函数的周期和对称性
函数的对称与周期
函数的对称与周期在数学中,函数的对称和周期是重要的概念。
它们不仅在数学理论中有着广泛的应用,而且在实际问题中也有着重要的意义。
本文将探讨函数的对称性和周期性,并分别对两个概念进行详细说明。
一、函数的对称性函数的对称性是指函数图像关于某个轴、点或面具有对称的性质。
在这里,我将介绍函数的三种常见对称性:关于y轴对称、关于x轴对称和关于原点对称。
1. 关于y轴对称如果函数f(x)满足f(-x)=f(x),那么它具有关于y轴对称的性质。
这意味着函数图像在y轴上的任意一点关于y轴有对称的点。
例如,函数f(x)=x^2就是一个关于y轴对称的函数,因为f(-x)=(-x)^2=x^2。
2. 关于x轴对称如果函数f(x)满足f(x)=-f(x),那么它具有关于x轴对称的性质。
这意味着函数图像在x轴上的任意一点关于x轴有对称的点。
例如,函数f(x)=sin(x)就是一个关于x轴对称的函数,因为sin(-x)=-sin(x)。
3. 关于原点对称如果函数f(x)满足f(-x)=-f(x),那么它具有关于原点对称的性质。
这意味着函数图像在原点上的任意一点关于原点有对称的点。
例如,函数f(x)=x^3就是一个关于原点对称的函数,因为f(-x)=(-x)^3=-x^3。
二、函数的周期性函数的周期性是指函数在某个间隔内具有重复的性质。
在函数图像中,这个间隔被称为函数的周期。
常见的周期函数有正弦函数和余弦函数。
1. 正弦函数正弦函数f(x)=sin(x)是一个以2π为周期的函数。
也就是说,对于任意的实数k,f(x+k*2π)=f(x)。
正弦函数的图像是一个波浪状的曲线,它在每个2π的间隔内重复。
2. 余弦函数余弦函数f(x)=cos(x)也是一个以2π为周期的函数。
也就是说,对于任意的实数k,f(x+k*2π)=f(x)。
余弦函数的图像也是一个波浪状的曲线,它和正弦函数的图像非常相似,只是相位有所不同。
函数的对称性和周期性在数学中有着广泛的应用。
函数点对称线对称及周期总结
函数点对称线对称及周期总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII函数对称性、周期性全解析函数对称性、周期性是函数这一部分在历年高考中的一个重点,现在全部解析如下:一、同一函数的周期性、对称性问题(即函数自身)1、周期性:对于函数)(x f y =,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周期。
如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。
2、对称性定义(略),请用图形来理解。
3、对称性:我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =-奇函数关于(0,0)对称,奇函数有关系式0)()(=-+x f x f 上述关系式是否可以进行拓展?答案是肯定的探讨:(1)函数)(x f y =关于a x =对称⇔)()(x a f x a f -=+ )()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 简证:设点),(11y x 在)(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==,即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。
得证。
若写成:)()(x b f x a f -=+,函数)(x f y =关于直线22)()(b a x b x a x +=-++= 对称 (2)函数)(x f y =关于点),(b a 对称⇔b x a f x a f 2)()(=-++ b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+- 简证:设点),(11y x 在)(x f y =上,即)(11x f y =,通过b x f x a f 2)()2(=+-可知,b x f x a f 2)()2(11=+-,所以1112)(2)2(y b x f b x a f -=-=-,所以点)2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称。
函数周期性与对称性
函数周期性与对称性一、函数周期:对任意的x D ∈,都有()()f x T f x +=,则T 叫做函数()f x 的周期 例如:求11()()(),(),()()1()f x f x a f x f x a f x a f x f x -+=-+=+=+的周期 二、对称性:函数关于原点对称即奇函数:()()f x f x -=- 函数关于y 对称即偶函数:()()f x f x -=函数关于直线 x a =对称:()()f x a f a x +=-或()(2)f x f a x =-或 者 (2)()f x a f x +=-函数关于点(a,b )对称:f(x+a)+f(a-x)=2b1.f(x)是定义在R 上的以3为周期的奇函数,且f(2)=0在区间(0,6)内解的个数的最小值是 A .2; B .3; C .4; D .5 ( )2.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+=则=)5(f ( )A .0B .1C .25 D .53.已知f(x)是R 上的偶函数,对R x ∈都有f(x +6)=f(x)+f(3)成立,若f(1)=2,则f(2011)=( )A 、2005B 、2C 、1D 、04. 设f (x )是定义在R 上以6为周期的函数,f (x )在(0,3)内单调递减,且y=f (x )的图象关于直线x=3对称,则下面正确的结论是 ( )(A)()()()1.5 3.5 6.5f f f <<; (B )()()()3.5 1.5 6.5f f f <<; (C)()()()6.5 3.5 1.5f f f <<; (D)()()()3.5 6.5 1.5f f f <<5.设函数()f x 与()g x 的定义域是{x R ∈}1x ≠±,函数()f x 是一个偶函数,()g x 是一个奇函数,且1()()1f xg x x -=-,则()f x 等于 A.112-x B.1222-x xC .122-x D.122-x x6.已知定义在R 上的函数f (x )的图象关于)0,43(-成中心对称,且满足f (x )=1)1(),23(=-+-f x f , f (0) = –2,则f (1) + f (2) +…+ f (2010)的值为( )A .–2B .–1C .0D .17.已知函数()f x 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有(1)(1)()xf x x f x +=+,则5(())2f f 的值是 A .0 B.12 C.1 D.528.若()f x 是定义在R 上的奇函数,且当x <0时,1()1f x x =+,则1()2f = .9.()y f x =定义域为R ,且对任意x R ∈都有()()()111f x f x f x ++=-,若()21f =f(2009)=_ 10.设f(x)是定义在R 上的奇函数,且y=f(x)的图象关于直线21=x 对称,则f(1)+f(2)+f(3)+f(4)+f(5)= ____。
函数的周期性与对称性
函数的周期性与对称性函数是数学中的重要概念之一,它描述了数值之间的对应关系。
在函数的研究中,周期性与对称性是两个重要的性质。
本文将从理论和实际应用的角度,探讨函数的周期性与对称性。
一、周期性函数的周期性是指在一定的范围内,函数的值以一定的规律重复出现。
如果存在一个正数T,对于函数f(x)的定义域内的任意x,有f(x+T) = f(x),则称函数f(x)具有周期T,T是函数的周期。
周期性在数学中广泛应用于波动现象的研究中,如正弦函数和余弦函数就是典型的周期性函数。
以正弦函数为例,函数f(x) = sin(x)的周期为2π,即在每一个2π的区间内,函数的值重复出现。
这种周期性的特征在物理学中非常重要,可以用于描述电磁波、声波等的传播规律。
在实际应用中,周期性函数经常用于天文学、物理学、电路分析等领域。
例如,利用函数的周期性可以预测天体运动的规律,分析电子元件的交流电路,优化信号处理等。
二、对称性函数的对称性是指在某种变换下,函数的值保持不变。
常见的对称性有奇偶对称性和轴对称性。
1. 奇偶对称性函数f(x)具有奇对称性,如果对于定义域内的任意x,有f(-x) = -f(x)。
奇对称函数在坐标系中以原点为对称中心,左右两侧关于y轴对称。
以奇对称函数f(x) = sin(x)为例,可以观察到f(x)关于原点对称。
当x取正值时,f(x)在正半轴上取正值;当x取负值时,f(x)在负半轴上取负值。
函数的奇对称性在数学和工程中都具有广泛应用。
例如在电力系统中,交流电流的正弦波形就是一种典型的奇对称函数。
2. 轴对称性函数f(x)具有轴对称性,如果对于定义域内的任意x,有f(-x) = f(x)。
轴对称函数关于y轴对称,即函数图像关于y轴对称。
以轴对称函数f(x) = x^2为例,可以观察到函数图像在y轴上是对称的。
当x取正值时,f(x)在正半轴上取正值;当x取负值时,f(x)在正半轴上同样取正值。
轴对称函数在几何学和图像处理中有广泛应用。
函数周期性与对称性
函数周期性与对称性函数周期性和对称性是数学中重要的概念,它们在函数的图像以及数学建模中都起着关键的作用。
在本文中,我将详细介绍函数的周期性和对称性,并探讨它们在实际问题中的应用。
一、周期性周期性是指函数具有重复性质,在一定区间内的函数值是相同的或者是呈规律性变化的。
如果存在一个正数T,使得对于任意的x,有f(x+T)=f(x),则称函数f具有周期T。
例如,正弦函数sin(x)是一个周期为2π的函数。
无论x取何值,sin(x+2π)的值与sin(x)的值相同。
同样地,余弦函数cos(x)也是一个周期为2π的函数。
周期性在物理学和工程学等领域中有广泛的应用。
例如,声音波动、机械振动和电信号的周期性都可以用周期函数进行建模。
通过分析周期性可以得到这些现象的规律和特性。
二、对称性对称性是指函数图像在某种变换下具有不变性。
常见的对称性有轴对称和中心对称两种。
1. 轴对称:如果对于函数f(x),存在一个实数a,使得对于任意的x,有f(2a-x)=f(x),则称函数f具有轴对称。
例如,抛物线函数y=x^2是一个关于y轴对称的函数。
对于任意的x,有x^2=(-x)^2,即函数值关于y轴对称。
2. 中心对称:如果对于函数f(x),存在一个实数a,使得对于任意的x,有f(2a-x)=-f(x),则称函数f具有中心对称。
例如,奇函数f(x)=sin(x)是一个关于原点对称的函数。
对于任意的x,有sin(-x)=-sin(x),即函数值关于原点对称。
对称性在几何学、物理学和图像处理等领域中有重要的应用。
例如,通过分析图像的对称性,可以简化计算或者提取图像中的关键特征。
综上所述,函数周期性和对称性是数学中两个重要的概念。
周期性描述了函数重复规律的特性,对于模拟和分析周期性现象非常有用;而对称性则描述了函数图像在变换下不变的性质,对于建模和处理图像有重要应用。
通过理解和应用函数周期性和对称性,我们能更好地理解数学背后的规律,并将其用于实际问题的解决。
函数的周期性与对称性
【例2】 f(x)是定义在R上的以3 为周期的奇函数,且 f ( 2 )= 0 , 则方程 f ( x )= 0 在区间( 0 , 6 ) 内解的个数的最小值是 ( ) A.2
C.4
B.3
D. 5
【解析】
∵ f ( x )为奇函数, ∴ f ( 0 )= 0 ,又 函数f(x)以3为周期,且f(2)=0, ∴f(-2)=0,f(1)=0,f(4)= 0,f(3)=0,f(5)=0, ∴在区间(0,6)内的解有1,2,3, 4,5.故选D.
3、关于点(a,0)对称
练习:求函数y=f(x)关于点(a,0)对称的解析 式 答案:y=-f(2a-x) 结论:⑴-f(2a-x)与f(x)的图形关于点(a,0)对称
⑵一个函数y=f(x)本身关于点(a,0)对称,有 f(x)=-f(2a-x)即f(x)+f(2a-x)=0
函数周期性解题的一道经典试题
2、关于直线y=b对称 ⑴函数y=f(x)关于x轴(y=0)对称的函数是y=-f(x)
⑵求函数y=f(x)关于直线y=b对称的函数解析式
解:设(x,y)是所求曲线上任意一点,它关于直 线y=b的对称点为(x,y1),从而y1=f(x)而 y1-b=b-y故y1=2b-y,于是y=2b-f(x) 结论:f(x)与g(x)的图象关于直线y=b对称,则 f(x)+g(x)=2b反之也成立
区间上单调性相反
⑵求函数y=f(x)关于直线x=a对称的函数解析 式 解:用相关点法,设(x,y)是所求曲线上任意 一点,则它关于直线x=a的对称点为(x1,y) 在函数y=f(x)图象上,故y=f(x1),而 x1-a=a-x所以x1=2a-x,于是y=f(2a-x)即为 所求 结论:y=f(x)与y=f(2a-x)的图象关于直线x=a 对称
(完整版)函数周期性与对称性常见结论
(完整版)函数周期性与对称性常见结论
函数周期性与对称性是数学中一种基本的类型,可以用来描述函数的特征。
这种性质
极大地影响着函数的曲线形状,对于函数研究也是非常重要的。
本文为读者介绍函数周期
性与对称性常见的结论。
一、周期性
1. 可以说函数f(x+T)与f(x)的图像有周期性,T<>0是一个常数,也称为函数的周期,它可以定义一个函数的曲线;
2. 周期性循环是一种规律,表明函数的值随着参数的改变而不断变化,但最终又会
回到原来的状态;
3. 一般情况下,定义域内的函数都具有周期性,当x的取值超出定义域时,函数f(x)也可能有周期性;
4. 一个周期性函数的周期T是其变化模式的重要特征,其变化规律如果舍弃它,函
数f(x)就不再具有周期性;
5. 若函数f(x)具有周期性,那么它的最小正周期Tc就定义了整个函数的曲线,可以视为一种最基本的形状。
二、对称性
1. 当函数f(x)满足f(-x)=f(x)的性质时,称此函数具有对称性;
2. 一个函数的平行四边形对称性表明,函数f(-x)和f(x)的图像是完全一模一样的,而不管x的取值为多少;
3. 一些函数具有点对称性,点对称性表明f(-x0)=f(x0),即对称中心为x0的函数图像;
4. 如果一个函数的图象可以通过给定的任意角度旋转而不失真,则称其为角度对称性;
5. 对称性可有效描述函数f(x)的特征,常用于应用函数研究中。
函数对称性与周期性
函数对称性与周期性知识归纳:一.函数自身的对称性结论结论1. 函数 y = f (x)的图像关于点A (a ,b)对称的充要条件是f (x) + f (2a -x) = 2b证明:(必要性)设点P(x ,y)是y = f (x)图像上任一点,∵点P( x ,y)关于点A (a ,b)的对称点P‘(2a-x,2b-y)也在y = f (x)图像上,∴2b -y = f (2a-x)即y + f (2a-x)=2b故f (x) + f (2a-x) = 2b,必要性得证。
(充分性)设点P(x0,y0)是y = f (x)图像上任一点,则y0 = f (x0)∵ f (x) + f (2a-x) =2b∴f (x0) + f (2a-x0) =2b,即2b-y0 = f (2a-x0) 。
故点P‘(2a-x0,2b-y0)也在y = f (x) 图像上,而点P与点P‘关于点A (a ,b)对称,充分性得征。
推论1:函数y = f (x)的图像关于原点O对称的充要条件是f (x) + f (-x) = 0推论2:的图象关于点对称.推论3:的图象关于点对称.推论4:的图象关于点对称.结论2. 若函数 y = f (x)满足f (a +x) = f (b-x)那么函数本身的图像关于直线x = 对称,反之亦然。
证明:已知对于任意的都有f(a+) =f(b-)=令a+=, b-=则A(,),B(,)是函数y=f(x)上的点 显然,两点是关于x= 对称的。
反之,若已知函数关于直线x = 对称, 在函数y = f (x)上任取一点P()那么()关于x = 对称点(a+ b-,)也在函数上故f()=f(a+ b-)f(a+(-a))=f(b-(-a))所以有f (a +x) = f (b-x)成立。
推论1:函数y = f (x)的图像关于直线x = a对称的充要条件是f (a +x) = f (a-x) 即f (x) = f (2a-x)推论2:函数 y = f (x)的图像关于y轴对称的充要条件是f (x) = f (-x)结论3. ①若函数y = f (x) 图像同时关于点A (a ,c)和点B (b ,c)成中心对称(a≠b),则y = f (x)是周期函数,且2| a-b|是其一个周期。
高中数学讲义: 函数的对称性与周期性
函数的对称性与周期性一、基础知识(一)函数的对称性1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称2、轴对称的等价描述:(1)()()f a x f a x -=+Û()f x 关于x a =轴对称(当0a =时,恰好就是偶函数)(2)()()()f a x f b x f x -=+Û关于2a bx +=轴对称在已知对称轴的情况下,构造形如()()f a x f b x -=+的等式只需注意两点,一是等式两侧f 前面的符号相同,且括号内x 前面的符号相反;二是,a b 的取值保证2a bx +=为所给对称轴即可。
例如:()f x 关于1x =轴对称()()2f x f x Þ=-,或得到()()31f x f x -=-+均可,只是在求函数值方面,一侧是()f x 更为方便(3)()f x a +是偶函数,则()()f x a f x a +=-+,进而可得到:()f x 关于x a =轴对称。
①要注意偶函数是指自变量取相反数,函数值相等,所以在()f x a +中,x 仅是括号中的一部分,偶函数只是指其中的x 取相反数时,函数值相等,即()()f x a f x a +=-+,要与以下的命题区分:若()f x 是偶函数,则()()f x a f x a +=-+éùëû:()f x 是偶函数中的x 占据整个括号,所以是指括号内取相反数,则函数值相等,所以有()()f x a f x a +=-+éùëû②本结论也可通过图像变换来理解,()f x a +是偶函数,则()f x a +关于0x =轴对称,而()f x 可视为()f x a +平移了a 个单位(方向由a 的符号决定),所以()f x 关于x a =对称。
3、中心对称的等价描述:(1)()()f a x f a x -=-+Û()f x 关于(),0a 轴对称(当0a =时,恰好就是奇函数)(2)()()()f a x f b x f x -=-+Û关于,02a b +æöç÷èø轴对称在已知对称中心的情况下,构造形如()()f a x f b x -=-+的等式同样需注意两点,一是等式两侧f 和x 前面的符号均相反;二是,a b 的取值保证2a bx +=为所给对称中心即可。
函数的基本性质(对称性、周期性)
函数的基本性质(对称性、周期性)1、周期性:对于函数)(x f y =,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周期。
如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期.2、对称性:(1)轴对称()()f a x f a x +=-⇔函数)(x f y =关于a x =对称注意:)()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 简证:设点),(11y x 在)(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==,即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称.得证.若写成:)()(x b f x a f -=+,函数)(x f y =关于直线2a b x +=对称. (2)点对称 ()()2f a x f a x b ++-=⇔函数)(x f y =关于点),(b a 对称 b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+- 简证:设点),(11y x 在)(x f y =上,即)(11x f y =,通过b x f x a f 2)()2(=+-可知,b x f x a f 2)()2(11=+-,所以1112)(2)2(y b x f b x a f -=-=-,所以点)2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称.得证.若写成:c x b f x a f =-++)()(,函数)(x f y =关于点)2,2(c b a + 对称.3、周期性(1)如果()f x 满足()()()f x a f x b a b +=+≠,则()f x 是周期T a b =-的周期函数.(2)如果()f x 满足()()(0)f x a f x a +=-≠,则()f x 是周期2T a =的周期函数.(3)如果()f x 满足1()(0,()0)()f x a a f x f x +=≠≠且,或1()()f x a f x +=-,则()f x 是周期2T a =的周期函数.(4)若函数()x f 在R 上满足()x a f x a f -=+)(,且()x b f x b f -=+)((其中b a ≠),则函数()x f y =以()b a -2为周期.(5)若函数()x f 在R 上满足()x a f x a f --=+)(,且()x b f x b f --=+)((其中b a ≠),则函数()x f y =以()b a -2为周期.(6)若函数()x f 在R 上满足()x a f x a f -=+)(,且()x b f x b f --=+)((其中b a ≠),则函数()x f y =以()b a -4为周期.4、例题讲解例1、已知定义为R 的函数()x f满足()()4x f x f +-=-,且函数()x f 在区间()∞+,2上单调递增.如果21x 2x <<,且4x x 21<+,则()()21x f x f +的值( )A. 恒小于0B.恒大于0 C .可能为0 D .可正可负 例2、在R 上定义的函数()f x 是偶函数,且()f x (2)f x =-.若()f x 在区间[1,2]上是减函数,则()f x ( )A.在区间[2,1]--上是增函数,在区间[3,4]上是增函数B.在区间[2,1]--上是增函数,在区间[3,4]上是减函数C.在区间[2,1]--上是减函数,在区间[3,4]上是增函数D.在区间[2,1]--上是减函数,在区间[3,4]上是减函数例3、已知()113x f x x+=-,()()1f x f f x =⎡⎤⎣⎦,()()21f x f f x =⎡⎤⎣⎦,…,()()1n n f x f f x +=⎡⎤⎣⎦,则()20042f -=( ). A.17- B. 17C. 35-D.3 例4、已知函数()f x 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有(1)(1)()xf x x f x +=+,则5(())2f f 的值是( )A.0B.12C.1D.52例5、()y f x =定义域为R ,且对任意x R ∈都有()()()111f x f x f x ++=-,若()21f =(2009)f =________例6、已知函数f(x)的定义域为N ,且对任意正整数x ,都有f(x)=f(x -1)+f(x +1)若f(0)=2004,求f(2004).例7、已知对于任意a ,b ∈R ,有f(a +b )+f(a -b )=2f(a )f(b ),且f(x )≠0 ⑴求证:f(x )是偶函数;⑵若存在正整数m 使得f(m)=0,求满足f(x +T)=f(x )的一个T 值(T≠0).例8、已知f (x )是R 上的奇函数,且11()()22f x f x +=-,则f (1)+f (2)+f (3)=_______.例9、设奇函数y=f(x)的定义域为R ,f(1)=2,且对任意R x x ∈21,,都有),f(x )f(x )x f(x 2121+=+当x >0时,f(x)是增函数,则函数)(f y 2x -=在区间[-3,-2]上的最大值是____.例10、设)(x f 是定义在区间),(+∞-∞上且以2为周期的函数,对Z k ∈,用k I 表示区间),12,12(+-k k 已知当0I x ∈时,2()f x x =,求)(x f 在k I 上的解析式.例11、设定义在R 上的偶函数()f x 满足(2)(2)f x f x -=+,且当[2,0]x ∈-时()f x 为增函数,若(2)0f -≥.求证:当[4,6]x ∈时,|()|f x 为减函数. 例12、设函数)(x f 定义于R 上,且函数)(x f 不恒为零,0)2(=πf ,若对于任意实数x 、y ,恒有:)2()2(2)()(y x f y x f y f x f -⋅+=+ 求证:①)()2(x f x f =+π ②)()(x f x f -= ③ 1)(2)2(2-=x f x f变式、设函数)(x f 定义于R 上,函数)(x f 不恒为零,且对于任意实数1x 、2x ,有)()()2()2(212121x x f x x f x f x f -⋅+=+求证:)()(x f x f -=.。
高中函数对称性和周期性全解析
高中函数对称性和周期性全解析一、单个函数的对称性性质1:函数()y f x =满足()()f a x f b x +=-时,函数()y f x =的图象关于直线2a b x +=对称。
证明:在函数()y f x =上任取一点11(,)x y ,则11()y f x =,点11(,)x y 关于直线 2a b x +=的对称点11(,)a b x y +-,当1x a b x =+-时 11111()[()][()]()f a b x f a b x f b b x f x y +-=+-=--==故点11(,)a b x y +-也在函数()y f x =图象上。
由于点11(,)x y 是图象上任意一点,因此,函数的图象关于直线2a b x +=对称。
(注:特别地,a =b =0时,该函数为偶函数。
)性质2:函数()y f x =满足()()f a x f b x c ++-=时,函数()y f x =的图象关于点(2a b +,2c )对称。
证明:在函数()y f x =上任取一点11(,)x y ,则11()y f x =,点11(,)x y 关于点 (2a b +,2c )的对称点(1a b x +-,c -y 1),当1x a b x =+-时, 1111()[()]()f a b x c f b b x c f x c y +-=---=-=-即点(1a b x +-,c -y 1)在函数()y f x =的图象上。
由于点11(,)x y 为函数()y f x =图象上的任意一点可知函数()y f x =的图象关于点(2a b +,2c )对称。
(注:当a =b =c =0时,函数为奇函数。
)性质3:函数()y f a x =+的图象与()y f b x =-的图象关于直线2b a x -=对称。
证明:在函数()y f a x =+上任取一点11(,)x y ,则11()y f a x =+,点11(,)x y 关于直线2b a x -=对称点(1b a x --,y 1)。
(完整版)对称性和周期性性质总结
函数の对称性和周期性一、几个重要の结论(一)函数图象本身の对称性(自身对称)1、函数 )(x f y =满足 )()(x T f x T f -=+(T 为常数)の充要条件是 )(x f y =の图象关于直线 T x =对称。
2、函数 )(x f y =满足 )2()(x T f x f -=(T 为常数)の充要条件是 )(x f y =の图象关于直线 T x =对称。
3、函数 )(x f y =满足 )()(x b f x a f -=+の充要条件是 )(x f y =图象关于直线 22)()(b a x b x a x +=-++=对称。
特殊地,如果a=0,b=0,则其关于x=0即关于y 轴对称,此时)()(x b f x a f -=+变为f(x)=f(-x),其实就是偶函数。
4、如果函数 )(x f y =满足 )()(11x T f x T f -=+且 )()(22x T f x T f -=+,( 1T 和 2T 是不相等の常数),则 )(x f y =是以为 )(212T T -为周期の周期函数。
5、如果偶函数 )(x f y =满足 )()(x T f x T f -=+( 0≠T ),则函数 )(x f y =是以2T 为周期の周期性函数。
6、如果奇函数 )(x f y =满足 )()(x T f x T f -=+( 0≠T ),则函数 )(x f y =是以4T 为周期の周期性函数。
我当初の总结是:函数对称包涵两种:一是点对称,而是线对称,比如偶函数属于线对称,奇函数属于点对称,奇偶函数对称都是关于0.即偶函数关于x=0对称,奇函数关于(0,0)对称。
那么如果一个函数是双重对称,那么该函数就是周期函数,那么什么叫多重对称呢?且看下面列子你就明白了:1, 若函数关于两条线x=a 和x=b 对称(这就叫双重对称),那么该函数一定是周期函数,且周期为2|b-a|。
2, 若函数关于两个点(a,0)和(b,0)(注都是x 轴上の点),那么该函数一定是周期函数,且周期为2|b-a|。
(完整版)函数的对称性与周期性
函数的对称性与周期性吴江市盛泽中学数学组 徐建东对称性:函数图象存在的一种对称关系,包括点对称和线对称。
周期性:设函数)(x f 的定义域是D ,若存在非零常数T ,使得对任何D x ∈,都有D T x ∈+且)()(x f T x f =+,则函数)(x f 为周期函数,T 为)(x f 的一个周期。
对称性和周期性是函数的两大重要性质,他们之间是否存在着内在的联系呢?本文就来研究一下它们之间的内在联系,有不足之处望大家批评指正。
一、一个函数关于两个点对称。
命题1:如果函数)(x f y =的图象关于点)0,(a 和点)0,(b )(a b ≠对称,那么函数)(x f y =是周期函数,)(2b a T -=为函数)(x f y =的一个周期。
证明:∵函数)(x f y =的图象关于点)0,(a 对称,∴)2()(x a f x f --=对定义域内的所有x 成立。
又∵函数)(x f y =的图象关于点)0,(b 对称,∴)2()(x b f x f --=对定义域内的所有x 成立。
从而)2()2(x b f x a f -=-∴)()]2(2[)]2(2[x f x b b f x b a f =--=-- 即:)()])22[(x f x b a f =+- ∴)(x f y =是周期函数,)(2b a T -=为函数)(x f y =的一个周期。
特例:当0=a 时,)(x f y =为奇函数,即奇函数)(x f y =如果又关于点)0,(b )0(≠b 对称,那么函数)(x f y =是周期函数,b T 2=为函数)(x f y =的一个周期。
命题1':如果函数)(x f y =的图象关于两点),(b a 和),(d c 对称,那么: 当d b =,c a ≠时,)(x f y =是周期函数,)(2c a T -=为函数)(x f y =的一个周期。
当d b ≠,c a ≠时,)(x f y =不是周期函数。
函数的周期性和对称性
cor.若函数f (x) 满足 f (x) f (2a x) ,那么函数以x a为对称轴。
即:x a为 f (a x) f (a x)
对称轴
f (x) f (2a x)
Y
A(a x, f (a x))
A
B
O
X=a
B(a x, f (a x))
3.函数的对称性与周期性的几个常见性质。
性质1.若函数f (x) 以 x a, x b(a b)为对称轴,那么此
函数是周期函数,周期T= 2 a b
证明:由f (x)图象有两条对称轴x a,x b
f (a x) f (a x),f (b x) f (b x)
2、常见的判断周期的恒等式(可用递推法证明)
1 f ( x a) f ( x a)(, a R且a 0) T 2a
(2) f ( x a) f ( x)(3) f ( x a) 1
f (x)
T 2a
T 2a
f(2009)=f(334×6+5)=f(5),而 f(5)=f(3+2)=-f12= -2-1 3=-(2+ 3).故填-(2+ 3).
[答案] -(2+ 3)
[反思感悟] 根据 f(x+3)=-1fx,可得到 f(x)为周期为 6 的函数.
【典例 2】 已知函数 f(x)是定义在 R 上的奇函数,对任 意的 x,都有 f(x+1)=-f(1-x),且方程 f(x)=0 在(-1,1)上 只有一个根,则方程 f(x+1)=0 的第 2000 个根是多少.(从 x 轴右半轴开始从左到右数起).
T 3a
(8) f ( x a) 1 f ( x)(9) f ( x a) f ( x) f ( x-a)
函数的对称性与周期性
函数的对称性与周期性补充高一数学知识点——函数的对称性与周期性一、对称性(轴对称、中心对称)函数的对称性是指函数自身具有的对称性,可以分为轴对称和中心对称两种类型。
命题1:若函数y=f(x)对定义域中任意x均有f(a+x)=f(b-x),则函数y=f(x)的图象关于直线x=(a+b)/2对称。
特别地,当f(x) = f(-x)时,函数y=f(x)的图象关于y轴对称;当f(a+x) = f(a-x)时,函数y=f(x)的图象关于直线x=a对称。
命题2:若函数y=f(x)对定义域中任意x均有f(x+a)+f(b-x)=c,则函数y=f(x)的图象关于点(a+b/c,0)成中心对称图形。
特别地,当f(x) + f(-x) = 0时,函数y=f(x)的图象关于原点对称;当f(x) + f(2a-x) = 2b时,函数y=f(x)的图象关于点(a,b)成中心对称图形。
二、周期性1.定义:对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),则称T为这个函数的一个周期。
2.如果函数f(x)是R上的奇函数,且最小正周期为T,那么f(x)=f(-x)。
关于函数的周期性的几个重要性质:1)如果y=f(x)是R上的周期函数,且一个周期为T,那么f(x±nT)=f(x)(n∈Z)。
2)如果f(x+a)=f(x-a),则f(x)的周期T=2a;如果f(x+a)=f(x-a),则f(x)的周期T=2a/T。
三、例题讲解例1]若f(x+a)=f(x)-f(x-a),则f(x)的周期T=6a,请推导。
例2]设f(x)是定义在R上的奇函数,且f(x+2)=-f(x),当-1≤x≤1时,f(x)=x,则f(7.5)=-5.5.例3]已知f(x)是定义在R上的偶函数,并且f(x+2)=-f(x),当2≤x≤3时,f(x)=x,则f(105.5)=103.5.例4]设函数y=f(x)的定义域为R,且满足f(x+1)=f(1-x),则y=f(x)图象关于直线x=1/2对称,y=f(x+1)的图象关于y轴对称。
函数周期性和对称性总结
函数周期性和对称性总结函数是数学中非常基础而且重要的概念,在研究函数的性质时,函数的周期性和对称性是其重要特征之一。
本文将对函数的周期性和对称性的概念和内涵进行总结和解释,以便更好地理解函数的性质。
一、周期性函数的周期性指函数的值在某个范围内周期性的重复,周期的概念与函数的定义有很大的关系。
1.义周期性函数是指在一定的区间上函数值一次周期性重复出现的函数。
有许多周期性函数,如三角函数、指数函数、对数函数等。
大部分周期性函数的图像是延一条条直线分割,周期性函数的微积分是有规律的。
2.性周期性函数的周期有两种表示方法:周期长度和周期弧长,分别表示周期函数的完整一次周期所需要的变量点数量和函数图像在单位区间所对应的弧长。
此外,周期性函数的定义域和值域是单调的,同时周期性函数一次周期内的值点会重复出现。
二、对称性函数的对称性是指函数图像经过某些变换仍然保持原有形状的性质,大多数函数都具有对称性特征。
1.定义函数的对称性表示函数图像在一定的条件下,经过某种变换,图像形状不变,即它仍然保持原来的形状。
一般来说,由于函数的对称性,它的定义域和值域都是单调的,一次周期的值点会重复出现,而且它的定义域经过一定的变换后可能会得到和它原有定义域完全一致的结果。
2.属性对称性函数的属性有几种:(1)对称性函数在定义域和值域内是单调的,且定义域和值域可以进行互换;(2)对称性函数不仅能够满足图像中心对称,而且还能够满足其他形状的对称;(3)对称性函数的值点会重复出现,单次周期内的值点也会一次性重复出现;(4)对称性函数的定义域经过变换后可能会得到和它原有定义域完全一致的结果。
三、结论以上简述函数的周期性和对称性。
函数的周期性表示函数值在一定区间内周期性重复出现,有许多周期性函数,其特点是定义域和值域是单调的,一次周期的值点会重复出现。
而函数的对称性表示函数图像在一定的条件下,它仍然保持原有形状,定义域和值域也是单调的,一次周期的值点也会重复出现。
第七讲函数之周期性与对称性
第七讲函数之周期性与对称性函数的周期性与对称性一.定义:假定T 为非零常数,关于定义域内的任一x ,使)()(x f T x f =+恒成立那么f (x )叫做周期函数,T 叫做这个函数的一个周期。
二.重要结论1、()()f x f x a =+,那么()y f x =是以T a =为周期的周期函数;2、 假定函数y=f(x)满足f(x+a)=-f(x)(a>0),那么f(x)为周期函数且2a 是它的一个周期。
3、 假定函数()()f x a f x a +=-,那么()x f 是以2T a =为周期的周期函数4、 y=f(x)满足f(x+a)=()x f 1 (a>0),那么f(x)为周期函数且2a 是它的一个周期。
5、假定函数y=f(x)满足f(x+a)= ()x f 1-(a>0),那么f(x)为周期函数且2a 是它的一个周期。
6、1()()1()f x f x a f x -+=+,那么()x f 是以2T a =为周期的周期函数. 7、1()()1()f x f x a f x -+=-+,那么()x f 是以4T a =为周期的周期函数. 8、 假定函数y=f(x)满足f(x+a)=)(1)(1x f x f -+(x ∈R ,a>0),那么f(x)为周期函数且4a 是它的一个周期。
9、 假定函数y=f(x)的图像关于直线x=a,x=b(b>a)都对称,那么f(x)为周期函数且2〔b-a 〕是它的一个周期。
10、函数()y f x =()x R ∈的图象关于两点()0,A a y 、()0,B b y ()a b <都对称,那么函数()f x 是以()2b a -为周期的周期函数;11、函数()y f x =()x R ∈的图象关于()0,A a y 和直线x b =()a b <都对称,那么函数()f x 是以()4b a -为周期的周期函数;12、假定偶函数y=f(x)的图像关于直线x=a 对称,那么f(x)为周期函数且2a 是它的一个周期。
函数的对称性与周期性
函数的对称性与周期性一 函数的对称性 (一)函数图象的自对称所谓函数图象的自对称是指一个函数图象的对称(中心对称或轴对称)图象是其本身. 关于函数图象的自对称,有下列性质:1、奇函数的图象关于 对称,偶函数的图象关于 对称,反之亦然。
2、二次函数)0(2≠++=a c bx ax y 的图象关于直线 对称。
3、三角函数xy sin =的图象关于直线 对称,它也有对称中心是 ;xy c o s =的图象的对称轴是 ,对称中心是 。
4、函数()x f y =若对于定义域内任意一个x 都有()()x b f x a f -=+,则其图象关于直线对称。
5、函数()x f y =若对于定义域内任意一个x 都有()()b x a f x a f=-++,则其图象关于点对称。
6、曲线()x f y =关于直线a x =与bx =(a <b )对称,则()x f y =是周期函数且周期为()a b -2(二)函数图象的互对称所谓函数图象的互对称是指两个函数图象的上的点一一对应,且对应点相互对称(中心对称或轴对称)。
关于函数图象的互对称,有下列性质:1、互为反函数的两个函数的图象关于直线 对称;反之, 。
2、函数()x f y =与函数()x f b y -=2的图象关于直线 对称。
3、函数()x a f y +=与函数()x b f y -=的图象关于直线 对称。
4、函数()x f y=与函数()x h f k y --=22的图象关于点 对称。
二 函数的周期性如果函数y =f(x)对于定义域内任意的x ,存在一个不等于0的常数T ,使得f(x +T)=f(x)恒成立,则称函数f(x)是周期函数,T 是它的一个周期.一般情况下,如果T 是函数f(x)的周期,则kT(k ∈N +)也是f(x)的周期. 关于函数的周期性的结论: 1、已知函数()x f y=对任意实数x,都有()()x f a x f-=+,则()x f y=是以 为周期的函数;2、已知函数()x f y=对任意实数x ,都有()x a f+=f(x)1,则()x f y =是以 为周期的函数; 3、已知函数()x f y =对任意实数x ,都有()x a f+=-f(x)1-,则()x f y =是以 为周期的函数. 4、已知函数()x f y =对任意实数x,都有()()b x f x a f=++,则()x f y =是以 为周期的函数5、已知函数()x f y=对任意实数x ,都有f(x +m)=f(x -m),则 是()x f y=的一个周期.6、已知函数()x f y=对任意实数x ,都有f(x +m)=)x (f 1)x (f 1+-,则 是f(x)的一个周期.7、已知函数()x f y=对任意实数x,都有f(x +m)=-)x (f 1)x (f 1+-,求证:4m 是f(x)的一个周期.1. 证明:由已知f(x +2m)=f[(x +m)+m])(1)(1)(11)(1)(11)(1)(1x f x fx f x f x fm x f m x f -=+--+-+-=+++--= 于是f(x +4m)=-)m 2x (f 1+=f(x) 所以f(x)是以4m 为周期的周期函数.8、已知函数f(x)对任意实数x,都有f(a +x)=f(a -x)且f(b +x)=f(b -x), 求证:2|a -b|是f(x)的一个周期.(a≠b)证明:不妨设a >b于是f(x +2(a -b))=f(a +(x +a -2b)) =f(a -(x +a -2b))=f(2b -x)=f(b -(x -b)) =f(b +(x -b))=f(x) ∴ 2(a -b)是f(x)的一个周期 当a <b 时同理可得 所以,2|a -b|是f(x)的周期 例题应用 1、已知()1+x f 是偶函数,则函数()x f y 2=的图象的对称轴是( )A.1-=x B. 1=x C . 21-=x D. 21=x2、函数()()2122+-+=x a x x f 在区间()4,∞-上是减函数,那么实数a 的取值范围是( )A .3≥aB. 3-≤aC. 5≤aD. 3-=a3、函数⎪⎭⎫ ⎝⎛+=252sin πx y的图象的一条对称轴方程是( )A.2π-=x B.4π-=x C.8π=x D.45π=x4、如果函数f(x)=x 2+bx +c 对任意实数t 都有f(2+t)=f(2-t),那么A.f(2)<f(1)<f(4)B.f(1)<f(2)<f(4)C.f(2)<f(4)<f(1)D.f(4)<f(2)<f(1)5、函数x a x y 2cos 2sin +=的图象关于直线8π-=x 对称,则a 的值为( )A. 1B. 2-C. 2D. 1-6、如果直线3-=x与2=x 均为曲线()x f y =的对称轴且()01=f 则()11f 的值为 。
函数的对称性与周期性
在区间[ , ] 上零点的个数为_________.
(2).已知函数 y f (x) 满足 f (x 2) f (x) ,且 x [0,2] 时, f (x) (x 1)2 ,若令函数
g(x) f (x) log5 | x 1| ,则函数 y g(x) 的左右零点之和为(
)
i 1
A. 0
B. m
C. 2m
D. 4m
例
5. 已 知 函 数
f
(x)
| |
x 2 |, x 0 log2 x |, x 0
,
若
关
于
x
的方程
f (x) a
有四个不同的解
x1, x2 , x3, x4 且 x1 x2 x3 x4 ,求 x1x2 x3x4 的取值范围.
(减),则 y f (x) 在 (a kT , b kT ), (k Z ) 上单调增(减).
例 10.(1). 函 数 y f (x) 满 足 f (x) f (4 x) , 当 x [0,4)时,f (x) x2 1 , 求
f (2014) _______.
g(x)
f
(x) ,当
x a 时,g(x) g(2a x) ,若关于 x 的方程 g(x) x a 0 有且仅有一个实数根,则 a
的取值范围为( )
A. (,0] (2,) C. (,1] (2,)
B. (,0] (9 ,) 4
D. (,1] (9 ,) 4
一 般 地 , 若 函 数 y f (x) 满 足 f (a x) f (b x) c , 则 函 数 的 图 象 关 于 点 ( a b , c ) 对称.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题:函数的周期性对称性1、周期函数的定义一般地,对于函数)(x f y =,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+,那么函数)(x f y =就叫做周期函数,非零常数T 叫做这个函数的一个周期。
如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。
显然,若T 是函数的周期,则)0,(≠∈k z k kT 也是)(x f 的周期。
如无特别说明,我们后面一般所说的周期是指函数的最小正周期。
说明:1、周期函数定义域必是无界的。
2、周期函数不一定都有最小正周期。
推广:若)()(b x f a x f +=+,则)(x f 是周期函数,a b -是它的一个周期;)2()2(Tx f T x f -=+,则)(x f 周期为T ;()f x 的周期为)(x f T ω⇔的周期为ωT 。
2、常见周期函数的函数方程:(1)函数值之和定值型,即函数)()()(b a C x b f x a f ≠=+++对于定义域中任意x 满足)()()(b a C x b f x a f ≠=+++,则有)()]22([x f a b x f =-+,故函数)(x f 的周期是)(2a b T -=特例:()()f x a f x +=-,则()x f 是以2T a =为周期的周期函数;(2)两个函数值之积定值型,即倒数或负倒数型 若)()()(可正可负,C b a C x b f x a f ≠=+⋅+,则得)]22()2[()2(a b a x f a x f -++=+,所以函数)(x f 的周期是)(2a b T -=(3)分式型,即函数)(x f 满足)()(1)(1)(b a b x f b x f a x f ≠+-++=+由)()(1)(1)(b a b x f b x f a x f ≠+-++=+得)2(1)2(b x f a x f +-=+,进而得1)2()2(-=+⋅+b x f a x f ,由前面的结论得)(x f 的周期是)(4a b T -=特例:()()1f x a f x +=±,则()x f 是以2T a =为周期的周期函数; )(11)(x f a x f +-=+,则()x f 是以a T 3=为周期的周期函数.)(11)(x f a x f -=+,则()x f 是以a T 3=为周期的周期函数. )(11)(x f a x f -=+,则()x f 是以a T 3=为周期的周期函数.1()()1()f x f x a f x ++=-,则()x f 是以4T a =为周期的周期函数.1)(1)()(+-=+x f x f a x f ,则()x f 是以4T a =为周期的周期函数.1)(1)()(-+=+x f x f a x f ,则()x f 是以a T 2=为周期的周期函数.1()()1()f x f x a f x -+=+,则()x f 是以2T a =为周期的周期函数.(4)递推型:)()()(a x f x f a x f --=+(或)2()()(a x f a x f x f ---=),则)(x f 的周期T = 6a (联系数列)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ;,,满足)0())(()()(≠=+=a x f g a x f x f y 其中)()(1x g x g =-,则)(x f y =是以a 2为周期的周期函数。
3、函数的对称性与周期性之间的联系:双对称性函数的周期性具有多重对称性的函数必具有周期性。
即,如果一个函数有两条对称轴(或一条对称轴和一个对称中心、或两个纵坐标相同的对称中心),则该函数必为周期函数。
相关结论如下:结论1:两线对称型:如果定义在R 上的函数()f x 有两条对称轴x a =、x b =,即()()f a x f a x +=-,且()()f b x f b x +=-,那么()f x 是周期函数,其中一个周期2T a b =-证明:∵()()f a x f a x +=-得()(2)f x f a x =- ()()f b x f b x +=-得()(2)f x f b x =- ∴(2)(2)f a x f b x -=- ∴()(22)f x f b a x =-+∴函数()y f x =是周期函数,且22b a -是一个周期。
【注意:上述2a b -不一定是最小正周期。
若题目所给两条对称轴x a =、x b =之间没有其他对称轴,则2a b -是最小正周期。
具体可借助三角函数来进行分析。
下同。
】 结论2:两点对称型:如果函数同时关于两点(),a c 、(),b c (a b ≠)成中心对称,即()()2f a x f a x c ++-=和()()2f b x f b x c ++-=()a b ≠,那么()f x 是周期函数,其中一个周期2T a b =-证明:由()()2f a x f a x c ++-=⇒()(2)2f x f a x c +-=()()2f b x f b x c ++-=⇒()(2)2f x f b x c +-= 得(2)(2)f a x f b x -=- 得()(22)f x f b a x =-+∴函数()y f x =是以22b a -为周期的函数。
结论3:一线一点对称型:如果函数()f x 的图像关于点(),a c (0a ≠)成中心对称,且关于直线x b =(a b ≠)成轴对称,那么()f x 是周期函数,其中一个周期4T a b =- 证明:()()2()(2)2f a x f a x c f x f a x c ++-=⇒+-= ()()()(2)f b x f b x f x f b x +=-⇒=- (4())(2(42))f b a x f b a b x -+=---(42)(2(22))2(22)f a b x f a b a x c f b a x --=--+=--+ 2(2(2))2(2)c f b a x c f a x =---=--2(2())22()()c c f x c c f x f x =--=-+=推论1:如果偶函数()f x 的图像关于直线x a =(0a ≠)对称,那么()f x 是周期函数,其中一个周期2T a =推论2:如果偶函数()f x 的图像关于直线(),a c (0a ≠)对称,那么()f x 是周期函数,其中一个周期4T a =推论3:如果奇函数()f x 的图像关于直线x a =(0a ≠)对称,那么()f x 是周期函数,其中一个周期4T a =推论4:如果奇函数()f x 关于点(),a c (0a ≠)成中心对称,那么()f x 是周期函数,其中一个周期2T a =【函数的奇偶性、对称性、周期性的代数特征有相仿之处,这三性都是有函数方程决定的,方程的不同特征决定了函数不同的性质,要注意其共性与个性。
】 【函数的奇偶性是函数对称性中的特殊情况,奇函数对称中心为(0,0),偶函数对称轴为y =0,带入结论1-3,可得推论1-4,所以学生在记忆时只需记住结论1-3即可,减少工作量】 【同理,教师可示范性给出一个结论的证明过程,其余可让学生进行证明】典例精讲一 利用周期性求值:例1、(★★)函数)(x f 对于任意实数x 满足条件)(1)2(x f x f =+,若5)1(-=f ,则))5((f f =___ 1-5_____。
例2、(★★)已知定义在R 上的奇函数)(x f 满足)()2(x f x f -=+,则)6(f 的值为 ( B)A 、-1B 、0C 、1D 、2例3、(★★)已知奇函数)(x f 满足)18(log ,2)(,)1,0(),()2(21f x f x x f x f x 则时且=∈-=+的值为 。
()21222229log 82(2)()(2)(4)99(log 18)(log 18)(4log 18)(log )(log )8899(log )288f x f x f x f x f x f f f f f f +=-∴=-+=+=-=-==-=-=-=-解:,【提问:当所要求的值不在定义域中时,怎样通过变换将要求的函数值转化到已知解析式的这一段定义域中去?除了充分利用周期性外,还要注意题中的已知条件,如奇偶性、对称性等。
】例4、 (★★★)()f x 的定义域是R ,且(2)[1()]1()f x f x f x +-=+,若(0)2008f =求 f (2008)的值。
(4)11(2)11(4)1()(8)(4)1(2)1(4)1(4)18(2008)(0)2008f x f x f x f x f x f x f x f x f x f f +--+--++====++-++++++∴==解:周期为,二 利用周期性求解析式:例5、(★★★)已知()f x 是以2为周期的偶函数,且当(0,1)x ∈时,()1f x x =+. 求()f x 在(1,2)上的解析式。
解法1:从解析式入手,由奇偶性结合周期性,将要求区间上问题转化为已知解析式的区间上 ∵(1,2)x ∈ , 则(2,1)x -∈--∴2(0,1)x -∈, ∵ 2T =,是偶函数∴ ()()(2)213f x f x f x x x =-=-=-+=- (1,2)x ∈ 解法2:(从图象入手也可解决,且较直观)()(2)f x f x =+如图:(0,1)x ∈, ()1f x x =+.∵是偶函数 ∴(1,0)x ∈-时()()1f x f x x =-=-+ 又周期为2,(1,2)x ∈时2(1,0)x -∈- ∴()(2)(2)13f x f x x x =-=--+=-例6、(★★★)已知函数()y f x =是定义在R 上的周期函数,周期5T =,函数()y f x =(11)x -≤≤是奇函数.又知()y f x =在[0,1]上是一次函数,在[1,4]上是二次函数,且在2x =时函数取得最小值5-. (1)证明:(1)(4)0f f +=; (2)求(),[1,4]y f x x =∈的解析式; (3)求()y f x =在[4,9]上的解析式.解:∵()f x 是以5为周期的周期函数,且在[1,1]-上是奇函数,∴(1)(1)(51)(4)f f f f =--=--=-,∴(1)(4)0f f +=.②当[1,4]x ∈时,由题意可设2()(2) 5 (0)f x a x a =-->, 由(1)(4)0f f +=得22(12)5(42)50a a --+--=,∴2a =, ∴2()2(2)5(14)f x x x =--≤≤.③∵()(11)y f x x =-≤≤是奇函数,∴(0)0f =,又知()y f x =在[0,1]上是一次函数,∴可设()(01)f x kx x =≤≤ 而2(1)2(12)53f =--=-,∴3k =-,∴当01x ≤≤时,()3f x x =-,从而10x -≤<时,()()3f x f x x =--=-,故11x -≤≤时,()3f x x =-. ∴当46x ≤≤时,有151x -≤-≤,∴()(5)3(5)315f x f x x x =-=--=-+. 当69x <≤时,154x <-≤,∴22()(5)2[(5)2]52(7)5f x f x x x =-=---=-- ∴2315,46()2(7)5,69x x f x x x -+≤≤⎧=⎨--<≤⎩.【由以上两例可以看出,已知周期函数某个周期内的解析式,求另一个周期内的解析式,只要当成是函数图象的平移来做即可。