①1和7 7 ②②4和8 8 ③③3和5 5 ④④2和6例5如下图,将1~9这九个数字填在方格里,使每行、每列、每条对角线上的三个数之和都相5 如下图,将等。
四年级数学思维能力拓展专题突破系列(二十)数阵图
四年级数学思维能力拓展专题突破系列(二十)数阵图------数阵图基础(1)温馨提示:该文档包含本课程的讲义和课后测试题,课后测试题即每一部分内容对应的“课后练习”。
1、掌握什么是数阵图2、会灵活应用多种方法求数阵图1、掌握数阵图的概念。
2、灵活应用数阵图的求解方法。
例题1:把1~5这五个数分别填在右图中的方格中,使得横行三数之和与竖列三数之和都等于9?例题2:将1~7这七个自然数填入右图的七个○内,使得每条线上的三个数之和都等于10。
例题3:将 10~20填入右图的○内,其中15已填好,使得每条边上的三个数字之和都相等。
例题4:下把1~5这五个数填入下图中的○里,使每条直线上的三个数之和相等。
(即是该课程的课后测试)练习1:如图,将1~7这七个数分别填入图中的○里,使每条直线上的三个数之和都等于12或10。
练习2:如图将1~9这九个数分别填入图中的○里(其中9已填好),使每条直线上的三个数之和都相等。
练习3:如图,将1~9这九个数分别填入图中的小方格里,使横行和竖列上五个数之和相等。
(至少找出两种本质上不同的填法)练习4:如图,将3~9这七个数分别填入图的○里,使每条直线上的三个数之和等于20。
练习5:如图,将1~11这十一个数分别填入图的○里,使每条直线上的三个数之和相等,并且尽可能大。
练习1:解析:练习2:解析:练习3:解析:练习4:解析:练习5:解析:中心数是重叠数,并且重叠4次。
所以每条直线上的三数之和等于[(1+2+…+11)+重叠数×4]÷5=(66+重叠数×4)÷5。
为使上式能整除,重叠数只能是1,6或11。
显然,重叠数越大,每条直线上的三数之和越大。
所以重叠数是11,每条直线上的三数之和是22。
四年级数学思维能力拓展专题突破系列(二十)数阵图------数阵图基础(2)1、掌握什么是数阵图2、会灵活应用多种方法求数阵图1、掌握幻方的概念。
趣味数学—数阵图与幻方
三年级奥数--数阵图与幻方知识框架一、数阵图定义及分类:定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.数阵:是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手:第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.三、幻方起源:幻方也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方.幻方起源于我国,古人还为它编撰了一些神话.传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:987654321我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们.四、幻方定义:幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的33⨯的数阵称作三阶幻方,44⨯的数阵称作四阶幻方,55⨯的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,98765432113414151612978105113216。
数阵图与幻方
数阵图与幻方知识框架一、数阵图定义及分类:定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.数阵:是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手:第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.三、幻方起源:幻方也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方.幻方起源于我国,古人还为它编撰了一些神话.传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:987654321我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们.四、幻方定义:幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的33的数阵称作三阶幻方,44⨯的数阵称作四阶幻方,55⨯的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,98765432113414151612978105113216。
趣味数学—数阵图与幻方讲课教案
趣味数学—数阵图与幻方三年级奥数--数阵图与幻方知识框架一、数阵图定义及分类:定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.数阵:是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手:第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.三、幻方起源:幻方也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方.幻方起源于我国,古人还为它编撰了一些神话.传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:987654321我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们. 四、幻方定义:幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的33⨯的数阵称作三阶幻方,44⨯的数阵称作四阶幻方,55⨯的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,98765432113414151612978105113216。
小学奥数四年级_幻方与数阵图
幻方与数阵图扩展[内容概述]本讲有两部分主要内容:1、 幻方的概念和性质,简单幻方的编制;2、把一些数字按照一定要求排列成相应的图形,叫做数阵图。
大致分为三类:封闭型数阵图、辐射型数阵图和复合型数阵图。
幻方的概念:所谓幻方是指在正方形方格表的每个方格内填入数,使得每行、每列和两条对角线上的各数之和相等;而阶数是指每行、每列所包含的方格数。
幻方题可以粗略的分为两种,一种是限制了所填入的数字,或者给出了需要填入的各个数字,或者已经填入一个或几个数字;另一种是对填入的数字没有任何限制,填对即可。
幻方又称为魔方,方阵等,它最早起源于我国。
宋代数学家杨辉称之为纵横图。
关于幻方的起源,我国有“河图”和“洛书”之说。
相传在远古时期,伏羲氏取得天下,把国家治理得井井有条,感动了上苍,于是黄河中跃出一匹龙马,背上驮着一张图,反作为礼物献给他,这就是“河图”了,是最早的幻方。
伏羲氏凭借着“河图”而演绎出了八卦。
后来大禹治洪水时,洛水中浮出一只大乌龟,它的背上有图有字,人们称之为“洛书”。
“洛书”所画的图中共有黑、白圆圈45个。
把这些连在一起的小圆和数目表示出来,得到1至9这九个数,恰组成一个三阶幻方。
幻方问题主要方法: 一、 累加法:利用累加的方法可以求出“幻和”和关键位置上的数字。
通常将若干个“幻和”累加在一起,再计算每一个位置上的重数,从而求出“幻和”和关键位置上的数字。
二、 求出“幻和”和关键位置上的数字后,结合枚举法完成数阵图的填写,在填写数阵图的过程中注意从特殊的数字和位置入手。
三、 比较法:利用比较的方法可以直接填出某些位置的数字。
注意观察数阵图中相关联的“幻和”之间的关系,注意它们之间共同的部分,去比较不同的部分。
四、 掌握好3阶幻方中的规律。
本讲还有一部分内容是数阵图拓展,也就是在三年级数阵图初步的基础上继续学习数阵图问题的解题方法。
数阵图问题方法多样且特殊,我们将在例题中详细讲解。
其实这些方法和幻方是一致的,大家可以在下面的学习中体会到这一点。
20 第20讲 幻方与数阵图扩展
四年级第20讲幻方与数阵图扩展兴趣篇:1、把1~9这9个数字填入图20-1中的9个○内,使得三个圆及三条线段上3个数之和都相等。
图20-1 图20-2 图20-32、⑴如图20-2,在3×3的方格表的每个空格中填入恰当的数,使得每行、每列、每条对角线上所填数之和都相等。
⑵如图20-3,在4×4的方格表的每个空格中填入恰当的数,使得每行、每列、每条对角线上所填数之和都相等。
3、在图20-4所示的3×4的方格表的每个空格中填入恰当的数后,可以使各行、各列所填的数之和都相等,那么标有符号“*”的方格内所填的数是多少?图20-4 图20-54、如图20-5,请在空格中填入适当的数,组成一个三阶幻方。
5、请将1~16填入图20-6的方格中(有些数已经填好),使得每行、每列及两条对角线上的各数之和都相等。
图20-66、请将图20-7所示的5×5方格表补充完整,使得每个方格内都有一个数字,并且具有如下的性质,方格表中每行、每列和每条对角线的5个方格内所填的5个数中,1、2、3、4、5恰好各出现一次,请问:标有符号“△”,“▽”和“○”的方格中所填的数分别是什么?图20-7 图20-87、将4、6、8、9、10、12、13、14、17填入图20-8中的○内,使得每条直线上的数之和都相等。
8、请在图20-9所示的8个○内,分别填入1~8这8个数字,使得图中用线段连接的两个○内所填的数的差(大减小)恰好是1、2、3、4、5、6、7。
图20-99、将1~5这5个数字填入图20-10中的○内,使得横线、竖线及大圆周上所填数之和都相等。
图20-10 图20-1010、将0~9这10个数字填入图20-11的10块区域中(阴影区域除外),使得每个圆内的三个数之和都是相等的,请问:这个和最小的是多少?最大是多少?拓展篇:1、将1~25这25个数字分别填入图20-12中的各个方格中,使得每行、每列及两条对角线上的数之和都相等,现在已经填入了一些数,标有符号“*”的方格内所填的数是多少?图20-12 图20-132、请在图20-13的每个空格内填入一个合适的数,使得每行、每列及两条对角线上的3个方格中的各数之和都相等。
小学奥数思维训练-幻方与数阵图扩展|通用版
2014年四年级数学思维训练:幻方与数阵图扩展1.把1,2,…,9填入图20﹣1中9个空白圆圈内,使得三个圆周及三条线段上3个数之和都相等.2.如图,在3×3的方格表的每个方格中填入恰当的数,使得每行、每列、每条对角线上所填数之和都相等.3.如图,在4×4的方格表的每个方格中填人恰当的数,使得每行、每列、每条对角线上所填数之和都相等.4.如图所示的3×4方格表的每个方格中填人恰当的数后,可以使各行所填的数之和相等,各列所填的数之和也相等.现在一些数已经填出,标有符号“*”的方格内所填的数是多少?5.如图,请在空格中填人适当的数,组成一个三阶幻方.6.请将如图所示的5×5方格表补充完整,使得每个方格内都有一个数字,并且具有如下的性质:方格表中每行,每列和每条对角线的5个方格内所填的5个数中,l、2、3、4、5恰好各出现一次.请问:标有符号“△”,“▽”和“○”的方格中所填的数分别是什么?7.请将1至9这9个数填入图中的方框内,使得所有不等号都成立.所有满足要求的填法共有多少种?8.请在如图所示的8个小圆圈内,分别填入1至8这8个数字,使得图中用线段连接的两个小圆圈内所填的数的差(大减小)恰好是1、2、3、4、5、6、7.9.将1至5这5个数字填入图中的小圆圈内,使得横线、竖线、大圆周上所填数之和都相等.10.请在图中的六块区域内填人1、2、3、4、5、6,使得对每一个小圆圈来说,与它相邻的区域内的数之和都相等.11.将0至9填入图的10块区域中(阴影区域除外),使得每个圆内的三个数之和都是相等的.请问:这个和最小是多少?最大是多少?12.将1,2,3,…,24,25分别填入图20﹣12的各个方格中,使得每行、每列及两条对角线上的数的和相等.现在已经填入了一些数,标有符号“*”的方格内所填的数13.请在图的每个空格内填人一个合适的数,使得每行、每列及两条对角线上的3个方格中的各数之和都相等.14.在图的每个空格内填入一个数,使得每行、每列及两条对角线上的3个方格中的各数之和都等于19.95.那么,标有“*”的方格内所填的数是多少?15.请在图的每个空格内填人一个合适的数,使得每行、每列及两条对角线上的3个方格中的各数之和都相等.16.如图,大正方形的4个角上已填人4个数,4个数之和是264.奇妙的是,把这个图倒过来看,大正方形4个角上的数之和仍然是264.请你在中间的小正方形的4个角的圆圈里,填人另外4个数,使得每条对角线上的4个数正看和倒看时,其和都是264;而且小正方形角上的4个数正看和倒看时,其和也都是264.17.将1、2、3、5、6、7、9、10、11填人图中的小圆圈内,使得每条直线上各数之和都相等.18.请将1至10填入如图中的10个圆圈中(9已经填好),使得除了第一行外每个圆19.如图的7个圆圈内各填一个数,要求对于每一条直线上的3个数,居中的数是旁边两个数的平均数.现在已经填好了两个数,请把剩下的圆圈填好.20.请将1个1,2个2,3个3,…,8个8,9个9填人图20.20中,使得相同的数所在的方格都连在一起(相连的两个方格必须有公共边);现在已经给出了其中8个方格中的数,并且知道A、B、C、D、E、F、G各不相同;那么,七位数是多少?21.请你将数字1、2、3、4、5、6、7填在图中的圆圈内,使得每个圆圈上的三个数之和与每条直线上的三个数之和相等.应怎样填?22.将1至9填人图中的9个圆圈内,使4个大圆周上的4个数之和都等于16.23.如图中一共有10个方格,现在把2至11这10个自然数填到里面,每个方格各填一个.如果要求图中的3个2×2的正方形中的4个数之和都相等,那么这个和最小可能是多少?请给出一种填法.24.如图,大三角形被分成了9个小三角形.试将1、2、3、4、5、6、7、8、9分别填相加的和相等.这5个数的和最大可能是多少?请给出一种填法.25.请在图的每个空格内填入一个合适的数,使得每行、每列及两条对角线上的3个方格中的各数之和都相等.26.如图是有名的“六角幻方”:将l到19这19个自然数填人图中的圆圈中,使得每一条直线上圆圈中的各数之和相等,美国数学爱好者阿当斯从l910年开始,到1962年,用了52年的时间才找到了解答.我们给大家填人了6个自然数,请你完成这个“六角幻方”.27.在图中有6个正方形,请你将1至9填人图中,使得每个正方形的4个顶点上的数字之和都相等.28.在图中的七个圆圈中填人一些自然数,要求所填的自然数中最小的一个数是1,并且相邻两个圆圈内的数字之差(大数减小数)恰好等于这两个圆圈之间标出的数字.29.将1至9分别填人图中的9个圆圈内,使图中每条直线(图中有7条直线)上的圆圈内所填数之和都相等,那么这个和是多少?30.将0,1,2,…,9这10个数分别填人图20﹣30中的各个圆圈内,使得各阴影三角形的3个顶点上的数之和相等.这个和最大是多少?最小是多少?请分别给出使得和最大、最小的填法.31.在下面的图中有11个空的圆圈,要求把1~13这些数填入各圈内(其中3,4已经填好),使得上面两个圆圈内数的和,等于与它相连的下面的圆圈内的数(例如,虚线框中上面两个圈中的数相加,它们的和应等于相连的下面一个圈中的数),并且最下面空着的四圆圈中的数之和等于43.32.图中共有10个圆圈,6条直线.请问:(1)能否将l至10填人图中,使得每条直线上各数之和都相等?(2)能否将0至9填入图中,使得每条直线上各数之和都相等?(3)请从1至1l中去掉一个数后,将剩下的数填人图中使得每条直线上各数之和都相等.参考答案1.由以上分析可得:【解析】试题分析:我们从图中可以看出:中间圆圈内所填的数是三条直线上共用的,它是一个“重复用数”.因此,我们在思考时,应该首先把中间圆圈内的数想出来.这样,根据题目中“每条直线上的三个数的和相等”,只需考虑每条直线上两个数的和相等.1~7七个数字的和为28,只有中间圆圈内填上一个数字后,剩下的六个数字的和能被3整除(因为要分成和相等的三组数),才能填写.所以,中间圆圈内所填的数很快可以确定下来:可为1、4、7.这时,其它圆圈内的数也就可以很快填出.解:根据题意可得:当中间圆圈填入1时,剩下的六个数:2+7=3+6=4+5;那么三条直线上的和是2+7+1=10,而两个圆圈上的三个数2+3+5=10,另外三个数7+6+4=17,所以不符合;当中间圆圈填入7时,剩下的六个数:1+6=2+5=3+4,那么三条直线上的和是1+6+7=14,而两个圆圈上的三个数不论怎么填都得不到14,所以不符合;当中间圆圈填入4时,剩下的六个数:1+7=2+6=3+5;那么三条直线上的和是1+7+4=12,又1+5+6=12,7+3+2=12;由以上分析可得:点评:解答此题的关键是求出中间圆圈的数是多少,然后再进一步解答即可.2.【解析】试题分析:首先根据第1列的三个数为16、11、12,求出幻和为:16+11+12=39;然后根据幻和为39,分别求出空格里的数即可.解:因为第1列的三个数为16、11、12,所以幻和为:16+11+12=39;因此第2行的第2个数为:39﹣11﹣15=13,第1行的第3个数为:39﹣12﹣13=14,第1行的第2个数为:39﹣16﹣14=9,第2列的第3个数为:39﹣9﹣13=17,第3列的第3个数为:39﹣14﹣15=10..点评:此题主要考查了幻方问题的应用,解答此题的关键是首先求出幻和是多少.3.【解析】试题分析:首先求出每行、每列、每条对角线上所填数之和均为:12+9+5+8=34,然后根据这个共同的和为34,分别求出空格里的数即可.解:每行、每列、每条对角线上所填数之和均为:12+9+5+8=34,所以第3行的第1个数为:34﹣5﹣16﹣3=10,第2列的第1个数为:34﹣4﹣5﹣11=14,第1行的第1个数为:34﹣14﹣7﹣12=1,第2行的第1个数为:34﹣1﹣10﹣8=15,第2行的第4个数为:34﹣15﹣4﹣9=6,第3列的第4个数为:34﹣7﹣9﹣16=2,第4列的第4个数为:34﹣12﹣6﹣3=13..点评:此题主要考查了幻方问题的应用,解答此题的关键是求出每行、每列、每条对角线上所填数之和均为34.4.【解析】试题分析:首先根据第1列的三个数分别为2、3、7,可得各列的各数之和均为:2+3+7=12;然后用12减去6,可得第4列的第1个数和第3个数的和是6,因此第4列的第1个数、第3个数可以分别为5、1;再求出第1行的4个数的和是:2+4+5+5=16,根据各行所填的数之和为16,各列所填的数之和为12,求出其余的空格中的数即可.解:根据第1列的三个数分别为2、3、7,可得各列的各数之和均为:2+3+7=12,所以第4列的第1个数和第3个数的和是:12﹣6=6,因此第4列的第1个数、第3个数可以分别为5、1;因为第1行的4个数的和是:2+4+5+5=16,所以第2行的第2个数和第3个数的和是:16﹣3﹣6=7,第3行的第2个数和第3个数的和是:16﹣7﹣1=8,第2列的第2个数和第3个数的和是:12﹣4=8,第3列的第2个数和第3个数的和是:12﹣5=7,因此第2行的第2个数和第3个数分别是5、2,第3行的第2个数和第3个数分别是3、5.答:标有符号“*”的方格内所填的数是1..点评:此题主要考查了幻方问题的应用,解答此题的关键是灵活应用“各行所填的数之和相等,各列所填的数之和也相等”,注意答案不唯一.5.【解析】试题分析:如图,首先根据第1行和对角线上a、15、11三个数的和相等,可得b+12=15+11,解得b=14,所以幻和为14+15+16=45;然后根据幻和为45,分别求出a、c、d、e的值即可.解:如图,根据第1行和对角线上a、15、11三个数的和相等,可得b+12=15+11,解得b=14,所以幻和为:14+15+16=45;因此a=45﹣12﹣14=19,c=45﹣19﹣16=10,d=45﹣10﹣15=20,e=45﹣16﹣11=18.点评:此题主要考查了幻方问题的应用,解答此题的关键是求出幻和是多少.6.△=5,▽=5,○=4.【解析】试题分析:根据图示,因为h在第3列中,所以h不能是1、3;又因为h在第3行中,所以h不能是4;因为h在对角线上,所以h不能是5,因此h=2,a、p只能从1、3中各取一个,因为a在第1行中,所以a不能是1,只能是3,则p=1;因为c、l在第4列中,只能从3、5中各取一个,因为c在第1行中,所以c不能是3,只能是5,则l=3;因为e、△在第3列中,只能从4、5中各取一个,因为e在第2行中,所以e不能是5,只能是4,则△=5;因为d、f在第2行中,只能从1、3中各取一个,因为d在第1列中,所以d不能是3,只能是1,则f=3;因为k、m在对角线上,只能从1、4中各取一个,因为m在第1列中,所以m不能是1,只能是4,则k=1;因为○、b在第1行中,只能从2、4中各取一个,因为b在第4列中,所以b不能是4,只能是2,则○=4;所以j=2,▽=5,g=3,i=1,n=2,o=5,据此解答即可.解:(1)根据图示,因为h在第3列中,所以h不能是1、3;又因为h在第3行中,所以h不能是4;因为h在对角线上,所以h不能是5,因此h=2,a、p只能从1、3中各取一个,因为a在第1行中,所以a不能是1,只能是3,则p=1;(2)因为c、l在第4列中,只能从3、5中各取一个,因为c在第1行中,所以c不能是3,只能是5,则l=3;(3)因为e、△在第3列中,只能从4、5中各取一个,因为e在第2行中,所以e不能是5,只能是4,则△=5;同理,可得d=1,f=3;m=4,k=1;b=2,○=4;j=2,▽=5,g=3,i=1,n=2,o=5.答:△=5,▽=5,○=4..点评:此题主要考查了幻方问题的应用,解答此题的关键是灵活应用“每行,每列和每条对角线的5个方格内所填的5个数中,l、2、3、4、5恰好各出现一次”,逐一确定每个方格中的数字.7.2种.【解析】试题分析:首先第一行第二列的数最大,只能是9,第一行的第三列最小只能是1,第一行第一列只能是8,第二行第一列只能是7,第二行第三列只能是2,第三行第三列只能是3,第三行第二列只能是4,中间的数可以是6或5,而第三行第一列可以是6或5,所以满足要求的方法有2种方法.解:答案如下:所以满足要求的填法共有2种.点评:解决此题的关键找出最大最小数的位置,进一步确定固定的数以及可调整的数,得出结论.8.【解析】试题分析:首先根据两个小圆圈内所填的数的差最大是:8﹣1=7,可得当差为7时,只能是8与1的差;剩下的2、3、4、5、6、7这6个数组成的差最大是:7﹣2=5,所以当差为6时,只能是7与1的差;同理,当差为5时,只能是6与1的差;5与4的差为1,5与3的差为2,5与2的差差为3,5与1的差为4;据此可得中间两个圆圈中的数分别为1、5,然后填上其余圆圈中的数即可.解:因为两个小圆圈内所填的数的差最大是:8﹣1=7,所以当差为7时,只能是8与1的差;因为剩下的2、3、4、5、6、7这6个数组成的差最大是:7﹣2=5,所以当差为6时,只能是7与1的差;同理,当差为5时,只能是6与1的差;5与4的差为1,5与3的差为2,5与2的差差为3,5与1的差为4;因此中间两个圆圈中的数分别为1、5,可得点评:此题主要考查了幻方问题的应用,解答此题的关键是判断出中间两个圆圈中的数只能是1和5.9.【解析】试题分析:1+2+3+4+5=15,根据题意,可得计算横线、竖线、大圆周上所填数之和时,圆圈中的每个数均被计算了2次,所以这个共同的和是:15×2÷3=10;然后根据1+4+5=2+3+5=1+2+3+4,可得中心圆圈的数为5,大圆周上所填数为1、2、4、3,据此解答即可.解:1+2+3+4+5=15,根据题意,计算横线、竖线、大圆周上所填数之和时,圆圈中的每个数均被计算了2次,所以这个共同的和是:15×2÷3=10;根据1+4+5=2+3+5=1+2+3+4,可得中心圆圈的数为5,大圆周上所填数为1、2、4、3.点评:此题主要考查了幻方问题的应用,解答此题的关键是求出横线、竖线、大圆周上所填数之和均为10.10.【解析】试题分析:如图,设图中的六块区域内填入的数分别为:A、B、C、D、E、F,则根据题意,可得A+B+C+D=C+D+E+F=A+B+E+F=B+C+E,整理,可得A+B=C+D=E+F;因为1+6=2+5=3+4,所以A、B可以从1、6中个取一个,C、D可以从2、5中各取一个,E、F可以从3、4中各取一个;最后根据B+C+E=2(A+B)=2×7=14,可得B=6,C=5,E=3,据此解答即可.解:如图,设图中的六块区域内填入的数分别为:A、B、C、D、E、F,则根据题意,可得A+B+C+D=C+D+E+F=A+B+E+F=B+C+E,整理,可得A+B=C+D=E+F;因为1+6=2+5=3+4,所以A、B可以从1、6中个取一个,C、D可以从2、5中各取一个,E、F可以从3、4中各取一个;又因为B+C+E=2(A+B)=2×7=14,所以B=6,C=5,E=3,可得.点评:此题主要考查了幻方问题的应用,解答此题的关键是设图中的六块区域内填入的数分别为:A、B、C、D、E、F,能判断出A+B=C+D=E+F.11.这个和最小是11,最大是16,如图所示:【解析】试题分析:根据图示,可得每个圆圈内的3个数有1个是圆圈独有的,有2个是和其它圆圈共有的;因为每个圆内的三个数之和都是相等的,所以要使这个和最小,则5个圆圈共有的5个数的和最小,是0、1、2、3、4;要使这个和最大,则5个圆圈共有的5个数的和最大,是5、6、7、8、9;据此解答即可.解:0+1+2+3+4+5+6+7+8+9=45,根据图示,可得每个圆圈内的3个数有1个是圆圈独有的,有2个是和其它圆圈共有的;(1)因为每个圆内的三个数之和都是相等的,所以要使这个和最小,则5个圆圈共有的5个数的和最小,是0、1、2、3、4,这个和最小是:(45+0+1+2+3+4)÷5=11;(2)所以要使这个和最大,则5个圆圈共有的5个数的和最大,是5、6、7、8、9,这个和最大是:(45+5+6+7+8+9)÷5=16.答:这个和最小是11,最大是16.点评:此题主要考查了最大与最小问题的应用,解答此题的关键是判断出:要使这个和最小,则5个圆圈共有的5个数的和最小;要使这个和最大,则5个圆圈共有的5个数的和最大.12.4.【解析】试题分析:首先根据第1列和对角线19、g、25、13的各数之和相等,可得g+19+25+13=20+9+23+12,解得g=7;然后根据第4列和第5行的各数之和相等,可得b+25+14+3=i+8+15+24,解得b=i+5…①;根据第1列和第1行的各数之和相等,可得i+12+23+9=a+b+*+13,解得b=i﹣a ﹣*+31…②;再根据第5行和对角线i、19、7、25、13的各数之和相等,可得j+8+15+24=19+7+25+13,解得j=17;再根据第1行和对角线20、c、7、3、24的各数之和相等,可得a+*+b+13=c+7+3+24,解得c=b+5;再根据第2列和第3行的各数之和相等,可得a+c+19+8=23+7+14+16,解得a+c=33;再根据第5列和第2行的各数之和相等,可得13+16+10+24=9+c+d+25,解得c+d=29;再根据第3列和第4行的各数之和相等,可得*+d+7+15=12+19+3+10,解得*+d=22;解:根据第1列和对角线19、g、25、13的各数之和相等,可得g+19+25+13=20+9+23+12,解得g=7;根据第4列和第5行的各数之和相等,可得b+25+14+3=i+8+15+24,解得b=i+5…①;根据第1列和第1行的各数之和相等,可得i+12+23+9=a+b+*+13,解得b=i﹣a﹣*+31…②;由①②,可得a+*=26;根据第5行和对角线i、19、7、25、13的各数之和相等,可得j+8+15+24=19+7+25+13,解得j=17;根据第1行和对角线20、c、7、3、24的各数之和相等,可得a+*+b+13=c+7+3+24,解得c=b+5;根据第2列和第3行的各数之和相等,可得a+c+19+8=23+7+14+16,解得a+c=33;根据第5列和第2行的各数之和相等,可得13+16+10+24=9+c+d+25,解得c+d=29;根据第3列和第4行的各数之和相等,可得*+d+7+15=12+19+3+10,解得*+d=22;综上,可得a=22,*=4,因此d=22﹣4=18,c=29﹣18=11,b=11﹣5=6,f=b﹣1=5,e=(20+22+4+6)﹣(16+10+24)=52﹣50=2,h=(20+22+4+6+13)﹣(12+19+3+10)=65﹣44=21,i=(20+22+4+6+13)﹣(20+9+23+12)=65﹣64=1,h=(20+22+4+6+13)﹣(1+8+15+24)=65﹣48=17.答:标有符号“*”的方格内所填的数是4..点评:此题主要考查了幻方问题的应用,解答此题的关键是灵活应用“每行、每列及两条对角线上的数的和相等”.13.【解析】试题分析:(1)首先根据第2行和第1列的各数之和相等,可得a+95=100+19,解得a=24;然后根据第3列和对角线95、100、c三个数的和相等,可得f+19=95+100,解得f=176;再根据第3行和第2列的三个数的和相等,可得b+100=95+176,解得b=171;再求出另一条对角线上的三个数的和,进而求出c、d、e的值是多少即可.(2)首先根据第2行和第1列的各数之和相等,可得q+6=5+9,解得q=8;然后根据第3列和对角线9、8、n三个数的和相等,可得s+6=9+8,解得s=11;最后根据另一条对角线上的三个数分别是5、8、11,求出三个数的和是多少,进而求出n、m、p、r的值是多少即可.解:(1)根据第2行和第1列的各数之和相等,可得a+95=100+19,解得a=24;根据第3列和对角线95、100、c三个数的和相等,可得f+19=95+100,解得f=176;根据第3行和第2列的三个数的和相等,可得b+100=95+176,解得b=171;另一条对角线上的三个数的和为:24+100+176=300,所以c=300﹣24﹣171=105,d=300﹣100﹣19=181,e=300﹣95﹣176=29.(2)根据第2行和第1列的各数之和相等,可得q+6=5+9,解得q=8;根据第3列和对角线9、8、n三个数的和相等,可得s+6=9+8,解得s=11;根据另一条对角线上的三个数分别是5、8、11,可得三个数的和是:5+8+11=24,所以n=24﹣9﹣8=7,m=24﹣5﹣7=12,p=24﹣8﹣6=10,r=24﹣12﹣8=4..点评:此题主要考查了幻方问题的应用,解答此题的关键是灵活应用“每行、每列及两条对角线上的3个方格中的各数之和都相等”,逐一确定每个空格中的数即可.14.11.12.【解析】试题分析:首先根据题意,可得c+f=19.95﹣4.33=15.62…①,e+f=19.95﹣8.80=11.15…②;然后根据第1行和第2列的三个数的和相等,可得*=8.80+c﹣4.33=4.47+c;再根据两条对角线上的三个数的和相等,可得*=4.33+f﹣e,所以 4.47+c=4.33+f﹣e,整理,可得f﹣c﹣e=0.14…③;由①②③,求出f、c的值,进而求出*是多少即可.解:根据题意,可得c+f=19.95﹣4.33=15.62…①,e+f=19.95﹣8.80=11.15…②;根据第1行和第2列的三个数的和相等,可得*=8.80+c﹣4.33=4.47+c;根据两条对角线上的三个数的和相等,可得*=4.33+f﹣e,所以4.47+c=4.33+f﹣e,整理,可得f﹣c﹣e=0.14…③;由①+②+③,可得3f=26.91,解得f=8.97,所以c=15.62﹣8.97=6.65,所以*=4.47+c=4.47+6.65=11.12.答:标有“*”的方格内所填的数是11.12.点评:此题主要考查了幻方问题的应用,解答此题的关键是灵活应用“每行、每列及两条对角线上的3个方格中的各数之和都等于19.95”,确定出两条对角线上的数分别是多少.15.【解析】试题分析:首先根据第1行和第1列的三个数的和相等,可得第1行的第3个数为:29+19﹣17=31;然后根据第2行的三个数和对角线上的三个数的和相等,可得第2行的第3个数为:19+31﹣29=21;再根据第2行和第2列的三个数的和相等,可得第2列的第3个数为:29+21﹣17=33;最后根据第1行和第3列的三个数的和相等,可得第1行的第1个数比第3列的第3个数多:21﹣17=4,再根据两条对角线上的三个数的和相等,可得第1行的第1个数和第3列的第3个数的和为:19+31=50,据此求出第1行的第1个数和第3列的第3个数分别是多少,进而求出中心方格的数是多少即可.解:第1行的第3个数为:29+19﹣17=31;第2行的第3个数为:19+31﹣29=21;第2列的第3个数为:29+21﹣17=33;第1行的第1个数比第3列的第3个数多:21﹣17=4,第1行的第1个数和第3列的第3个数的和为:19+31=50,所以第1行的第1个数为:50÷2+2=27,第3列的第3个数为:50÷2﹣2=23;中心方格的数为:(27+17+31)﹣(29+21)=75﹣50=25.点评:此题主要考查了幻方问题的应用,解答此题的关键是灵活应用“每行、每列及两条对角线上的3个方格中的各数之和都相等”,逐一判断出每个方格中的数是多少.16.【解析】试题分析:首先在0﹣9这10个数字中,找出0、1、6、8、9这5个数字倒过来是0、1、9、8、6;本题中用了1、6、8、9这4个数字,并且对角线上的数的个位相加都是7,所以本题用不上数字0,所以中间的小正方形四个角的圆圈里四个数还是1、6、8、9;然后分析确定出相应的数字即可.解:在0﹣9这10个数字中,有0、1、6、8、9这5个数字倒过来是0、1、9、8、6;本题中用了1、6、8、9这4个数字,并且对角线上的数的个位相加都是7,所以本题用不上数字0,所以中间的小正方形四个角的圆圈里四个数还是1、6、8、9;左下右上的圆圈里已经有了91、86,所以最简单的方法只需要在这条对角线里圈里的两个圆圈里填上19、68即可;左上右下的圆圈里已经有了19、68,所以只需要在这条对角线里圈里的两个圆圈里填上91、86即可.答:左上、左下、右上、右下的圆圈里应分别填上:91、68、19、86.实际上,还有很多种方法,例如:点评:此题主要考查了学生的分析推理能力,分析确定出中间的小正方形四个角的圆圈里四个数还是1、6、8、9是解答本题的关键.17.【解析】试题分析:如图,根据每条直线上各数之和都相等,可得a﹣b=9﹣1=8,除1、3、9之外的8个数中只有10、2两个数相差8,所以a=10,b=2;然后根据a+b=c+d,可得c+d=10+2=12,而且c﹣d=3﹣1=2,解得c=7,d=5;最后求出每条直线上的和是多少,进而求出e、f的值是多少即可.解:根据每条直线上各数之和都相等,可得a﹣b=9﹣1=8,除1、3、9之外的8个数中只有10、2两个数相差8,所以a=10,b=2;因为a+b=c+d,可得c+d=10+2=12,而且c﹣d=3﹣1=2,解得c=7,d=5;因此每条直线上的和为:10+3+5=18,所以e=18﹣5﹣7=6,f=18﹣5﹣2=11.点评:此题主要考查了幻方问题的应用,解答此题的关键是首先根据题意,分别求出四个角上的数分别是多少.18.【解析】试题分析:首先根据b、c的差是9,可得b、c只能是10、1各一个;然后根据c是1时,d、f的差是1,所以d、f是两个相邻的自然数,而且d=f+1;b是10时,a、b的差是e,所以a、e只能是2、8或3、7或4、6;(1)当a=2,e=8时,g=9﹣8=1,与c=1矛盾,因此e=2,则g=9﹣2=7;d、f、h、i从3、4、5、6中各取一个,经验证,可得d=6,f=5,h=4,i=3.(2)当a、e是6、4时,g=9﹣4=5,d、f、h、i从2、3、7、8中各取一个,经验证,可得d=8,f=7,h=2,i=3.(3)经验证,当a、e是3、7时,不符合题意.解:根据b、c的差是9,可得b、c只能是10、1各一个;当c是1时,d、f的差是1,所以d、f是两个相邻的自然数,而且d=f+1;当b是10时,a、b的差是e,所以a、e只能是2、8或3、7或4、6;(1)当a=2,e=8时,g=9﹣8=1,与c=1矛盾,因此e=2,则g=9﹣2=7;d、f、h、i从3、4、5、6中各取一个,经验证,可得d=6,f=5,h=4,i=3.,根据对称性,可得满足题意的还有:(2)当a、e是6、4时,g=9﹣4=5,d、f、h、i从2、3、7、8中各取一个,经验证,可得d=8,f=7,h=2,i=3.根据对称性,可得满足题意的还有:(3)经验证,当a、e是3、7时,不符合题意.点评:此题主要考查了幻方问题的应用,解答此题的关键是灵活应用“除了第一行外每个圆圈内的数都等于与它相连的上方两个圆圈内的两数之差”,逐一确定出每个圆圈中的数字即可.19.【解析】试题分析:如图,根据题意,可得a=(13+17)÷2=15,然后根据13+c=15+d=17+e=2f,可得c=d+2,d=e+2,再根据d+13=2e,可得e+2+13=2e,解得e=15,所以d=15+2=17,c=17+2=19,f=(19+13)÷2=16,据此解答即可.解:如图,根据题意,可得a=(13+17)÷2=15,因为13+c=15+d=17+e=2f,所以c=d+2,d=e+2,又因为d+13=2e,所以e+2+13=2e,解得e=15,所以d=15+2=17,c=17+2=19,f=(19+13)÷2=16.点评:此题主要考查了幻方问题的应用,解答此题的关键是首先求出a的值,并灵活应用“居中的数是旁边两个数的平均数”这一条件.20.6732489.【解析】试题分析:首先根据题意,可得A、B、C、D、E、F、G中不可能有1,也不可能有5,因此A、B、C、D、E、F、G只能是2、3、4、6、7、8、9各一个;然后根据C的正下方第二个数是3,D的正下方第一个数是2,所以C=3,D=2;根据图示,可得最下面一行中一定没有6,最下面一行中或者左边两个都不是9,或者右边两格都不是9,最下面一行中不可能有2个8,因此最下面一行中必有5,而且只能是A=9,B=8,或者G=9,F=8,经推理,可得G=9,F=8,E=4,A=6,B=7,所以七位数是6732489,据此解答即可.解:因为只有1个1,而且D的正下方第二个数是1,所以A、B、C、D、E、F、G中不可能有1,因为相同的数所在的方格都连在一起(相连的两个方格必须有公共边),所以A、B、C、D、E、F、G中也不可能有5,因此A、B、C、D、E、F、G只能是2、3、4、6、7、8、9各一个;因为C的正下方第二个数是3,D的正下方第一个数是2,所以C=3,D=2;根据图示,可得最下面一行中一定没有6,最下面一行中或者左边两个都不是9,或者右边两格都不是9,最下面一行中不可能有2个8,因此最下面一行中必有5,而且只能是A=9,B=8,或者G=9,F=8,经推理,可得G=9,F=8,E=4,A=6,B=7,所以七位数是6732489.答:七位数是6732489.点评:此题主要考查了幻方问题的应用,考查了分析推理能力的应用,解答此题的关键是灵活应用“相同的数所在的方格都连在一起(相连的两个方格必须有公共边)”,逐一确定出每个字母代表的数是多少即可.21.由以上分析可得:.【解析】试题分析:我们从图中可以看出:中间圆圈内所填的数是三条直线上共用的,它是一个“重复用数”.因此,我们在思考时,应该首先把中间圆圈内的数想出来.这样,根据题目中“每条直线上的三个数的和相等”,只需考虑每条直线上两个数的和相等.1~7七个数字的和为28,只有中间圆圈内填上一个数字后,剩下的六个数字的和能被3整除(因为要分成和相等的三组数),才能填写.所以,中间圆圈内所填的数很快可以确定下来:可为1、4、7.这时,其它圆圈内的数也就可以很快填出.解:根据题意可得:当中间圆圈填入1时,剩下的六个数:2+7=3+6=4+5;那么三条直线上的和是2+7+1=10,而两个圆圈上的三个数2+3+5=10,另外三个数7+6+4=17,所以不符合;当中间圆圈填入7时,剩下的六个数:1+6=2+5=3+4,那么三条直线上的和是1+6+7=14,而两个圆圈上的三个数不论怎么填都得不到14,所以不符合;当中间圆圈填入4时,剩下的六个数:1+7=2+6=3+5;那么三条直线上的和是1+7+4=12,又1+5+6=12,7+3+2=12;由以上分析可得:。
第20讲 幻方与数阵图扩展-完整版
第20讲幻方与数阵图扩展内容概述掌握幻方的概念,了解三、四阶幻方的构造方法;解决具有与幻方类似性质的数阵图问题;进一步学习重数分析的方法;通过计算重数来处理数阵图中的最大最小问题。
典型问题兴趣篇1.把1~9这9个数分别填人图20-1中的9个○内,使得三个圆周及三条线段上的3个数之和都相等。
答案:答案不唯一,如:解析:全部数字之和等于1+2+3+4+5+6+7+8+9=45,而每一个圆圈都算了2次,则三个圆周上的数字和、三条线段上的数字和都加起来的总和,等于全部数字之和的2倍,即45×2=90,则每部分的和为90÷6=15.而15=1+5+9=1+6+8=2+4+9=2+5+8=2+6+7=3+4+8=3+5+7=4+5+6.可发现1、3、7、9只出现2次,优先考虑.若其中一格填1,则与1相连的圆周和线段上的数字分别为6、8和5、9,如图1所示,则与9相连的圆周上只能是2、4.如图2,则竖线第2空为15-2-8=5,但5已经填过了,不合题意,舍去,如图3,则竖线第2空为15-4-8=3,左斜线第2空为15-2-6=7,如答案所示,经检验符合题意,(本题实际上是基本三阶幻方的变形简化:横行对应本题的圆圈,竖行对应本题直线,若熟记此基本幻方,就可以快速得到本题答案)2.(l)如图20-2,在3×3的方格表的每个空格中填入恰当的数,使得每行、每列、每条对角线上的各数之和都相等.(2)如图20-3,在4×4的方格表的每个空格中填入恰当的数,使得每行、每列、每条对角线上的各数之和都相等。
答案:(1)(2)解答(1)幻和等于16+11+12=39.第二行已知11和15,中间的数为39-11-15=13.此时两条对角线都可以填出:39-12-13=14, 39-16-13=10.笫一行与第三行也可以填出:39-16-14=9,39-12-10=17.(2)幻和等于8+5+9+12=34.第二列与第三列可以填出:34-4-5-11=14, 34-7-9-16=2.第一行、第三行、第四行可以填出:34-14-7-12=1,34-5-16-3=10,34-8-11-2=13.第一列与第四列可以填出:34-1-10-8=15,34-12-3-13=6.3.在图20-4所示的3×4方格表的每个空格中填入恰当的数后,可以使各行、各列的各数之和都相等.那么标有符号“+”的方格内所填的数是多少?答案:1解析:第一列的和等于2+3+7=12,全部数字之和等于12×4=48,每行的知等于48÷3=16,第一行已经填了2、4、5,则最后一个是16-2-4-5=5,从而标有“*”的格内的数是12-5-6=1.4.如图20-5,请在空格中填人适当的数,组成一个三阶幻方。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点回顾
⏹幻方:
行和、列和以及对角线和都相等的方形数阵图称为幻方。
这个相等的和叫做幻和。
⏹一、各种幻和补全问题:
通过不同组幻和之间的比较,从而求出一些特殊位置上的数。
最常用的方法就是“两条直线去掉公共格之后,剩下的数仍然
相等”。
这个方法不仅适用于幻方,也适用于一些与“相等和数”有关的数阵图问题。
⏹幻方:
⏹二,三阶幻方的三条重要性质:
a
A c
b
1,幻和等于幻方中心方格内所填数的3倍,
如图所示,即幻和=3A;
2,所有经过中心方格的行、列或对角线上
的三个数,均构成等差数列;
3,位置如a,b,c所示的三个格子满足如下关系:b+c=2×a
复杂数阵图:
一,学会观察一个数阵图,找出其中哪些数是可以直接确定的,哪些数之间是相关联的,哪些位置是最特殊的,要填进去的数中,有没有哪些数对位置有特殊要求的。
二,重数分析和整体分析的思想。
求出公共的“和数”,并确定一些特殊位置上的数之间的关联。
【1】(高思学校竞赛数学导引P122)
将1,2,3,…,24,25分别填入下图的各个方格中(有些数已填好),使得每行、每列及两条对角线上的数的和相等.现在已经填入了一些数,标有符号“*”的方格内所填的数是多少?
【2】(高思学校竞赛数学导引P122)
请在下图的每个空格内填人一个合适的数,使得每行、每列及两条对角线上的3个方格中的各数之和都相等.
【3】(高思学校竞赛数学导引P122)
(1)在下图的每个空格内填入一个数,使得每行、每列及两条对角线上的3个方格中的各数之和都等于19.95.那么,标有“*”的方格内所填的数是多少?
【3】(高思学校竞赛数学导引P122)
(2)请在下图的每个空格内填人一个合适的数,使得每行、每列及两条对角线上的3个方格中的各数之和都相等。
【4】(高思学校竞赛数学导引P123)
如下图,大正方形的4个角上已填人4个数,4个数之和是264.奇妙的是, 把这个图倒过来看,大正方形4个角上的数之和仍然是264.请你在中间的小正方形的4个角的圆圈里,填人另外4个数,使得每条对角线上的4个数正看和倒看时,其和都是264;而且小正方形角上的4个数正看和倒看时,其和也都是264.
【5】(高思学校竞赛数学导引P123)
将1、2、3、5、6、7、9、10、11填人下图中的小圆圈内,使得每条直线上各数之和都相等.
【6】(高思学校竞赛数学导引P123)
请将1至9这9个数填入下图中的方框内,使得所有不等号都成立.所有满足要求的填法共有多少种?
【7】(高思学校竞赛数学导引P123)
请将1至10填入下图中的10个圆圈中(9已经填好),使得除了第一行外每个圆圈内的数都等于与它相连的上方两个圆圈内的两数之差.
【8】(高思学校竞赛数学导引P123)
在下图的7个圆圈内各填一个数,要求对于每一条直线上的3个数,居中的数是旁边两个数的平均数.现在已经填好了两个数,请把剩下的圆圈填好.
【9】(高思学校竞赛数学导引P124)
请在下图中的六块区域内填人1、2、3、4、5、6,使得对每一个小圆圈来说,与它相邻的区域内的数之和都相等.
【10】(高思学校竞赛数学导引P124)
请将1个1,2个2,3个3,…,8个8,9个9填人图20.20中,使得相同的数所在的方格都连在一起(相连的两个方格必须有公共边);现在已经给出了其中8个方格中的数,并且知道A、B、C、D、E、F、G各不相同;那么,七位数ABCDEFG 是多少?
【11】(高思学校竞赛数学导引P124)
将数字1、2、3、4、5、6、7填人下图中的小圆圈内,使得每个圆周上的3个数之和与每条直线上的3个数之和都相等。
【12】(高思学校竞赛数学导引P124)
将1至9填人下图中的9个圆圈内,使4个大圆周上的4个数之和都等于16
【13】(高思学校竞赛数学导引P125)
下图中一共有10个方格,现在把2至11这10个自然数填到里面,每个方格各填一个.如果要求图中的3个2×2的正方形中的4个数之和都相等,那么这个和最小可能是多少?请给出一种填法.
【14】(高思学校竞赛数学导引P125)
如下图,大三角形被分成了9个小三角形.试将1、2、3、4、5、6、7、8、9分别填入这9个小三角形内,每个小三角形内填一个数,要求靠近大三角形三条边的每5个数相加的和相等.这5个数的和最大可能是多少?请给出一种填法.。