实际问题与一元一次不等式组 (3)

合集下载

一元一次不等式应用题3

一元一次不等式应用题3

一元一次不等式应用题(3)一、解答题1、随着生活水平的逐步提高,某单位的私家小轿车越来越多,为确保有序停车,单位决定筹集资金维修和新建一批停车棚.该单位共有42辆小轿车,准备维修和新建的停车棚共有(1)求y与x之间的函数关系(2)满足要求的方案有几种?(3)为确保工程顺利完成,单位最少需要出资多少万元2、为创建丹阳生态城市,实现城市生活垃圾减量化、资源化、无害化的目标,我市决定在全市部分社区试点实施生活垃圾分类处理. 某街道计划建造垃圾初级处理点20个,解决垃(1)满足条件的建造方案共有几种?写出解答过程.(2)通过计算判断,哪种建造方案最省钱,最少需要多少万元.3、随着人们节能环保意识的增强,绿色交通工具越来越受到人们的青睐,电动摩托成为人们首选的交通工具,某商场计划用不超过140000元购进A、B两种不同品牌的电动摩托40辆,预计这批电动摩托全部销售后可获得不少于29000元的利润,A、B两种品牌电动摩托的进价和售价如下表所示:设该商场计划进A品牌电动摩托x辆,两种品牌电动摩托全部销售后可获利润y元.⑴写出y与x之间的函数关系式;⑵该商场购进A品牌电动摩托多少辆时?获利最大,最大利润是多少?4、某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x千克,两种饮料的成本总额为y元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y与x之间的函数关系式.(2)若用19千克A种果汁原料和17.2千克B种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据:请你列出关于且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y值最小,最小值是多少?5、为极大地满足人民生活的需求,丰富市场供应,我市淮上区温棚种植面积在不断扩大.在耕地上培成一行一行的长方形土埂,按顺序间隔种植不同农作物的方法叫分垄间隔套种。

科学研究表明:在塑料温棚中分垄间隔套种高、矮不同的蔬菜和水果,可增加它们的光合作用,提高单位面积的产量和经济效益。

实际问题与一元一次不等式(组)

实际问题与一元一次不等式(组)
(1)什么情况下选择甲公司比较合算?
(2)什么情况下选择乙公司比较合算?
(3)什么情况下两公司的收费相同?
2、某学校有6名教师,234名学生集体外出活动,准备
租用45座大客车或30座小客车,若租用1辆大客车和2 辆小客车共需租车费1000元;若租用2辆大客车和1辆 小客车共需租车费1100元。
(1)求大小客车每辆的租车费各是多少元?
解:设饼干的标价为x元,则牛奶的标价为:(10-0.8-0.9x)元,由题意,得
{ x+10-0.8-0.9x>10, x<10,
解得, 8<x<10,
∵x为整数,∴x=9.
10-9×0.9-0.8=1.1(元)
答:饼干的标价为9元,牛奶的标价为1.1元。
当堂测试
用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入 ,铁钉所受的阻力也越来越大.当未进入木块的钉子长度 足够时,每次钉入木块的钉子长度是前一次的二分之一. 已知这个铁钉被敲击3次后全部进入木块(木块足够厚), 且第一次敲击后铁钉进入木块的长度是2cm,若铁钉总长 度为acm,则a的取值范围是______.
∵z为整数
∴z=4或5
方案一:当z=4时,需要花400×4+300×2=2200(元);
方案二:{当z=5时,需要花400×5+300×1=2300(元);
∴最省钱的方案为租大客车4辆,小客车2辆.
3、认真阅读对话,根据对话的内容试求出饼干和牛奶的标价 各是多少元? 小朋友:阿姨,我买一盒饼干和一袋牛奶(递上10元钱) 导购员:小朋友,本来你用10元钱买一盒饼干是有多余钱的, 但是要再买一袋牛奶就不够了!今天是儿童节,我给你买的 饼干打九折,两样东西请拿好!还找你8角钱。 温馨提示:一盒饼干的标价可是整数元哦!

9.2一元一次不等式(三) 同步练习 2020-2021学年人教版数学七年级下册

9.2一元一次不等式(三) 同步练习 2020-2021学年人教版数学七年级下册

9.2一元一次不等式(三)【笔记】对于用不等式解决实际问题,主要是正确分析题意,找出满足条件的不等关系,然后根据不等关系列出不等式.解不等式的应用题,要注意题目中表示不等关系的词语,如“不大于”“不小于”“不超过”“不低于”等.解决实际问题的时候还要注意实际意义.例如材料选用一般是“进一法”.【训练】1.小明准备用22元钱买笔和笔记本,已知每支笔3元,每本笔记本2元,他买了3本笔记本后,其余的钱用来买笔,那么他最多可以买( )A. 3支笔B. 4支笔C. 5支笔D. 6支笔2.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多可打( )A.6折B.7折C.8折D.9折3.西宁市天然气公司在一些居民小区安装天然气管道时,采用一种鼓励居民使用天然气的收费办法,若整个小区每户都安装,收整体初装费10000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1000元,则这个小区的住户数( )A.至少20户B.至多20户C.至少21户D.至多21户4.某商店搞促销:某种矿泉水原价每瓶5元,现有两种优惠方案:(1)买一赠一;(2)一瓶按原价,其余一律四折.小华为同学选购,则至少买瓶矿泉水时,第二种方案更便宜.( ) A.5 B.6 C.7 D.85.在抗震救灾中,某抢险地段需实行爆破.操作人员点燃导火线后,要在炸药爆炸前跑到400米以外的安全区域.已知导火线的燃烧速度是1.2厘米/秒,操作人员跑步的速度是5米/秒.为了保证操作人员的安全,导火线的长度要超过厘米.6.张老师带领学生到科技馆参观,门票每张25元,购票时发现所带的钱不足,售票处工作人员告诉他:如果参观人数50人以上(含50人),可以按团体票享受8折优惠,于是张老师买了50张票,结果发现所带的钱还有剩余,那么张老师和他的学生至少有人.7.有3人携带会议材料乘坐电梯,这3人的体重共210kg,每捆材料重20kg,电梯最大负荷为1050kg,则该电梯在此3人乘坐的情况下最多还能搭载捆材料.8.(张家界中考)某社区购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且乙种树苗购买棵数比甲种树苗购买棵数的2倍还少40棵,购买两种树苗的总金额为9000元.(1)求购买甲、乙两种树苗各多少棵;(2)为保证绿化效果,社区决定再购买甲、乙两种树苗共10棵,总费用不超过230元,求可能的购买方案.9.某景区售出的门票分为成人票和儿童票,成人票每张100元,儿童票每张50元,若干家庭结伴到该景区旅游,成人和儿童共30人,售票处规定:一次性购票数量达到30张,可购买团体票,每张票均按成人票价的八折出售,请你帮助他们选择花费最少的购票方式.10.(绍兴中考)有两种消费券:A券,满60元减20元,B券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元、30元.小敏有一张A券,小聪有一张B券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元.则所购商品的标价是元.11.某企业为了提高污水处理的能力,决定购买10台污水处理设备,现有A,B两种型号的设备,其中每台的价格、月处理污水量如下表:A型B型价格(万元/台)1210处理污水量(吨/月)240200经预算,该企业购买设备的资金不高于105万元.(1)请你设计该企业可能的购买方案;(2)若企业每月产生的污水量为2040吨,为了节约资金,应该选哪种购买方案?请说明理由.12.某商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑进行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若购买超过5台,超过的部分每台按售价的八折销售.某公司一次性从该商店购买A型号笔记本电脑x台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围.13.甲、乙两商场以相同价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.顾客到哪家商场购物花费少?参考答案9.2一元一次不等式(三)【训练】1.C2.B3.C4.C5.966.417.428.(1)购买甲种树苗140棵,购买乙种树苗240棵;(2)方案一:不购买甲种树苗,购买乙种树苗10棵;方案二:购买甲种树苗1棵,购买乙种树苗9棵;方案三:购买甲种树苗2棵,购买乙种树苗8棵;方案四:购买甲种树苗3棵,购买乙种树苗7棵.9.设参加旅游的儿童有m人,则成人有(30-m)人.根据题意,得按团体票购买时,总费用为100×80%×30=2400(元).分别按成人票、儿童票购买时,总费用为100(30-m)+50m=(3000-50m)元.①若3000-50m=2400,解得m=12.即当儿童为12人时,两种购票方式花费相同.②若选择购买团体票时花费少,则有3000-50m>2400,解得m<12.即当儿童少于12人时,选择购买团体票花费少.③若选择分别按成人票、儿童票购票时花费少,则有3000-50m<2400,解得m>12.即当儿童多于12人时,选择分别按成人票、儿童票购票花费少.10.100或8511.(1)设购买x台A型污水处理设备,则购买(10-x)台B型污水处理设备,由题意,得.故有3种购买方案:12x+10(10-x)≤105.解得x≤52方案一:购买0台A型污水处理设备,10台B型污水处理设备;方案二:购买1台A型污水处理设备,9台B型污水处理设备;方案三:购买2台A型污水处理设备,8台B型污水处理设备.(2)应选择购买1台A型污水处理设备,9台B型污水处理设备.理由:设购买a台A型污水处理设备,由题意,得240a+200(10-a)≥2040.解得a≥1.当a=1时,需资金12×1+10×9=102(万元);当a=2时,需资金12×2+10×8=104(万元).∵102<104,∴购买1台A型污水处理设备,9台B型污水处理设备.12.(1)设购买A型号笔记本电脑x台时的费用为w元.当x=8时,方案一:w=90%a×8=7.2a,方案二:w=5a+(8-5)a×80%=7.4a,∵7.2a<7.4a,∴当x=8时,应选择方案一,该公司购买费用最少,最少费用是7.2a元.(2)∵该公司采用方案二购买更合算,∴x>5.方案一:w=90%ax=0.9ax,方案二:当x>5时,w=5a+(x-5)a×80%=5a+0.5ax-4a=a+0.8ax,令0.9ax>a+0.8ax,解得x>10.∴x的取值范围是x>10.13.(1)当累计购买不超过50元时,在甲、乙商场购物都不享受优惠,且两商场以相同价格出售同样的商品,因此到两商场购物花费一样;(2)当累计购物超过50元而不超过100元时,享受乙商场的购物优惠,不享受甲商场的购物优惠,因此到乙商场购物花费少;(3)当累计购物超过100元时,设累计购物x(x>100)元.①若到甲商场购物花费少,则50+0.95(x-50)>100+0.9(x-100),解得x>150.则累计购物超过150元时,到甲商场购物花费少;②若到乙商场购物花费少,则50+0.95(x-50)<100+0.9(x-100),解得x<150.则累计购物超过100元而不到150元时,到乙商场购物花费少;③若50+0.95(x-50)=100+0.9(x-100),解得x=150.则累计购物为150元时,到甲、乙两商场购物花费一样.。

七年级数学(下册)第九章 实际问题与一元一次不等式教案人教版

七年级数学(下册)第九章 实际问题与一元一次不等式教案人教版

第九章不等式与不等式组教材内容本章的主要内容包括:一元一次不等式(组)及其相关概念,不等式的性质,一元一次不等式(组)的解法及解集的几何表示,利用一元一次不等式分析、解决实际问题。

教材以实际问题为例引出不等式及其解集的概念,然后类比一元一次方程,引出一元一次不等式的概念。

为进一步讨论不等式的解法,接着讨论了不等式的性质,并运用它们解简单的不等式。

在此基础上,教材从一个选择购物商店问题入手,对列、解一元一次不等式作了进一步的讨论,并归纳一元一次不等式与一元一次方程的异同及应注意的问题。

最后,结合三角形三条边的大小关系,引进了一元一次不等式组及其解集,并讨论了一元一次不等式组的解法。

教学目标〔知识与技能〕1、了解一元一次不等式(组)及其相关概念;2、理解不等式的性质;3、掌握一元一次不等式(组)的解法并会在数轴上表示解集;4、学会应用一元一次不等式(组)解决有关的实际问题。

〔过程与方法〕1、通过观察、对比和归纳,探索不等式的性质,在利用它解一元一次不等式(组)的过程中,体会其中蕴涵的化归思想;2、经历“把实际问题抽象为一元一次不等式”的过程,体会一元一次不等式(组)是刻画现实世界中不等关糸的一种有效的数学模型.〔情感、态度与价值观〕1、通过类比一元一次方程的解法从而更好地去掌握一元一次不等式的解法,树立辩证唯物主义的思想方法;2、在利用一元一次不等式(组)解决问题的过程中,感受数学的应用价值,提高分析问题、解决问题的能力。

重点难点一元一次不等式(组)的解法及应用是重点;一元一次不等式(组)的解集和应用一元一次不等式(组)解决实际问题是难点。

课时分配9.1不等式………………………………………………………4课时9.2实际问题与一元一次不等式……………………………… 3课时9.3一元一次不等式组………………………………………… 2课时9.4课题学习利用不等式分析比赛……………………… 1课时本章小结……………………………………………………… 2课时不等式及其解集[教学目标]1、了解不等式和一元一次不等式的概念;2、理解不等式的解和解集,能正确表示不等式的解集。

中考数学复习:专题2-11 用一元一次不等式(组)解决生活中的实际问题

中考数学复习:专题2-11 用一元一次不等式(组)解决生活中的实际问题

专题11 用一元一次不等式(组)解决生活中的实际问题【专题综述】一元一次不等式组是在学习了一元一次不等式组的概念和解法之后,进一步探索现实世界数量关系的重要内容,是继学习了一元一次方程和二元一次方程组之后,又一次数学建模思想的学习,也是后续学习二元一次方程等内容的重要基础,有着承前启后的作用。

用一元一次不等式(组)解决生活中的实际问题,其主要步骤为:1、审题,设未知数;2、抓关键词,找不等关系;3、构建不等式(组)4 、解不等式(组);5、根据题意,写出合理答案。

【方法解读】一、打折问题:例1,一双运动鞋的进价是200元,标价400元,商场要获得不低于120元的利润,问:最低可以打几折?【举一反三】(湖南省娄底市)某种商品的进价为1000元,出售时的标价为1500元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则最多可打().A、6折B、7折C、8折D、9折二、赛球问题:例2,甲、乙两队进行足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了12场,甲队保持不败,总得分超过26分,问:甲队至少胜了多少场?【举一反三】(江西省崇仁一中)在崇仁一中中学生篮球赛中,小方共打了10场球.他在第6,7,8,9场比赛中分别得了22,15,12和19分,他的前9场比赛的平均得分y比前5场比赛的平均得分x要高.如果他所参加的10场比赛的平均得分超过18分(1)用含x的代数式表示y;(2)小方在前5场比赛中,总分可达到的最大值是多少?(3)小方在第10场比赛中,得分可达到的最小值是多少?三、购买问题:例3,某种肥皂零售价每块2元,凡购买2块以上(包括2块),商场推出两种优惠销售办法。

第一种:一块肥皂按原价,其余按原价的七折销售;第二种:全部按原价的八折销售。

在购买的情况下,要使第一种方法比第二种方法得到的优惠多,最少需要买几块肥皂?【举一反三】某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品一律按商品价格的9.5折优惠.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,她购买商品的价格为多少元时,两个方案所付金额相同?(3)购买商品的价格______元时,采用方案一更合算.四、分苹果问题:例4,把44个苹果分给若干名学生,若每人分苹果7个,则最后1名学生分得的苹果不足3个,求学生人数。

9.3一元一次不等式组(第3课时)课件人教版数学七年级下册

9.3一元一次不等式组(第3课时)课件人教版数学七年级下册

解:(1)设小明答对了 x 道题,则答错或不答的题有(20-x)道, 列方程得 5x-3(20-x)=68,解得 x=16,∴小明答对了 16 道题.
(2)设小亮答对了 m 道题,则答错或不答的题有(20-m)道,列不 等式组得55mm--33((2200--mm))≥≤7900,,解得 1614≤m≤1834.
归纳新知

解用 决一

实元 际一

问次
题不

的等
步的 关系,找出题目中的不等关系. 设出合适的未知数.
根据题中的不等关系列出不等式组. 解不等式组,求出其解集.
检验所求出的不等式组的解集是否符合题意. 写出答案.
课堂练习 1.如果点P(2x+6,x-4)在平面直角坐标系的第四象限内,
列一元一次不等式组解决实际问题的步骤: (1)审:分析已知量、未知量及它们之间的关系,找出题 目中的不等关系; (2)设:设出合适的未知数; (3)列:根据题目中的不等关系,列出一元一次不等式组; (4)解:解不等式组(可以借助数轴也可以用“口诀”); (5)验:检验所求出的不等式组的解集是否符合题意及实际意义; (6)答:写出答案.
∵m 为正整数,∴小亮答对了 17 或 18 道题.
7.求不等式(2x-1)(x+3)>0的解集.
解:根据“同号两式相乘,积为正”,可得 ①2xx+-31>>00,,或②2xx+-31<<0.0, 解①得 x>12;解②得 x<-3. ∴不等式的解集为 x>21或 x<-3.
请你仿照上述方法解决下列问题: (1)求不等式(2x-3)(x+1)<0 的解集; (2)求不等式31xx+-21≥0 的解集.
巩固新知
3 一元一某次不等出式组租汽车公司计划购买 A 型和 B 型两种节能汽车,若购买 A 型

人教版初一数学下册:实际问题与一元一次不等式(提高)知识讲解

人教版初一数学下册:实际问题与一元一次不等式(提高)知识讲解

实际问题与一元一次不等式(提高)知识讲解【学习目标】1.会从实际问题中抽象出不等的数量关系,会用一元一次不等式解决实际问题; 2. 熟悉常见一些应用题中的数量关系.【要点梳理】要点一、常见的一些等量关系 1.行程问题:路程=速度×时间2.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量3.利润问题:商品利润=商品售价-商品进价,=100%⨯利润利润率进价4.和差倍分问题:增长量=原有量×增长率5.银行存贷款问题:本息和=本金+利息,利息=本金×利率6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.【高清课堂:实际问题与一元一次不等式409415 小结:】 要点二、列不等式解决实际问题列一元一次不等式解应用题与列一元一次方程解应用题类似,通常也需要经过以下几个步骤:(1)审:认真审题,分清已知量、未知量及其关系,找出题中不等关系要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“至少”、“不超过”、“超过”等; (2)设:设出适当的未知数;(3)列:根据题中的不等关系,列出不等式; (4)解:解所列的不等式;(5)答:写出答案,并检验是否符合题意. 要点诠释:(1)列不等式的关键在于确定不等关系;(2)求得不等关系的解集后,应根据题意,把实际问题的解求出来; (3)构建不等关系解应用题的流程如图所示.(4)用不等式解决应用问题,有一点要特别注意:在设未知数时,表示不等关系的文字如“至少”不能出现,即应给出肯定的未知数的设法,然后在最后写答案时,应把表示不等关系的文字补上.如下面例1中 “设还需要B 型车x 辆 ”,而在答中 “至少需要11台B 型车 ”.这一点要应十分注意. 【典型例题】类型一、简单应用题1.蓝天运输公司要将300吨物资运往某地,现有A、B两种型号的汽车可供调用.已知A型汽车每辆最多可装该物资20吨,B型汽车每辆最多可装该物资15吨.在每辆车不超载的条件下,要把这300吨物资一次性装运完.问:在已确定调用7辆A型车的前提下至少还需调用B型车多少辆?【思路点拨】本题的数量关系是:7辆A型汽车装载货物的吨数+B型汽车装货物的吨数≥300吨,由此可得出不等式,求出自变量的取值范围,找出符合条件的值.【答案与解析】解:设需调用B型车x辆,由题意得:72015300x⨯+≥,解得:2103x≥,又因为x取整数,所以x最小取11.答:在已确定调用7辆A型车的前提下至少还需调用B型车11辆.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的不等量关系.举一反三:【变式】(2015•香坊区二模)某商场共用2200元同时购进A、B两种型号的背包各40个,且购进A型号背包2个比购进B型号背包1个多用20元.(1)求A、B两种型号背包的进货单价各为多少元?(2)若该商场把A、B两种型号背包均按每个50元的价格进行零售,同时为了吸引消费者,商场拿出一部分背包按零售价的7折进行让利销售.商场在这批背包全部销售完后,若总获利不低于1350元,求商场用于让利销售的背包数量最多为多少个?【答案】解:(1)设A型背包每个为x元,B型背包每个为y元,由题意得,解得:.答:A、B两种型号背包的进货单价各为25元、30元;(2)设商场用于让利销售的背包数量为a个,由题意得,50×70a%+50(40×2﹣a)﹣2200≥1350,解得:a≤30.所以,商场用于让利销售的背包数数量最多为30个.答:商场用于让利销售的背包数数量最多为30个.类型二、阅读理解型2. 用甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C含量及购买这两种原料的价格如下表:甲种原料乙种原料维生素C含量(单位•千克)600 100原料价格(元•千克)8 4现配制这种饮料10kg,要求至少含有4200单位的维生素C,若所需甲种原料的质量为xkg,则x应满足的不等式为()A.600x+100(10-x)≥4200 B.8x+4(100-x)≤4200C.600x+100(10-x)≤4200 D.8x+4(100-x)≥4200【思路点拨】首先由甲种原料所需的质量和饮料的总质量,表示出乙种原料的质量,再结合表格中的数据,根据“至少含有4200单位的维生素C”这一不等关系列不等式.【答案】A【解析】解:若所需甲种原料的质量为xkg,则需乙种原料(10-x)kg.根据题意,得600x+100(10-x)≥4200.【总结升华】能够读懂表格,会把文字语言转换为数学语言.【变式】(2015春•西城区期末)为了落实水资源管理制度,大力促进水资源节约,某地实行居民用水阶梯水价,收费标准如下表:(1)小明家5月份用水量为14立方米,在这个月,小明家需缴纳的水费为元;(2)小明家6月份缴纳水费110元,在这个月,小明家缴纳第二阶梯水价的用水量为立方米;(3)随着夏天的到来,用水量将会有所增加,为了节省开支,小明家计划7月份的水费不超过180元,在这个月,小明家最多能用水多少立方米?【答案】解:(1)由表格中数据可得:0≤x≤15时,水价为:5元/立方米,故小明家5月份用水量为14立方米,在这个月,小明家需缴纳的水费为:14×5=70(元);(2)∵15×5=75<110,75+6×7=117>110,∴小明家6月份使用水量超过15立方米但小于21立方米,设小明家6月份使用水量为x立方米,∴75+(x﹣15)×7=110,解得:x=20,故小明家缴纳第二阶梯水价的用水量为:20﹣15=5(立方米),故答案为:5;(3)设小明家能用水a立方米,根据题意可得:117+(a﹣21)×9≤180,解得:a≤28.答:小明家计划7月份的水费不超过180元,在这个月,小明家最多能用水28立方米.类型三、方案选择型3.(2015•龙岩)某公交公司有A,B型两种客车,它们的载客量和租金如下表:A B载客量(人/辆)45 30租金(元/辆)400 280红星中学根据实际情况,计划租用A,B型客车共5辆,同时送七年级师生到基地校参加社会实践活动,设租用A型客车x辆,根据要求回答下列问题:(1)用含x的式子填写下表:车辆数(辆)载客量租金(元)A x 45x 400xB 5﹣x __________ ___________(2)若要保证租车费用不超过1900元,求x的最大值;(3)在(2)的条件下,若七年级师生共有195人,写出所有可能的租车方案,并确定最省钱的租车方案.【思路点拨】(1)根据题意,载客量=汽车辆数×单车载客量,租金=汽车辆数×单车租金,列出代数表达式即可;(2)根据题意,表示出租车总费用,列出不等式即可解决;(3)由(2)得出x的取值范围,一一列举计算,排除不合题意方案即可.【答案与解析】解:(1)∵载客量=汽车辆数×单车载客量,租金=汽车辆数×单车租金,∴B型客车载客量=30(5﹣x);B型客车租金=280(5﹣x);故填:30(5﹣x);280(5﹣x).(2)根据题意,400x+280(5﹣x)≤1900,解得:x≤4,∴x的最大值为4;(3)由(2)可知,x≤4,故x可能取值为0、1、2、3、4,①A型0辆,B型5辆,租车费用为400×0+280×5=1400元,但载客量为45×0+30×5=150<195,故不合题意舍去;②A型1辆,B型4辆,租车费用为400×1+280×4=1520元,但载客量为45×1+30×4=165<195,故不合题意舍去;③A型2辆,B型3辆,租车费用为400×2+280×3=1640元,但载客量为45×2+30×3=180<195,故不合题意舍去;④A型3辆,B型2辆,租车费用为400×3+280×2=1760元,但载客量为45×3+30×2=195=195,符合题意;⑤A型4辆,B型1辆,租车费用为400×4+280×1=1880元,但载客量为45×4+30×1=210,符合题意;故符合题意的方案有④⑤两种,最省钱的方案是A型3辆,B型2辆.【总结升华】此题主要考查了一次不等式的综合应用,由题意得出租用x辆甲种客车与总租金关系是解决问题的关键.举一反三:【变式】黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元.公司职工正好坐满每辆车且总费用不超过5000元,问公司租用的四座车和十一座车各多少辆?【答案】解:设四座车租x辆,则十一座车租70411x-辆.依题意 70×60+60x+(70-4x)×10≤5000,将不等式左边化简后得:20x+4900≤5000,不等式两边减去3500得 20x≤100,不等式两边除以20得 x≤5,又∵70411x-是整数,∴1x=,704611x-=.答:公司租用四座车l辆,十一座车6辆.4.响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超过132 000元.已知甲、乙、丙三种电冰箱的出厂价格分别为:1200元/台、1600元/台、2000元/台.(1)至少购进乙种电冰箱多少台?(2)若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?【思路点拨】(1)关系式为:甲种电冰箱用款+乙种电冰箱用款+丙种电冰箱用款≤132000,根据此不等关系列不等式即可求解;(2)关系式为:甲种电冰箱的台数≤丙种电冰箱的台数,以及(1)中得到的关系式联合求解.【答案与解析】解:(1)设购买乙种电冰箱x台,则购买甲种电冰箱2x台,丙种电冰箱(80-3x)台,根据题意得1200×2x+1600x+(80-3x)×2000≤132000解这个不等式得x≥14∴至少购进乙种电冰箱14台;(2)根据题意得2x≤80-3x解这个不等式得x≤16由(1)知x≥14∴14≤x≤16又∵x为正整数∴x=14,15,16.所以,有三种购买方案方案一:甲种电冰箱为28台,乙种电冰箱为14台,丙种电冰箱为38台.方案二:甲种电冰箱为30台,乙种电冰箱为15台,丙种电冰箱为35台.方案三:甲种电冰箱为32台,乙种电冰箱为16台,丙种电冰箱为32台.【总结升华】探求不等关系时,要注意捕捉“大于”、“超过”、“不少于”、“不足”、“至多”等表示不等关系的关键词,通过这些词语,可以直接找到不等关系.附录资料:一元一次不等式组(基础)知识讲解【学习目标】1.理解不等式组的概念;2.会解一元一次不等式组,并会利用数轴正确表示出解集;3.会利用不等式组解决较为复杂的实际问题,感受不等式组在实际生活中的作用.【要点梳理】要点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.要点诠释:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.要点二、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.要点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.【典型例题】类型一、不等式组的概念1.某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边为x ,请你根据题意写出x 必须满足的不等式. 【思路点拨】由题意知,x 必须满足两个条件①面积大于48平方米.②周长小于34米.故必须构建不等式组来体现其不等关系. 【答案与解析】 解:依题意得:8482(8)34.x x >⎧⎨+<⎩【总结升华】建立不等式组的条件是:当感知所求的量同时满足几个不等关系时,要建立不等式组,建立不等式组的意义与建立方程组的意义类似.【高清课堂:第二讲 一元一次不等式组的解法370096 例2】 举一反三:【变式】直接写出解集:(1)2,3x x >⎧⎨>-⎩的解集是______;(2)2,3x x <⎧⎨<-⎩的解集是______;(3)2,3x x <⎧⎨>-⎩的解集是_______;(4)2,3x x >⎧⎨<-⎩的解集是_______.【答案】(1)2x >;(2)3x <-;(3)32x -<<;(4)空集.类型二、解一元一次不等式组2. 解下列不等式组(1) 313112123x x x x +<-⎧⎪⎨++≤+⎪⎩①②(2)213(1)4x x x +>-≥-.【思路点拨】解不等式组时,要先分别求出不等式组中每个不等式的解集,然后画数轴,找它们解集的公共部分,这个公共部分就是不等式组的解集.【答案与解析】解:(1)解不等式①,得x<-2解不等式②,得x≥-5故原不等式组的解集为-5≤x<-2.其解集在数轴上表示如图所示.(2)原不等式可变为:213(1)3(1)4x xx x+>-⎧⎨-≥-⎩①②解①得:4x<解②得:12 x≥-故原不等式组的解集为14 2x-≤<.【总结升华】确定一元一次不等式组解集的常用方法有两种:(1)数轴法:运用数轴法确定不等式组的解集,就是将不等式组中的每一个不等式的解集在数轴上表示出来,然后找出它们的公共部分,这个公共部分就是此不等式组的解集;如果没有公共部分,则这个不等式组无解,这种方法体现了数形结合的思想,既直观又明了,易于掌握.(2)口诀法:为了便于快速找出不等式组的解集,结合数轴将其总结为朗朗上口的四句口诀:同大取大、同小取小、大小小大中间找,大大小小无解了.举一反三:【变式】(2015•江西样卷)解不等式组,并把解集在数轴上表示出来.【答案】解:,∵解不等式①得:x≤1,解不等式②得:x>﹣2,∴不等式组的解集为:﹣2<x≤1.在数轴上表示不等式组的解集为:类型三、一元一次不等式组的应用3. “六·一”儿童节,学校组织部分少先队员去植树.学校领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有多少棵. 【思路点拨】设有x 名学生,则由第一种植树法,知道一共有(4x +37)棵树;第二种植树法中,前(x-1)名学生中共植6(x-1)棵树; 最后一名学生植树的数量是:[(4x +37)- 6(x-1)]棵, 这样,我们就探求到第一个不等量关系:最后一人有树植,说明第二种植树法中前(x-1)名学生植树的数量要比树木总数少,即(4x +37)>6(x-1);第二种植树法中,最后一名学生植树的数量不到3棵,也就是说[(4x +37)- 6(x-1)]<3,或者理解为:[(3x +8)- 5(x-1)]≤2,这样,我们就又找到了第二个不等量关系式.到此,不等式组即建立起来了,接下来就是解不等式组. 【答案与解析】解:设有x 名学生,根据题意,得:4376114376132x x x x +>-⎧⎨+--<⎩()()()()(),不等式(1)的解集是:x <2121; 不等式(2)的解集是:x >20,所以,不等式组的解集是:20<x <2121, 因为x 是整数,所以,x=21,4×21+37=121(棵) 答:这批树苗共有121棵.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系. 举一反三:【变式】一件商品的成本价是30元,若按原价的八八折销售,至少可获得10%的利润;若按原价的九折销售,可获得不足20%的利润,此商品原价在什么范围内? 【答案】解:设这件商品原价为x 元,根据题意可得:88%303010%90%303020%x x ≥+⨯⎧⎨<+⨯⎩解得:37.540x ≤<答:此商品的原价在37.5元(包括37.5元)至40元范围内.4.(2015•桂林)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样). (1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.【思路点拨】(1)设每本文学名著x 元,动漫书y 元,根据题意列出方程组解答即可; (2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,列出不等式组,解答即可. 【答案与解析】 解:(1)设每本文学名著x 元,动漫书y 元,可得:,解得:,答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著x 本,动漫书为(x+20)本,根据题意可得:,解得:,因为取整数,所以x 取26,27,28;方案一:文学名著26本,动漫书46本; 方案二:文学名著27本,动漫书47本; 方案三:文学名著28本,动漫书48本.【总结升华】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.【高清课堂:实际问题与一元一次不等式组409416 例2】举一反三:【变式】A 地果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆,将这批水果全部运往B 地. 已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨.(1)若要安排甲、乙两种货车时有几种方案?请你帮助设计出来.(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,那么选择哪种方案使运费最少?运费最少是多少? 【答案】解:(1)设租甲种货车x 辆,则租乙种货车(10x -)辆,依题意得:42(10)302(10)13x x x x +-≥⎧⎨+-≥⎩,解得57x ≤≤, 又x 为整数,所以5x =或6或7, ∴有三种方案:方案1:租甲种货车5辆,乙种货车5辆; 方案2:租甲种货车6辆,乙种货车4辆; 方案3:租甲种货车7辆,乙种货车3辆. (2)运输费用:方案1:2000×5+1300×5=16500(元);方案2:2000×6+1300×4=17200(元);方案3:2000×7+1300×3=17900(元).∴方案1运费最少,应选方案1.。

一元一次不等式组应用题及答案复习过程

一元一次不等式组应用题及答案复习过程

一元一次不等式组应用题及答案精品文档一元一次不等式应用题用一元一次不等式组解决实际问题的步骤:⑴审题,找出不等关系;⑵设未知数;⑶列出不等式;⑷求出不等式的解集;⑸找出符合题意的值;⑹作答一.分配问题:1.把若干颗花生分给若干只猴子。

如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。

问猴子有多少只,花生有多少颗?2 .把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。

问这些书有多少本?学生有多少人?3.某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。

4.将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。

问有笼多少个?有鸡多少只?5. 用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。

请问:有多少辆汽车?6.一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。

(1)如果有x间宿舍,那么可以列出关于x的不等式组:(2)可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗?二速度、时间问题1爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长?2.王凯家到学校2.1千米,现在需要在18分钟内走完这段路。

已知王凯步行速度为90米/ 分,跑步速度为210米/分,问王凯至少需要跑几分钟?3.抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公里后,后半小时速度多大才能保证及时送到?三工程问题1 .一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成,则以后平均每天至少要比原计划多完成多少方土?2 .用每分钟抽1.1吨水的A型抽水机来抽池水,半小时可以抽完;如果改用B型抽水机,估计20分钟到22分可以抽完。

人教初中数学七下 9.3.2 一元一次不等式组课件 【经典初中数学课件】

人教初中数学七下 9.3.2 一元一次不等式组课件 【经典初中数学课件】

分析:从跷跷板的两种状况可以得到的不等关系:
妈妈的体重+小宝的体重 <
爸爸的体重;
妈妈的体重+小宝的体重+6千克 > 爸爸的体重。
学习目标:1、会用一元一次不等式组解决实际问题
自学指导:阅读课本P139-134,例2 思考: 1、“不能完成任务”是什么意思 2、“提前完成任务”又是什么意思?
学习目标:1、会用一元一次不等式组解决实际问题
运用规律求下列不等式组的解集:
((((68(2571(3))4)))xx32xxxxxxxxxxx>>>><<<<><<><>>--37-20-5243-760.,4,-3,.4..1,4., .
学习目标:1、会用一元一次不等式组解决实际问题
1、若不等式组 x a 无解,求a的取值范围
2x -1 3
o
0
o
o
X
一、新课引入
1、在数轴上表示下列不等式的解集: (1)x>2 (3) x<5
2 、若把以上(1)、(3)两个不等式合起来,这 个一元一次不等式组中x取值范围是多少呢?
o
o
X
X的取值范围是:2<X<5
二、学习目标
1
1、了解一元一次不等式组及其解 集的含义。
2 2、会利用数轴求一元一次不等 式组的解集。
我来说一说!
第九章 9.3 一元一次不等式组(1)
第7课时
一、新课引入
1、在数轴上表示下列不等式的解集: (1)x>2 (2) x<-2 (3) x<5 (4) x<-5
2、若把以上(1)、(2)两个不等式 合起来,这个一元一次不等式组中x取 值范围是多少呢?

人教版中学数学七年级上册 实际问题与一元一次方程 第3课时 分段计费问题 课件PPT

人教版中学数学七年级上册  实际问题与一元一次方程 第3课时 分段计费问题 课件PPT
方案三:买两只白炽灯,总费用为6+0.5×0.06×3500=111(元). 方案四:买两只节能灯,总费用为120+0.5×0.011×3500=139.25(元). 因为94.5<111<139.25<155.75,所以选用白炽灯和节能灯各一只,用白炽 灯照明500小时,节能灯照明3 000小时,总费用更省钱.
第三章 一元一次方程
第三章 一元一次方程
3.4 实际问题与一元一次方程
第3课时 分段计费问题
学习目标
1 理解分段计费问题的原理,分清有关数量关系,能正确找出 实际问题中蕴含的等量关系.(难点)
2 通过列一元一次方程解决实际问题,经历思考、探究、交流、 反思等活动,积累数学活动的经验,并提高分析问题与解决 问题的能力.
随堂训练
1.小明所在城市的“阶梯水价”收费办法是:每户用 水不超过5吨,每吨水费x元;超过5吨,超过部分每 吨加收2元,小明家今年5月份用水9吨,共交水费为 44元,根据题意列出关于x的方程正确的是( A ) A.5x+4(x+2)=44 B.5x+4(x-2)=44 C.9(x+2)=44 D.9(x+2)-4×2=44
-20) = 0.1x. 解得 x = 60 .
当图书馆价格便宜时,列不等式,得2.4+0.09(x-20) > 0.1x,
解得x < 60,即20< x < 60.
当复印社价格便宜时,列不等式,得2.4+0.09(x-20) < 0.1x,
解得x > 60. 综上所述:当 x 小于60时,图书馆价格便宜;
11
随堂训练
12
随堂训练
13
课堂小结

一元一次不等式组应用题及答案

一元一次不等式组应用题及答案

一元一次不等式应用题用一元一次不等式组解决实际问题的步骤:⑴审题,找出不等关系;⑵设未知数;⑶列出不等式;⑷求出不等式的解集;⑸找出符合题意的值;⑹作答。

一.分配问题:1.把假设干颗花生分给假设干只猴子。

如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但缺乏5颗。

问猴子有多少只,花生有多少颗?2 .把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。

问这些书有多少本?学生有多少人?3.某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。

4.将缺乏40只鸡放入假设干个笼中,假设每个笼里放4只,那么有一只鸡无笼可放;假设每个笼里放5只,那么有一笼无鸡可放,且最后一笼缺乏3只。

问有笼多少个?有鸡多少只?5. 用假设干辆载重量为8吨的汽车运一批货物,假设每辆汽车只装4吨,那么剩下20吨货物;假设每辆汽车装满8吨,那么最后一辆汽车不满也不空。

请问:有多少辆汽车?6.一群女生住假设干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。

(1)如果有x间宿舍,那么可以列出关于x的不等式组:(2)可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗?二速度、时间问题1爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的平安地区,导火索至少需要多长?2.王凯家到学校2.1千米,现在需要在18分钟内走完这段路。

王凯步行速度为90米/ 分,跑步速度为210米/分,问王凯至少需要跑几分钟?3.抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公里后,后半小时速度多大才能保证及时送到?三工程问题1 .一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原方案至少提前两天完成,那么以后平均每天至少要比原方案多完成多少方土?2 .用每分钟抽1.1吨水的A型抽水机来抽池水,半小时可以抽完;如果改用B型抽水机,估计20分钟到22分可以抽完。

一元一次不等式——实际问题与一元一次不等式 课件 2022—2023学年人教版数学七年级下册

一元一次不等式——实际问题与一元一次不等式 课件 2022—2023学年人教版数学七年级下册
是每台10万元.经预算,该企业购买设备的资金不高于105万元.
(1)请问该企业有几种购买方案?
解:设购买污水处理设备A型x台,则B型为(10-x)台.
根据题意,得12x+10(10 – x)≤105.
解这个不等式,得x≤2.5.
又因为x取非负整数,所以x取0,1,2.
所以有3种购买方案:A型0台,B型10台;A型1台,B型9台;
购物都不享受优惠,且两商场以同样价格出售同
样的商品,因此到两商场购物花费一样.
新课讲解
典型例题
购物款
甲商场收费
乙商场收费
0<x≤50
x
x
50<x≤100
x
50+0.95(x–50)
乙商场少
x>100
100+0.9(x–100)
50+0.95(x–50)
继续分类讨论
收费相等
若在甲商场花费少,则100+0.9(x–100)<50+0.95(x–90)
社说:“所有人按全票价的 6 折优惠.”已知全票价 240 元.设学
生有 x 名,就学生人数讨论哪家旅行社更优惠.
解:①若 240+120x=144x+144,解得 x=4,
此时两家旅行社收费一样;
②若 240+120x>144x+144,解得 x<4,
此时乙旅行社更优惠;
③若 240+120x<144x+144,解得 x>4,
2.一般步骤:
(1)审题;
(2)找等量关系;
(3)设未知数;
(4)列方程;
(5)解方程;
(6)检验;
(7)答。

不等式应用举例

不等式应用举例

A ).
A.[76,80]
B.[78,80]
C.(76,80)
D.[76,78]
4.如果一个天平的左边放两个苹果,右边放三个砝码,天平则向左边倾斜.假
设每个苹果重量都是x g,每个砝码都是200 g,以下各式正确的是(
A.x>300
B.x<300
C.x=300
D.200<x<400
A ).
二、填空题
D ).
B.x≤180
C.x=180
D.x≥180
2.设数轴上点A对应的实数是3、点P对应的实数是x,如果点P与点A的距离不
超过2,那么x满足的式子是(
A.x≤2
B.|x-3|≤2
B ).
C.|x-3|≥2
D.|x-2|≥3
3.如果一块木板的长度规格是(78±2)cm,那么该合格品的长度取值范围
是(
第二章 不等式
2.5 不等式应用举例
1.三种常用不等式的应用:
(1)一元一次不等式(组)的应用,如ax+b>0,ax+b≤c.
(2)一元二次不等式的应用,如ax2+bx+c>0,ax2+bx+c≤0.
(3)绝对值不等式的应用,如|ax+b|>c,|ax+b|≤c.
2.用不等式的数学模型解决实际问题的一般过程:
1.某地某日的平均气温是15℃,假设该日气温的上下浮动范围不超过4℃,试
列出气温x℃满足的表达式,并求出x的取值范围.
|x-15|≤4,{x|11≤x≤19}
2.如果一个正方形的面积不大于9,那么这个正方形的边长的取值范围是多少?
x2≤9,{x|0<x≤3}
解答题
1.某出租车公司规定,3公里之内,都是起步价10元,超过3公里的,超过部

人教初中数学七下 9.2.2 实际问题与一元一次不等式课件3 【经典初中数学课件】

人教初中数学七下 9.2.2 实际问题与一元一次不等式课件3 【经典初中数学课件】

解得 y= 14
11
把y=
14 11
代入①得2x+ 解得y= 9
70 11
=8
11
所以方程组的解是
x
=
70 14
y= 9
11
四、归纳小结
四、归纳小结 1、加减消元法的步骤: (1)将原方程组的两个方程化为有一个未知数
的系数_相__反或相等 的两个方程; (2)把这两个方程相加或_相__减___,消去一个
3x+ 10y = 2.8 ①
用 加
15x-10y = 8 ②
减 法 解 二
分析:这两个方程中,未知数y的系数_相__反__,把 这两个方程的两边直接_相___加___,就能消去未知
数y.
元 一
解:由①+②得 18x=10.8

解得 x=0.6
方 程
把x= 0.6 代入①得y=__0__._1____

等 式

点解 法

及 练

三、研读课文
解下列不等式,并在数轴上表示解集:
(1) 5x154x1
(2) 2(x5)3(x5)
x 1
(3)
7 (4) x 1
6
< 2x 5 3
≥ 2x 5 1 4


元 一

次 不

点式 的

解 法



三、研读课文
(1) 5x154x1
解:移项,得:5x-4x>-1-15 合并同类项,得:x<-16
这个不等式的解集在数轴上的表示 :
-16 0


元 一

次 不

列一元一次不等式(组)解决实际问题

列一元一次不等式(组)解决实际问题

所以 2x=64
3
(2)设3购买篮球的数量为n个,则购买排球
的由数题量意为,得(363-6n)-个n<11 96n+64(36-n)≤3200
解得25<n≤28
而n是正整数,所以其取值为26,27,28对
应36-n的值为10,9,8.所以共有三种购买
方案。
5某市中小学标准化建设工程中,某 学校计划购进一批电脑和电子白板, 经过市场考察得知,购买1台电脑和 2台电子白板需要3.5万元,购买2台 电脑和1台电子白板需要2.5万元。 (1)求每台电脑、每台电子白板各 多少万元?(2)根据学校实际,需购 进电脑和电子白板共30台,总共费 用不超过30万元,但不低于28万元, 请你通过计算求出有几种购买方案, 哪种方案费用最低。
(2014绥化)某商场用36万元购进A,B两种商
品,销售完后共获利6万元,其进价和售价如
下表:
A
B
进价(元/件) 1200 1000
售价(元/件) 1380 1200
(1)该商场购进A,B两种商品各多少件? (2)商场第二次以原进价购进A,B两种商品, 购进B种商品的件数不变,而购进A种商品的 件数是第一次的2倍,A种商品按原售价出售, 而B种商品打折销售.若两种商品销售完毕, 要使第二次经营活动获利不少于81600元,则 B种商品最低售价为每件多少元?
解:由题意得
第一种情况10a+b>10b+a解得a>b
第二种情况10a+b<10b+a解得a<b
第三种情况10a+b=10b+a解得a=b
答:
考试或比赛得分问题
1.小强在一次测试中,语 文与英语平均分数是76分, 但语文、英语、数学三科 的平均分不低于80分,则 数学分数x应满足的关系 为_____。

浙教版数学八年级上册3.3《一元一次不等式》教案(3)

浙教版数学八年级上册3.3《一元一次不等式》教案(3)

浙教版数学八年级上册3.3《一元一次不等式》教案(3)一. 教材分析《一元一次不等式》是初中数学八年级上册的重要内容,主要让学生掌握一元一次不等式的概念、性质和解法。

通过本节课的学习,学生能够理解一元一次不等式的定义,掌握一元一次不等式的解法,并能运用一元一次不等式解决实际问题。

二. 学情分析学生在学习本节课之前,已经学习了有理数、方程等基础知识,对数学运算和逻辑思维有一定的掌握。

但部分学生对不等式的概念和性质可能理解不深,解不等式的能力有待提高。

因此,在教学过程中,要注重引导学生理解不等式的概念,培养学生解不等式的能力。

三. 教学目标1.知识与技能目标:理解一元一次不等式的概念,掌握一元一次不等式的解法,能运用一元一次不等式解决实际问题。

2.过程与方法目标:通过自主学习、合作交流,培养学生探究问题和解决问题的能力。

3.情感态度与价值观目标:培养学生对数学的兴趣,激发学生学习数学的积极性。

四. 教学重难点1.重点:一元一次不等式的概念、性质和解法。

2.难点:一元一次不等式的应用和解决实际问题。

五. 教学方法1.情境教学法:通过生活实例引入一元一次不等式,让学生感受数学与生活的联系。

2.启发式教学法:引导学生主动探究、发现不等式的性质和解法。

3.合作学习法:鼓励学生分组讨论、交流,培养学生的团队协作能力。

六. 教学准备1.课件:制作课件,展示一元一次不等式的概念、性质和解法。

2.练习题:准备适量的一元一次不等式练习题,巩固所学知识。

七. 教学过程1.导入(5分钟)利用生活实例,如气温、身高等,引入一元一次不等式,让学生感受数学与生活的联系。

提问:不等式与方程有什么区别和联系?2.呈现(10分钟)展示一元一次不等式的概念、性质和解法。

通过讲解和示例,让学生理解一元一次不等式的定义,掌握一元一次不等式的解法。

3.操练(10分钟)让学生分组讨论,互相练习解一元一次不等式。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)出示一组一元一次不等式,让学生独立解答。

一元一次不等式的实际问题

一元一次不等式的实际问题

一元一次不等式的实际问题一元一次不等式是数学中常见的一种形式,可以用来描述现实生活中的很多实际问题。

在本文中,我们将探讨一元一次不等式的应用,介绍一些实际问题,并给出相应的解决方法。

1. 简单的一元一次不等式问题首先,我们来看一个简单的一元一次不等式问题。

假设某人的年收入为x万元,他的生活开销为y万元。

已知他的年收入在5万至10万元之间,生活开销不能超过年收入的30%。

我们可以用以下不等式来描述这个问题:5 ≤ x ≤ 10y ≤ 0.3x其中,第一个不等式表示年收入的范围,第二个不等式表示生活开销不能超过年收入的30%。

解决这个问题的方法是找到满足这两个不等式的解集。

根据第一个不等式,x的取值范围是[5, 10],根据第二个不等式,y的取值范围是[0, 0.3x]。

因此,满足两个不等式的解集可以表示为:5 ≤ x ≤ 100 ≤ y ≤ 0.3x这个解集表示了满足条件的年收入和生活开销的取值范围。

2. 一元一次不等式在实际问题中的应用一元一次不等式可以应用于很多实际问题中,例如经济学、物理学、工程学等领域。

下面我们来看一些具体的例子。

例子1:生产成本与产量的关系假设某个工厂的生产成本和产量之间存在如下关系:生产成本每增加一单位,产量将减少2单位。

已知当生产成本为1000万元时,产量为5000单位。

我们可以用以下不等式来描述这个问题:x ≥ 1000y ≤ 5000 - 2(x - 1000)其中,x表示生产成本(单位:万元),y表示产量(单位:单位)。

解决这个问题的方法是找到满足不等式的生产成本和产量的取值范围。

根据第一个不等式,生产成本的取值范围是[x ≥ 1000],根据第二个不等式,产量的取值范围是[y ≤ 5000 - 2(x - 1000)]。

因此,满足两个不等式的解集可以表示为:x ≥ 1000y ≤ 5000 - 2(x - 1000)这个解集表示了满足条件的生产成本和产量的取值范围。

一元一次不等式教案(9篇)

一元一次不等式教案(9篇)

一元一次不等式教案(9篇)我为你精心整理了9篇《一元一次不等式教案》的范文,但愿对你的工作学习带来帮助,希望你能喜欢!当然你还可以在搜索到更多与《一元一次不等式教案》相关的范文。

篇1:一元一次不等式教案实际问题与一元一次不等式教案教学目标1、会从实际问题中抽象出数学模型,会用一元一次不等式解决实际问题;2、通过观察、实践、讨论等活动,经历从实际中抽象出数学模型的过程,积累利用一元一次不等式解决实际问题的经验,渗透分类讨论思想,感知方程与不等式的内在联系;3、在积极参与数学学习活动的过程中,初步认识一元一次不等式的应用价值,形成实事求是的态度和独立思考的习惯。

教学难点弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式。

知识重点寻找实际问题中的不等关系,建立数学模型。

教学过程(师生活动)设计理念提出问题某学校计划购实若干台电脑,现从两家商店了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.如果你是校长,你该怎么考虑,如何选择?(多媒体展示商场购物情景)通过买电脑这个学生非常熟悉的生活实例,引起学生浓厚的学习兴趣,感受到数学来源于生活,生活中更需要数学。

探究新知1、分组活动.先独立思考,理解题意.再组内交流,发表自己的观点.最后小组汇报,派代表论述理由.2、在学生充分发表意见的基础上,师生共同归纳出以下三种采购方案:(1)什么情况下,到甲商场购买更优惠?(2)什么情况下,到乙商场购买更优惠?(3)什么情况下,两个商场收费相同?3、我们先来考虑方案:设购买x台电脑,如果到甲商场购买更优惠.问题1:如何列不等式?问题2:如何解这个不等式?在学生充分讨论的基础上,教师归纳并板书如下:解:设购买x 台电脑,如果到甲商场购买更优惠,则6000+6000(1-25%)(x-1)<6000(1-20%)x去括号,得去括号,得:6000+4500x-45004<4800x移项且合并,得:-300x<1500不等式两边同除以-300,得:x<5答:购买5台以上电脑时,甲商场更优惠.4、让学生自己完成方案(2)与方案(3),并汇报完成情况.教师最后作适当点评.鼓励学生大胆猜想,对研究的问题发表见解,进行探索、合作与交流,涌现出多样化的解题思路.教师及时予以引导、归纳和总结,让学生感知不等式的建模。

2022学年上海六年级数学下学期同步教材满分攻略第08讲一元一次不等式组(核心考点讲与练)(练习版)

2022学年上海六年级数学下学期同步教材满分攻略第08讲一元一次不等式组(核心考点讲与练)(练习版)

第08讲一元一次不等式组(核心考点讲与练)一.解一元一次不等式组(1)一元一次不等式组的解集:几个一元一次不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.(2)解不等式组:求不等式组的解集的过程叫解不等式组.(3)一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.二.一元一次不等式组的整数解(1)利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.(2)已知解集(整数解)求字母的取值.一般思路为:先把题目中除未知数外的字母当做常数看待解不等式组或方程组等,然后再根据题目中对结果的限制的条件得到有关字母的代数式,最后解代数式即可得到答案.三.由实际问题抽象出一元一次不等式组由实际问题列一元一次不等式组时,首先把题意弄明白,在此基础上找准题干中体现不等关系的语句,根据语句列出不等关系.往往不等关系出现在“不足”,“不少于”,“不大于”,“不超过”等这些词语出现的地方.所以重点理解这些地方有利于自己解决此类题目.四.一元一次不等式组的应用对具有多种不等关系的问题,考虑列一元一次不等式组,并求解.一元一次不等式组的应用主要是列一元一次不等式组解应用题,其一般步骤:(1)分析题意,找出不等关系;(2)设未知数,列出不等式组;(3)解不等式组;(4)从不等式组解集中找出符合题意的答案;(5)作答.一.一元一次不等式组的定义(共2小题)1.(2020春•安庆期中)下列不等式组:①;②;③;④;⑤,其中是一元一次不等式组的个数()A.2个B.3个C.4个D.5个2.(2017春•雁塔区校级月考)下列不等式组:①,②,③,④,⑤.其中一元一次不等式组的个数是()A.2个B.3个C.4个D.5个二.解一元一次不等式组(共4小题)3.(2021春•杨浦区期中)若n<m,则不等式组的解集是()A.x>m B.x<n C.n<x<m D.无解4.(2021春•杨浦区期末)若与2﹣3x<0的解集是相同的,那么m的值是()A.B.C.D.5.(2021•浦东新区校级自主招生)有一个解集为﹣2<x<2,它可能是下面哪个不等式组的解集?(a,b均为实数)()A.B.C.D.6.(2021春•杨浦区期末)如果不等式组无解,那么a的取值范围是.三.一元一次不等式组的整数解(共8小题)7.(2021春•浦东新区月考)不等式组的整数解为.8.(2021春•浦东新区期末)解不等式组:,并写出它的所有非负整数解.9.(2021•长宁区二模)解不等式组:,并求出它的正整数解.10.(2021•叙州区校级模拟)不等式组有两个整数解,则m的取值范围为()A.﹣5<m≤﹣4B.﹣5<m<﹣4C.﹣5≤m<﹣4D.﹣5≤m≤﹣4 11.(2021春•杨浦区期中)已知不等式组,则它的正整数解是.12.(2021春•松江区期末)求不等式组的自然数解.并把它的解集在数轴上表示出来.13.(2021•浦东新区二模)解不等式组:并写出这个不等式组的自然数解.14.(2021春•扶沟县期末)解不等式组:,把它的解集在数轴上表示出来,并写出该不等式的整数解.四.由实际问题抽象出一元一次不等式组(共3小题)15.(2021春•澄城县期末)鱼缸里饲养A、B两种鱼,A种鱼的生长温度x℃的范围是20≤x≤28,B种鱼的生长温度x℃的范围是19≤x≤25,那么鱼缸里的温度x℃应该控制在范围内.16.(2021秋•杭州期末)检测游泳池的水质,要求三次检验的pH的平均值不小于7.2,且不大于7.8.前两次检验,pH的读数分别是7.4,7.9,那么第三次检验的pH应该为多少才能合格?设第3次的pH值为x,由题意可得()A.7.2×3≤7.4+7.9+x≤7.8×3B.7.2×3<7.4+7.9+x≤7.8×3C.7.2×3>7.4+7.9+x>7.8×3D.7.2×3<7.4+7.9+x<7.8×317.(2021春•红谷滩区校级期末)一个四位数,记千位数字与个位数字之和为x,十位数字与百位数字之和为y,如果x=y,那么称这个四位数为“对称数”(1)最小的“对称数”为;四位数A与2020之和为最大的“对称数”,则A的值为;(2)一个四位的“对称数”M,它的百位数字是千位数字a的3倍,个位数字与十位数字之和为8,且千位数字a使得不等式组恰有4个整数解,求出所有满足条件的“对称数”M的值.五.一元一次不等式组的应用(共4小题)18.(2019秋•浦东新区期中)小明的外婆从家乡带来一篮苹果,小明数了数,发现每次拿出4个、每次拿出5个或每次拿出6个,都恰好拿完,又知道苹果的总数超过100个,但又不足150个,试问这篮苹果共多少个?19.(2021秋•青浦区校级期中)已知某校六年级学生超过130人,而不足150人,将他们按每组12人分组,多3人,将他们按每组8人分组,也多3人,该校六年级学生有多少人?20.(2019春•奉贤区期中)为了更好治理黄浦江水质,保护环境,市治污公司决定购买10台污水处理设备.现有A、B两种型号的设备,经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.A、B两种型号设备的月处理污水量如下表:A型B型价格(万元/台)a处理污水量(吨/月)240180(1)设A型设备每台的价格为a万元,则B型每台的价格为万元;(2)求A、B两种型号的设备的价格;(3)经预算:市治污公司购买污水处理设备的资金不超过105万元,且每月要求处理黄浦江的污水量不低于1860吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.21.(2020春•虹口区期中)一件商品的成本价是30元,若按标价的八八折销售,至少可获得10%的利润:若按标价的九折销售,可获得不足20%的利润.设这件商品的标价为x元,则x在范围内.题组A 基础过关练一.选择题(共4小题)1.(2018春•普陀区期中)不等式组的非负整数解有( ) A .1个B .2个C .3个D .4个2.(2019•金山区二模)不等式组的解集是( )A .x >﹣3B .x <﹣3C .x >1D .x <1 3.(2015春•辽阳校级期中)登山前,登山者要将矿泉水分装在旅行包内带上山.若每人2瓶,则剩余3瓶,若每人带3瓶,则有一人所带矿泉水不足2瓶(不为0瓶),登山人数及矿泉水的瓶数是( ) A .5、13B .3、5C .5、15D .无法确定4.(2013春•九江期末)把一盒苹果分给几个学生,若每人分4个,则剩下3个;若每人分6个,则最后一个学生能得到的苹果不超过2个,则学生人数是( ) A .3B .4C .5D .6二.填空题(共3小题)5.(2018秋•杨浦区校级期中)若﹣<x <,则x可以取 个整数值. 6.(2020•哈尔滨模拟)不等式组的解集是 .7.(2021•浦东新区模拟)不等式组的解集是 .三.解答题(共2小题)分层提分8.(2018春•黄浦区期末)解不等式组:,并把不等式组的解集表示在数轴上.9.(2018春•松江区期末)求不等式组:的整数解.题组B 能力提升练一.填空题(共4小题)1.(2021•崇明区二模)不等式组的解集是.2.(2021•普陀区二模)不等式组的解集是.3.(2020•青浦区二模)不等式组的整数解是.4.(2000•上海自主招生)今有浓度分别为3%、8%、11%的甲、乙、丙三种盐水50千克、70千克、60千克,现要用甲、乙、丙这三种盐水配制浓度为7%的盐水100千克,则丙种盐水最多可用千克.二.解答题(共9小题)5.(2021春•青浦区期中)解不等式组:并把它的解集在数轴上表示出来.6.(2021•徐汇区二模)解不等式组:.7.(2021•奉贤区二模)解不等式组:,并把解集在数轴上表示出来.8.(2019春•松江区期末)求不等式组:的非负整数解;并把它的解集在数轴上表示出来.9.(2019春•奉贤区期中)解不等式组:,并写出不等式组的非负整数解.10.不足100名同学跳集体舞时有两种组合:一种是中间一组5人,其他人按8人一组围在外圈;另一种是中间一组8人,其他人按5人一组围在外圈.问最多有多少名同学?11.若2x+|4﹣5x|+|1﹣3x|+4的值恒为常数,求x该满足的条件及此常数的值.12.(2015春•闵行区期末)先阅读下列一段文字,然后解答问题:某食品研究部门欲将甲、乙、丙三种食物混合研制成100千克食物,并规定:研制成的混合食品中至少需含44000单位的维生素A和48000单位的维生素B,三种食物的维生素A、B的含量如表1所示:甲种食物乙种食物丙种食物每千克生产成本(元)甲种食物9维生素A(单位/千克)400600400乙种食物12维生素B(单位/千克)800200400丙种食物8(表1)(表2)设所取甲、乙、丙三种食物的质量分别为x千克、y千克、z千克,(1)试根据题意列出等式和不等式,并说明:①y≥20;②2x﹣y≥40;(2)设甲、乙、丙三种食物的生产成本如表2所示:①试用含x、y的代数式表示研制的混合食品的总成本P(元);②如果限定混合食品中甲种食物的质量为40千克,试求此时总成本P 的取值范围,并确定当P取最小值时,所取乙、丙两种食物的质量.13.(2015春•普陀区期末)(1)解不等式组,并把不等式组的解集在图所示的数轴上表示出来;(2)若(1)中所求得的不等式组的解集中的最大或最小的整数值是关于x的方程2x﹣ax=3的解,求a的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实际问题与一元一次不等式组(第一课时)
学习目标
1.进一步熟练掌握解一元一次不等式组的方法
2.会从实际问题中抽象出数学模型,会用一元一次不等式组解决实际问题;
学习重点与难点
重点:会从实际问题中抽象出数学模型,会用一元一次不等式组解决实际问题;难点:二元一次方程与一元一次不等式相结合解决实际问题
学习过程
一、回顾交流
1.解一元一次不等式组有哪几个主要步骤?
2、用不等式表示下列语句
(1)正数(2)负数
(3)非负数(4)一个数至少是7
(5)汤剑峰家不足5人(6)704班今天最多交了45本作业
3、动手一试:
已知三个连续自然数之和至少为9,但小于12,求这三个数.
二、课堂探究部分(先独立完成,再小组讨论完善答案)
例1、一群女生住若干间宿舍,每间住4人,剩19人无房住;每间住6人,有一间宿舍住不满,问可能有多少间宿舍,多少名学生?
三、学生练习
1.将若干只鸡放入若干个笼,若每笼放4只,则有一只鸡无笼可放;若每笼放5只,则有一个笼无鸡可放.那么有几只鸡几个笼?
四、深入探究
例2 足球比赛规则如下:胜一场得3分,平一场得1分,负一场得0分。

某球队已经参加了12场比赛,只得了21分,请你判断该队胜、平、负各几场?
学生练习
2、课外阅读课上,老师将43本书分给各个小组。

每组8本,还有剩余;每组9本,却又不够。

有几个小组?
3、把一堆苹果分给几个孩子,如果每人分3个,那么多8个;如果前面每人分5个,那么最后一人得到的苹果少于3个,问有几个孩子?有多少个苹果?。

相关文档
最新文档