4-1-5奇妙的一笔画.教师版
小学数学竞赛:奇妙的一笔画.教师版解题技巧 培优 易错 难
所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法.什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点. 一笔画问题:(1)能一笔画出的图形必须是连通的图形;(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点; (3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点,以另一个奇点为终点; (4)奇点个数超过两个的图形,一定不能一笔画. 多笔画问题:我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n 个奇点(n 为自然数),那么这个图一定可以用n 笔画成.模块一、判断奇偶点【例 1】 我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点.下图中,哪些点是偶点?哪些点是奇点?J O I H G FED CBA【考点】一笔画问题 【难度】2星 【题型】解答 【解析】 奇点: D H J O 偶点:A B C E F G I 【答案】奇点: D H J O 偶点:A B C E F G I【例 2】 同学们野营时建了9个营地,连接营地之间的道路如图所示,贝贝要给每个营地插上一面旗帜,要求相邻营地的旗帜色彩不同,则贝贝最少需要 种颜色的旗子,如果贝贝从某营地出发,不走重复路线就 (填“能”或“不能”)完成任务.【考点】一笔画问题 【难度】2星 【题型】填空 【关键词】华杯赛,六年级,初赛,第10题 【解析】 最少需要3种颜色的旗子。
因为中间的三点连成一个三角形,要使这三点所代表营地两粮相邻,要使相邻营地没有相同颜色的旗子,必须各插一种与其它两点不同颜色的旗子。
〖2021年整理〗《奇妙的一笔画》参考优秀教案
奇妙的一笔画
一、教学目标
掌握 REPEAT 重复命令的使用方法。
二、教学重点与难点
学习掌握REPEAT重复命令的使用方法。
三、教学准备
多媒体教学网、计算机能连通因特网、多媒体演示课件
四、教学过程
一、导入新课: 教者演示,让小海龟一笔画出长方形、圆、正多边形。
真像是在变魔术,太奇妙了!
二、学知识: REPEAT 命令: 对于需要多资重复执行的命令,不必像以前那样反复输入,可用重复命令来完成。
命令的格式是: REPEAT 重复次数[重复内容] 如: REPEAT 4[FD 60 RT 90] 即可以重复执行4次 FD 60 RT 90,从而画出一个正方形。
小小的提示: REPEAT 与重复次数之间必须有一个空格,重复次数与中括号之间可以没有空格。
三、练技能:
1、画一个边长为90的正三角形。
2、画一个边长为 55 的正五边形。
3、画一个边长为 25 的正八边形。
指导学生得到画正多边形的公式: REPEAT 边数[FD 边长 RT 360/边数]
4、将下边的步骤用 REPEAT 命令表示出来,并画出相应的图形。
FD 30 BK 30 RT 90; FD 2021T 90 FD 2021T 90 FD 30 BK 30 RT 90; FD 2021T 90 FD 2021T 90 FD 30 BK 30 RT 90; FD 2021T 90 FD 2021T 90 FD 30 BK 30 RT 90; FD 2021T 90 FD 2021T 90
5、为小海龟画一个“跑道”吧!
四、小结: 这节课你学会了什么学生回答、讨论。
小学奥数习题版三年级几何一笔画教师版
知识要点一笔画【课前引入】老师可在黑板上画一些简单的一笔画的动物图形做引入,例如下面的蝴蝶、蜗牛、鹅以及金鱼都是用一笔画成的。
由此引出关于一笔画的由来:18世纪,东普鲁士的首府哥尼斯堡是一座景色迷人的城市,普莱格尔河横贯城区,使这座城市锦上添花,显得更加风光旖旋。
这条河有两条支流,在城中心汇成大河,在河的中央有两座美丽的小岛。
河上有七座各具特色的桥把岛和河岸连接起来。
(如下图所示)每到傍晚,许多人都来此散步。
人们漫步于这七座桥之间,久而久之,就形成了这样一个问题:能不能既不重复又不遗漏地一次相继走遍这七座桥?这就是闻名遐迩的“哥尼斯堡七桥问题。
”每一个到此游玩或散心的人都想试一试,可是,对于这一看似简单的问题,没有一个人能符合要求地从七座桥上走一遍。
这个问题后来竟变得神乎其神,说是有一支队伍,奉命要炸毁这七座桥,并且命令要他们按照七桥问题的要求去炸。
七桥问题也困绕着哥尼斯堡大学的学生们,在屡遭失败之后,他们给当时著名数学家欧拉写了一封信,请他帮助解决这个问题。
欧拉看完信后,对这个问题也产生了浓厚的兴趣。
他想,既然岛和半岛是桥梁的连接地点,两岸陆地也是桥梁的连接地点,那就不妨把这四处地方缩小成四个点,并且把这七座桥表示成七条线。
(如右上图所示)这样,原来的七桥问题就抽象概括成了如下的关系图:这显然并没有改变问题的本质特征。
于是,七桥问题也就变成了一个一笔画的问题,即:能否笔不离纸,不重复地一笔画完整个图形。
这竟然与孩子们的一笔画游戏联系起来了。
接着,欧拉就对“一笔画”问题进行了数学分析一笔画有起点和终点,起点和终点重合的图形称为封闭图形,否则便称为开放图形。
除起点和终点外,一笔画中间可能出现一些曲线的交点。
欧拉注意到,只有当笔沿着一条弧线到达交点后,又能沿着另一条弧线离开,也就是交汇于这些点的弧线成双成对时,一笔画才能完成,这样的交点就称为“偶点”。
如果交汇于这些点的弧线不是成双成对,也就是有奇数条,则一笔画就不能实现,这样的点又叫做“奇点”。
小学奥数4-1-5 奇妙的一笔画.专项练习(精品)
所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法.什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏. 我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点.一笔画问题:(1)能一笔画出的图形必须是连通的图形;(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点;(3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点,以另一个奇点为终点;(4)奇点个数超过两个的图形,一定不能一笔画. 多笔画问题:我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n 个奇点(n 为自然数),那么这个图一定可以用n 笔画成.模块一、判断奇偶点【例 1】我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点.下图中,哪些点是偶点?哪些点是奇点?J O I H G FED CBA【例 2】同学们野营时建了9个营地,连接营地之间的道路如图所示,贝贝要给每个营地插上一面旗帜,要求相邻营地的旗帜色彩不同,则贝贝最少需要 种颜色的旗子,如果贝贝从某营地出发,不走重复路线就 (填“能”或“不能”)完成任务.例题精讲知识点拨4-1-5.奇妙的一笔画【例 3】 判断下列图a 、图b 、图c 能否一笔画.图a图c【例 4】下面图形能不能一笔画成?若果能,应该怎样画?(1)(2)(3)【例 5】下面的图形,哪些能一笔画出?哪些不能一笔画出?【例 6】右图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相通,整个展览厅还有一个进口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出?【巩固】右图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由.如果能,应从哪开始走?E CDB A【例 7】下图中的线段表示小路,请你仔细观察,认真思考,能够不重复的爬遍小路的是甲蚂蚁还是乙蚂蚁?该怎样爬?乙甲【例 8】能否用剪刀从左下图中一次连续剪下三个正方形和两个三角形?【例 9】下图是儿童乐园的道路平面图,要使游客走遍每条路并且不重复,那么出、入口应设在哪里?IHGFEDC BA【例 10】邮递员叔叔向11个地点送信一次信,不走重复路,怎样走最合适?【例 11】观察下面的图,看各至少用几笔画成?(1)A ED HCF GB (2)(3)【例 12】 在3×3的方阵中每个小正方形的边长都是100 米.小明沿线段从A 点到B 点,不许走重复路,他最多能走多少米?【例 13】 有16个点排成的44 方阵。
奇妙一笔画(课堂PPT)
能一笔画吗? 为什么?
12
答:能。
答:不能。
答:能。
为什么能一笔画?从哪里开始画呢?
13
答:能。
答:不能。
答:不能。
想一想,不能一笔画的图形 能不能变成可以一笔画呢?
14
如何变成一笔画呢?
连线或去线, 消灭小奇点! 变成一笔画!
15
16
17
例4 能否从入口进入不重复地穿过所有门。如果可 以,画出路线。如果不行,关闭哪扇门就可以?
奇点个数为0或者2才能一笔画。
8
0个奇点的一笔画
没有奇点的图形, 从任何地方开始都可以一笔画!
9பைடு நூலகம்
2个奇点的一笔画
2个奇点的图形,
从一个奇点开始,另一个奇点结束,
可以一笔画!
10
例1 下图中,哪些是奇点,哪些是偶点?
D、H、J、O A、B、C、E F、G、I、
能一笔画吗? 为什么?
11
E、K
A、B、C、D F、G、I、H
1
有些图只用一笔就可以画好! 猜一猜,是哪些图?
能够一笔完成的画叫“一笔画”!
2
下面的图能不能一笔画呢?为什么?
连通的图才能一笔画!
3
为什么有的能一笔画?有的不行呢?
欧拉
聪明的欧拉发现:
能不能一笔画只要观察图形的奇点就能知道!
4
图形里的“点”有什么奥秘?
奇点:
…
连线: 1, 3, 5 , …
18
例4 能否从入口进入不重复地穿过所有门。如果可 以,画出路线。如果不行,关闭哪扇门就可以?
19
例5 “七桥问题”:游人要一次不重复地走过所 有的桥,应该怎么走?
2024年一年级品社上册《挑战一笔画》教案辽师大版
作用与目的:
-巩固学生在课堂上学到的一笔画知识和技能。
-拓宽学生的知识视野,加深对一笔画艺术的理解。
-培养学生的自我反思和自我提升能力。
知识点梳理
1.图形的认知:
-认识基本图形:圆形、正方形、长方形、三角形等。
-图形的组合与分解:了解图形可以组合成不同的形态,以及如何将复杂图形分解为基本图形。
②文化内涵与艺术价值的理解
6.团队合作与分享的重要性:
①合作学习的意义与方式
②分享交流与互相学习的价值
7.实践操作技能的培养:
①绘画工具的使用技巧
②创作流程与作品呈现的方法
8.评价与反思的重要性:
①自我评价与同伴评价的意义
②反思与改进的方法与策略
板书设计:
1.图形的认知与线条的应用
2.一笔画的原理与规则
(2)基本概念讲解:通过讲授法,向学生介绍一笔画的基本原理、技巧,如对称、重复等美的形式。
(3)实践操作:组织学生进行一笔画创作,让学生在动手实践中掌握所学知识。
(4)小组讨论:学生分组讨论创作过程中遇到的问题和挑战,分享心得体会。
(5)游戏互动:设计一笔画游戏,让学生在游戏中巩固知识,提高技能。
(6)项目展示:每组展示完成的一笔画项目,学生互评、教师点评,总结经验教训。
-重复的运用:学习重复元素在艺术创作中的应用,创造节奏和统一感。
5.艺术创作技巧:
-观察与想象:培养学生的观察能力,通过观察现实生活中的物体和场景,激发想象力。
-创意表达:鼓励学生发挥创意,将观察和想象转化为个性化的艺术表达。
-色彩搭配:了解色彩的基本知识,学习如何搭配色彩,使作品更加和谐。
6.美术作品的文化理解:
河南省平顶山市数学小学奥数系列4-1-4奇妙的一笔画
河南省平顶山市数学小学奥数系列4-1-4奇妙的一笔画姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共20题;共100分)1. (5分)从有小黑点的地方出发,用一笔画出下面的图形.(不能重复经过同一条线)2. (5分)(2013·广州) 下面是有规则排列的九个点,请你用四条首尾相连的线段将这九个点连接起来,你能做到么?试试看!温馨提示:因为答卷不能涂改请你先在草稿上尝试,不妨用笔沿着你自己创作的折线走一次,(这条路线的结束点可以不与起始点相连)如果笔没有离开纸面你便成功了!3. (5分)下面图形能不能一笔画成?若果能,应该怎样画?4. (5分)下面的图形,哪些能一笔画出?哪些不能一笔画出?5. (5分)下图中不能一笔画成,请你在下图中添加最少的线段,将其改成一笔画的图形,并画出路线图.6. (5分)下图中的线段表示小路,请你仔细观察,认真思考,能够不重复的爬遍小路的是甲蚂蚁还是乙蚂蚁?该怎样爬?7. (5分)能否用剪刀从左下图中一次连续剪下三个正方形和两个三角形?8. (5分)下图是儿童乐园的道路平面图,要使游客走遍每条路并且不重复,那么出、入口应设在哪里?9. (5分)邮递员叔叔向11个地点送信一次信,不走重复路,怎样走最合适?10. (5分)观察下面的图,看各至少用几笔画成?11. (5分)判断下列图形能否一笔画.若能,请给出一种画法;若不能,请加一条线或去一条线,将其改成可一笔画的图形.12. (5分) 18世纪的哥尼斯堡城是一座美丽的城市,在这座城市中有一条布勒格尔河横贯城区,这条河有两条支流在城市中心汇合,汇合处有一座小岛A和一座半岛D,人们在这里建了一座公园,公园中有七座桥把河两岸和两个小岛连接起来(如图a).如果游人要一次走过这七座桥,而且对每座桥只许走一次,问如何走才能成功?13. (5分)如下图所示,两条河流的交汇处有两个岛,有七座桥连接这两个岛及河岸.问:一个散步者能否一次不重复地走遍这七座桥?14. (5分)下图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相通,整个展览厅还有一个进口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出?15. (5分)下图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由.如果能,应从哪开始走?16. (5分)一条小虫沿长6分米,宽4分米,高5分米的长方体的棱爬行.如果它只能进不能退,并且同一条棱不能爬两次,那么它最多能爬多少分米?17. (5分)一只木箱的长、宽、高分别为5,4,3厘米(见右图),有一只甲虫从A点出发,沿棱爬行,每条棱不允许重复,则甲虫回到A点时,最多能爬行多少厘米?18. (5分)如图是某餐厅的平面图,共有五个小厅,相邻两厅之间有门相通,并且设有入口.请问你能否从入口进入一次不重复地穿过所有的门.如果可以,请指明穿行路线,如果不能,应关闭哪个门就可以办到?19. (5分)在3×3的方阵中每个小正方形的边长都是100 米.小明沿线段从A点到B 点,不许走重复路,他最多能走多少米?20. (5分)一个邮递员投递信件要走的街道如右图所示,图中的数字表示各条街道的千米数,他从邮局出发,要走遍各街道,最后回到邮局.怎样走才能使所走的行程最短?全程多少千米?参考答案一、 (共20题;共100分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:。
小学奥数—奇妙的一笔画
知识点拨
所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次, 不准重复.从图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢? 下面,我们就来探求解决这个问题的方法.
什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏. 我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点. 一笔画问题: (1)能一笔画出的图形必须是连通的图形; (2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点; (3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点,以另一个奇点为终点; (4)奇点个数超过两个的图形,一定不能一笔画. 多笔画问题: 我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于 任意的连通图来说,如果有 2n 个奇点(n 为自然数),那么这个图一定可以用 n 笔画成.
【例 17】 下图中不能一笔画成,请你在下图中添加最少的线段,将其改成一笔画的图形,并画出路线图.
A
E
D
G
H
B
C
F
【例 18】 如图所示,某小区花园的道路为一个长 480 米,宽 200 米的长方形;一个边长为 260 米的菱形和十 字交叉的两条道路组成.一天,王大爷 A 处进入花园,走遍花园的所有道路并从 A 处离开.如果
【巩固】如下图所示,两条河流的交汇处有两个岛,有七座桥连接这两个岛及河岸.问:一个散步者能否一 次不重复地走遍这七座桥?
【例 21】 一个邮递员投递信件要走的街道如右图所示,图中的数字表示各条街道的千米数,他从邮局出发, 要走遍各街道,最后回到邮局.怎样走才能使所走的行程最短?全程多少千米?
数学人教版五年级下册《有趣的一笔画》
判断:哪些图形能一笔画成?哪些不能?
Ⅹ
√
√
当奇点个数为( 0 )个时,从(任意一个点)出发, 画完后回到( 起点 ); 当奇点个数为( 2 )个时,从(其中一个奇点)出 发,画完后回到( 另一个奇点)。
18世纪在哥尼斯堡城(今俄罗斯)的普莱格尔河上有7座桥, 将河中的两个岛和河岸连结。城中的居民经常沿河过桥散步, 于是提出了一个问题:能否一次走遍7座桥,而每座桥只许通Байду номын сангаас 一次,最后仍回到起始地点。这就是历史上的“七桥问题”, 这个问题看起来似乎不难,但人们始终没有能找到答案,最后 问题提到了大数学家欧拉那里……
A
C B
D
一辆洒水车要给 城市的街道洒水,街 道地图如左图:你能 否设计一条洒水车洒 水的路线,使洒水车 不重复地走过所有的 街道,再回到出发点?
课外拓展:
在七桥问题中,如果允许你再架一座 桥,能否不重复地一次走遍这八座桥?这 座桥应该架在哪里?请你回家试一试吧!
“一笔画”是指从图形的某一点出 发,笔不离开纸,且每条线都只画 一次,不重复地画完整个图形。
图形
能否一笔画成
能
能
能
能 不能
奇点:和一个点连接的线的条数是奇数 偶点:和一个点连接的线的条数是偶数
图形
能否一笔画成 奇点的个数 偶点的个数
能
2 0
2 8 9 4 5
能
能
0 2
4
能 不能
操作要求: 1、画一画:每位同学自己画1个能一笔画的图形。 2、数一数:数出图形中奇点与偶点的个数,记 录在表格中。 3、议一议:四人小组讨论,说说能一笔画成的 图形中奇点与偶点的个数有什么特征。
4-1-4奇妙的一笔画
所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法.什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点.一笔画问题:(1)能一笔画出的图形必须是连通的图形;(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点;(3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点,以另一个奇点为终点;(4)奇点个数超过两个的图形,一定不能一笔画.多笔画问题:我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n 个奇点(n 为自然数),那么这个图一定可以用n 笔画成.【例1】我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点.下图中,哪些点是偶点?哪些点是奇点?【解析】奇点:J D H F 偶点:A E B C G I【例2】判断下列图a 、图b 、图c 能否一笔画.图a NM L KFD E C BA图b O D CB A 图c G F E DC B A 【解析】图a 能,因为有2个奇点,图b 不能,因为图形不是连通的,图c 能,因为因为图中全是奇点【例3】下面图形能不能一笔画成?若果能,应该怎样画?例题精讲奇妙的一笔画【解析】图1能因为图中全是偶点,图2能因为图中全是偶点,图3不能因为有4个奇点.【例 4】下面的图形,哪些能一笔画出?哪些不能一笔画出?【解析】第1个能,2、3不能【例5】下图中不能一笔画成,请你在下图中添加最少的线段,将其改成一笔画的图形,并画出路线图.【解析】不能一笔画出,因为图中有E H G F四个奇点,连结EH就可以使图形一笔画出.【例6】下图中的线段表示小路,请你仔细观察,认真思考,能够不重复的爬遍小路的是甲蚂蚁还是乙蚂蚁?该怎样爬?【解析】要想不重复爬出,需要图形能一笔画出,由于图中有两个奇点,所以应该从奇点出发才能一笔画出图形,所以甲蚂蚁能够.【例7】能否用剪刀从左下图中一次连续剪下三个正方形和两个三角形?【解析】可以.【例8】下图是儿童乐园的道路平面图,要使游客走遍每条路并且不重复,那么出、入口应设在哪里?【解析】要想不重复,需要路线能一笔画出,由于图中有两个奇点,所以入口和出口应该分别放在两个奇点出,即F 和I 点.【例9】邮递员叔叔向11个地点送信一次信,不走重复路,怎样走最合适?【解析】不走重复路,一笔能画出路线图,图中有2个奇点,应该从奇点处出发,下面有一种参考路线:4-1-2-5-8-9-6-10-11-7-4-3【例10】观察下面的图,看各至少用几笔画成?【解析】图(1)有8个奇点,所以要4笔画出,图(2)有12个奇点,所以要一笔画出,图(3)能一笔画出.【例11】判断下列图形能否一笔画.若能,请给出一种画法;若不能,请加一条线或去一条线,将其改成可一笔画的图形.I H G F E D CB A图a H G I K L J F ED CB A图b D C H G E F B A 图c【解析】图(1)不能一笔画出,因为图中有4个奇点,连结BD ,或者去掉BF 都可以使图形能一笔画出.图(2)不能一笔画出,因为图中有4个奇点,去掉KL ,或者BK 都可以使图形能一笔画出.图(3)不能一笔画出,因为图中有4个奇点,去掉AB 可以使图形能一笔画出.一个K (K >1)笔画最少要添加几条连线才能变成一笔画呢?我们知道K 笔画有2K 个奇点,如果在任意两个奇点之间添加一条连线,那么这两个奇点同时变成了偶点.如左下图中的B ,C 两个奇点在右下图中都变成了偶点.所以只要在K 笔画的2K 个奇点间添加(K-1)笔就可以使奇点数目减少为2个,从而变成一笔画.【例12】18世纪的哥尼斯堡城是一座美丽的城市,在这座城市中有一条布勒格尔河横贯城区,这条河有两条支流在城市中心汇合,汇合处有一座小岛A 和一座半岛D ,人们在这里建了一座公园,公园中。
小学奥数习题版三年级几何一笔画教师版
知识要点一笔画【课前引入】老师可在黑板上画一些简单的一笔画的动物图形做引入,例如下面的蝴蝶、蜗牛、鹅以及金鱼都是用一笔画成的。
由此引出关于一笔画的由来:18世纪,东普鲁士的首府哥尼斯堡是一座景色迷人的城市,普莱格尔河横贯城区,使这座城市锦上添花,显得更加风光旖旋。
这条河有两条支流,在城中心汇成大河,在河的中央有两座美丽的小岛。
河上有七座各具特色的桥把岛和河岸连接起来。
(如下图所示)每到傍晚,许多人都来此散步。
人们漫步于这七座桥之间,久而久之,就形成了这样一个问题:能不能既不重复又不遗漏地一次相继走遍这七座桥?这就是闻名遐迩的“哥尼斯堡七桥问题。
”每一个到此游玩或散心的人都想试一试,可是,对于这一看似简单的问题,没有一个人能符合要求地从七座桥上走一遍。
这个问题后来竟变得神乎其神,说是有一支队伍,奉命要炸毁这七座桥,并且命令要他们按照七桥问题的要求去炸。
七桥问题也困绕着哥尼斯堡大学的学生们,在屡遭失败之后,他们给当时著名数学家欧拉写了一封信,请他帮助解决这个问题。
欧拉看完信后,对这个问题也产生了浓厚的兴趣。
他想,既然岛和半岛是桥梁的连接地点,两岸陆地也是桥梁的连接地点,那就不妨把这四处地方缩小成四个点,并且把这七座桥表示成七条线。
(如右上图所示)这样,原来的七桥问题就抽象概括成了如下的关系图:这显然并没有改变问题的本质特征。
于是,七桥问题也就变成了一个一笔画的问题,即:能否笔不离纸,不重复地一笔画完整个图形。
这竟然与孩子们的一笔画游戏联系起来了。
接着,欧拉就对“一笔画”问题进行了数学分析一笔画有起点和终点,起点和终点重合的图形称为封闭图形,否则便称为开放图形。
除起点和终点外,一笔画中间可能出现一些曲线的交点。
欧拉注意到,只有当笔沿着一条弧线到达交点后,又能沿着另一条弧线离开,也就是交汇于这些点的弧线成双成对时,一笔画才能完成,这样的交点就称为“偶点”。
如果交汇于这些点的弧线不是成双成对,也就是有奇数条,则一笔画就不能实现,这样的点又叫做“奇点”。
小学奥数4-1-5 奇妙的一笔画.专项练习及答案解析
所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法.什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏. 我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点. 一笔画问题:(1)能一笔画出的图形必须是连通的图形; (2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点;(3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点,以另一个奇点为终点;(4)奇点个数超过两个的图形,一定不能一笔画. 多笔画问题:我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n 个奇点(n 为自然数),那么这个图一定可以用n 笔画成.模块一、判断奇偶点【例 1】 我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点.下图中,哪些点是偶点?哪些点是奇点?J O I H G FED CBA【考点】一笔画问题 【难度】2星 【题型】解答 【解析】 奇点:D H J O 偶点:A B CEFG I【答案】奇点: D H J O 偶点:A B C E F G I【例 2】 同学们野营时建了9个营地,连接营地之间的道路如图所示,贝贝要给每个营地插上一面旗帜,要求相邻营地的旗帜色彩不同,则贝贝最少需要 种颜色的旗子,如果贝贝从某营地出发,不走重复路线就 (填“能”或“不能”)完成任务.例题精讲知识点拨4-1-5.奇妙的一笔画【考点】一笔画问题 【难度】2星 【题型】填空 【关键词】华杯赛,六年级,初赛,第10题【解析】 最少需要3种颜色的旗子。
因为中间的三点连成一个三角形,要使这三点所代表营地两粮相邻,要使相邻营地没有相同颜色的旗子,必须各插一种与其它两点不同颜色的旗子。
幼儿园启蒙教育数字连线涂鸦-精选5幅
班级:
姓名:
piáo chónɡ
瓢虫
加油啊! 挺好的!
你真棒!
感知训练 数字 1-46
幼儿园数字连线绘画
算术启蒙/量化教育/数学启蒙
班级:
姓名:
wū ɡuī
乌龟
加油啊! 挺好的!
你真棒!
感知训练 数字 1-45
幼儿园数字连线绘画
算术启蒙/量化教育/数学启蒙
班级: 姓名:
měi zhōu tuó
美洲鸵
加油啊! 挺好的!
你真棒!
感知训练 数字 1-46
幼儿园数字连线绘画
算术启蒙/量化教育/数学启蒙
班级:
姓名:
qǐ é
企1-52
幼儿园数字连线绘画
算术启蒙/量化教育/数学启蒙
班级:
姓名:
shī zǐ
狮子
加油啊! 挺好的!
你真棒!
感知训练 数字 1-32
幼儿园数字连线绘画
算术启蒙/量化教育/数学启蒙
湖南省益阳市小学数学小学奥数系列4-1-4奇妙的一笔画
湖南省益阳市小学数学小学奥数系列4-1-4奇妙的一笔画姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共20题;共100分)1. (5分)从有小黑点的地方出发,用一笔画出下面的图形.(不能重复经过同一条线)2. (5分) (2013·广州) 下面是有规则排列的九个点,请你用四条首尾相连的线段将这九个点连接起来,你能做到么?试试看!温馨提示:因为答卷不能涂改请你先在草稿上尝试,不妨用笔沿着你自己创作的折线走一次,(这条路线的结束点可以不与起始点相连)如果笔没有离开纸面你便成功了!3. (5分)下面图形能不能一笔画成?若果能,应该怎样画?4. (5分)下面的图形,哪些能一笔画出?哪些不能一笔画出?5. (5分)下图中不能一笔画成,请你在下图中添加最少的线段,将其改成一笔画的图形,并画出路线图.6. (5分)下图中的线段表示小路,请你仔细观察,认真思考,能够不重复的爬遍小路的是甲蚂蚁还是乙蚂蚁?该怎样爬?7. (5分)能否用剪刀从左下图中一次连续剪下三个正方形和两个三角形?8. (5分)下图是儿童乐园的道路平面图,要使游客走遍每条路并且不重复,那么出、入口应设在哪里?9. (5分)邮递员叔叔向11个地点送信一次信,不走重复路,怎样走最合适?10. (5分)观察下面的图,看各至少用几笔画成?11. (5分)判断下列图形能否一笔画.若能,请给出一种画法;若不能,请加一条线或去一条线,将其改成可一笔画的图形.12. (5分) 18世纪的哥尼斯堡城是一座美丽的城市,在这座城市中有一条布勒格尔河横贯城区,这条河有两条支流在城市中心汇合,汇合处有一座小岛A和一座半岛D,人们在这里建了一座公园,公园中有七座桥把河两岸和两个小岛连接起来(如图a).如果游人要一次走过这七座桥,而且对每座桥只许走一次,问如何走才能成功?13. (5分)如下图所示,两条河流的交汇处有两个岛,有七座桥连接这两个岛及河岸.问:一个散步者能否一次不重复地走遍这七座桥?14. (5分)下图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相通,整个展览厅还有一个进口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出?15. (5分)下图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由.如果能,应从哪开始走?16. (5分)一条小虫沿长6分米,宽4分米,高5分米的长方体的棱爬行.如果它只能进不能退,并且同一条棱不能爬两次,那么它最多能爬多少分米?17. (5分)一只木箱的长、宽、高分别为5,4,3厘米(见右图),有一只甲虫从A点出发,沿棱爬行,每条棱不允许重复,则甲虫回到A点时,最多能爬行多少厘米?18. (5分)如图是某餐厅的平面图,共有五个小厅,相邻两厅之间有门相通,并且设有入口.请问你能否从入口进入一次不重复地穿过所有的门.如果可以,请指明穿行路线,如果不能,应关闭哪个门就可以办到?19. (5分)在3×3的方阵中每个小正方形的边长都是100 米.小明沿线段从A点到B 点,不许走重复路,他最多能走多少米?20. (5分)一个邮递员投递信件要走的街道如右图所示,图中的数字表示各条街道的千米数,他从邮局出发,要走遍各街道,最后回到邮局.怎样走才能使所走的行程最短?全程多少千米?参考答案一、 (共20题;共100分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法.什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点. 一笔画问题:(1)能一笔画出的图形必须是连通的图形;(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点; (3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点,以另一个奇点为终点; (4)奇点个数超过两个的图形,一定不能一笔画. 多笔画问题:我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n 个奇点(n 为自然数),那么这个图一定可以用n 笔画成.模块一、判断奇偶点【例 1】 我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点.下图中,哪些点是偶点?哪些点是奇点?J O I H G FED CBA【考点】一笔画问题 【难度】2星 【题型】解答【解析】 奇点: D H J O 偶点:A B C E F G I 【答案】奇点: D H J O 偶点:A B C E F G I【例 2】 同学们野营时建了9个营地,连接营地之间的道路如图所示,贝贝要给每个营地插上一面旗帜,要求相邻营地的旗帜色彩不同,则贝贝最少需要 种颜色的旗子,如果贝贝从某营地出发,不走重复路线就 (填“能”或“不能”)完成任务.【考点】一笔画问题 【难度】2星 【题型】填空 【关键词】华杯赛,六年级,初赛,第10题例题精讲知识点拨4-1-5.奇妙的一笔画【解析】 最少需要3种颜色的旗子。
因为中间的三点连成一个三角形,要使这三点所代表营地两粮相邻,要使相邻营地没有相同颜色的旗子,必须各插一种与其它两点不同颜色的旗子。
不走重复路线不能完成插旗的任务,因为本题共有6各奇点。
【答案】3种颜色,不能【例 3】 判断下列图a 、图b 、图c 能否一笔画.NML KF DECBA 图bODCBA图cGFEDCBA【考点】一笔画问题 【难度】2星 【题型】解答 【解析】 图a 能,因为有2个奇点,图a 能b 不能,因为图形不是连通的, 图c 能,因为因为图中全是奇点【答案】a 能,a 能,c 能【例 4】 下面图形能不能一笔画成?若果能,应该怎样画?(1)(2)(3)【考点】一笔画问题 【难度】2星 【题型】解答【解析】 图1能 因为图中全是偶点;图2能 因为图中全是偶点; 图3不能因为有4个奇点。
【答案】图1能 因为图中全是偶点;图2能 因为图中全是偶点; 图3不能因为有4个奇点。
【例 5】 下面的图形,哪些能一笔画出?哪些不能一笔画出?【考点】一笔画问题 【难度】2星 【题型】解答【解析】 第1个能,2、3不能 【答案】第1个能,2、3不能【例 6】 右图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相通,整个展览厅还有一个进口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出?【考点】一笔画问题 【难度】2星 【题型】解答【解析】 将图形中的6个区域看成6个点,每个门看成连结他们的线段,显然6个点都是偶点,所以有人能一次不重复的走过所有的门.【答案】能【巩固】右图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由.如果能,应从哪开始走?E CDB A【考点】一笔画问题 【难度】2星 【题型】解答【解析】 不能 【答案】不能【例 7】 下图中的线段表示小路,请你仔细观察,认真思考,能够不重复的爬遍小路的是甲蚂蚁还是乙蚂蚁?该怎样爬?乙甲【考点】一笔画问题 【难度】2星 【题型】解答【解析】 要想不重复爬出,需要图形能一笔画出,由于图中有两个奇点,所以应该从奇点出发才能一笔画出图形,所以甲蚂蚁能够.【答案】甲蚂蚁【例 8】 能否用剪刀从左下图中一次连续剪下三个正方形和两个三角形?【考点】一笔画问题 【难度】2星 【题型】解答【解析】 可以. 【答案】可以【例 9】 下图是儿童乐园的道路平面图,要使游客走遍每条路并且不重复,那么出、入口应设在哪里?IHGFEDC BA【考点】一笔画问题 【难度】3星 【题型】解答【解析】 要想不重复,需要路线能一笔画出,由于图中有两个奇点,所以入口和出口应该分别放在两个奇点出,即F 和I 点.【答案】出口和入口应该分别放在F 和I 点【例 10】 邮递员叔叔向11个地点送信一次信,不走重复路,怎样走最合适?【考点】一笔画问题 【难度】3星 【题型】解答【解析】 不走重复路,一笔能画出路线图,图中有2个奇点,应该从奇点处出发,下面有一种参考路线:4-1-2-5-8-9-6-10-11-7-4-3 【答案】4-1-2-5-8-9-6-10-11-7-4-3【例 11】 观察下面的图,看各至少用几笔画成?(1)A ED HCF G B (2)(3)【考点】一笔画问题 【难度】3星 【题型】解答【解析】 图(1)有8个奇点,所以要4笔画出,图(2)有12个奇点,所以要一笔画出, 图(3)能一笔画出.【答案】图(1)有8个奇点,所以要4笔画出,图(2)有12个奇点,所以要一笔画出, 图(3)能一笔画出.【例 12】 在3×3的方阵中每个小正方形的边长都是100 米.小明沿线段从A 点到B 点,不许走重复路,他最多能走多少米?【考点】一笔画问题 【难度】3星 【题型】解答【解析】 这道题大多数同学都采用试画的方法,实际上可以用一笔画原理求解.首先,图中有8 个奇点,在8个奇点之间至少要去掉4 条线段,才能使这8 个奇点变成偶点;其次,从A 点出发到B 点, A , B 两点必须是奇点,现在A , B 都是偶点,必须在与A ,B 连接的线段中各去掉1 条线段,使A ,B 成为奇点.所以至少要去掉6 条线段,也就是最多能走1800 米,走法如图【答案】【例 13】 有16个点排成的44 方阵。
如图,请不间断地一笔画出6条直线经过每个点,且最后回到起点.【考点】一笔画问题 【难度】3星 【题型】解答 【解析】 答案不唯一只使用横平竖直的线怎么都不够,因此尝试使用斜线进行构造。
【答案】答案不唯一【例 14】 一条小虫沿长6分米,宽4分米,高5分米的长方体的棱爬行.如果它只能进不能退,并且同一条棱不能爬两次,那么它最多能爬多少分米?AGBF CHDE【考点】一笔画问题 【难度】3星 【题型】解答【解析】 8个定点都是奇点,所以至少需要4笔.多画长和高能保证总路程最长,为A -B -G -H -A -D -C -F -E -D 总长为6×4+5×4 +4×1=48分米.【答案】48分米【巩固】一只木箱的长、宽、高分别为5,4,3厘米(见右图),有一只甲虫从A 点出发,沿棱爬行,每条棱不允许重复,则甲虫回到A 点时,最多能爬行多少厘米?A【考点】一笔画问题 【难度】3星 【题型】解答 【解析】 最多34厘米 【答案】多34厘米模块二、调整奇偶点变一笔画【例 15】 判断下列图形能否一笔画.若能,请给出一种画法;若不能,请加一条线或去一条线,将其改成可一笔画的图形.IH G FED CBA 图aH GI KLJ F EDCBA DC HG EFBA图c【考点】一笔画问题 【难度】3星 【题型】解答【解析】 图(1)不能一笔画出,因为图中有4个奇点,连结BD ,或者去掉BF 都可以使图形能一笔画出.图(2)不能一笔画出,因为图中有4个奇点,去掉KL ,或者BK 都可以使图形能一笔画出. 图(3)不能一笔画出,因为图中有4个奇点,去掉AB 可以使图形能一笔画出.一个K (K >1)笔画最少要添加几条连线才能变成一笔画呢?我们知道K 笔画有2K 个奇点,如果在任意两个奇点之间添加一条连线,那么这两个奇点同时变成了偶点.如左下图中的B ,C 两个奇点在右下图中都变成了偶点.所以只要在K 笔画的2K 个奇点间添加(K -1)笔就可以使奇点数目减少为2个,从而变成一笔画.ABCDA BD C【答案】ABD C【例 16】 如图是某餐厅的平面图,共有五个小厅,相邻两厅之间有门相通,并且设有入口.请问你能否从入口进入一次不重复地穿过所有的门.如果可以,请指明穿行路线, 如果不能,应关闭哪个门就可以办到?【考点】一笔画问题 【难度】4星 【题型】解答【解析】 可以将图中的五个小厅以及厅外的部分都抽象成点,为方便解题,给它们分别编号.这时,连通厅与厅之间的门就相当于各点之间的连线.于是题目中餐厅平面图就抽象成为一个连通的图形,如下:求穿形路线的问题就转化成一笔画的问题.在抽象出的图形中,我们可以找到四个奇点,即②、③、④和厅外,所以图形不能一笔画出也就是说,从入口进入不可能一次不重复的穿过所有的门.但根据一笔画问题的知识,只要关闭门,把③、④变为偶点,就可以办到,关闭B 门,可行路线如上图。
【答案】关闭B 门。
【例 17】 下图中不能一笔画成,请你在下图中添加最少的线段,将其改成一笔画的图形,并画出路线图.【考点】一笔画问题 【难度】2星 【题型】解答 【解析】 不能一笔画出,因为图中有E H GF 四个奇点,连结EH 就可以使图形一笔画出.【答案】连结EH 就可以使图形一笔画出【例 18】 如图所示,某小区花园的道路为一个长480米,宽200米的长方形;一个边长为260米的菱形和十字交叉的两条道路组成.一天,王大爷A 处进入花园,走遍花园的所有道路并从A 处离开.如果他每分钟走60米,那么他从进入花园到走出花园最少要用 分.A【考点】一笔画问题 【难度】4星 【题型】填空【解析】 根据一笔画的概念,因为道路图有四个奇点,所以王大爷是没法不重复地走完小区所有的道路回到A的,但可以对道路图作一些处理,相当于王大爷通过走重复的道路,完成一笔画,如下图:A道路的总路程为4803200326063600⨯+⨯+⨯=米,王大爷走完这些路要60分钟. 【答案】60分钟【例 19】 某城市的交通系统由若干个路口(右图中线段的交点)和街道(右图中的线段)组成,每条街道都连接着两个路口.所有街道都是双向通行的,且每条街道都有一个长度值(标在图中相应的线段处).一名邮递员传送报纸和信件,要从邮局出发经过他所管辖的每一条街道最后返回邮局(每条街道可以经过不止一次).他合理安排路线,可以使得自己走过最短的总长度是 .【考点】一笔画问题 【难度】4星 【题型】填空【解析】 根据一笔画的有关概念,道路图中有6个奇点,邮递员不可能不重复地走遍所有街道并返回邮局.但可以对道路图作一些处理,相当于邮递员通过走重复的道路,完成一笔画,如下图:邮局总路程为3102846⨯+⨯=.【答案】46【例 20】 18世纪的哥尼斯堡城是一座美丽的城市,在这座城市中有一条布勒格尔河横贯城区,这条河有两条支流在城市中心汇合,汇合处有一座小岛A 和一座半岛D ,人们在这里建了一座公园,公园中有七座桥把河两岸和两个小岛连接起来(如图a ).如果游人要一次走过这七座桥,而且对每座桥只许走一次,问如何走才能成功?BG FCH DE A【考点】一笔画问题【难度】4星【题型】解答【解析】欧拉解决这个问题的方法非常巧妙.他认为:人们关心的只是一次不重复地走遍这七座桥,而并不关心桥的长短和岛的大小,因此,岛和岸都可以看作一个点,而桥则可以看成是连接这些点的一条线.这样,一个实际问题就转化为一个几何图形(如下图)能否一笔画出的问题了.而图B中有4个奇点显然不能一笔画出.【答案】不能【巩固】如下图所示,两条河流的交汇处有两个岛,有七座桥连接这两个岛及河岸.问:一个散步者能否一次不重复地走遍这七座桥?【考点】一笔画问题【难度】4星【题型】解答【解析】能【答案】能【例 21】一个邮递员投递信件要走的街道如右图所示,图中的数字表示各条街道的千米数,他从邮局出发,要走遍各街道,最后回到邮局.怎样走才能使所走的行程最短?全程多少千米?【考点】一笔画问题【难度】5星【题型】解答【解析】图中共有8 个奇点,必须在8 个奇点间添加4 条线,才能消除所有奇点,成为能从邮局出发最后返回邮局的一笔画.在距离最近的两个奇点间添加一条连线,如左下图中虚线所示,共添加4 条连线,这4 条连线表示要重复走的路,显然,这样重复走的路程最短,全程30千米.走法参考右下图(走法不唯一).【答案】30千米。