机械原理第二章 自由度
机械原理习题及解答
第二章习题及解答2-1 如题图2-1所示为一小型冲床,试绘制其机构运动简图,并计算机构自由度。
(a)(b)题图2-1解:1)分析该小型冲床由菱形构件1、滑块2、拨叉3和圆盘4、连杆5、冲头6等构件组成,其中菱形构件1为原动件,绕固定点A作定轴转动,通过铰链B与滑块2联接,滑块2与拨叉3构成移动副,拨叉3与圆盘4固定在一起为同一个构件且绕C轴转动,圆盘通过铰链与连杆5联接,连杆带动冲头6做往复运动实现冲裁运动。
2)绘制机构运动简图选定比例尺后绘制机构运动简图如图(b)所示。
3)自由度计算其中n=5,P L=7, P H=0,F=3n-2P L-P H=3×5-2×7=1故该机构具有确定的运动。
2-2 如题图2-2所示为一齿轮齿条式活塞泵,试绘制其机构运动简图,并计算机构自由度。
(a)(b)题图2-2解:1)分析该活塞泵由飞轮曲柄1、连杆2、扇形齿轮3、齿条活塞4等构件组成,其中飞轮曲柄1为原动件,绕固定点A作定轴转动,通过铰链B与连杆2联接,连杆2通过铰链与扇形齿轮3联接,扇形齿轮3通过高副接触驱动齿条活塞4作往复运动,活塞与机架之间构成移动副。
2) 绘制机构运动简图选定比例尺后绘制机构运动简图如图(b)所示。
3)自由度计算其中n=4,P L=5, P H=1F=3n-2P L-P H=3×4-2×5-1=1故该机构具有确定的运动。
2-3 如图2-3所示为一简易冲床的初步设计方案,设计者的意图是电动机通过一级齿轮1和2减速后带动凸轮3旋转,然后通过摆杆4带动冲头实现上下往复冲压运动。
试根据机构自由度分析该方案的合理性,并提出修改后的新方案。
题图2-3解:1)分析2)绘制其机构运动简图(图2-3 b)选定比例尺后绘制机构运动简图如图(b )所示。
3)计算机构自由度并分析其是否能实现设计意图由图b 可知,45200l h n p p p F ''===== 故3(2)34(2520)00l h F n p p p F ''=-+--=⨯-⨯+--=因此,此简易冲床根本不能运动,需增加机构的自由度。
机械原理第2章习题及解答
第二章习题及解答2-1 如题图2-1所示为一小型冲床,试绘制其机构运动简图,并计算机构自由度。
(a)(b)题图2-1解:1)分析该小型冲床由菱形构件1、滑块2、拨叉3和圆盘4、连杆5、冲头6等构件组成,其中菱形构件1为原动件,绕固定点A作定轴转动,通过铰链B与滑块2联接,滑块2与拨叉3构成移动副,拨叉3与圆盘4固定在一起为同一个构件且绕C轴转动,圆盘通过铰链与连杆5联接,连杆带动冲头6做往复运动实现冲裁运动。
2)绘制机构运动简图选定比例尺后绘制机构运动简图如图(b)所示。
3)自由度计算其中n=5,P L=7, P H=0,F=3n-2P L-P H=3×5-2×7=1故该机构具有确定的运动。
2-2 如题图2-2所示为一齿轮齿条式活塞泵,试绘制其机构运动简图,并计算机构自由度。
(a)(b)题图2-2解:1)分析该活塞泵由飞轮曲柄1、连杆2、扇形齿轮3、齿条活塞4等构件组成,其中飞轮曲柄1为原动件,绕固定点A作定轴转动,通过铰链B与连杆2联接,连杆2通过铰链与扇形齿轮3联接,扇形齿轮3通过高副接触驱动齿条活塞4作往复运动,活塞与机架之间构成移动副。
2) 绘制机构运动简图选定比例尺后绘制机构运动简图如图(b)所示。
3)自由度计算其中n=4,P L=5, P H=1F=3n-2P L-P H=3×4-2×5-1=1故该机构具有确定的运动。
2-3 如图2-3所示为一简易冲床的初步设计方案,设计者的意图是电动机通过一级齿轮1和2减速后带动凸轮3旋转,然后通过摆杆4带动冲头实现上下往复冲压运动。
试根据机构自由度分析该方案的合理性,并提出修改后的新方案。
题图2-3解:1)分析2)绘制其机构运动简图(图2-3 b)选定比例尺后绘制机构运动简图如图(b )所示。
3)计算机构自由度并分析其是否能实现设计意图由图b 可知,45200l h n p p p F ''===== 故3(2)34(2520)00l h F n p p p F ''=-+--=⨯-⨯+--=因此,此简易冲床根本不能运动,需增加机构的自由度。
《机械原理自由度》课件
机械故障诊断
通过运动分析诊断机械故障的原因 和位置。
控制系统设计
利用运动分析结果设计控制系统的 参数和策略。
机构运动分析的实例
平面四杆机构的运动分析
01
通过解析法计算平面四杆机构的自由度,并分析其运动特性。
凸轮机构的运动分析
02
利用实验法测量凸轮机构的位移、速度和加速度,分析其运动
规律。
机器人臂关节的运动分析
03
通过数值法模拟机器人臂关节的运动行为,优化关节的设计参
数。
04
机构动力学分析
机构动力学的基本概念
机构动力学是研究机 械系统中机构运动及 其与力的关系的学科 。
机构动力学的基本概 念包括力、力矩、加 速度、速度和位移等 。
它涉及到系统的平衡 、运动规律、动态响 应等方面的内容。
机构动力学分析的Байду номын сангаас法
空间机构自由度计算
总结词
空间机构自由度计算是机械原理中一个复杂的概念,它涉及到机构在空间中的 运动自由度数。
详细描述
空间机构的自由度计算公式为F=6n-(3PL + Ph),其中n为活动构件数,PL为低 副数,Ph为高副数。与平面机构不同,空间机构需要考虑三个方向的自由度, 因此计算更为复杂。
特殊机构自由度计算
通过建立平面连杆机构的运动学和动力学模型,分析其运动规律 和动态响应。
凸轮机构的动力学分析
研究凸轮机构的动态行为,包括从动件的运动规律和受力情况等。
齿轮机构的动力学分析
分析齿轮机构的动态特性,如振动、冲击和噪声等,以提高齿轮传 动的平稳性和可靠性。
05
机构优化设计
机构优化设计的目标和方法
目标
【课程思政优秀案例】《机械原理》:机构自由度的计算
课程思政优秀案例——《机械原理》:机构自由度的计算一、课程和案例的基本情况课程名称:机械原理授课对象:机械类专业大二本科生课程性质:专业核心必修课课程简介:机械原理是机械类专业必修课,以机构设计和分析为主线,培养学生具有一定的机械系统运动方案创新设计能力,教学内容涵盖机构组成理论、运动学、动力学及各种常用机构的设计方法等机构和机器的共性问题,具有较强的综合性和工程实践性,在学生整个学习过程中起着承上启下和培养学生创新思维、综合设计能力及工程实践能力的重要作用。
结合我校人才培养定位及机械类专业特色,机械原理课程不断强化以学生为中心的顶层设计和教学实施,针对课程重点难点,精心设计课堂学习、研究性学习、实验学习和综合性课程实践等教学环节,通过科教融合、资源建设、教学模式改革、课赛结合等,从不同维度提升课程的高阶性、创新性和挑战度,培养学生的创新意识、辩证思维、现代工具应用能力、综合设计能力和解决复杂工程问题能力,并通过学生形成性考核评价和课程质量评价促进课程持续改进。
与此同时,深入挖掘课程育人功能,提出“四融合一示范”课程思政建设思路,将教书育人贯穿于课程教学及实践活动全过程,强化学生在智能制造强国战略中的责任意识和使命担当,实现价值塑造、知识传授和能力培养同向同行。
案例简介:机构结构分析是机构运动分析、力分析和机构设计的基础,是机械系统方案设计和机构创新设计的重要环节。
本案例的教学内容为“机构自由度的计算”,是机构结构分析一章的重点,具体包括“机构具有确定运动的条件、机构自由度的计算和计算平面机构自由度时应注意的事项”,机构自由度计算结果正确与否,直接影响机构运动的可能性和确定性判断,进而影响机构设计方案可行性的评价。
本讲的学习目标:知识传授:①理解平面机构自由度计算公式及其内涵;②准确识别并正确处理机构中的复合铰链、局部自由度和虚约束;③正确运用自由度计算公式计算机构的自由度,并判断其是否具有确定的运动。
机械原理第二章2-1
2 1
3 1 4
2
4
3
2. 机构
机构:若将运动链的一个构件固定为机架
时,运动链便成为机构。
构件的分类
机构中的构件可分为三大类: (1)机架 机构中固定不动的构件。 一个机构只有一个机架。 (2)原动件(主动件) 机构中按给定的已知运动规律独立运动的构件。 (3)从动件 机构中除原动件外的其余活动构件。 当确定原动件后,其余从动件随之作 确定的运动。
•根据运动副引入的约束数 •根据构成运动副的两构件之间的相对运动 •根据构成运动副的两构件之间的接触情况 •根据构成运动副的两构件的接触部分几何形状
运动副分类
根据运动副引入的约束数,运动副分为五级 I级副: 引入1个约束的运动副 Ⅱ级副:引入2个约束的运动副 Ⅲ级副:引入3个约束的运动副 Ⅳ级副:引入4个约束的运动副 Ⅴ级副:引入5个约束的运动副
圆柱副(cylindric pair)
球销副(sphere-pin pair)
环运动副(looping pair)
二、运动链(Kinematic Chain)和机构
1.运动链(Kinematic Chain)
2.机构
1.运动链(Kinematic Chain) 运动链
用运动副将两个或两个以上的构件连接 而成的系统称为运动链。
1 2 3 4
3
2 1
如果机构中有一个或多个高 副,则称此机构为高副机构。
机构
平面机构中的所有运动副一定是平面运动副, 但是只包含平面运动副的机构也可能是空间机构。
例如:
万向联轴节是空 间机构,该机构 只包含转动副 (平面运动副)
三、平面机构运动简图
1.机构运动简图的定义和目的 2.机构运动简图的作用 3.运动副和构件的表示方法 4.绘制机构运动简图的步骤
机械原理典型例题第二章机构分析
C 复合铰链
B
E' E F
G
A
D
虚约束 局部自由度
F=3×7+2×9-1=2
F=原动件个数 有确定的运动
23
2-18:图示一内燃机的机构运动简图,试计算其自由 度。当分别以构件AB和EG为原动件时,试对该机构 进行结构分析。
D D CC
B
Ⅱ级杆组
A
E
E
Ⅰ级杆组
F
F
G
Ⅱ级杆组
HH Ⅱ级杆组
F=3×7+2×10=1 (1)AB为原动件: 该机构为Ⅱ级机构 。
1.选择题:
6)平面机构中自由度数目最多为 A 个。 A.一个 B.两个 C.三个
7)平面机构中若引入一个高副将带入 A 个约束。 A.一个 B.两个 C.三个
8)平面机构中若引入一个低副将带入 B 个约束。 A.一个 B.两个 C.三个
9) 图 C 所示构件系统是不能运动的。
14
2.判断题:
1) 运动链能够成为机构的条件是,运动链相对于机 架的自由度大于零,且等于原动件的数目。 Y
G H
C D
I
解:
C处为复合铰链, m=3;
E
B G处为局部自由度;有一个
虚约束。
F A
I处有一个高副虚约束。
机构ABCDEF为平行四边形机 构,构件EF及引入的约束为虚 约束。
机构自由度F
n=6, Pl=7, Ph=2
F=3n-2Pl- Ph
=3×6-2×7-2
=2
5
例5:图示凸轮驱动式四缸活塞空气压缩机的机构运动简图, 计算其自由度。凸轮1为原动件,当其转动时,分别推动装于 四个活塞上的ABCD处的滚子,使活塞在相应的汽缸内往复运 动。连杆长度AB=BC=CD=AD。
机械原理典型例题(第二章机构分析)10-13
ω
1 2 3
解: 机构的自由度, 机构的自由度, n = 4, pl = 6, ph = 0 F = 3n - 2 pl - ph = 3×4-2×6-0 × - × - =0 F<机构原动件数 < 不能运动。 不能运动。 修改: 修改: 增加机构自由度的 方法是: 方法是:在机构的 适当位置添加一个 活动构件和一个低 副或者用一个高副 代替原来机构中的 一个低副。 一个低副。
例9:图示牛头刨机构设计方案图。设计者的意图是动力由曲 :图示牛头刨机构设计方案图。 输入, 使摆动导杆3做往复摆动 柄1输入,通过滑块 使摆动导杆 做往复摆动,并带动滑枕 输入 通过滑块2使摆动导杆 做往复摆动,并带动滑枕4 往返移动以达到刨削的目的。 往返移动以达到刨削的目的。试分析此方案有无结构组成原理 上的错误,若有,请说明原因并修改。 作业:补充修改方案) 上的错误,若有,请说明原因并修改。(作业:补充修改方案)
计算图示机构的自由度,并进行机构组成分析, 例8: 计算图示机构的自由度,并进行机构组成分析, 确定杆组和机构的级别。 确定杆组和机构的级别。
2
1 1 3 33 4 4
7
4
5 5
6
2 1
不同的原动件, 不同的原动件,组成机构的杆 组与级别不相同。 组与级别不相同。
解: 计算机构的自由度 A处为复合铰链,则 处为复合铰链, 处为复合铰链 n = 6, pl = 8, ph = 0 F = 3n - 2 pl - ph = 3×6-2×8-0 =2 × - × - 机构的组成 ① 以构件1、2为原动件: 以构件 、 为原动件: 为原动件 6-5为Ⅱ级杆组;3-4为Ⅱ级杆组 为 级杆组; 为 机构为Ⅱ级机构。 机构为Ⅱ级机构。 以构件2、 为原动件 为原动件: 以构件 、6为原动件: 1-3-4-5为Ⅲ级杆组,机构为Ⅲ 为 级杆组,机构为Ⅲ 级机构。 级机构。 以构件1、 为原动件 为原动件: 以构件 、6为原动件: 4-5为Ⅱ级杆组;2-3为Ⅱ级杆组 为 级杆组; 为 机构为Ⅱ级机构。 机构为Ⅱ级机构。
机械原理自由度怎么算
机械原理自由度怎么算
机械系统的自由度是指系统中独立运动的最小数目,通常用f
表示。
机械系统的自由度与其构成的零件数目以及约束条件有关。
对于一个机械系统来说,其自由度f可以通过以下公式计算:
f = 3n - c
其中n表示系统中的运动副数目,c表示系统中的约束条件数目。
运动副是指机械系统中能够实现相对运动的连接件,例如铰链、滑动副、滚动副等。
约束条件是指机械系统中对运动副相对位置或相对运动有限制的表达式,例如固定约束、转动约束、滑动约束等。
在计算自由度时,需要注意的是:
1. 运动副可以是可动的或固定的,但是必须与其他连接件相对运动。
2. 约束条件可以是人为设定的,也可以是由物理条件决定的。
3. 运动副和约束条件的数目可以包括整个系统中的所有连接件,包括外部连接件。
通过计算机械系统的自由度,可以帮助我们理解系统的运动特性和设计过程中的限制条件,从而更好地进行机械设计和分析。
机械原理(第二章 自由度)
§2-5 机构自由度的计算
1.平面机构自由度的计算
(1)计算公式
F=3n-(2pl+ph)
式中:n为机构的活动构件数目;
pl 为机构的低副数目;
ph为机构的高副数目。
3
(2)举例
1)铰链四杆机构
F=3n-(2pl+ph)
=3×3-2×4 =1
3
2)铰链五杆机构
F=3n-(2pl+ph)
4
=3×4-2×5 =2
虚约束的作用: ①改善构件的受力情况,如多个行星轮。 ②增加机构的刚度,如轴与轴承、机床导轨。 ③使机构运动顺利,避免运动不确定,如车轮。
计算图示包装机送纸机构的自由度。
分析: 活 动 构 件 数 n : 复合铰链: 2个低副 局部自由度 2个 虚约束: 1处
E
4 D7
F5G
96 IJ 8
H
B2 C3
轴孔连接(接
触平面)
滑块与导轨联
接(接触平面)
两齿轮轮齿啮 合(齿廓曲面)
运动副元素—两个构件参加接触而构成运动副的表面
面接触的运动副称为低副,
2
转动副 (回转副或铰链)
1
移动副
点接触或线接触的运动副称为高副。
3.平面构件的自由度
当没有约束时,构件作平面运动具有三个自由 度:即可以沿x轴和y轴方向移动,以及绕垂直于 运动平面xOy转动。
2 1
4
2
1 5
3)内燃机机构
F=3n-(2pl+ph) =3×6-2×7 =1
10 C 11
8 ,9 3
7D B
18
4 A1
§2-6 计算平面机构自由度时应注意的事项
1.要正确计算运动副的数目 (1)复合铰链 由m个构件组成的复合铰链,共有(m-1)个转动副。
机械原理习题及解答
机械原理习题及解答 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】第二章习题及解答2-1 如题图2-1所示为一小型冲床,试绘制其机构运动简图,并计算机构自由度。
(a)(b)题图2-1解:1)分析该小型冲床由菱形构件1、滑块2、拨叉3和圆盘4、连杆5、冲头6等构件组成,其中菱形构件1为原动件,绕固定点A作定轴转动,通过铰链B与滑块2联接,滑块2与拨叉3构成移动副,拨叉3与圆盘4固定在一起为同一个构件且绕C轴转动,圆盘通过铰链与连杆5联接,连杆带动冲头6做往复运动实现冲裁运动。
2)绘制机构运动简图选定比例尺后绘制机构运动简图如图(b)所示。
3)自由度计算其中 n=5,P L=7, P H=0,F=3n-2P L-P H=3×5-2×7=1故该机构具有确定的运动。
2-2 如题图2-2所示为一齿轮齿条式活塞泵,试绘制其机构运动简图,并计算机构自由度。
(a)(b)题图2-2解:1)分析该活塞泵由飞轮曲柄1、连杆2、扇形齿轮3、齿条活塞4等构件组成,其中飞轮曲柄1为原动件,绕固定点A作定轴转动,通过铰链B与连杆2联接,连杆2通过铰链与扇形齿轮3联接,扇形齿轮3通过高副接触驱动齿条活塞4作往复运动,活塞与机架之间构成移动副。
2) 绘制机构运动简图选定比例尺后绘制机构运动简图如图(b)所示。
3)自由度计算其中 n=4,P L=5, P H=1F=3n-2P L-P H=3×4-2×5-1=1故该机构具有确定的运动。
2-3 如图2-3所示为一简易冲床的初步设计方案,设计者的意图是电动机通过一级齿轮1和2减速后带动凸轮3旋转,然后通过摆杆4带动冲头实现上下往复冲压运动。
试根据机构自由度分析该方案的合理性,并提出修改后的新方案。
题图2-3解:1)分析2)绘制其机构运动简图(图2-3 b)选定比例尺后绘制机构运动简图如图(b)所示。
3)计算机构自由度并分析其是否能实现设计意图由图b 可知,45200l h n p p p F ''=====故3(2)34(2520)00l h F n p p p F ''=-+--=⨯-⨯+--=因此,此简易冲床根本不能运动,需增加机构的自由度。
机械原理自由度
用F表示,即
F3n2P LP H
1.3.2 机构具有确定相对运动的条件
机构具有确定相对运动的条件: 机构的自由度等于原动件个数。
原动件活 塞,自由 度为1。 将直线运 动变位往 复摆动。
1.3.3 计算平面机构自由度的注意事项
1.复合铰链Biblioteka 1、运动副:两个构件直接接触形成的可动联接。
2、运动副元素:两构件构成运动副时直接接触的点、 线、面部分。
自由度和约束
自由度:构件具有的独立运动的数目 (确定构件位置的独立参变量的数目
约束:对独立运动所加的限制
3、运动副分类: (1)按运动副的接触形式分为低幅和高副 低幅:面与面接触的运动副;接触面压强较低。
以用来表示机构的运动情况,而且还可以根据机构简图
对机构进行运动分析和受力分析,它是一种用简单线条
和符号表示机构的工程图形语言。应表明:机构的种
类,构件的数目及相互传动的路线,运动副的种类、数
目。没有严格按比例绘制的简图称为机构示意图。
• 用途:分析现有机械,构思设计新机械。
运动副与构件的表示方法
1. 构件的种类
处都是3个构件汇交成的 复合铰链,各有二个回转
副,故PL=10。
F 3 n 2 P L P H 3 7 2 1 1 0
F与机构原动件个数相等。因此,当原动件8转动时,圆盘中心 E将确定地沿直线EE’移动。
2.局部自由度
机构中某些构件所具有的自由度仅与其自身的局部运 动有关,并不影响其它构件的运动,则称该自由度为局部 自由度。
得机构
1.4 机构的组成原理和结构分析 1.4.1 平面机构的高副低代
根据一定条件对机构中的高副以低副代替, 称为高副低代。
机械原理-第2章机构的结构分析(机构的组成原理和机构类型综合1-1
y
x
I级副 II级副 III级副
(3)运动副的分类
1)按引入的约束数分有:I级副、II级副、III级副、IV级 副、V级副。 提供4个约束条件的,称为Ⅳ级副,提供5个约束条 件的,称为Ⅴ级副。
z
y x
IV级副
V级副-1 V级副-2 V级副-3
(3)运动副的分类
2)按运动副接触形式分有
低副:面接触的运动副;
3.机构示意图
不按精确比例绘制的机构简图。 机构运动简图符号已经有国家标准,该标准对运 动副、构件及各种机构的表示符号作了规定,下表为 构件与部分机构的表示方法。
4.表示构件的符号
固 定 构 构 件
件 同 一 构 件
4.表示构件的符号
双 构 副
件 三 副
常用机构运动 简 图 符 号
机构的真实运动仅与机构中的运动副的机构情况
3 2
作者:潘存云教授
1 4
偏心真空泵的运动简图
例
绘制图示牛头刨床机构的运动简图
1 机架
2.3 齿轮
4 滑块
5 导杆
6 连杆
7 刨头
解: (1)从主动件开始,按运动 传动顺序,分析各构件之间相对 运动性质,并确定联接各构件的 运动副类型。 (2)合理选择视图。本题选 择与各回转轴线垂直的平面作为 视图平面。 (3)合理选择长度比例尺 (m/mm),绘制机构运动简图。
机构的组成:机构=机架+原动件+从动件
1个 1个或几个 若干
5.绘制机构运动简图的步骤
①分析机构中原动件与运动 传递路线,构件的数目,相 邻构件之间的运动副类型与 数目; ②选视图平面(选与运动平面 平行的平面),测量各运动副 之间的尺寸,绘制示意图; ③确定各运动副之间的相对位 置,选取适当比例尺,画出相 应的运动副符号,用构件符号 将各运动副连接起来。
自由度计算机械原理
利用深度学习技术对复杂机械系统进行自由度预测,实现智 能化分析。
自由度计算在复杂系统中的应用
航空航天领域
对飞行器、卫星等复杂机械系统 的自由度进行精确计算,优化设 计。
机器人领域
对机器人关节、连杆等自由度进 行计算,提高机器人的运动性能 和稳定性。
自由度计算的理论研究与实际应用的结合
机构综合
基于自由度的机构综合方法
01
通过设定机构的自由度要求,可以综合出满足特定运动要求的
机构结构。
机构创新设计
02
利用自由度计算,可以探索新的机构形式,实现更高效、更复
杂的运动功能。
机构优化设计
03
基于自由度计算,可以对现有机构进行优化设计,提高其性能
或降低制造成本。
机构优化
机构尺寸优化
机构运动性能优化
学正解。
运动学逆解
通过自由度计算,确定机器人在 给定的末端执行器位置和姿态下 的关节角度,即求解机器人的运
动学逆解。
雅可比矩阵
基于自由度计算,构建描述机器 人末端执行器速度与关节速度之 间关系的雅可比矩阵,用于机器
人的速度和加速度分析。
机器人动力学分析
动力学正解
基于自由度计算,确定机器人在给定关节力和力矩作用下的末端执 行器加速度、速度和位置变化,即求解机器人的动力学正解。
03 自由度计算在机械设计中 的应用
机构分析
机构自由度计算
通过计算机构的自由度,可以确 定机构在空间中的运动能力,从 而评估其是否能实现特定的运动
要求。
机构运动分析
通过自由度计算,可以分析机构的 运动特性,包括运动范围、速度、 加速度等,为后续的机构设计提供 依据。
机械原理 课件 §2-5 机构自由度计算
机构的自由度F :相对参考系的独立运动的数目
F=6
F=3 3 F=3
2
y
F=0
机架
O
1
x
平面上的自由构件有三个自由度
未联接
x, y, z
.
机构自由度计算
用转动副与机架连接后剩一个自由度
n=2 pl=3 ph =0
平面低副引入2个约束 平面高副引入1个约束
y
F=2 F=4 F=1 F=3 机构自由度计算公式 F=3n - (2pl + ph ) 活动构件数:n 低副数: pl 高副数: ph
自由度计算注意事项
n=9 pl =11 ph =3 F’=2 p’=1
点划线
作业:2-16 (a)(b)(c)
.
平面机构的组成原理
研究低副机构
F=3n - 2pl
F=1
平面机构的组成原理
n=5 pl =7 F=1
n=2 pl =3 F=0
基本杆组:不可再分的自由度为0的用运动副连接的构件系统 机构由基本杆组联接于原动件和机架上而构成 n=2 , pl =3 F=3n - 2pl =0 n=3 , 无解 n=4 , pl =6 ……
3 1
n=3 pl =3 ph =1 F=2? n=7 pl =6? ph =0 F=9?
2
3 2 1
pl =10
F=1
.
3、虚约束 运动副引入了重复的约束
两构件之间存在多个 *导路互相平行的移动副 *轴线重合的转动副 *法线重合的高副 *不影响机构运动传递的重复部分
自由度计算注意事项
算 一 个 移 动 副
.
例
例:手动冲床 F=3*2-(2*3+0)=0
机械原理考试重点总结
则该构件上其他任一点的速度便可利用速度影像
与构件图形相似的原理整理求课件出。
23
π b’c’e’ -加速度多边形, π -加速度极点
加速度多边形的特性:
①联接π点和任一点的向量代表该点在
2
机构图中同名点的绝对加速 度,指向 B
为π →该点。
w1
1 a1
E
②联接任意两点的向量代表该两点 A
在机构图中同名点的相对加速度,
指 向 与 加 速 度 的 下 标 相 反 。 如 c’b’
代表aBC而不aCB ,常用相对切向加 速度来求构件的角加速度。
C 3 D
p
c’’’
④极点π代表机构中所有加速度为零
的点。
c’
用途:根据相似性原理由两点的
加速度求任意点的加速度。
c’’
整理课件
b’’ b’
24
第三章
平面连杆机构及其设计
• 主要内容 • 1 平面连杆机构的基本形式及演化 • 2 曲柄存在的条件 • 3 机构设计
整理课件
14
高副低代的几种特例
接触轮廓之 一为直线
O1 (b)
O1
(c)
整理课件
返回 15
第二章 平面机构的运动分析
主要内容: 1)速度瞬心法 2)图解法求解速度和加速度
整理课件
16
一、速度瞬心法
1 速度瞬心:两作相对运动的刚体,其相 对速度为零的重合点。
绝对瞬心:两构件其一是固定的
1
相对瞬心:两构件都是运动的
3
P12
2
P34 4
1
整理课件
18
二、速度瞬心法在机构速度分析上的应用
1 铰链四杆机构
机械原理(第二章自由度培训课件
机械系统中的自由度数等于系统 中独立构件的数目乘以每个构件 的自由度。
自由度在机械系统中的作用
确定机械系统的运动状态
自由度数决定了机械系统的运动状态,即系统能够完成的运动类型和数量。
判断机构的运动性质
通过计算自由度,可以判断机构是否具有确定的运动性质,即是否能够实现预 定的运动轨迹。
计算自由度的方法
详细描述
在机械设计阶段,通过绘制机构运动简图可以初步评估 机构的运动性能和自由度,为后续的设计优化提供依据 。在机构分析阶段,机构运动简图可用于研究机构的运 动规律、动态特性和稳定性等。在机械制造阶段,机构 运动简图可以用于指导生产装配和调试,确保机构的正 常运转。此外,机构运动简图还可以用于教学和培训, 帮助学生和工程师更好地理解机构的运动原理和工作方 式。
机械原理在工程实践中具有广泛 的应用价值,对于推动机械工程 领域的发展和技术进步具有重要
意义。
机械原理的发展历程
古代机械原理
古代人类在制造工具和机械时就开始积累机械知识,如轮子、杠杆、斜面等简单机械的发 明和应用。
工业革命时期的机械原理
随着工业革命的兴起,人们对机械系统的需求不断增加,促进了机械原理的发展。蒸汽机 、内燃机等复杂机械系统的出现和应用推动了机械工程领域的进步。
若要增加机构的自由度,可以通过增加活动构件数、减少低 副数或减少高副数来实现。
05 空间机构的自由度计算
空间机构自由度的计算公式
自由度的定义
自由度是指机构在空间中独立运动的 数量,用于描述机构在空间中的运动 状态。
计算公式的应用
通过将机构的构件数、运动副数和局 部自由度代入公式,即可求出机构的 自由度。
计算每个独立构件的自由度
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例如:
轴与轴承
滑块与导轨
凸轮与尖顶的接触
两轮齿接触
运动副的分类 1)按其接触形式分
高副: 点或线接触的运动副
低副: 面接触的运动副
转动副(回转副或铰链) 移动副 2)按其相对运动形式分 螺旋副 球面副 3)按其引入的约束数目分: Ⅰ级副、 Ⅱ级副、 ……Ⅴ级副。 运动副还可分为平面运动副与空间运动副两类。
机械原理
第二章 机构的组成原理和结构分析 §2-1 机构的组成要素
§2-2 平面机构运动简图
§2-3 平面机构的自由度 §2-4 平面机构中的高副低代 §2-5 平面机构的组成原理和结构分析
§2-1 机构的组成要素
构件和运动副是组成机构的两个基本要素。 一、构件 构件 是机器中的一个独立运动单元体. 机构的构件分为: 机 架 ——机构中的固定构件。 原动件 ——按给定已知运动规律独立运动的 构件; 其上常标有表示运动形式的箭头。 从动件 ——机构中其余活动构件。 其运动规律决定于原动件的运动规律和机构的结构及 构件的尺寸。 任何机构中,必有一个机架,有一个或几个原动件,若干个从 动件。 二、运动副 (1)运动副的定义和分类 运动副 是两构件直接接触而构成的可动联接; 各种常用运动副模型
(3)选适当比例尺,作出各运动副的相对位置,再画出各运 动副和机构的符号,最后用简单线条连接,即得机构运动简图。 举例: 内燃机机构运动简图绘制 颚式破碎机机构运动简图绘制
§2-3 平面机构的自由度
机构的自由度是机构具有确定运动时所必须给定的独立运动 参数的数目,用F表示。 一、 平面机构的自由度计算公式 一个作平面运动的自由构件具有 3个自由度 一个平面机构由N个构件组成 , 活动构件数n=N-1
含有虚约束的平行四边形机构
F =3×3-2×4 - 0 =1
椭圆仪
2. 两构件形成多个运动副 (1)多个移动副,且移动方向彼此平行或重合; (2)多个转动副,且转动轴线重合; (3)多个平面高副,且各接触点处的公法线彼此重合。
两个移动副
多个转动副
两个公法线重合的高副
两个公法线不重合的高副
注意:若两构件在多处接触而构成平面高副,但各接触点处的公 法线方向并不彼此重合,则为复合高副,相当于一个低副(移动 副或转动副)。
三、运动链与机构 1、运动链 构件通过运动副连接而构成的相对可动的系统。 闭式运动链 (简称闭链):常用 开式运动链 (简称开链):用于多自由度的机械系统中。 2 4 2 2 3 3 3
3
4
1
1
5
4
1
4
2
平面闭式运动链
空间闭式运动链
1
平面开式运动链
空间开式运动链
2、机构
具有固定构件的运动链称为机构。
则平面机构的自由度计算公式为:
F=3n-2PL - PH
式中,n为机构的活动构件数目;
PL 为机构的低副数目; PH为机构的高副数目。
(2-1)
二、 自由度的意义及机构具有确定运动的条件 (1)自由度计算举例 1)三角架 F=3n-2PL- PH =3×2-2×3 -0 =0
2)铰链四杆机构
F= 3n-2PL- PH =3×3-2×4 - 0 =1 3)铰链五杆机构 F= 3n-2PL- PH =3×4-2×5 - 0 =2
机构常分为平面机构和空间机构 两类,其中平面机构应用最为广泛。
2 3 4 1原动件
机架 平面铰链四杆机构 机架 从动件 原动件
2 3
从动件
1
4
空间铰链四杆机构
§2-2 平面机构运动简图
在对现有机械进行分析或设计新机器时,都需要绘出其机构 运动简图。 1.机构运动简图 用简单的线条代表构件,用规定的符号表示运动副,并按一 定比例绘制的表示机构中各构件间相对运动关系的简单图形称为 机构运动简图。 机构示意图 不严格按比例绘出的,只表示机械结构状况的 简图。 2.机构运动简图的绘制 (一)运动副符号 运动副常用规定的简单符号来表达(GB4460-84)。 常用运动副的符号表
复合铰链
F=3n-2PL - PH
= 3×2-2×2 -1 =1
(三)虚约束 虚约束是指机构中某些运动副或运动副与构件的组合带入的 对机构运动起重复约束作用的约束。计算自由度时,应去掉。 虚约束出现在下列情况中: 1. 轨迹重合 在机构中,如果用转动副或移动副连接的是两个构件上运动轨迹 相重合的点,该连接将带入1个虚约束。 例1 平行四边形机构 构件3 和构件2上的F点轨迹重合,因此 构件3和两个转动副E、F 引入一个虚约 束。 例2 椭圆仪机构 图中,∠CAD=90°,BC=BD=BA。 构件2 和构件3上的C点轨迹重合 ,引入一个虚约束。
(二)构件的表示方法(表2-2)
凸轮、滚子要画出全部轮廓
一对相互啮合的齿轮:用点划线或细实线画出两个齿轮的节圆
(三)常用机构运动简图的图形符号(表2-3 )
(四)机构运动简图的绘制方法及步骤 (1)搞清机械的构造及运动情况,沿着运动传递路线,查明 组成机构的构件数目、运动副的类别及其位置;
(2)选定视图平面;
(2)运动副的约束 构件具有的独立运动数目称为构件的自由度。 一个作平面运动的自由构件具有3个自由度。 当两个构件用运动副联接后,其相对运动受到限制,引入了约 束 。约束数=自由度减少的数目
1个自由度
1个自由度
2个自由度
一个平面低副具有1个自由度,即引入2个约束;一个平面高副具 有2个自由度,即引入1个约束。
给定1个原动件的铰链四杆机构 给定2个原动件的铰链五杆机构
给定2个原动件的铰链四杆机构
给定1个原动件的铰链五杆机构
结论: 机构具有确定运动的条件是:机构原动件数目应等于机构的自 由度的数目F。 如果原动件数<F, 则机构的运动不确定; 如果原动件数>F, 则会导致机构最薄弱环节的损坏。 例 计算右图内燃机机构的自由度 F=3n-2PL - PH
8 ,9 3 7 D B 18 4 A 1 10 C 11
=3×6 -2×7 - 3 =1
三、 计算平面机构自由度时应注意的事项
(一)复合铰链:在同一点形成两个以上的 转动副
m个构件汇集,共有(m-1)个运动副。 (二)局部自由度 局部自由度 是指机构中某些构件所产生的不影响其他构件运 动的局部运动带来的自由度,在计算自由度是,可预先去掉。 例 滚子推杆盘形凸轮机构 解 滚子绕其轴线的转动为一个局部自由度, 故凸轮机构的自由度为