12.2.1 全等三角形的判定.2.1全等三角形的判定教案
12.2三角形全等的判定(第1课时)-教学设计
教学重点
教学难点
探索三角形全等的条件。
二、教学流程安排
序号 活动流程图 活动内容和目的 回顾全等三角形的一些概念,承上启下。通过创设问题 情境,吸引学生的注意力,唤起学生的好奇心,激发学生 兴趣和主动学习的欲望,营造一个让学生主动思考、探 索的氛围。 通过动手操作、自主探索、相互交流,从而获得新知, 增强了动手能力, 明确判定三角形全等需要的三个条件。
5.如图,已知∠AOB,求作: AO B ,使 AO B =∠AOB.
三、课堂训练 1.如图,已知 AC=FE、BC=DE,点 A、D、B、F 在一条直线上, AD=FB. 要用 “边边边” 证明△ABC≌△FDE, 除了已知中的 AC=FE, BC=DE 以外,还应该有什么条件?怎样才能得到这个条件?
学生归纳本节课的收获。
通过归纳、 比较, 学 生系统的掌握所学 知识。
五、作业设计 1.教材习题 12.2 第 1 题; 教师设计作业,使学生巩固深 化本节知识 (1)如图所示,在△ABC 中,AB=AC,BE=CE,则由“SSS” 2.补充作业: 可以判定( ) A.△ABD≌△ACD C.△ABE≌△ACE B.△BDE≌△CDE D.以上都不对 巩固所学知识, 形成 一定的数学能力
A
教师引导学生说出证明过程, 同时板书.
体验数学在生活中 应用的广泛性. 检测学生对知识的 掌握情况及应用能 力, 初步体验成功的 喜悦. 规范证明题的书写 过程. 通过学习已知角的 画法, 拓展 “边边边” 公理 的应用。
B
D
C
学生讨论尺规作图,作一个角 等于已知角的依据是什么? 学生分组学习作图法。
(2)已知:如图,AC=BD,AD=BC,求证:∠D=∠C.
人教版第十二章 《全等三角形》教案——最新版
人教版第十二章《全等三角形》教案——最新版【教案】人教版第十二章《全等三角形》一、教学目标1. 理解全等三角形的定义,掌握全等三角形的判定条件。
2. 掌握全等三角形的性质,能够运用全等三角形的性质解决相关问题。
3. 进一步培养学生的逻辑推理能力和问题解决能力。
4. 培养学生的合作学习能力和自主学习能力。
二、教学内容1. 全等三角形的定义和判定条件。
2. 全等三角形的性质及应用。
3. 全等三角形的证明。
三、教学重点1. 全等三角形的定义和判定条件的掌握与运用。
2. 全等三角形的性质及应用的掌握与应用。
3. 全等三角形的证明方法的理解和运用。
四、教学难点1. 全等三角形的性质及应用的理解和运用。
2. 全等三角形的证明方法的理解和运用。
五、教学准备1. 教材、教辅资料。
2. 教学工具:黑板、彩色粉笔、计算器等。
六、教学过程教学活动一:导入(10分钟)1. 教师布置学生自学任务,让学生自行阅读教材第十二章的内容,并思考下列问题:如何判断两个三角形是否全等?全等三角形有哪些性质?应用在哪些问题中?2. 学生自学后,教师组织讨论,学生分享自己的思考结果。
教学活动二:概念讲解(25分钟)1. 教师利用黑板与彩色粉笔,进行全等三角形定义的讲解。
重点强调全等三角形的相等对应关系。
2. 讲解全等三角形的判定条件,包括SSS、SAS、ASA和AAS。
3. 教师通过举例说明判定条件的运用方法,让学生在实际操作中理解和掌握。
教学活动三:性质与应用(50分钟)1. 教师引导学生讨论全等三角形的性质,如边长相等、角度相等、对边相等等,通过实际问题分析和解决,培养学生的问题解决能力。
2. 教师提供相关应用题,要求学生利用全等三角形的性质解决问题,并与同桌合作讨论。
教师带领学生进行展示和讨论,指导学生发现问题的解决方法,并帮助学生纠正错误。
3. 学生合作完成教材练习册上的练习题,巩固全等三角形的性质与应用。
教学活动四:证明全等三角形(45分钟)1. 教师介绍全等三角形的证明方法,包括利用全等判定条件进行证明和利用全等三角形的性质进行证明。
12.2.2三角形全等的判定-SAS(教案)
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“SAS全等判定在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解SAS全等判定的基本概念。SAS即“边角边”,当两个三角形中有两边和它们夹的角相等时,这两个三角形全等。这个判定方法是几何中非常重要的一部分,它帮助我们解决了很多实际问题。
2.案例分析:接下来,我们来看一个具体的案例。通过这个案例,我们将看到SAS在实际中的应用,以及它如何帮助我们解决问题。
-举例解释:
-例如,给出两个三角形,其中一个三角形的两边和夹角与另一个三角形的部分元素相等,但不满足SAS条件,如只有两边相等。此时,教师需引导学生识别这种情况并不满足SAS判定,不能直接得出全等的结论。
-在解决实际问题时,教师可以指导学生先识别出已知的SAS条件,再进行判定。如在一个多边形内,已知两条边和一个角,教师需引导学生如何找出第三条边,以形成SAS条件。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《三角形全等的判定-SAS》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断两个三角形是否完全相同的情况?”比如,在拼接图形或制作模型时,我们需要确认两个三角形的尺寸和形状是否一致。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索三角形全等的奥秘。
三角形全等判定的教案
画法:1画线段bc=4
2分别以a、b为圆心,以2和3为半径作弧,交于点c。则△abc即为所求的三角形
把你画的三角形与其同桌所画的三角形剪下来,进行比较,它们能否互相重合?
归纳:有三边对应相等的两个三角形全等.
可以简写成“边边边”或“ sss ”用数学语言表述:
在△abc和△ def中
∴ △≌△ def(sss)
(二)新课讲解:
问题1:如图:在△abc和△def中,ab=de,bc=ef,ac=df, ∠a=
∠d, ∠b=∠e, ∠c=∠f,则△abc和△def全等吗?
问题2: △abc和△def全等是不是一定要满足
ab=de,bc=ef,ac=df, ∠a=∠d, ∠b=∠e, ∠c=∠f这六个条
件呢?若满足这六个条件中的一个、两个或三个条件,这两个三角
满足三个条件有几种情形呢?
3.给出三个条件
三个条件可分为:三条边相等、三个角相等、两角一边相等、两边一
角相等
例:画△abc,使ab=2,ac=3,bc=4
画法:1画线段bc=42分别以a、b为圆心,以2和3为半径作弧,交于点c。
则△abc即为所求的三角形
把你画的三角形与其同桌所画的三角形剪下来,进行比较,它们能否
1、如图,d、f是线段bc上的两点,
ab=ec,af=ed,要使△abf≌△ecd,还需要条件
2、已知:b、e、c、f在同一直线上, ab=de,ac=df a
并且be=cf,
求证: △ abc≌ △ def
小结:1、本节所讲主要内容为利用“边边边”证明两个三角形全等。
2证明三角形全等的书写步骤。3证明三角形be全等应注意的问题。
我们知道如果两个三角形的对应边、对应角都相等,那么这两个三角形全等。判定两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?
最新人教版八年级上册第12章《全等三角形》全章教案(共8份)
一、课前导学:(学生自学课本31-32页内容,并完成下列问题)(一)全等有关定义: 1、能够______________的两个图形叫做全等形, 能够______________的两个三角形叫做全等三角形,两个全等图形的______和_____ 完全相同.2、一个图形经过平移、______、_________后所得的图形与原图形全等.3、把两个全等的三角形重合在一起,重合的顶点叫做 ,重合的边叫做 ,重合的角叫做 .“全等”用“ ”表示,读作 .4.若△ABC 与△DEF 全等,记作:_________________,(对应顶点的字母写在对应位置上)对应顶点有:点___和点___,点___和点___,点___和点___;对应角有:____和____,_____和_____,_____和_____; 对应边有:____和____,______和____,_____和_____.(二)全等三角形的性质:1.思考:全等三角形的对应边、对应角有什么关系?为什么?2.归纳:全等三角形的_________;全等三角形的___________.3.几何语言描述:∵△ABC ≌ △DEF (已知)∴ AB=DE,_____ ,______ (全等三角形的对应边相等) ∠ A=∠ D, _______ ,________ (________________ ) (三)找全等三角形的对应元素1. 若△ABC ≌△DBC , 2 若△ABC ≌△CDA ,对应边是_____________ , 对应边是_____________ ,对应角是_____________ ; 对应角是_____________ ;教 学 过 程 设 计B C E F A B CDBAB C E F【思考】:找全等三角形的对应元素时有什么规律呢?二、合作、交流、展示:(一) 交流展示1:找全等三角形对应元素1.如图,△OCA ≌△OBD ,C 和B ,A 和D 是对应顶点, 2.如图,△ABN ≌△ACM ,∠B和∠C 是对应角,AB 与AC 是对应边.写出这两个三角形中的对应边和对应角. 写出其他对应边及对应角.【归纳】:寻找全等三角形的对应元素的一般规律.(二).交流展示2: 全等三角形性质及其应用1.如图△EFG ≌△NMH,∠F 和∠M 是对应角.在△EFG 中,FG 是最长边. 在△NMH 中,MH 是最长边.EF=2.1㎝,EH=1.1㎝,HN=3.3㎝. (1)写出其他对应边及对应角.(2)求线段MN 及线段HG 的长.2.如图,△ABC ≌△DEC,CA 和CD,CB 和CE 是对应边.∠ACD 和∠BCE 相等吗?为什么?三、巩固与应用1. 课本第33页第3题;2. 课本第34页第6题;3. 如图,若△ABC ≌△DEF ,回答下列问题:(1)若△ABC 的周长为17 cm ,BC=6 cm ,DE=5 cm ,则DF = cm ; (2)若∠A =50°,∠E=75°,则∠ACB= 度.四、小结:1.知识: 2.思想方法: 五、作业:《作业本》第8页. 六、课后反思:N M CB ANMGH FEDCBEAF EDCB A DC B O一、课前导学:(学生自学课本35-37页内容,并完成下列问题)1.三角形全等条件的探究:两个三角形满足三边分别相等,三个角分别相等,则这两个三角形全等. 思考:判定两个三角形全等是否一定要六个条件?条件能否尽可能少呢?(动手画一画并回答下列问题) (1).只给一个条件:一组对应边相等(或一组对应角相等),•画出的两个三角形一定全等吗? (2).给出两个条件画三角形,有____种情形.按下面给出的两个条件,画出的两个三角形一定全等吗?①一组对应边相等和一组对应角相等 ②两组对应边相等 ③两组对应角相等 (3)、给出三个条件画三角形,有____种情形.按下面给出三个条件,画出的两个三角形一定全等吗?①三组对应角相等②三组对应边相等(按课本35页探究2画图实验)2.归纳三角形全等判定方法(1)归纳:三边对应相等的两个三角形 ,简写为“ ”或“ ”. 用数学语言表述: 在△ABC 和'''A B C ∆中,∵''AB A B AC BC =⎧⎪=⎨⎪=⎩∴△ABC ≌ ( )教 学 过 程 设 计C 'B 'A 'C B AAB O3.运用“边边边”证明两个三角形全等:已知:如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架. 求证:△ABD ≌△ACD .证明:∵D 是BC∴ =∴在△ 和△ 中 AB= BD= AD=∴△ABD △ACD( )【温馨提示】:证明的书写步骤:①准备条件:证全等时需要用的间接条件要先证好;②证明三角形全等过程三步骤:A 、写出在哪两个三角形中,B 、摆出三个条件用大括号括起来,C 、写出全等结论. 二、合作、交流、展示:1.如图,点B 、E 、C 、F 在同一直线上,且AB=DE ,AC=DF ,BE=CF ,请将下面说明ΔABC ≌ΔDEF 的过程和理由补充完整. 解:∵BE=CF (_____________) ∴BE+EC=CF+EC 即BC=EF在ΔABC 和ΔDEF 中 AB=________ (________________)__________=DF (_______________) BC=__________∴ΔABC ≌ΔDEF (_____________)变式1:你能证明∠ A=∠ D 吗? 变式2;请你能提出几个要证明的结论?2.如图,已知AB=DE ,BC=EF ,AF=DC ,求证: EF ∥BC .3.已知:∠AOB. 求作:∠A ′O ′B ′ ,使∠A ′O ′B ′=∠AOB. 作法:1)以点___为圆心,任意长为半径画弧,分别交OA ,____于点C ,D ; 2)画一条射线O ′A ′,以点___为圆心,___长为半径画弧,交__于点C ′; 3)以点C ′为圆心,____长为半径画弧,与第2步中所画的弧交于点D ′; 4)过点D ′画射线O ′B ′,则∠A ′O ′B ′=∠AOB. 三、巩固与应用:课本第37页第1、2题;四、小结:1.全等判定方法: 2.证明全等格式: 3.思想方法: 五、作业:《作业本》第9页. 六、课后反思:A B C D EF A B D EFC 'B 'A 'C B A一、课前导学:(学生自学课本37-39页内容,并完成下列问题) 1. 探究新知 探究一:两边和它们的夹角对应相等的两个三角形是否全等? (1)动手试一试(请在右方空白处作图) 已知:△ABC求作:'''A B C ∆,使''A B AB =,''A C AC =,'A A ∠=∠ 作法:①画∠DA ’E=∠A ;②在射线AD ’上截取A ’B ’=AB,在射线A ’E 上截取A ’C ’=AC ; ③连接B ’C ’.(2) 把△'''A B C 剪下来放到△ABC 上,观察△'''A B C 与△ABC 是否能够完重合? (3)归纳;由上面的画图和实验可以得出全等三角形判定(二):两边和它们的夹角对应相等的两个三角形 (可以简写成“ ”或“ ”) (4)用数学语言表述全等三角形判定(二) 在△ABC 和'''A B C ∆中,''AB A B B BC =⎧⎪∠=⎨⎪=⎩∴△ABC ≌ ( )2.探究二:两边及其一边的对角对应相等的两个三角形是否全等?通过画图或实验可以得出: 3 .运用“边角边”证明两个三角形全等:教 学 过 程 设 计证明:在△ABC 和△DEC 中,⎪⎩⎪⎨⎧==∠=CB CA 1 ∴ △ABC ≌ ( )∴ AB= . 【温馨提示】:证明的书写步骤:①准备条件:证全等时需要用的间接条件要先证好;②证明三角形全等过程三步骤:A 、写出在哪两个三角形中,B 、摆出三个条件用大括号括起来(按边-角—边)C 、写出全等结论.二、合作、交流、展示:1.如图1,已知AD ∥BC ,AD =CB ,求证:△ABC ≌△CDA 。
人教版数学八年级上册12.2三角形全等的判定(边角边判定三角形全等)教学设计
在讲授新知的环节,我会按照以下步骤进行:
1.定义讲解:向学生介绍全等三角形的定义,强调在大小和形状上完全相同的两个三角形叫作全等三角形。
2. SAS判定方法:讲解边角边(SAS)判定全等三角形的方法,即两个三角形中有两边和夹角分别相等,则这两个三角形全等。
3.示例演示:通过教具或动态软件,演示SAS判定全等三角形的实际操作过程,让学生更直观地理解判定方法。
1.对SAS判定条件的深入理解,特别是在不同图形和实际问题中的应用。
2.学生在证明过程中,如何运用SAS条件进行严密的逻辑推理。
3.学生在识别全等三角形时,容易忽略隐含的条件,导致判断错误。
(三)教学设想
1.创设情境,引入新课
-通过生活中的实际例子,如拼接图形、建筑设计等,引出全等三角形的概念,激发学生的学习兴趣。
4.性质归纳:引导学生通过观察和思考,总结全等三角形的性质,如全等三角形的对应边、对应角相等。
(三)学生小组讨论,500字
在学生小组讨论环节,我将组织学生进行以下活动:
1.分组讨论:将学生分成若干小组,让每个小组共同探讨SAS判定方法的原理和应用。
2.互问互答:小组成员之间相互提问,解答对方关于SAS判定方法的疑问,共同提高。
人教版数学八年级上册12.2三角形全等的判定(边角边判定三角形全等)教学设计
一、教学目标
(一)知识与技能
1.理解三角形等的定义,掌握边角边(SAS)判定三角形全等的方法。
2.能够运用SAS判定方法,解决实际问题时正确识别和运用全等三角形的性质。
3.能够运用尺规作图,通过SAS条件作出全等三角形,并能够证明所作的三角形与给定三角形全等。
2.提高题:设计一些综合性的题目,让学生在解决实际问题时,运用SAS判定方法。
第十二章全等三角形12.1全等三角形教案
在实践活动和小组讨论环节,我发现学生们在讨论全等三角形在实际生活中的应用时,思路不够开阔。为此,我计划在下一节课提前准备一些与全等三角形相关的实际问题,引导学生从不同角度去思考和探讨。
二、核心素养目标
1.培养学生的逻辑推理能力:通过全等三角形的定义、性质及判定方法的探讨,使学生掌握严密的逻辑推理过程,提高几何证明能力。
2.培养学生的空间想象能力:运用全等三角形的知识解决实际问题,激发学生对几何图形的空间想象,增强几何直观感知。
3.提升学生的数据分析能力:在解决实际问题时,指导学生分析数据,运用全等三角形的判定方法,培养学生从几何角度分析问题的能力。
3.全等三角形的证明:指导学生运用已知条件和全等三角形的判定方法,进行严密的逻辑推理,证明两个三角形全等。
4.实际应用:结合生活实际,让学生运用全等三角形的性质和判定方法解决一些几何问题,提高学生解决问题的能力。
5.练习题:设计具有代表性的练习题,巩固学生对全等三角形知识的掌握,提高学生的几何解题技巧。
3.重点难点解析:在讲授过程中,我会特别强调全等三角形的判定方法和性质这两个重点。对于难点部分,如判定方法的选择,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与全等三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过折叠、剪裁等操作,演示全等三角形的基本原理。
五、教学反思
今天在讲授全等三角形这一章节时,我发现学生们对全等三角形的定义和判定方法掌握得还不错,但在实际应用上,他们似乎还有一些困难。我意识到,可能需要在以下几个方面进行改进:
12.2三角形全等的判定SAS(教案)
1.理论介绍:首先,我们要了解SAS全等判定的基本概念。SAS是指两个三角形中有两边和它们之间的夹角分别相等,那么这两个三角形全等。它是解决几何问题的重要工具,帮助我们确定两个三角形的完全一致性。
2.案例分析:接下来,我们来看一个具体的案例。假设在两个三角形中,我们已知两边长度相等,以及它们之间的夹角也相等,通过SAS判定,我们可以确定这两个三角形是全等的。
2.掌握运用SAS判定两个三角形全等的具体步骤。
3.能够运用直尺和圆规作出符合条件的全等三角形。
4.解决实际问题,如运用SAS判定方法判断两个三角形是否全等,并解释其在现实生活中的应用。
5.通过例题和练习,加深对SAS判定全等三角形方法的理解,培养几何逻辑思维和解决问题的能力。
二、核心素养目标
本节课的核心素养目标旨在培养学生以下能力:
-掌握SAS全等判定的步骤:学生应学会如何通过以下步骤应用SAS判定全等:a)确认两个三角形中有两边相等;b)确认这两边的夹角相等;c)确认第三边也相等。
-应用SAS全等判定解决具体问题:学生应能够将SAS全等判定应用于解决实际几何问题,如计算未知长度或角度等。
-举例解释:如在三角形ABC和三角形DEF中,若AB=DE,AC=DF,且∠BAC=∠EDF,则根据SAS全等判定,三角形ABC和三角形DEF全等。
3.重点难点解析:在讲授过程中,我会特别强调SAS判定中“边角边”的顺序和角的定位。对于难点部分,我会通过举例和比较来帮助大家理解,例如,讲解为何SSA不能判定全等,而SAS可以。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三角形全等判定相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。学生们用直尺和圆规尝试作出符合SAS全等条件的两个三角形。
第十二章-全等三角形-教案
初中数学导学案初中数学导学案学习例题:例1:找对应边,对应角⑴ 已知:△ ABC^A DBC DCB =、、D(2)>C已知:△ ABC^AAB^Z CD例2、已知:△ ABE^A DCF AB与DC是对应边,上〈A与/ D是对应角.BE=8,EF=3.(1) 求: CE AV --------------B 7=*(2)求证:AB// DCyC D巩固新知练习:课本P33复习巩固:1、2、找对应边和对应角分别是哪些。
1、全等用符号表示,读作:2、判断题(1)全等三角形的对应角相等,对应边相等。
( )(2)全等三角形的周长相等,面积也相等。
( )(3)周长相等的三角形是全等三角形。
( )达(4)面积相等的三角形是全等三角形。
( )标3、课本P33页3、4题训4、已知:(1)、△ ABE^A ACD (2)已知: △ACF^A练找出对应边,对应角•A*XBCA B CD小结1、(交流归纳)今天我们学了哪些内容:提2、谈谈本节课的收获:升教学反思初中数学导学案初中数学导学案初中数学导学案教学反思巩固新知练习:课本P41页练习第1、2题•••△ ADC BOD ()•••△ ADC BOD (3、如图,AB 丄BC,AD 丄DC,/ 仁/2。
求证AB = AD。
4、如图,要测量河两岸相对的两点A, B的距离,可以在AB的垂线BF上取两点C, D,使BC=CD再定出BF的垂线DE使A, C,E在一条直线上,这时测得DE的长就是AB的长。
为什么?1、区分ASA和AAS AS 两角一夹边对应相等;AA两角及其中一角的对边对应相等,两种方法可以相互转化.3、证明属于两个三角形的线段相等或角相等的问题,常通过证明这两个三角形全等来解决例2、如图,/ ACB M DBC / A=Z D.求证:AC=DB.达标训练1、如图,某同学把一块三角形的玻璃打碎成了3块, 现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是 ___________A、带①去B、带②去C、带③去 D 带①②③去2、如图,应填什么就有「/ A= / B (已知)J _____________ (已知)/ C= / D (已知)△ AOC 也△ BODA= / B (已知)(CA=DB (已知小结提升)C E初中数学导学案教学反思1、在Rt△ ABC和Rt△ DEF中,/ ACB=/ DFE=90。
12.2.1三角形全等的判定sss及教学反思
12.2.1三角形全等的判定sss及教学反思•相关推荐12.2.1三角形全等的判定(sss)及教学反思12.2.1三角形全等的判定(SSS)西河九年制学校郭欢教学目标1.了解三角形的稳定性,会应用“边边边”判定两个三角形全等.2.经历探索“边边边”判定全等三角形的过程,解决简单的问题.3.培养有条理的思考和表达能力,形成良好的合作意识.重、难点与关键1.重点:掌握“边边边”判定两个三角形全等的方法.2.难点:理解证明的基本过程,学会综合分析法.3.关键:掌握图形特征,寻找适合条件的两个三角形.教具准备一块形状如图1所示的硬纸片,直尺,圆规.(1) (2)教学方法采用“操作──实验”的教学方法,让学生亲自动手,形成直观形象.教学过程一、设疑求解,操作感知【教师活动】(出示教具)问题提出:一块三角形的玻璃损坏后,只剩下如图2所示的残片,•你对图中的残片作哪些测量,就可以割取符合规格的三角形玻璃,与同伴交流.【学生活动】观察,思考,回答教师的问题.方法如下:可以将图1•的玻璃碎片放在一块纸板上,然后用直尺和铅笔或水笔画出一块完整的三角形.如图2,•剪下模板就可去割玻璃了.【理论认知】如果ABCA′B′C′,那么它们的对应边相等,对应角相等.•反之,•如果ABC与A′B′C′满足三条边对应相等,三个角对应相等,即AB=A′B′,BC=B′C′,CA=C′A′,∠A=∠A′,∠B=∠B′,∠C=∠C′.这六个条件,就能保证ABCA′B′C′,从刚才的实践我们可以发现:•只要两个三角形三条对应边相等,就可以保证这两块三角形全等.信不信?【作图验证】(用直尺和圆规)先任意画出一个ABC,再画一个A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA.把画出的A′B′C′剪下来,放在ABC上,它们能完全重合吗?(即全等吗)【学生活动】拿出直尺和圆规按上面的要求作图,并验证.(如课本图11.2-2所示)画一个A′B′C′,使A′B′=AB′,A′C′=AC,B′C′=BC:1.画线段取B′C′=BC;2.分别以B′、C′为圆心,线段AB、AC为半径画弧,两弧交于点A′;3.连接线段A′B′、A′C′.【教师活动】巡视、指导,引入课题:“上述的生活实例和尺规作图的结果反映了什么规律?”【学生活动】在思考、实践的基础上可以归纳出下面判定两个三角形全等的定理.(1)判定方法:三边对应相等的两个三角形全等(简写成“边边边”或“SSS”).(2)判断两个三角形全等的推理过程,叫做证明三角形全等.【评析】通过学生全过程的画图、观察、比较、交流等,逐步探索出最后的结论──边边边,在这个过程中,学生不仅得到了两个三角形全等的条件,同时增强了数学体验.二、范例点击,应用所学【例1】如课本图11.2─3所示,ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的.支架,求证ABDACD.(教师板书)【教师活动】分析例1,分析:要证明ABDACD,可看这两个三角形的三条边是否对应相等.证明:D是BC的中点,∴BD=CD在ABD和ACD中∴ABDACD(SSS).【评析】符号“”表示“因为”,“∴”表示“所以”;从例1可以看出,•证明是由题设(已知)出发,经过一步步的推理,最后推出结论(求证)正确的过程.书写中注意对应顶点要写在同一个位置上,哪个三角形先写,哪个三角形的边就先写.三、实践应用,合作学习【问题思考】已知AC=FE,BC=DE,点A、D、B、F在直线上,AD=FB(如图所示),要用“边边边”证明ABCFDE,除了已知中的AC=FE,BC=DE以外,还应该有什么条件?怎样才能得到这个条件?【教师活动】提出问题,巡视、引导学生,并请学生说说自己的想法.【学生活动】先独立思考后,再发言:“还应该有AB=FD,只要AD=FB两边都加上DB即可得到AB=FD.”【教学形式】先独立思考,再合作交流,师生互动.四、随堂练习,巩固深化课本练习.【探研时空】如图所示,AB=DF,AC=DE,BE=CF,BC与EF相等吗?•你能找到一对全等三角形吗?说明你的理由.(BC=EF,ABCDFE)五、课堂总结,发展潜能1.全等三角形性质是什么?2.正确地判断出全等三角形的对应边、对应角,•利用全等三角形处理问题的基础,你是怎样掌握判断对应边、对应角的方法?3.“边边边”判定法告诉我们什么呢?•(答:只要一个三角形三边长度确定了,则这个三角形的形状大小就完全确定了,这就是三角形的稳定性)六、布置作业,专题突破1.习题11.2第1,2题.2.选做课时作业设计.教学反思:首先,本节课重点关注:“一个条件”、“两个条件”包括的情形,以及不能形成的原因,先让学生自行探索,关键时刻老师再加以引导并利用多媒体演示。
12.2三角形全等的判定-一线三等角全等模型(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与“一线三等角”全等模型相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用直尺和量角器来构造满足“一线三等角”条件的三角形,并验证它们的全等关系。
3.能够运用“一线三等角”全等模型解决实际问题,如几何图形的拼接、角度的求解等。
二、核心素养目标
本节课的核心素养目标旨在培养学生以下能力:
1.增强空间观念:通过“一线三等角”全等模型的探究,使学生能够把握图形的空间特征,提高空间想象力和直观感知能力。
2.提升逻辑推理能力:在学习SSA判定方法的过程中,培养学生严谨的逻辑思维,让学生学会从特殊到一般、从具体到抽象的分析和解决问题。
- SSA判定方法的应用:重点讲解在已知一边和两个角(其中一个为非夹角)的情况下,如何判定两个三角形全等,并强调在应用时需要注意角的对应关系。
-实际问题的解决:将全等知识应用于解决实际问题,如测量、建筑、艺术等领域的问题。
举例:在讲解“一线三等角”全等模型时,可以给出以下例题进行强调:
问题:在直线MN上,有∠AMN=∠BPN=∠CQO=90°,AB=BC,证明△ABC全等于△PQN。
其次,实践活动中的分组讨论环节,我发现有些学生参与度不高,可能是由于主题难度较大或者他们对讨论的主题不够感兴趣。针对这个问题,我计划在下次的活动中,提供更多元化的讨论主题,或者引入一些竞争机制,以提高学生的参与度和积极性。
在学生小组讨论环节,我发现很多学生能够提出有见地的观点,但他们的表达和逻辑推理能力还有待提高。在接下来的教学中,我将更加注重培养学生的表达能力和逻辑思维,通过提问和引导,帮助他们更好地组织语言和思考。
三角形全等的判定教案 三角形全等的判定教学设计
三角形全等的判定教案三角形全等的判定教学设计角形全等的判定教案三角形全等的判定教学设计篇一目标:1、知识目标:(1)掌握已知三边画三角形的方法;(2)掌握边边边公理,能用边边边公理证明两个三角形全等;(3)会添加较明显的辅助线。
2、能力目标:(1)通过尺规作图使学生得到技能的训练;(2)通过公理的初步应用,初步培养学生的逻辑推理能力。
3、情感目标:(1)在公理的形成过程中渗透:实验、观察、归纳;(2)通过变式训练,培养学生“举一反三”的学习习惯。
重点:sss公理、灵活地应用学过的各种判定方法判定三角形全等。
难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中较适当的方法判定两个三角形全等。
用具:直尺,微机方法:自学辅导过程:1、新课引入投影显示问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你较少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?这个问题让学生议论后回答,他们的答案或许只是一种感觉。
于是要引导学生,抓住问题的本质:三角形的三个元素――三条边。
2、公理的获得问:通过上面问题的分析,满足什么条件的两个三角形全等?让学生粗略地概括出边边边的公理。
然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。
(这里用尺规画图法)公理:有三边对应相等的两个三角形全等。
应用格式:(略)强调说明:(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。
(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)(3)、此公理与前面学过的公理区别与联系(4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。
在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。
12.2.1全等三角形的判定(SSS,SAS,ASA,AAS)20160724
E C
A 练习:如图,点 D 在 AB 上,点 E 在 AC 上,BA =AC, ∠B =∠C,BE、CD 相交于点 O.求证:OB=OC D B 练习:如图,CD⊥AB 于 D,BE⊥AC 与 E, BE、CD 交于 O,且 AO 平分∠BAC,求证:OB=OC D O B 六、全等三角形的判定方法 简称 边边边 边角边 角边角 角角边 缩写 SSS SAS ASA AAS 具体条件 三边对应相等 两边和它们的夹角对应相等 两角和它们的夹边对应相等 两角和其中一角的对边对应相等 A O E C
A 练习:如图:己知 AD∥BC,AE=CF,AD=BC,E、F都在直线AC来自,试说明DE∥ D A BF。
B
E
F
C B 五、全等三角形的判定方法(ASA,AAS) 1. 两角和它们的夹边对应相等的两个三角形全等。简写为“角边角”或“ASA” 。 2. 两角和其中一角的对边对应相等的两个三角形全等。简写为“角角边”或“AAS”。
E A D
B
C
H
B
四、全等三角形的判定方法(SAS) 1. 用尺规作图,两边和它们的夹角对应相等的两个三角形,发现它们是能够完全重合(全 等)的。 2. 两边和它们的夹角对应相等的两个三角形全等。简写为“边角边”或“SAS” 练习:如图,AC=BD,∠CAB=∠DBA,你能判断 BC=AD 吗?说明理由。 C D
12.2 三角形全等的判定 复习 1. 全等三角形的定义:能够完全重合的两个三角形是全等三角形。 2. 全等三角形的性质:全等三角形对应边相等,对应角相等。 3. 因为△ABC≌△A’B’C’, 所以 AB=A’B’, BC=B’ C’, AC=A’ C’ ∠A=∠A’, ∠B=∠B’, ∠C=∠C’ 一、全等三角形的判定方法 1. 首先可以肯定的是,三条边对应相等,三个角对应相等的两个三角形全等。 2. 然后至少需要几个条件才能判定两三角形全等。 二、全等三角形的判定方法(SSS) 1. 用尺规作图,画两个三边相等的三角形,发现它们是能够完全重合(全等)的。 2. 三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。 三、证明三角形全等的书写格式 例题:如图已知 AB=CD,AC=DB,求证△ABC≌△DCB 证明:∵在△ABC 和△DCB 中 A AB=CD 已知 AC=DB 已知 BC=BC 公共边 B
12.2.1三角形全等的判定SSS
结论:三条边对应相等的两个三角形全等。
出示探究2,先任意画出一个△A'B'C',使A'B'=AB,B'C'=BC,C'A'=CA,把画好的△A'B'C'剪下,放到△ABC上,它们全等吗? 上述结论反映了什么规律?
结论:三边对应相等的两个三角形全等(可以简写成“边边边”或“sss”)。
【设计意图】:通过对问题的讨论、分析及交流加深学生对三角形全等的判定(sss)的理解。
(三)、学以致用,强化新知
例1 如图△ABC是一个钢架,AB=AC,AD是连接
点A与BC中点D的支架,求证△ABD≌△ACD。
作图:已知∠AOB
求作:∠A′O′B′,
使∠A′O′B′=∠AOB
【设计意图】:检测学生对知识的掌握情况及应用能力,让学生初步体验成功的喜悦,同时也明确一下书写过程。
以及对作图工具的使用。
(四)巩固练习,深化拓展
1、已知:如图,AB=AD,BC=CD,求证:△ABC≌△ADC
D
C
B
A。
《全等三角形的判定》教案
《全等三角形的判定》教案教案:全等三角形的判定一、教学目标1.知识与技能目标:a.了解全等三角形的定义和判定条件;b.熟练掌握全等三角形的判定方法;c.能够应用全等三角形的判定方法解决问题。
2.过程与方法目标:a.培养学生观察、分析和推理的能力;b.引导学生合作学习,培养团队合作意识;c.通过实例分析,培养学生解决问题的能力。
3.情感态度与价值观目标:a.培养学生对几何学的兴趣和喜爱;b.培养学生合作学习的意识;c.提高学生观察和分析问题的能力。
二、教学重点1.全等三角形的定义与判定条件;2.全等三角形的判定方法。
三、教学难点全等三角形判定方法的应用。
四、教学过程1.导入(10分钟)a.几何学中,我们经常需要判断两个三角形是否全等。
你们对全等三角形有什么了解吗?b.利用画板或幻灯片展示几个几何图形,让学生观察并判断哪些三角形是全等的。
2.新知讲解(15分钟)a.定义全等三角形:具有相等三边或者有相等边和夹角的两个三角形。
b.判定条件:(1)SSS判定法:如果两个三角形的三条边分别相等,则两个三角形全等。
(2)SAS判定法:如果两个三角形的两条边和夹角分别相等,则两个三角形全等。
(3)ASA判定法:如果两个三角形的两个夹角和一条夹边分别相等,则两个三角形全等。
(4)AAS判定法:如果两个三角形的两个夹角和一条对边分别相等,则两个三角形全等。
3.团队合作学习(20分钟)a.将学生分为小组,每个小组选择一个判定法进行研究。
b.每个小组从教材中找出相应的例题并解答,然后互相讨论和交流结果。
4.问题解决(20分钟)a.每个小组选择一个难度适当的实际问题。
b.学生根据问题的要求,确定所需的条件和给出解决方法。
c.小组成员进行讨论和协作,共同解决问题,并将解决过程记录下来。
5.总结与展示(15分钟)a.每个小组派代表上台展示他们解决问题的方法和结果。
b.通过展示和总结,帮助学生巩固已学内容,包括全等三角形的定义、判定条件和判定方法。
12.2三角形全等的判定 教案
12.2 三角形全等的判定(1)教学目标①经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.②掌握三角形全等的“边边边”条件,了解三角形的稳定性.③通过对问题的共同探讨,培养学生的协作精神.教学难点三角形全等条件的探索过程.一、复习过程,引入新知多媒体显示,带领学生复习全等三角形的定义及其性质,从而得出结论:全等三角形三条边对应相等,三个角分别对应相等.反之,这六个元素分别相等,这样的两个三角形一定全等.二、创设情境,提出问题根据上面的结论,提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?组织学生进行讨论交流,经过学生逐步分析,各种情况逐渐明朗,进行交流予以汇总归纳.三、建立模型,探索发现出示探究1,先任意画一个△ABC,再画一个△A'B'C',使△ABC与△A'B'C',满足上述条件中的一个或两个.你画出的△A'B'C'与△ABC一定全等吗?让学生按照下面给出的条件作出三角形.(1)三角形的两个角分别是30°、50°.(2)三角形的两条边分别是4cm,6cm.(3)三角形的一个角为30°,—条边为3cm.再通过画一画,剪一剪,比一比的方式,得出结论:只给出一个或两个条件时,都不能保证所画出的三角形一定全等.出示探究2,先任意画出一个△A'B'C',使A'B'=AB,B'C'=BC,C'A'=CA,把画好的△A'B'C'剪下,放到△ABC上,它们全等吗?让学生充分交流后,在教师的引导下作出△A'B'C',并通过比较得出结论:三边对应相等的两个三角形全等.四、应用新知,体验成功实物演示:由三根木条钉成的一个三角形的框架,它的大小和形状是固定不变的.鼓励学生举出生活中的实例.给出例l,如下图△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D 的支架,求证△ABD≌△ACD.AB D让学生独立思考后口头表达理由,由教师板演推理过程.例2 如图是用圆规和直尺画已知角的平分线的示意图,作法如下:①以A 为圆心画弧,分别交角的两边于点B 和点C ;②分别以点B 、C 为圆心,相同长度为半径画两条弧,两弧交于点D ; ③画射线AD .AD 就是∠BAC 的平分线.你能说明该画法正确的理由吗?例3 如图四边形ABCD 中,AB =CD ,AD =BC ,你能把四边形ABCD 分成两个相互全等的三角形吗?你有几种方法?你能证明你的方法吗?试一试.五、巩固练习教科书第37页的思考及练习.六、反思小结回顾反思本节课对知识的研究探索过程、小结方法及结论,提炼数学思想,掌握数学规律.七、布置作业1.必做题:教科书第43页习题12.2中的第1、2题.2.选做题:教科书第44页第9题.12.2 三角形全等的判定(2)教学目标①经历探索三角形全等条件的过程,培养学生观察分析图形能力、动手能力. ②在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理.③通过对问题的共同探讨,培养学生的协作精神.教学难点指导学生分析问题,寻找判定三角形全等的条件.知识重点应用“边角边”证明两个三角形全等,进而得出线段或角相等.教学过程(师生活动)一、 创设情境,引入课题多媒体出示探究3:已知任意△ABC ,画△A'B'C',使A'B'=AB ,A'C'=AC ,∠A'=∠A .教帅点拨,学生边学边画图,再让学生把画好的△A'B'C',剪下放在△ABC 上,观察这两个三角形是否全等.二、交流对话,探求新知根据前面的操作,鼓励学生用自己的语言来总结规律:两边和它们的夹角对应相等的两个三角形全等.(SAS)补充强调:角必须是两条相等的对应边的夹角,边必须是夹相等角的两对AB C DA B C D E A BC D E F M边.三、 应用新知,体验成功出示例2,如图,有—池塘,要测池塘两端A 、B 的距离,可先在平地上取一个可以直接到达A 和B 的点C ,连接AC 并延长到D ,使CD =CA ,连接BC 并延长到E ,使CE =CB .连接DE ,那么量出DE 的长就是A 、B 的距离,为什么?让学生充分思考后,书写推理过程,并说明每一步的依据.(若学生不能顺利得到证明思路,教师也可作如下分析:要想证AB =DE ,只需证△ABC ≌△DEC△ABC 与△DEC 全等的条件现有……还需要……)明确证明分别属于两个三角形的线段相等或者角相等的问题,常常通过证明这两个三角形全等来解决.补充例题: 1、已知:如图AB=AC,AD=AE,∠BAC=∠DAE求证: △ABD ≌△ACE证明:∵∠BAC=∠DAE (已知)∠ BAC+ ∠ CAD= ∠DAE+ ∠ CAD ∴∠BAD=∠CAE在△ABD 与△ACE AB=AC (已知) ∠BAD= ∠CAE (已证)AD=AE (已知)∴△ABD ≌△ACE (SAS)思考:求证:1.BD=CE2. ∠B= ∠C3. ∠ADB= ∠AEC 变式1:已知:如图,AB ⊥AC,AD ⊥AE,AB=AC,AD=AE. 求证: ⑴ △DAC ≌△EAB1. BE=DC2. ∠B= ∠ C3. ∠ D= ∠ E4. BE ⊥CD四、再次探究,释解疑惑出示探究4,我们知道,两边和它们的夹角对应相等的两个三角形全等.由“两边及其中一边的对角对应相等”的条件能判定两个三角形全等吗?为什么?让学生模仿前面的探究方法,得出结论:两边及其中一边的对角对应相等的两个三角形不一定全等.教师演示:方法(一)教科书39页图12.2-7.方法(二)通过画图,让学生更直观地获得结论.五、巩固练习教科书第39页,练习(1)(2).六、小结提高1.判定三角形全等的方法;2.证明线段、角相等常见的方法有哪些?让学生自由表述,其他学生补充,让学生自己将知识系统化,以自己的方式进行建构.七、布置作业1.必做题:教科书第43页,习题12.2第3、4题.2.选做题:教科书第44页第10题.3.备选题:(1)小明做了一个如图所示的风筝,测得DE=DF,EH=FH,你能发现哪些结沦?并说明理由.(2)如图,∠1=∠2,AB=AD,AE=AC,求证BC=DE.12.2 三角形全等的判定(3)教学目标①探索并掌握两个三角形全等的条件:“ASA”“AAS”,并能应用它们判别两个三角形是否全等.②经历作图、比较、证明等探究过程,提高分析、作图、归纳、表达、逻辑推理等能力;并通过对知识方法的总结,培养反思的习惯,培养理性思维.③敢于面对教学活动中的困难,能通过合作交流解决遇到的困难.教学重点理解,掌握三角形全等的条件:“ASA”“AAS”.教学难点探究出“ASA”“AAS”以及它们的应用.教学过程(师生活动)创设情境复习:师:我们已经知道,三角形全等的判定条件有哪些?生:“SSS”“SAS”师:那除了这两个条件,满足另一些条件的两个三角形是否也可能全等呢?今天我们就来探究三角形全等的另一些条件。
12.2(1)全等三角形的判定“边边边”(教案)
一、教学内容
本节课选自教材第十二章第二节“全等三角形的判定”,主要聚焦于“边边边”(SSS)的全等判定方法。教学内容包括:
1.理解全等三角形的定义及性质。
2.掌握“边边边”(SSS)判定全等三角形的方法。
3.学会运用“边边边”(SSS)判定法解决实际问题。
3.重点难点解析:在讲授过程中,我会特别强调“对应边”的概念和“边边边”(SSS)判定法的应用这两个重点。对于难点部分,我会通过图形比较和实例讲解来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与“边边边”(SSS)全等判定相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的尺规作图实验操作。这个操作将演示如何通过“边边边”(SSS)判定法来证明两个三角形全等。
-在复杂的几何图形中,指导学生如何逐步分析,排除干扰信息,准确找到符合“边边边”(SSS)判定条件的三角形。
-对于实际问题,引导学生通过分析问题本质,提炼出几何模型,再运用全等三角形定理进行解答。例如,在解决等腰三角形面积问题时,引导学生先将问题转化为两个全等三角形的判定问题。
四、教学流程
(一)导入新课(用时5分钟)
五、教学反思
在今天的教学中,我发现学生们对“边边边”(SSS)全等判定定理的理解普遍较好,他们能够跟随我的讲解,逐步掌握这个几何概念。在导入新课的时候,通过日常生活中的实例引起学生的兴趣,这招果然奏效,大家的注意力很快被吸引到课堂上来。
在新课讲授环节,我采用了理论介绍和案例分析相结合的方式,让学生从抽象到具体,逐步领会“边边边”(SSS)判定定理的内涵。在讲解过程中,我特别注意强调“对应边”的概念,通过多次重复和实例演示,帮助学生突破了这一难点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形的判定
教学目标:
1知识目标:掌握“边边边”条件的内容,并能初步应用“边边边”条件判定两个三角形全等.
2能力目标:使学生经历探索三角形全等条件的过程,体会如何探索研究问题,并初步体会分类思想,提高学生分析问题和解决问题的能力.
3思想目标:通过画图、比较、验证,培养学生注重观察、善于思考、不断总结的良好思维习惯。
教学重点、难点:
重点:利用边边边证明两个三角形全等
难点:探究三角形全等的条件
学情分析:学生刚刚学过等腰三角形的性质,对等腰三角形已经有了一定的了解和认识。
初二学生在这个阶段逐渐在各方面开始成熟,思维深刻性有了明显提高,有着自己独特内心世界,有着独特认识问题和解决问题的思维方式。
他们现在需要用强烈的荣誉感、成功感来激发学习热情,目前学生们已初步形成合作交流、勇于探索、敢于置疑的良好学风,学生间相互评价、相互学习、相互竞争的学习氛围较浓。
教学过程
(一)复习提问
1、什么叫全等三角形?
2、全等三角形有什么性质?
3 、若△ABC≌△DEF,点A与点D,点B与点E是对应点,试写出其中相等的线段和角.
(二)新课讲解:
问题1:如图:在△ABC和△DEF中,AB=DE,BC=EF,AC=DF, ∠A=∠D, ∠B=∠E, ∠C=∠F,则△ABC和△DEF全等吗?
问题2:△ABC和△DEF全等是不是一定要满足AB=DE,BC=EF,AC=DF, ∠A=∠D, ∠B=∠E, ∠C=∠F这六个条件呢?若满足这六个条件中的一个、两个或三个条件,这两个三角形全等吗?
一个条件可分为:一组边相等和一组角相等
两个条件可分为:两个边相等、两个角相等、一组边一组角相等探究一:
1.只给一个条件(一组对应边相等或一组对应角相等)。
①只给一条边:
②只给一个角:
2.给出两个条件: ①一边一内角:
②两内角: ②
两
内
角
:
③两边:
问题3:
两个三角形若满足这六个条件中的三个条件能保证它们全等吗?满足三个条件有几种情形呢? 3.给出三个条件
三个条件可分为:三条边相等、三个角相等、两角一边相等、两边一
60°
60° 60°
30°
30°
30°
30° 30°
50°
50°
2cm
2cm
4cm
4cm
角相等
例:画△ABC,使AB=2,AC=3,BC=4
画法:1画线段BC=4
2分别以A、B为圆心,以2和3为半径作弧,交于点C。
则△ABC即为所求的三角形
把你画的三角形与其同桌所画的三角形剪下来,进行比较,它们能否互相重合?
归纳:有三边对应相等的两个三角形全等.
可以简写成“边边边”或“ SSS ”
用数学语言表述:
在△ABC和△DEF中
AB=DE
BC=EF
CA=FD
∴△ABC ≌△DEF(SSS)
(三)题例训练:
例1填空:
1、在下列推理中填写需要补充的条件,使结论成立:如图,在△AOB和△DOC中
AO=DO(已知)
______=________(已知)
BO=CO(已知)
∴ △AOB ≌△DOC (SSS )
2、如图,AB=CD ,AC=BD ,△ABC 理由。
解: △ABC ≌△DCB 理由如下:
在△ABC 和△DCB 中
AB = DC
AC = DB ——=——
∴△ABC ≌ ( )
例2. 如下图,△ABC 是一个刚架,AB=AC ,AD 是连接A 与BC 中点D 的支架。
求证:△ ABD ≌ △ ACD
证明:∵D 是BC 中点
BD=CD 在△ABD 和△ACD 中: AB=AC (已知) AD=AD (公共边) BD=CD (已证) ∴ △ABD ≌△ACD (SSS ) 证明的书写步骤:
A
D
B
①准备条件:证全等时把要用的条件要先证好; ②三角形全等书写步骤:
1写出在哪两个三角形中 2摆出三个条件用大括号括起来 3写出全等结论
例3:如图,在四边形ABCD 中 AB=CD ,AD=BC ,求证:∠A= ∠C 证明:在 △ABD 和△CDB 中
AB=CD (已知) AD=BC (已知) BD=DB (公共边)
∴ △ABD ≌△CDB (SSS )
∴ ∠A= ∠C (全等三角形的对应角相等) 练习:
1、如图,D 、F 是线段BC 上的两点, AB=EC ,AF=ED ,要使△ABF ≌△ECD , 还需要条件
2、已知:B 、E 、C 、F 在同一直线上, AB=DE,AC=DF
并且BE=CF,
求证: △ ABC ≌ △ DEF
小结:1、本节所讲主要内容为利用“边边边”证明两个三角形全等。
F
E
D
C
B
A
2证明三角形全等的书写步骤。
3证明三角形全等应注意的问题。
作业
1、教材第103页习题13、2第⑴、⑵、⑼三题
2、思考题:已知如图,AC=AD,BC=BD
求证:∠C=∠D。